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Abstract

The index of the classical Hirzebruch signature operator on a manifold
M is equal to the signature of the manifold. The examples of G.Lusztig [L,
1972] and M.Gromov [Gro, 1985] present the Hirzebruch signature opera-
tor for the cohomology of a manifold with coe¢ cients in a �at symmetric
or symplectic vector bundle. In [K2] we have a signature operator for the
cohomology of transitive Lie algebroids.

In this paper �rst we present a general approach to the signature
operator, and the above four examples are special cases of a one general
theorem.

Secondly, due to of the spectral sequence point of view on the signa-
ture of the cohomology algebra of some �ltered DG-algebras it appears
that the Lusztig and Gromov examples are important to the study of the
signature of a Lie algebroid. Namely, under some natural simple regular-
ity assumptions on a DG-algebra with a decreasing �ltration for which
the second term lives in a �nite rectangular we obtain that the signature
of the second term of the spectral sequence is equal to the signature of
the DG algebra. Considering the Hirzebruch-Serre spectral sequence for
a transitive Lie algebroid A over a compact oriented manifold for which

�Research work has been prepared within the framework of "Polish-Russian Scienti�c and
Technical Cooperation for the years 2008-2010" - theme: "Algebraic and analytic methods in
topology and its applications".
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the top group of the real cohomology of A is nontrivial we have that the
second term is just identical with the Lusztig or Gromov example (de-
pending on the dimension). Thus we have a second signature operator for
Lie algebroids.

1 Preliminary of Lie algebroids, signature of tran-
sitive Lie algebroids

Lie algebroids appeared as in�nitesimal objects associated to Lie groupoids,
principal �bre bundles, vector bundles (Pradines, 1967), TC-foliations and non-
closed Lie subgroups (Molino, 1977), Poisson manifolds (Dazord, Coste, Wein-
stein, 1987), etc. Their algebraic equivalences are known as Lie pseudo-algebras
(Herz 1953) called also Lie-Rinehart algebras (Huebschmann, 1990).
A Lie algebroid on a manifold M is a triple

A = (A; [[�; �]];#A)

where A is a vector bundle on M , (SecA; [[�; �]]) is an R-Lie algebra,

#A : A! TM

is a linear homomorphism (called the anchor) of vector bundles and the following
Leibniz condition is satis�ed

[[�; f � �]] = f � [[�; �]] + #A (�) (f) � �; f 2 C1 (M); �; � 2 SecA:

The anchor is bracket-preserving, #A�[[�; �]] = [#A � �;#A � �]: A Lie alge-
broid is called transitive if the anchor #A is an epimorphism. For a transitive
Lie algebroid A we have:

� the Atiyah sequence

0 �! ggg ,!A #A�! TM �! 0; (1)

ggg := ker#A,

� the �ber gggx of the bundle ggg in the point x 2M is the Lie algebra (called
the isotropy Lie algebra of A at x 2 M) with the commutator operation
being

[v; w] = [[�; �]](x); �; � 2 SecA; �(x) = v; �(x) = w; v; w 2 gggx;

� the vector bundle ggg is a Lie Algebra Bundle (LAB for short), called the
adjoint of A, the �bres are isomorphic Lie algebras.

Tangent bundles to manifolds and �nitely dimensional Lie algebras are sim-
ple examples of transitive Lie algebroids.
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To an arbitrary (transitive or not) Lie algebroid A we associate the coho-
mology algebra H (A) de�ned via the DG-algebra of A-di¤erential forms (with
real coe¢ cients) (
 (A) ; dA) ; where


 (A) = Sec
^
A�; - the space of cross-sections of

^
A�

dA : 

� (A)! 
�+1 (A)

(dA!) (�0; :::; �k) =
kX
j=0

(�1)j
�
#A � �j

�
(! (�0; :::|̂:::; �k)) (2)

+
X
i<j

(�1)i+j !
�
[[�i; �j ]]; �0; :::̂{:::|̂:::; �k

�
;

! 2 
k (A), �i 2 SecA. The operators dkA satisfy

dA (! ^ �) = dA! ^ � + (�1)k ! ^ dA�;

so they are of �rst order and the symbol of dkA is equal to

S
�
dkA
�
(x;v)

:
^k

A�x !
^k+1

A�x

S
�
dkA
�
(x;v)

(u) = (v � (#A)x) ^ u; 0 6= v 2 T �xM:

In consequence

Proposition 1.1 The sequence of symbols

^k
A�x

S(dkA)(x;v)!
^k+1

A�x
S(dk+1A )

(x;v)!
^k+2

A�x

is exact if and only if A is transitive. Therefore the complex
�
dkA
	
is an elliptic

complex provided that A is transitive.

Proof. The composition is zero. If 0 6= v 2 T �xM and A is transitive, then
~v = (v � (#A)x) 6= 0 and S

�
dk+1A

�
(x:v)

= �~v; �~v (u) = ~v^u: From the properties
of exterior algebra the sequence of symbols is exact. If A is not transitive, then
there exists a covector 0 6= v 2 T �xM such that ~v = (v � (#A)x) = 0: Therefore
�
�
dkA
�
(x;v)

= �~v = 0 for each k and the sequence of symbols is not exact.
For the trivial Lie algebroid TM - the tangent bundle of the manifold M -

the di¤erential dTM is the usual de-Rham di¤erential dM of di¤erential forms
on M whereas, for L = g - a Lie algebra g - the di¤erential dg is the usual
Chevalley-Eilenberg di¤erential, dg = �g.

Theorem 1.2 (Kubarski-Mishchenko, 2004) [K-M-2] For each transitive
Lie algebroid (A; [[�; �]];#A) with the Atiyah sequence (1) over a connected com-
pact oriented manifold M the following conditions are equivalent (m = dimM;
n = dimgggjx; i.e. rankA = m+ n )
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(1) Hm+n (A) 6= 0;

(2) Hm+n (A) = R;

(3) A is the so-called invariantly oriented, i.e. there exists a global non-
singular cross-section " of the vector bundle

Vn
ggg, 0 6= "x 2

Vn
gggjx; in-

variant with respect to the adjoint representation of A in the vector bundleVn
ggg (which is extending of the adjoint representation adA of A in ggg given

by (adA) (�) : Secggg !Secggg; � 7�![[�; �]] ).

The condition (3) yields that the structure Lie algebras gggjx are unimodular.
Lie algebroids ful�lling (3) appeared in 1996 [K1] under the name TUIO-Lie
algebroids (transitive unimodular invariantly oriented). The connectedness of
M implies that any invariant cross-section " is uniquely determined up to a
constant factor. The �bre integral operator

6
Z
A

: 
k (A)! 
k�ndR (M) ; k � n;�
6
Z
A

!

�
x

(w1; :::; wk�n) = (�1)kn !x ("x; ~w1; :::; ~wk�n) ; #A ( ~wi) = wi

commutes with the di¤erentials dA and dM if and only if " is invariant. In this
case the �bre integral gives a homomorphism in cohomology

6
Z #

A

: H� (A)! H��n
dR (M)

and we have the isomorphism

6
Z #

A

: Hm+n (A)
�=! Hm

dR (M) = R:

The scalar Poincaré product

PkA : Hk (A)�Hm+n�k (A)! R;

([!] ; [�]) 7�!
Z
A

! ^ � =
Z
M

�
6
Z
A

! ^ �
�

is nondegenerated and if m+ n = 4p then

P2pA : H2p (A)�H2p (A)! R

is nondegenerated and symmetric. Therefore its signature is de�ned and it is
called the signature of A; and is denoted by

Sig (A) :

Problem 1.3 Calculate the signature Sig (A) and give some conditions to the
equality Sig (A) = 0:
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There are examples for which Sig (A) 6= 0. They are based on the example
of the �at bundle over surfaces with non-zero signature [Gro, 8 27 ].
In the paper [K2], a Hirzebruch signature operator for the cohomology

H (A) is constructed. Below, we look at this operator from more general point
of view, as well as we present a general mechanism for the calculation of the sig-
nature via spectral sequences, see [K-M-2], which we use to two kinds of spectral
sequences associated with Lie algebroids:
a) the spectral sequence of the µCech-de Rham complex,
b) the Hochschild-Serre spectral sequence.

2 General approach to signature via spectral se-
quences

The idea of using spectral sequences to the signature comes from S.S.Chern,
F.Hirzebruch, J-P. Serre [Ch-H-S]. Via spectral sequences the authors proved

Theorem 2.1 Let E !M be a �ber bundle, with the typical �ber F , such that
the following two conditions are satis�ed:

(1) E; M; F are compact connected oriented manifolds;

(2) the fundamental group �1 (M) acts trivially on the cohomology ringH� (F )
of F .

Then, if E; M; F are oriented coherently, so that the orientation of E is induced
by those of F and M , the index of E is the product of the indices of F and M;
that is

Sig (E) = Sig (F ) � Sig (M) :

The authors consider the cohomology Leray spectral sequence Ep;qs of the
bundle E ! B with the real coe¢ cients. The term E2 by hypothesis (2) is the
bigraded algebra

Ep;q2
�= Hp (M ;Hq (F )) �= Hp (M)
Hq (F ) :

Therefore
Ep;q2 = 0 for p > m or q > n:

Clearly, E2 is a Poincaré algebra by hypothesis (1). Using the spectral se-
quences argument the authors noticed that

(Es; ds; �) ; s � 2;

are Poincaré algebras with Poincaré di¤erentiations. The in�nite term
(E1; �) is also a Poincaré algebra, and the equality of signatures

SigE2 = SigE3 = ::: = SigE1
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holds. The last step
SigE1 = SigH (E)

is also proved. We add that it is not so trivial since, in general, the algebras
E1 and H (E) are not isomorphic (although we have E1 �= H (E) as bigraded
spaces).

We recall that a �nitely graded algebra
�
A� =

L
0�r�N A

N ;[
�
is called a

Poincaré algebra, if
(1) dimAN = 1;
(2) x [ y = (�1)ij y [ x if x 2 Ai; y 2 Aj ; i.e. (A;[) is an anticommutative

algebra,
(3) let 0 6= � 2 AN be a base element of AN . The bilinear form

h�; �i : Ar �AN�r ! R

relative to � (i.e. hx; yi� = x [ y) is nondegenerate. Therefore Ar �=
�
AN�r

��
and dimAr = dimAN�r.
The key to the further investigation is the notion of a Poincaré di¤erentia-

tion, i.e. a linear homomorphism d : A! A satisfying the conditions:
(1) d2 = 0;
(2) d [Ar] � Ar+1;
(3) d is antiderivation,
(4) d

�
AN�1

�
= 0 (in particular, if x 2 Ar; y 2 AN�r�1; then dx [ y =

� (�1)r x [ dy ).
In analogy with the signature of an oriented manifold we have the signature

of a �nitely dimensional Poincaré algebra (A =
L
Ar;[) relative to 0 6= � 2 AN .

It is to be zero if N 6= 0 (mod 4) and if N = 4k; SigA is the signature of the
symmetric nondegenerated function h�; �i2k;2k : A2k�A2k ! R de�ned relatively
to �

SigA = Sigh�; �i2k;2k:

The following lemma will be very useful below.

Lemma 2.2 [Ch-H-S] If (A;[; d) is a �nitely dimensional Poincaré algebra
with Poincaré di¤erentiation, then the cohomology graded algebra (H� (A) ;[)
is a Poincaré algebra and relative to the same element 0 6= � 2 AN = HN (A; d)
the equality holds

SigA = SigH (A) :

Example 2.3 (1) Let E be any �nitely dimensional vector space. Then the
exterior algebra

V
E is a Poincaré algebra. Its signature is zero.

(2) Let g be any real Lie algebra. Then the system�^
g�;^; �g

�
with the Chevalley-Eilenberg di¤erentiation �g is a Poincaré algebra with Poincaré
di¤erentiation if and only if g is unimodular. The above lemma yields: if g is
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unimodular, then the cohomology algebra H (g) is a Poincaré algebra and

SigH (g) = Sig
^
g� = 0:

It appears that the Chern-Hirzebruch-Serre arguments used to prove the
above theorems on the signature of the total space of the bundle E ! M are
purely algebraic and lead to the following general theorems [K-M-2].

Theorem 2.4 Let ((A; h; i) ; Ar;[; D;Aj) be any DG-algebra with a gradation
Ar and a decreasing �ltration Aj and let (Ep;qs ; ds) be its spectral sequence. We
assume that there exist natural numbers m and n such that:

� Ep;q2 = 0 for p > m and q > n, m+ n = 4k;

� E2 is a Poincaré algebra with respect to the total gradation and the top
group E(m+n)2 = Em;n2 .

Then each term
�
E
(�)
s ;[; ds

�
2 � s < 1; is a Poincaré algebra with Poincaré

di¤erentiation, the in�nite term
�
E
(�)
1 ;[

�
is also a Poincaré algebra and

SigE2 = SigE3 = ::: = SigE1:

If m and n are odd, then SigE2 = 0: If m and n are even, then

SigE2 = Sig
�
E
(2k)
2 � E(2k)2 ! E

(m+n)
2 = Em;n2 = R

�
= Sig

�
E

m
2 ;

n
2

2 � E
m
2 ;

n
2

2 ! E
(m+n)
2 = Em;n2 = R

�
:

It remains to prove the equality SigE1 = SigH (A) : The same arguments
as in the original work [Ch-H-S] give the following general theorem:

Theorem 2.5 Let (A;Ar;[; D;Aj) be any DG-algebra with a gradation Ar and
with a decreasing �ltration Aj compatible with the DG structure, i.e.

AiAj � Ai+j ; D (Aj) � Aj ; Aj =
M
r

Ar \Aj ;

and satisfying the regularity condition A0 = A

A = A0 � � � � � Aj � Aj+1 � � � �

Let (Ep;qs ; ds) be the spectral sequence associated to this graded di¤erential �ltered
algebra A: We assume that
� the in�nite term Ep;q1 lives in the rectangular 0 � p � m; 0 � q � n;
� dimEm;n1 = 1;
� E1 is a Poincaré algebra with respect to the total gradation, in particular,

dimE1 is �nite.
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Under the above assumptions on the graded di¤erential �ltered algebra A; the
cohomology algebra H (A) satis�es the conditions:
(1) Hm+n (A) �= Em;n1 ;i.e. in particular, dimHm+n (A) = 1;
(2) the algebra H (A) =

Lm+n
r=0 H

r (A) is a Poincaré algebra,
(3) the signature of the cohomology of H (A) is equal to the signature of the

term E1;
SigE1 = SigH (A)

under suitable choice of generators of the top groups.

Therefore, under some natural simple regularity assumptions on a DG-
algebra Ar we have: if Ep;q2 is a Poincaré algebra and live in a �nite rectangular,
then

Sig (E2) = Sig (H (A)) :

We use this mechanism to
(a) the spectral sequence for the µCech-de Rham complex of the Lie

algebroid A [K-M-2],
(b) the Hochshild-Serre spectral sequences [K-M-3].

(a): For the details see [K-M-2]. Let H� (A) =
�
U 7�! H� �AjU�� be the

Leray type presheaf of cohomology, locally constant on a good covering U, with
values in the cohomology algebra H� (g) of the structural Lie algebra g: Then
Ep;q1 = Cp (U;Hq (A)) ; d1 = �# : Ep;q1 ! Ep+1;q1 ; where � is the coboundary
homomorphism, Ep;q2 = Hp

�#
(U;Hq (A)). If the monodromy representation � :

�1 (M) = �1 (N (U))! Aut (H (g)) of the presheaf H (A) is trivial, then

Ep;q2
�= Hp

dR (M)
H
q (g)

(the isomorphisms are canonical isomorphisms of bigraded algebras). Therefore
SigE2 = Sig (H (M)
H (g)) = SigH (M) �SigH (g) : Hence as the isotropy Lie
algebra g is unimodular, i.e. dimHn (g) = 1, we have SigH (g) = Sig

V
g� = 0

and therefore

Sig (A) = SigH (A) = SigE2 = Sig (M) � Sig (g) = 0:

Example 2.6 The condition of the triviality of the monodromy (in consequence
Sig (A) = 0) holds if:

� M is simply connected,

� AutG = IntG, where G is a simply connected Lie group with the Lie alge-
bra g, for example if g is a simple Lie algebra of type Bl; Cl; E7; E8; F4; G2.

� the adjoint Lie algebra bundle ggg is trivial in the category of �at bundles
(the bundle H (ggg) of cohomology of isotropy Lie algebras with the typi-
cal �bre H (g) possess canonical �at covariant derivative - which will be
important for studying of the Hochshild-Serre spectral sequence). For ex-
ample, ggg is trivial in the category of �at bundles, for the Lie algebroid
A (G;H) of the the TC-foliation of left cosets of a nonclosed Lie subgroup
H in any Lie group G.
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(b): Following G.Hochschild and J.-P.Serre [H-S], for a pair of R-Lie algebras
(g; k) one can consider a graded cochain group of R-linear alternating functions
AR (P ) =

L
k�0A

k (P ) ; Ak (P ) = Ck (g; P ) with values in a g-module P;
g � P ! P; with the standard R-di¤erential operator d of degree 1 and the
Hochschild-Serre �ltration Aj � AR (P ) as follows:
� Aj = AR (P ) for j � 0;
� if j > 0; Aj =

L
k�j A

k
j ; A

k
j = Aj \ Ak; where Akj consists of all those

k-cochains f for which f (
1; :::; 
k) = 0 whenever k� j+1 of the arguments 
i
belongs to k.
In this way we have obtained a graded �ltered di¤erential R-vector space�

AR =
M
k�0

Ak; d; Aj
�

(3)

and we can use its spectral sequence�
Ep;qs ; ds

�
: (4)

For a transitive Lie algebroid A = (A; [[�; �]];#A) with the Atiyah sequence 0!
ggg ,! A

#A! TM ! 0 we will consider the pair of R-Lie algebras (g; k) where

g = Sec (A) ; k = Sec (ggg) :

Following K.C.M.Mackenzie (1987) [M], V.Itskov, M.Karashev, and Y.Vorobjev
(1998), [I-K-V]), J.Kubarski, A.S.Mishchenko (2004) [K-M-3] we will consider
the C1 (M)-submodule of C1 (M)-linear alternating cochains


k (A) � Ck (g;C1 (M))

with values in the trivial g-module C1 (M) (i.e. with respect to the trivial
representation @� (X) = #A (�) (X) ) and the induced �ltration


j = 
j (A) = Aj \ 
 (A)

of C1 (M)-modules. In this way we obtain a graded �ltered di¤erential space�

 (A) =

M
k


k (A) ; dA;
j
�

(5)

and its spectral sequence �
Ep;qA;s; dA;s

�
: (6)

Assume as above

m = dimM; n = dimgggjx; i.e. rankA = m+ n:

The multiplication ^ and di¤erentiation dA of di¤erential form, de�ned by (2),
preserves gradations and �ltrations ^ : 
kj � 
ri ! 
k+rj+i ; dA : 


k
j ! 
k+1j . We

have

Ep;qA;0 = 
p+qp (A) =
p+qp+1

dp;qA,0 : Ep;qA;0 ! Ep;q+1A;0 ; [!] 7�! [dA!] :
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Taking an arbitrary connection � : TM ! A in the Lie algebroid A we obtain
an isomorphism of C1 (M)-modules [K-M-3, Con. 5.2]

ap;qA : Ep;qA;0
�=�! 
p

�
M ;

^q
ggg�
�
;

ap;qA ([!])x (v1; :::; vp) (�1; :::; �q) = !x (�1; :::; �q; �v1; ::; �vp) ; vi 2 TxM; �i 2 gggjx:

Since ! 2 
p+qj ; then ap;qA does not depend on �:

Through the isomorphism ap;qA the di¤erential dA;0 : E
p;q
A;0 ! Ep;q+1A;0 can be

identi�ed with a di¤erentiation

~dp;�A;0 : 

p
�
M ;

^q
ggg�
�
! 
p

�
M ;

^q+1
ggg�
�

of di¤erential forms with values in
Vq
ggg� with respect to the Chevalley-Eilenberg

di¤erential at any point for the isotropy Lie algebra gggjx;H
�

p
�
M ;

V�
ggg�
�
; ~dA;0

�
=


p (M ;H� (ggg)) : Therefore

Ep;�A;1
�= H

�
Ep;�A;0; dA;0

� bp;��= 
p (M ;H� (ggg)) :

where the isomorphism bp;q is given by [!] 7�! [�!p] for ! 2 
p+qp ; dA! 2 
p+q+1p+1

and �!p 2 
p (M ;
Vq
ggg�) is equal to �!p (v1; :::; vp) (�1; :::; �q) = ! (�1; :::; �q; �v1; ::; �vp) :

We carry over the di¤erentials dp;qA;1 : E
p;q
A;1 ! Ep+1;qA;1 to 
p (M ;Hq (ggg)) via iso-

morphisms bp;q: In the vector bundle Hq (ggg) there is a �at covariant derivative
rq such that d�;qA;1 = (�1)

q
drq [K-M-3, Prop. 5.9]. The �at covariant derivative

rq is de�ned byrqX [f ] = [LXf ] for f 2 
p (M ;Z [
Vq
ggg�]) ; [f ] 2 
p (M ;Hq (ggg))

where

(LXf) (�1; :::; �q) = @X (f (�1; :::; �q))�
qX
i=1

f (�1; :::; [[�X; �i]]; :::; �q)

(we recall that � : TM ! A is an arbitrary auxiliary connection in A). Therefore

Ep;qA;2
�= Hp

�
E�;qA;1; d

�;q
A;1

�
�= Hp

rq (M ;Hq (ggg))

and the second isomorphism is given by

[!] 7�! [ [�!]] ::

Summing up, we have obtained

Theorem 2.7 If A is a TUIO-Lie algebroid such that m + n = 4p (m =
dimM; n = dimgggjx), then
a) if m and n are odd, then SigA = 0;
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b) if m and n are even, then

SigA = SigE2 = Sig
�
E
(2p)
2 � E(2p)2 ! E

(m+n)
2 = Em;n2 = R

�
= Sig

�
E

m
2 ;

n
2

2 � E
m
2 ;

n
2

2 ! E
(m+n)
2 = Em;n2 = R

�
where E

m
2 ;

n
2

2 = H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
and

H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
�H

m
2

r
n
2

�
M ;H

n
2 (ggg)

�
! Hm

rn (M ;Hn (ggg)) = R

is de�ned via the usual multiplication of di¤erential forms with respect to the
multiplication of cohomology class for Lie algebras.

� : H
n
2 (ggg)�Hn

2 (ggg)! Hn (ggg) =M � R:

We notice that if n2 is even, then � is symmetric nondegenerated (in this way we
obtain a Lusztig example), while if n2 is odd, then � is symplectic (in this way we
obtain a Gromov example). However, H

m
2

�
M ;H

n
2 (ggg)

�
�Hm

2

�
M ;H

n
2 (ggg)

�
! R

is always symmetric nondegenerated.

3 Algebraic aspects of the Hirzebruch signature
operator

Below, we give a common algebraic approach to the calculation the signature
Sig (W ) via the Hirzebruch signature operator.

3.1 Hodge space

In this subsection we present algebraic point of view on the �-Hodge operator,
Hodge theorem and Hirzebruch signature operator.

De�nition 3.1 By a Hodge space we mean the triple (W; h; i ; (; )) where W
is a real vector space (dimW is �nite or in�nite), h; i ; (; ) : W �W ! R are
2-linear tensors such that
(1) (; ) is symmetric and positive de�nite (i.e. is an inner product),
(2) there exists a linear homomorphism

�W :W !W

called �-Hodge operator ful�lling properties:
(i) for all v 2 V;

hv; wi = (v; �W (w)) ;

(ii) �W is an isometry with respect to (; ) ; i.e.

(v; w) = (�W v; �Ww) ;
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Clearly, the �-Hodge operator is uniquely determined (if exists).
Two 2-tensors f : V � V ! R and g : W �W ! R determine the tensor

product
f 
 g : (V 
W )� (V 
W )! R

which is 2-linear.

Lemma 3.2 ([Gre]) The tensor f
g is symmetric and positive de�nite if both
f and g are symmetric and positive de�nite (the dimensions of V and W can
be in�nite).

From the above we have:

Lemma 3.3 If (V; h�; �iV ; (�; �)V ) and (W; h�; �iW ; (�; �)W ) are Hodge spaces, then
their tensor product

(V 
W; h�; �iV 
 h�; �iW ; (�; �)V 
 (�; �)W )

is a Hodge space and
�V
W = �V 
 �W :

3.2 Finitely dimensional Hodge spaces, examples.

Lemma 3.4 Let (W; h�; �i) be a �nite dimensional real vector space equipped
with a 2-tensor h�; �i : Then there exists an inner product (�; �) such that the
system (W; h; i ; (; )) is a Hodge space if and only if there exists a basis of W in
which the matrix of h; i is orthogonal.

Proof. Standard calculations.
It is an important observation that the calculation of the signature (in stan-

dard cases) via the idea of Hirzebruch operator is restricted to such 2-tensors
h�; �i (in �bres of some vector bundles) for which there exists an auxiliary scalar
product (�; �) with respect to the system (W; h; i ; (; )) is a Hodge space.
Now we give examples of a number of �nite dimensional Hodge spaces.

Example 3.5 (Classical) Let (V;G) be a real N -dimensional oriented Euclid-
ean space with an inner product G : V � V ! R and the volume tensor
" = e1 ^ ::: ^ eN 2

VN
V; (where feigNi=1 is a positive ON base of V ). We

identify
VN

V = R via the isomorphism � :
VN

V
�=�! R; s � " 7�! s: We have

the classical Hodge space �^
V; h; i ; (; )

�
where

h�; �i :
^
V �

^
V ! R;

h�; �ik :
^k

V �
^N�k

V !
^N

V = R;

vk; vN�k

�
= �

�
vk ^ vN�k

�
;

12



h; i = 0 outside the pairs of degree (k;N � k), and

(�; �)k :
^k

V �
^k

V ! R; (v1 ^ :::: ^ vk; w1 ^ ::: ^ wk)k = det [G (vi; wk)] ;

the subspaces
Vk
V; k = 0; 1; :::; N are orthogonal (by de�nition).

The �-Hodge operator exists and it is determined via an ON base feigNi=1
by the formula

� (ei1 ^ ::: ^ eik) = "(j1;:::;jn�k) � ej1 ^ ::: ^ ejn�k

where i1 < ::: < ik and j1 < ::: < jn�k and the sequence (j1; :::; jn�k) is
complementary to (i1; :::; ik) and "(j1;:::;jn�k) = sgn (j1; :::; jn�k; i1; :::; ik) :

The above classical example is used:

� for V = TxM or V = T �xM where M is a Riemannian manifold;

� for V = Ax where A is a TUIO-Lie algebroid over a Riemann manifold
(see below).

Example 3.6 (Lusztig example, 1972) [L] Let (; )0 : E �E ! R be a sym-
metric (inde�nite in general) nondegenerated tensor on a �nite dimensional
vector space E: Let G be an arbitrary positive scalar product in E: Then there
exists exactly one direct product E = E+�E� which is ON with respect to the
both scalar product (; )0 and G and such that (; )0 on E+ is positive and on E�
is negative. We denote by �E the involution �E : E ! E such that

�E jE+ = id; �E jE� = �id:

Then, the quadratic form

(; ) : E � E ! R
(v; w) : = (v; �Ew)0

is symmetric and positive de�nite. The involution �E is an isometry

(�Ev; �Ew) =
�
�Ev; �2Ew

�
0
= (�Ev; w)0 = (w; �Ev)0 = (w; v) = (v; w) :

Therefore (E; (; )0 ; (; )) is a Hodge-space.

Example 3.7 (Gromov example, 1995) [Gro] Let h; i0 : E � E ! R; be a
skew-symmetric nondegerated tensor on a �nite dimensional vector space E:
There exists an anti-involution � in E, �2 = �id (i.e. a complex structure) such
that

h�v; �wi0 = hv; wi0 ; v; w 2 E;

hv; �vi0 > 0 for all v 6= 0:

13



Namely, there exists a base of E for which the matrix of h; i0 is orthogonal and
is of the form �

0 1
�1 0

�
and � is given by the formula

� (vi) = vn+i;

� (vn+i) = �vi:

Then the tensor

(; ) : E � E ! R
(v; w) : = hv; �wi0

is symmetric and positive de�nite and

(�v; �w) = (v; w) ;

i.e. � preserves both forms h; i0 and (; ) : The system (E; h; i0 ; (; )) is a Hodge-
space since the operator �� is the �-Hodge operator

hv; wi0 =


v;��2w

�
0
= hv; � (��w)i0 = (v;��w) ;

and �� is an isometry (��v;��w) = (�v; �w) = (v; w) :

De�nition 3.8 By the Hodge vector bundle we mean a system (�; h; i ; (; )) con-
sisting of a vector bundle � and two smooth tensor �elds h; i ; (; ) : � � � ! R
(sections of (� 
 �)� ) such that for each x 2M the system (�x; h; ix ; (; )x) is a
�nitely dimensional Hodge space and the family of Hodge operators �x : �x ! �x;
x 2M; gives a smooth linear homomorphism of vector bundles, � : � ! �.

Example 3.9 (Important example) Consider an arbitrary Riemannian ori-
ented manifoldM of dimension N and a Hodge vector bundle (�; h; i ; (; )). Then
for any point x 2M we take the tensor product of Hodge spaces

V
T �xM 
 �x:

Assuming the compactness of M we can de�ne two 2-R-linear tensors

((�; �)) ; hh�; �ii : 
 (M ; �)� 
 (M ; �)! R;

by integrating along the Riemannian manifold

((�; �)) =

Z
M

(�x; �x) dM; hh�; �ii =
Z
M

h�x; �xi dM =

Z
M

� ^' �

where

'x = h�; �i
k
x :
^k

T �xM 
 �x �
^N�k

T �xM 
 �x !
^N

T �xM = R

is the wedge product with respect to the multiplication h; ix of the values. The
2-form ((�; �)) is symmetric and positive de�nite and the triple

(
 (M ;W ) ; hh�; �ii ; ((�; �)))
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is a Hodge space with the �-Hodge operator hh�; �ii = ((�; ��)) de�ned point
by point

(��)x = �x (�x) :

Indeed,

hh�; �ii =
Z
M

h�x; �xi dM =

Z
M

(�x; �x�x) dM = ((�; ��)) :

3.3 Graded di¤erential Hodge space

De�nition 3.10 By a graded di¤ erential Hodge space we mean a system�
W =

MN

k=0
W k; h�; �i ; (�; �) ; d

�
where (W; h�; �i ; (�; �)) is a Hodge space (�nitely or in�nitely dimensional) and
(1) h�; �ik :W k �WN�k ! R and h; i = 0 outside the pairs (k;N � k),
(2) W k are orthogonal with respect to (�; �) ;
(3) d is homogeneous of degree +1; i.e. d :W k !W k+1; and d2 = 0;
(4) hdw; ui = (�1)k+1 hw; dui for w 2W k:

Clearly,

a) the induced cohomology pairing

h; ikH : H
k (W )�HN�k (W )! R;

h[u] ; [w]ikH = hu;wi
k
;

is correctly de�ned,

b) �
�
W k

�
�WN�k; and � :W k !WN�k is an isomorphism.

Assume thatW is a graded di¤erential Hodge spacer, and let d� :W !
W be the adjoint operator with respect to (; ), i.e. the one such that

(d� (w1) ; w2) = (w1; d (w2)) :

We assume there exists d�. It is easy to see that d� is of degree �1; d� :W k+1 !
W k. Using standard calculations we can show that the operator (called the
Laplacian)

� := (d+ d�)
2
= dd� + d�d

is homogeneous of degree 0; i.e. � [W r] � W r; is self-adjoint (�v; w) =
(v;�w) ; nonnegative (�v; v) � 0; and we have

fv 2W ; (�v; v) = 0g = fv 2W ; dv = 0 = d�vg :
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De�nition 3.11 A vector v 2 W is called harmonic if dv = 0 and d�v = 0;
or equivalently if v ? (�v) : Denote

H (W ) = fv 2W ; dv = 0; d�v = 0g ;
Hk (W ) =

�
v 2W k; dv = 0; d�v = 0

	
:

The harmonic vectors forms a graded vector space

H (W ) =
MN

k=0
Hk (W ) :

Lemma 3.12 Hk (W ) = ker
�
d+ d� :W k !W

	
= ker

�
�k :W k !W k

	
; i.e.

H (W ) = ker� = (Im�)? :

Proof. Standard calculations.
ker� is the eigenspace of the operator � corresponding to the zero value of

the eigenvalue.
If W is a Hilbert space and Y � W is a closed subset, then W is the direct

sum Y
L
Y ?: For a Riemannian vector bundle � over a Riemannian manifold,

the space W = Sec (�) is not a Hilbert one (because it is not complete). But we
have the following well known important theorem, see for example [L-M].

Theorem 3.13 Let � be a Riemannian vector bundle over a compact oriented
Riemannian manifold M: If � : Sec � ! Sec � is a self-adjoint nonnegative
elliptic operator then ker� is a �nite dimensional space and

Sec � = Im�
M

ker� = Im�
M

(Im�)
?
:

In the sequel
�
W =

LN
k=0W

k; h�; �i ; (�; �) ; d
�
denotes an arbitrary graded

di¤erential Hodge space. The spaces ker�k and Im dk�1 are orthogonal, in
particular ker�k \ Im dk�1 = 0: Therefore the inclusion

Hk (W ) = ker�k ,! ker dk

induces a monomorphism

ker�k � Hk (W ) :

Below we notice that the algebraic assumption

W = Im�
M

(Im�)
? (7)

implies that the above monomorphism is an isomorphism, i.e. that in each
cohomology class there is (exactly one) a harmonic vector.
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Theorem 3.14 If W = Im�
L
(Im�)

?, then
(1)

W k = ker�k
M

Im�k;

(2)
W k = ker�k

M
Im dk�1

M
Im (d�)

k+1
;

(3)
ker dk = ker�k

M
Im dk�1:

In particular, if W = Im�
L
(Im�)

?, the inclusion

ker�k ,! ker dk

induces an isomorphism

ker�k ,! ker dk ! ker dk= Im dk�1 = Hk (W ) :

It means that in each cohomology class there is exactly one harmonic vector.
(4) The equation �w = u , for a given u; has a solution if and only if

u 2 (ker�)? ; equivalently

Im� = (ker�)
?
:

Proof. (1) evident.
(2) Since Im�k � Im dk�1+Im d�(k+1) (�u = d (d�u)+d� (du) 2 Im dk�1+

Im d�(k+1) ) then

W k = ker�k
M

Im�k = ker�k + Im dk�1 + Im (d�)
k+1

:

So we need only to check (which is very easy) that these three subspaces are
ON.
(3) Since ker�k and Im dk�1 are ON and ker�k + Im dk�1 � ker dk, we

only need to show that ker�k + Im dk�1 � ker dk: Let uk 2 ker dk and expand
uk thanks to (2) uk = w1 + dw2 + d

�w3; �w1 = 0: In particular, dw1 = 0
and 0 = dd�w3: From the equality (d�w3; d�w3) = (w3; dd

�w3) = 0 we have
d�w3 = 0 and uk = w1 + dw2 2 ker�k + Im dk�1:
(4) Assume that the equation �w = u has a solution w for a given u. Then

for each v 2 ker�

(u; v) = (�w; v) = (w;�v) = (w; 0) = 0:

Therefore u 2 (ker�)? : For the converse, take u 2 (ker�)? and assume that
W = Im�

L
(Im�)

?
: Representing u in this direct sum as u = u1 + u2; u1 2

Im�; u2 2 (Im�)? = ker� we have: u 2 (ker�)? and u2 2 ker�: Therefore if
u1 = �h; then 0 = (u; u2) = (�h; u2)+ (u2; u2) = (h;�u2)+ (u2; u2) = (u2; u2)
from which u2 = 0; i.e. u = u1 2 Im�; u = �h:
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Remark 3.15 The above fact (4) means that the conditionW = Im�
L
(Im�)

?

is su¢ cient to show the equality Im� = (ker�)? :We can ask: Is this condition
necessary?

Now we will try to formulate a condition assuring the existence of the adjoint
operator d� in a graded di¤erential Hodge space.

Theorem 3.16 Let
�
W =

LN
k=0W

k; h�; �i ; (�; �) ; d
�
be a graded di¤erential Hodge

space. Let " : f0; 1; :::; Ng ! f�1; 1g be an arbitrary function such that "k =
"N�k; for each k. Assume "-anticommutativity of h; i, i.e.


vk; vN�k
�
= "k



vN�k; vk

�
for vk 2W k; vN�k 2WN�k; [remark: if h; ik;N�k is nontrivial, then "k"N�k =
+1; i.e. the condition "k = "N�k holds] then
(a)

� �
�
wk
�
= "k � wk;

in particular,

��1
�
uk
�
= "k � �

�
uk
��

�N�k
��1 �

uk
�
= "k � �k

�
uk
�
:

(b) the adjoint operator d� exists and is given by the formula

d�
�
wk
�
= "k (�1)k � d �

�
wk
�
; wk 2W k;

where � is the �-Hodge operator in W:
(c)

(�d�)
�
wk
�
= "k (�1)k "N�k+1 (d�)

�
wk
�
;

(d��)
�
wk
�
= (�1)N�k "k"N�k (�d)wk = (�1)N�k (�d)wk:

(d) if "k�1 = "k+1 then �� = ���; to be precise

��wk = "k�1"k (�1)N+1� � wk;

and we then conclude that

�
�
Hk (W )

�
� HN�k (W ) ;

and
� : Hk (W )! HN�k (W )

is an isomorphism.

18



Proof. (a) Simply calculations.
(b) (; ) is symmetric and positive de�nite (i.e. it is an inner product). Since

the tensor (; ) is an inner product, it is su¢ cient to prove that the operator
~d
�
wk
�
= "k (�1)k � d �

�
wk
�
; wk 2 W k; is adjoint to d: Take auxiliarily

wk�1 2W k�1: Therefore, since �d �
�
wk
�
2W k�1; then, by (a)�

wk�1; ~d
�
wk
��

=
�
wk�1; "k (�1)k � d �

�
wk
��

=
�
wk�1; "k (�1)k � d"k ��1

�
wk
��

= (�1)k
�
wk�1; �d ��1

�
wk
��

= (�1)k


wk�1; d ��1

�
wk
��

/


dwk; u

�
= (�1)k+1



wk; du

�
=



dwk�1; ��1

�
wk
��

=
�
dwk�1; � ��1

�
wk
��

=
�
dwk�1; wk

�
(c) Easy calculations.
(d) We calculate

� �
�
wk
�
= (�1)N�k d � dwk + "k�1 (�1)N�k+1 � d � d �

�
wk
�

��
�
wk
�
= "k+1"k (�1)N+1

�
(�1)N�k d � dwk + "k+1 (�1)N�k+1 � d � d �

�
wk
��

which imply the equality ��wk = "k�1"k (�1)N+1� � wk for "k�1 = "k+1:
As a corollary from (d) above we obtain the following theorem.

Theorem 3.17 (Duality Theorem) If W = Im�
L
(Im�)

?
; then

Hk (W ) ' HN�k (W ) :

The composition

Hk (W ) ��= Hk (W ) ��!�= HN�k (W ) �!�= HN�k (W )

[v] 7�! [�v]
is an isomorphism given by the above formula for harmonic vectors only !
We restrict the scalar positive product (�; �) :W k �W k ! R to the space of

harmonic vectors
(�; �)H : H

k (W )�Hk (W )! R;
and we restrict the tensor h�; �i :W k �WN�k ! R also to harmonic vectors

Bk = h�; �iH : H
k (M)�HN�k (M)! R:

From the properties of the �-Hodge operator we have the commuting diagram:

h�; �iH : Hk (M)�HN�k (M) �! R
# id��

(�; �)H : Hk (W )�Hk (W ) �! R:
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3.4 Signature and the Hirzebruch operator

Let
�
W =

LN
k=0W

k; h�; �i ; (�; �) ; d
�
be a graded di¤erential Hodge space. Let

" : f0; 1; :::; Ng ! f�1; 1g be an arbitrary function such that "k = "N�k; for
each k. Assume "-antycommutativity of h; i. From the point of view of the
signature we need to consider even N ,

N = 2n and "n = +1:

Then
h�; �in :Wn �Wn ! R

and
h�; �inH = B

n : Hn (W )�Hn (W )! R

are symmetric and nondegenerated. Therefore in cohomology, the tensor

h�; �inH : H
n (W )�Hn (W )! R

is also symmetric and is an extension of h�; �inH :

De�nition 3.18 If
dimHn (W ) <1

we de�ne the signature of W as the signature of h�; �inH

Sig (W ) := Sig h�; �inH :

Remark 3.19 Under the assumptionW = Im�
L
(Im�)

? we have Hn (W ) �=
Hn (W ) and

Bn = h�; �inH :

Therefore if dimHn (W ) <1; then

Sig (W ) = Sig h�; �inH = SigB
n

because under the identi�cation Hk (W ) = Hk (W ) we have h�; �iH = h�; �i
n
H :

Remark 3.20 The conditionW = Im�
L
(Im�)

? does not imply the relation
dimker� < 1: Indeed, if d = 0; then d� = 0; � = 0; ker� = W: Therefore
W = 0

L
0? and dimH = dimH = dimW can be arbitrary.

In the construction of the Hirzebruch signature operator the fundamental
role is played by an operator (small modi�cation of the �-Hodge operator)

� : W !W; (8)

�k : W k !WN�k;

�k (w) = ~"k � �w; ~"k 2 f�1; 1g :

such that
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i) � � � = Id;

ii) d� = �� � d � � ;

iii) �n = �; i.e. ~"n = 1; (n = 1
2N).

We check the existence of � and prove the uniqueness (assuming dk 6= 0 ).
(If consider odd N , it is necessary to admit complex ~"k 2 C which have the
absolute value 1).

Theorem 3.21 If N = 2n and

"k = (�1)n (�1)k(N�k) = (�1)n (�1)k ; (9)

then there exists the operator � ful�lling i), ii) iii) and it is given by

�k
�
wk
�
= (�1)

k(k+1)
2 (�1)

n(n+1)
2 � �

�
wk
�
:

Conversely, if dk 6= 0 for all k = 0; 1; :::; N � 1 and � exists, then "k is given by
(9). The function " satis�es "k�1 = "k+1:

Proof. Easy calculations show that for an arbitrary natural number N; even
or odd, the operator � de�ned by (8)
(a) satis�es condition i) if and only if

~"k~"N�k = "k; k 2 f0; 1; :::; Ng : (10)

(b) satis�es condition ii) if and only if

~"k~"N�k+1 = (�1)k+1 "k; k � 1 (11)

Now we prove that for a sequence "k 2 f�1; 1g there exists a complex se-
quence ~"k 2 C satisfying (10) and (11) if and only if "k is given by the formula

"k = (�1)k(N�k) (�1)
N(N�1)

2 (~"0)
2 (12)

for some ~"0 2 f1;�1; i;�ig : Each value ~"0 2 f1;�1; i;�ig determines a sequence
~"k uniquely by

~"k = (�1)
2N�k�1

2 k
~"0:

First, assume that for "k there exists ~"k 2 C ful�lling (10) and (11). Substi-
tuting (10) into (11) we obtain (for k = 1; 2; :::; N )

~"k~"N�k+1 = (�1)k+1 ~"k~"N�k
~"N�k+1 = (�1)k+1 ~"N�k /k  N � k + 1

~"k = (�1)N�k ~"k�1:
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It follows that ~"k = (�1)
N�k+N�1

2 k
~"0: Next "0

(10)
= ~"0~"N = (�1)

N(N�1)
2 (~"0)

2 and

"k = ~"k~"N�k = (�1)k(N�k) (�1)
N(N�1)

2 (~"0)
2
:

Since "k 2 f�1; 1g ; then ~"0 2 f1;�1; i;�ig :
Conversely, let "k ful�l (12) and ~"k = (�1)

N�k+N�1
2 k

~"0: We easily see that
the condition ~"k~"N�k = "k is ful�lled and ~"k~"N�k+1 = (�1)k+1 "k: Adding k
and noticing that (�1)

N(N�1)
2 (~"0)

2 2 f�1; 1g we see that (assuming dk 6= 0 )
there are only two possibilities on "k for which there exists a suitable � :

"k = (�1)k(N�k) or "k = � (�1)k(N�k) :

For the case N = 2n and "n = +1 we obtain

"k = (�1)k(N�k) (�1)
N(N�1)

2 (~"0)
2
= (�1)k (�1)

N(N�1)
2 (~"0)

2

1 = "n = (~"0)
2
:

Therefore ~"0 2 f�1; 1g and "k = (�1)k (�1)
N(N�1)

2 = (�1)k (�1)n which yields
two possible �

~"k = (�1)
2N�k�1

2 k
~"0 = (�1)

k(k+1)
2 ~"0; ~"0 2 f�1; 1g :

Finally, we need take ~"0 in such a way that ~"n = +1; so ~"0 = (�1)
n(n+1)

2 :
Therefore

~"k = (�1)
k(k+1)

2 (�1)
n(n+1)

2 :

Example 3.22 (Classical) For di¤erential forms the "-anticommutativity is
de�ned by "k = (�1)k(N�k) : Then, the operator � such that � � � = Id; and

d� = �� � d � � ; exists and we need to take (�1)
N(N�1)

2 (~"0)
2
= 1; i.e. (~"0)

2
=

(�1)
N(N�1)

2 : The operator � is real if and only if (�1)
N(N�1)

2 = +1 which is
equivalent to N = 4k or N = 4k + 1. We observe that ~"0 is given then by

~"0 =

�
�1 for N = 4k or N = 4k + 1
�i for N = 4k + 2 or N = 4k + 3

Assume in the sequel N = 2n; "k = (�1)n (�1)k ; and take the suitable
operator � : We take

W� = fw 2W ; �w = �wg ;

the eigenspaces corresponding to the eigenvalues +1 and �1 of � : We notice
that

(d+ d�) [W+] �W�:
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De�nition 3.23 The operator

D+ = d+ d
� :W+ !W�

is called the Hirzebruch signature operator.

Remark 3.24 If dimH <1 then the index

IndD+ := dimR ker (D+)� dimR ker
�
D�
+

�
is correctly de�ned (the dimensions are �nite)

ker (D+) =W+ \H (W ) ;
and analogously for the adjoint operator (D+)

�
= D� :W� !W+

ker (D�) =W� \H (W ) :
Theorem 3.25 (Hirzebruch Theorem on signature) If dimH <1; then

IndD+ = Sig (Bn : Hn (W )�Hn (W )! R) :

If, additionally, W = Im�
L
(Im�)

?, then IndD+ = SigW:

Proof. For the subspace V � W stable under � , � [V ] � V , we put V+ =
fv 2 V ; �v = vg and analogously V� = fv 2 V ; �v = �vg : The mapping h�; �inH =
Bn : Hn (W )�Hn (W )! R is nondegenerated. It is easily to see that
(a) Hn (W ) = V1

L
V2 for

Hn+ (W ) = V1 = f� 2 Hn (W ) ; �� = �g ;
Hn� (W ) = V2 = f� 2 Hn (W ) ; �� = ��g :

(b) The subspaces Hs (W )+H2n�s (W ) are � -stable and for s = 0; 1; :::; n�1
and

'� : Hs (W )!
�
Hs (W ) +H2n�s (W )

�
�

X 7�! 1

2
(X � �X)

is an isomorphism of real spaces.
(c) The subspaces W s +W 2n�s are � -invariant. Therefore

W� =
Mn�1

s=0

�
W s +W 2n�s�

�

M
Wn
�

which yields

kerD+

=W+ \ ker (d+ d� :W !W )

=W+ \H (W )

=
Mn�1

s=0

�
W s +W 2n�s�

+

M
Wn
+

\
Mn�1

s=0

�
Hs (W ) +H2n�s (W )

�
�Hn (W )

=
Mn�1

s=0

�
Hs (W ) +H4k�s (M)

�
+

M
Hn (W )+
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and in consequence (since �n = �n then Wn
� \Hn = Hn� )

dimkerD+ � dimkerD�
+

=
n�1X
s=0

dimR
�
Hs (W ) +H2n�s (W )

�
+
+ dimRHn+ (W )

�
n�1X
s=0

dimR
�
Hs (W ) +H2n�s (W )

�
� � dimRH

n
� (W )

= dimRHn+ (W )� dimRHn� (W )
= Sig (Bn) :

4 Four fundamental examples and their general
settings

4.1 Four fundamental examples

In the previous section we have described a general algebraic approach to the
Hirzebruch signature operator. Thanks to it the following four fundamen-
tal examples can be understood as special cases of the general setting. Here
are the four examples of the spaces with gradation and di¤erential operator�
W = �Nk=0W k; d

�
in which M is a connected compact oriented Riemannian

manifold

W k =

8>>>>>>>>>>>><>>>>>>>>>>>>:

�

k (M) ; ddR

�
; N = 4p; [classical example]�


k (A) ; dA
�
; N = m+ n = 4p;

A - a TUIO-Lie algebroid
[Lie algebroid example]�


k (M ;E) ; dr
�
; (E; (; )0) �at vector bundle,
(; )0 - symmetric nondegenerated parallel, N = 4p

[Lusztig example]�

k (M ;E) ; dr

�
; (E; h; i0) �at vector bundle,
h; i0 -symplectic parallel, N = 4p+ 2

[Gromov example]

In the above, all cases the sequences of di¤erentials
�
dkdR

	
;
�
dkA
	
;
�
dkr
	
are

elliptic complexes, dimHk (W ) <1 and the pairing

Hk (W )�HN�k (W )! R

is de�ned, which in the middle degree N
2 is symmetric. Its signature, Sig (W ) ;

is de�ned to be the signature of W:
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4.2 General setting of the above four examples

We give some applications of the above algebraic theory and theorems to vec-
tor bundles over manifolds. Other applications to more general objects than
manifolds are probably available, see the last section.
Consider a graded vector bundle � =

LN
k=0 �

k of Hodge spaces over a con-
nected compact oriented Riemannian manifold M;�

� =
MN

k=0
�k; h; i ; (; ) ; d

�
where

1) h; i ; (; ) are �elds of smooth 2-tensors in � such that

(�x; h; ix ; (; )x)

is a Hodge space, x 2 M; with a �-Hodge operator �x : �x ! �x, and
assume that hv; wi = 0 if v 2 �r; w 2 �s; r + s 6= N; and that subbundles
�k are orthogonal with respect to (; ),

2) the axiom "-anticommutativity holds

vk; vN�k

�
= "k



vN�k; vk

�
where

"k 2 f�1;+1g :

By integration along M we de�ne 2-linear tensors

hh; ii ; ((; )) : Sec (�)� Sec (�)! R;

hh�; �ii :=
Z
M

h�x; �xi dM

((�; �)) :=

Z
M

(�x; �x) dM:

Then ((; )) is a positive de�nite scalar product in Sec (�) ; the �-Hodge operator
is an isometry

((�; �)) = ((��; ��))

and
hh�; �ii = ((�; ��)) :

3) d is a di¤erential in Sec (�) ; d2 = 0, of the degree +1;

dk : Sec
�
�k
�
! Sec

�
�k+1

�
;

such that, by de�nition
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3a) dk are di¤erential operators of �rst order,

3b) hhdw; uii = (�1)k+1 hhw; duii for w 2 Sec
�
�k
�
; u 2 Sec (�) :

Therefore �
Sec (�) =

MN

k=0
Sec (�)

k
; hh�; �ii ; ((�; �)) ; d

�
is a graded di¤erential Hodge space. Then the adjoint operator d� : Sec (�) !
Sec (�)

((�; d��)) = ((d�; �))

exists and d�
�
�k
�
= "k (�1)k � d �

�
�k
�
:

Theorem 4.1 If
�
dk
	
is an elliptic complex, then the Laplacian � is a selfad-

joint, nonnegative and elliptic operator. In consequence,

Sec � = Im�� (Im�)?

H (Sec �) �= H (Sec �; d)

dimH (Sec �) < 1:

If we assume that N = 2n and "k = (�1)n (�1)k we get the Hirzubruch operator
D+ = d+ d

� : Sec �+ ! Sec �� and the equality

Sig hh; iinH = IndD+:

The ellipticity of � follows from [War, Remark 6.34]. The fact that the
symbol � (D�)(x;v) of the adjoint operator of a �rst order operator D : Sec � !
Sec � equals �� (D)�(x;v) is well know and may be easily checked. Indeed, the
symbol � (D)(x;v) : �x ! �x is a linear mapping such that

D (fW )x = � (D)(x;(df)x)
(Wx) + f (x)D (W )x ;

f 2 C1 (M) ; W 2 Sec �: LetD� be the adjoint operator forD; i.e. ((D� (V ) ;W )) =
((V;D (W ))) ; W 2 Sec �; V 2 Sec �. To prove that � (D�)(x;v) = �� (D)

�
(x;v)

we need only to notice that for f;W; V as above��
x 7�! �� (D)�(x;(df)x) (Vx) + f (x)D

� (V )x ;W
��

=

Z
M

�
�� (D)�(x;(df)x) (Vx) + f (x)D

� (V )x ;Wx

�
=

Z
M

�
�Vx; � (D)(x;(df)x) (Wx)

�
+

Z
M

(Vx; D (fW )x)

=

Z
M

(Vx; f (x)D (W )x) = ((fV;D (W ))) = ((D
� (fV ) ;W )) :
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5 Applications to Lie algebroids

In all four above examples the complexes of di¤erentials,
�
dk
	
;
�
dkA
	
;
�
dkr
	

are elliptic, since the sequences of symbols are exact.
We describe four fundamental examples of graded di¤erential Hodge space.

The fundamental idea is as follows: we have a 2-tensor h; i and we want to �nd
a positive de�nite scalar tensor (; ) for which the �-Hodge operator exists and
is an isometry.

Example 5.1 (standard) M is compact oriented Riemannian manifold,

dimM = 4p:

(a) W k = 
k (M) = Sec
�Vk

T �M
�
;

(b) hh; iik :W k �WN�k ! R; (�; �) 7�!
R
M
� ^ �:

hh�; �iik =
Z
M

� ^ � = (�1)k(N�k)
Z
M

� ^ � = (�1)k| {z }
"k

hh�; �iiN�k :

In the middle degree 2p, the tensor hh; ii is symmetric.
(c) d :W k !W k+1 is a di¤erentiation of di¤erential forms and
(d) hhd�; �ii = (�1)k+1 hh�; d�ii for � 2W k; � 2WN�(k+1) (which follows

from
R
M
d (� ^ �) = 0).

With respect to the standardly de�ned inner product in
V
T �xM we have a

�nite dimensional Hodge-space�^
T �xM; h; ix ; (; )x

�
:

By integrating along the Riemannian manifold M we obtain 2-linear tensors

hh; ii ; ((; )) : 
 (M)� 
 (M)! R;

hh�; �ii =
Z
M

h�; �i dM =

Z
M

� ^ �; ((�; �)) =

Z
M

(�; �) dM

and the equality
hh�; �ii = ((�; ��))

holds giving a graded Hodge-space with a di¤erential operator (
 (M) ; hh; ii ; ((; )) ; d) :
The signature SigM = Sig hh; ii2pH can be calculated as the index of the Hirze-
bruch operator.

D+ = ddR + d
�
dR : 
 (M)+ ! 
 (M)�

(d�dR is the adjoint operator to ddR with respect to the scalar product ((; )).
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Example 5.2 [K1] Let A be a transitive Lie algebroid over a compact oriented
manifold M and let

rankA = N = 4p = m+ n; m = dimM; n = dimgjx:

We assume that A is invariantly oriented via a volume tensor

" 2 Sec
�^n

g
�

invariant with respect to the adjoint representation AdA.

(a) W k = 
k (A) = Sec
�Vk

A�
�
;

(b) hh; iik :W k �WN�k ! R; (�; �) 7�!
R
M

6
R
A� ^ �:

hh�; �iik =
Z
M

6
Z
A

� ^ � = (�1)k(N�k)
Z
M

6
Z
A

� ^ � = (�1)k| {z }
"k

hh�; �iiN�k :

This tensor is symmetric in the middle degree 2p:
(c) dA :W k !W k+1 is the di¤erentiation of A-di¤erential forms, and
(d) hhdA�; �ii = (�1)k+1 hh�; dA�ii for � 2W k; � 2WN�(k+1):
There exists a scalar product ((; )) in W = 
(A) such that then

(
 (A) ; hh; ii ; ((; )))

is a graded Hodge space with a di¤erential. Indeed [K2], let G0 be an arbitrary
Riemannian tensor in ggg = ker#A: Then the volume tensor "G0 of G0 is equal to
f � " for some smooth function f > 0: The tensor G := f� 2

nG0 is a Riemannian
tensor in ggg for which " is the volume tensor. Let G2 be any Riemannian
tensor on M: Taking an arbitrary connection � : TM ! A in A and taking
the horizontal space H = Im� � A we have A = ggg

L
H. De�ne a Riemannian

tensor G on A = ggg
L
H such that ggg and H are orthogonal. On ggg we have G1

but on H we have the pullback ��G2: The vector bundle A is oriented (since ggg
andM are oriented). At each point x 2M we consider the de�ned above scalar
product Gx on Ajx and the multiplication of tensors

h; ikx :
^k

A�x �
^N�k

A�x !
^N

A�x
�x! R

where �x is de�ned via the volume form for Gx:
We can notice that �x = �G2x � 6

R
Ax
: The scalar product Gx in Ax can be

extended to a scalar product in
V
A�x and we can notice that we obtain the

classical �nite dimensional Hodge-space�^
A�x; h; ix ; (; )x

�
and two C1 (M)-tensors h; i ; (; ) : 
 (A) � 
 (A) ! C1 (M) de�ned as above
point by point. Integrating along M we get a graded Hodge-space with di¤er-
ential operator

(
 (M) ; hh; ii ; ((; )) ; dA) :
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The tensor hh; ii induces a 2-tensor in cohomology

hh; iiH : H
k (M)�HN�k (M)! R

which in the middle degree

hh; ii2pH : H2p (M)�H2p (M)! R

is symmetric. The dimension dimH (A) is �nite (Kubarski, Mishchenko, 2003,
[K-M-1]). Therefore, the signature of hh; ii2pH can be calculated as the index of
the Hirzebruch operator

D+ = dA + d
�
A : 
 (A)+ ! 
 (A)�

where d�A is the adjoint to dA with respect to the scalar product ((; )) :

Our previous considerations on the signature of a Lie algebroid viaHochschild-
Serre spectral sequence of A permit us to calculate the signature of a Lie
algebroid using a second Hirzebruch operator following the Lusztig and Gromov
examples.

Example 5.3 Lusztig (1971) [L], Gromov (1995) [Gro]. Signature for
�at bundles. Let M be a compact oriented N = 4p-dimensional manifold
and E ! M a �at bundle equipped with a �at covariant derivative r and a
nondegenerated inde�nite symmetric tensor

G0 = (; )0 : E � E !M � R; (; )0x : Ex � Ex ! R;

constant for r; i.e. satisfying @X (�; �)0 = (rX�; �)0 + (�;rX�)0 : We take

� W k = 
k (M ;E) ;

� the di¤erential operator dr :W k !W k+1 de�ned standardly via r:

From rG0 = 0 we have

d (� ^G0
�) = dr� ^G0

� + (�1)j�j (� ^G0
dr�) ;

therefore if j�j+ j�j = N � 1; thenZ
M

(dr�) ^G0
� = � (�1)j�j

Z
M

� ^G0
(dr�) : (13)

De�ne the duality

hh�; �iik : W k �WN�k ! R

hh�; �iik =

Z
M

� ^G0
�:

and we see that
hhdr�; �ii = (�1)k+1 hh�; d�ii
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is satis�ed. Since G0 is symmetric we have

hh�; �iik =
Z
M

� ^G0
� =

Z
M

(�1)k(N�k) � ^G0
� = (�1)k| {z }

"k

hh�; �iiN�k :

This tensor is symmetric in the middle degree. There is a scalar product ((; )) in
W k for which the �-Hodge operator for (W; hh; ii ; ((; ))) is an isometry. Indeed
[L], [Gro], we �x some positive de�nite scalar product (; )0 on E: Then we take
a unique splitting E = E+ � E� of the vector bundle E which is both (; )0
and (; )0 orthogonal and such that (; )0 on E+ is positive and (; )0 on E� is
negative de�nite. We denote by � the involution � : E ! E (�2 = id ) such
that � jE+ = id; � jE� = �id: Then, the quadratic form

(v; w) = (v; �w)0

is symmetric positive de�nite and (Ex; (; )0x ; (; )x) is a Hodge-space.
In each �bre

V
T �xM

N
Ex we introduce the tensor product of the classical

Hodge-space
V
T �xM and the above one in Ex:Point by point we obtain tensors

h; i ; (; ) : 
 (M ;E)� 
 (M ;E)! C1 (M) ;

� : 
 (M ;E)! 
 (M ;E)

such that
h�; �i = (�; ��)

and integrating along M we obtain a Hodge-space (
 (M ;E) ; hh; ii ; ((; ))) :

hh�; �ii =

Z
M

h�; �i dM =

Z
M

� ^G0
�;

((�; �)) =

Z
M

(�; �) dM

with � : 
 (M)! 
 (M) ; � (�) (x) = �x (�x) ; and

hh�; �ii = ((�; ��)) :

Let d�r be the adjoint operator to dr with respect to ((; )) : The tensor hh; ii
induces a 2-tensor in cohomology hh; iiH : Hk (M) �HN�k (M) ! R which in
the middle degree

hh; ii2pH : H2p (M ;E)�H2p (M ;E)! R

is symmetric and the signature of it is the index of the Hirzebruch operator

D+ = dr + d
�
r : 
 (M ;E)+ ! 
 (M ;E)�

Example 5.4 Gromov (1995) [Gro]. Signature for a symplectic bun-
dle. Let M be a compact oriented manifold M of dimension dimM = N =
4p + 2 and let E ! M be a symplectic vector bundle, i.e. the one equipped
with a �at covariant derivative r and parallel symplectic structure [i.e. skew
symmetric nondegenerated] S = h; i : E � E !M � R; rS = 0: We take
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� W k = 
k (M ;E) ;

� dr :W k !W k+1 - the di¤erential operator de�ned via r:

The condition Z
M

(dr�) ^S � = � (�1)j�j
Z
M

� ^S dr�: (14)

holds for j�j+ j�j = N � 1:
hh�; �iik :W k �WN�k ! R is de�ned by

hh�; �iik =
Z
M

� ^S �

and hhdr�; �ii = (�1)k+1 hh�; d�ii is ful�lled. Since S is skew symmetric, then

� ^S � = � (�1)k(N�k) � ^S �

and

hh�; �iik =
Z
M

� ^G � = � (�1)k(N�k)
Z
M

� ^S � = � (�1)k| {z }
"k

hh�; �iiN�k :

There is a scalar product ((; )) in W k for which (W; hh; ii ; ((; ))) is a Hodge
space. Namely [V, p.56] there exists an anti-involution � in E, �2 = �� (i.e. a
complex structure) such that

� h�v; �wi = hv; wi ; v; w 2 Ex;

� hv; �vi > 0 for all v 6= 0:

Then the tensor (v; w) := hv; �wi is symmetric, positive de�nite, and (�v; �w) =
(v; w) ; i.e., � preserves both forms h; i and (; ) : The operator �� is the �-Hodge
operator in (Ex; h; ix ; (; )x) : In consequence, the system (Ex; h; ix ; (; )x) is a
Hodge-space.
At each point x 2M; we take the tensor product

V
T �xM

N
Ex of the classi-

cal Hodge space
V
T �xM and the above Ex: Analogously to the above example,

we obtain a graded Hodge-space (
 (M ;E) ; hh; ii ; ((; )) ; d) with a di¤erential
(where the �-Hodge operator is de�ned point by point � : 
 (M) ! 
 (M) ;
� (�) (x) = �x (�x)). Passing to cohomology we obtain hh; iiH : Hk (M) �
HN�k (M)! R;

hh�; �iik =
Z
M

� ^G � = � (�1)k(N�k)
Z
M

� ^S � = � (�1)k| {z }
"k

hh�; �iiN�k

which in the middle degree 2p + 1 is symmetric (thanks to the fact that h; i is
skew symmetric)

hh; ii2p+1H : H2p+1 (M ;E)�H2p+1 (M ;E)! R
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hh�; �ii2p+1 = � (�1)2p+1 hh�; �ii2p+1 = hh�; �ii2p+1 :

We can calculate the signature of hh; ii2p+1H as the index of the Hirzebruch op-
erator D+ = dr + d�r : 
 (M ;E)+ ! 
 (M ;E)� :

Example 5.5 In consequence, for a TUIO-Lie algebroid A over a compact ori-
ented manifold M for which m = dimM; n = rankg = dimgx; and under the
assumption Hm+n (A) 6= 0 and m + n = 4p we have two Hirzebruch signature
operators:
(I) The �rst one. D+ = dA+ d�A : 
 (A)+ ! 
 (A)� where d

�
A is the adjoint

to dA with respect to the scalar product ((�; �)) =
R
M
(�; �) de�ned in Example

2 above, and W� = f� 2 
 (A) ; �� = ��g ; for �
�
�k
�
= (�1)

k(k+1)
2 (�1)p �

�
�
�k
�
:

(II) The second one. We use the equality

SigH (A) = SigE2

for the second term E2; E
p;q
2 = Hp

rq (M ;Hq (ggg)) ; of the Hochschild-Serre spec-
tral sequence. The �at covariant derivative rq in the cohomology vector bundle
Hq (ggg) depends on the structure of the Lie algebroid A:
Let m + n = 4p: The signature SignE2 is equal to the signature of the

quadratic form
E2p2 � E

2p
2 ! Em+n2 = R;

and
a) if n is odd, then SigE2 = 0;
b) if n is even, then

SigE2 = Sig
�
E

m
2 ;

n
2

2 � E
m
2 ;

n
2

2 ! Em+n2 = Em;n2 = R
�

where
E

m
2 ;

n
2

2 = H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
:

Consider the form hh; ii : Hr
n
2

�
M ;H

n
2 (ggg)

�
�Hr

n
2

�
M ;H

n
2 (ggg)

�
! R,

hh; iik : Hk

r
n
2

�
M ;H

n
2 (ggg)

�
�Hm�k

r
n
2

�
M ;H

n
2 (ggg)

�
! Hm

rn (M ;Hn (ggg)) = R,

which is symmetric in the middle degree k = m
2 and its signature is equal to

the signature of A: For k = n, the bundle Hn (ggg) is trivial, Hn (ggg) �= M � R,
the connection rn is equal to @, and the multiplication of values is taken with
respect to h; i : Hn

2 (g)�Hn
2 (g)! Hn (g) =M � R:

We have m
2 +

n
2 = 2p: We need to consider two di¤erent cases:

(a) m2 and
n
2 even, then the form

H
n
2 (g)�Hn

2 (g)! Hn (g) =M � R

is symmetric and we can use Example 5.3 (Lusztig type) to obtain the Hirze-
bruch signature operatorD+ = drn

2
+d�

r
n
2
: 
+

�
M ;H

n
2 (g)

�
! 
�

�
M ;H

n
2 (g)

�
;
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(b) m2 and
n
2 are odd, then the form H

n
2 (g)�Hn

2 (g)! Hn (g) =M �R is
symplectic and we can use Example 5.4 (Gromov type) to obtain the Hirzebruch
signature operator D+ = drn

2
+ d�

r
n
2
.

For each of the cases the index ofD+ is equal to the signature of A: Therefore,
the Atiyah-Singer formula for the index can be used.
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