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Before the presentation of the plan of my talk I give some introduction.
Since I would like to describe Hirzebruch signature operators for Lie algebroids,
�rstly I recall the de�nition of a Lie algebroid, its signature and some facts
concerning to it.
A Lie algebroid on a manifold M is a triple

A = (A; [[�; �]];#A)

where A is a vector bundle on M , (SecA; [[�; �]]) is an R-Lie algebra,

#A : A! TM

is a linear homomorphism (called the anchor) of vector bundles and the fol-
lowing Leibniz condition is satis�ed

[[�; f � �]] = f � [[�; �]] + #A (�) (f) � �; f 2 C1 (M); �; � 2 SecA:

The anchor is bracket-preserving, #A�[[�; �]] = [#A � �;#A � �]: A Lie alge-
broid is called transitive if the anchor #A is an epimorphism.
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For a transitive Lie algebroid A we have:

� the Atiyah sequence

0 �! ggg ,!A #A�! TM �! 0; (1)

ggg := ker#A,

� the �ber gggx of the bundle ggg at the point x 2 M is a Lie algebra (called
the isotropy Lie algebra of A at x 2M) with the commutator operation
being

[v; w] = [[�; �]](x); �; � 2 SecA; �(x) = v; �(x) = w; v; w 2 gggx;

� the vector bundle ggg is a Lie Algebra Bundle (LAB in short), called the
adjoint of A, its �bres are isomorphic Lie algebras.
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The word "transitive" comes from the theory of di¤erential groupoids. Each
di¤erential groupoid

�
�

�
�
M

on a manifold M with the source � : � ! M and the target � : � ! M and
the inclusion of M onto the units

u :M ! �; x 7�! ux;

posseses a Lie algebroid (nontransitive in general) de�ned as follows: from the
submersivity of � it follows that the �-vertical vectors

T�� = ker��

form a vector bundle. Next we restrict it to the submanifold of units

A (�) := u� (T��) = (T��)jM :

We take the linear homomorphism called the anchor:

#A : A! TM; v 7�! �� (v) :
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Any right invariant vector �eld on � determines a crosss-section of A (�) and
opposite, the bracket of right invariant vector �elds is right invariant therefore
the space of cross-sections of A (�) is a Lie algebra. In this way we obtain a
Lie algebroid.

What is the image of the anchor #A(�) : A (�)! TM ? Let R � M �M
be the equivalence relation de�ned as follows

R = f(x; y) ; 9h2� (�h = x; �h = y)g :

The equivalence classes are immersed submanifolds and they form a foliation
with singularities in the sense of P.Stefan.
The "tangent bundle" to this foliation is just equal to the image of the

anchor #A(�): The groupoid � is called transitive if R =M �M:

� Therefore, the Lie algebroid A (�) of a di¤erential groupoid � is transi-
tive if and only if the groupoid � is transitive.

5



To an arbitrary (transitive or not) Lie algebroid A we associate the coho-
mology algebra H (A) de�ned via the DG-algebra of A-di¤erential forms (with
real coe¢ cients) (
 (A) ; dA) ; where


 (A) = Sec
^
A�; - the space of cross-sections of

^
A�

dkA : 

k (A)! 
k+1 (A)

�
dkA!

�
(�0; :::; �k) =

kX
j=0

(�1)j
�
#A � �j

�
(! (�0; :::|̂:::; �k)) (2)

+
X
i<j

(�1)i+j !
�
[[�i; �j]]; �0; :::̂{:::|̂:::; �k

�
;

! 2 
k (A), �i 2 SecA.

Lemma 1 For a transitive Lie algebroid A the complex
�
dkA
	
is an elliptic

complex.
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To consider the notion of the signature of a transitive Lie algebroid we need
to restrict our considerations to some class of Lie algebroids for which the top
cohomology group Hm+n (A) 6= 0 (m = dimM; n = dimgggx = rankggg; clearly

rankA = m+ n; see the Atiyah sequence 0 �! ggg ,!A #A�! TM �! 0).

Theorem 2 (Kubarski-Mishchenko, 2004) For each transitive Lie alge-
broid (A; [[�; �]];#A) with the Atiyah sequence over a connected compact ori-
ented manifold M the following conditions are equivalent (m = dimM;
n = dimgggjx; i.e. rankA = m+ n )

(1) Hm+n (A) 6= 0;

(2) Hm+n (A) = R;

(3) A is the so-called invariantly oriented, i.e. there exists a global non-
singular cross-section

" 2 Sec
^n

ggg;

0 6= "x 2
Vn gggjx; invariant with respect to the adjoint representation of A

in the vector bundle
Vn ggg; which is extending of the adjoint representation

adA of A in ggg given by (adA) (�) : Secggg ! Secggg; � 7�![[�; �]]:
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The condition (3) yields that structure Lie algebras gggjx are unimodular.
These Lie algebroids are called TUIO-Lie algebroids (transitive unimodular
invariantly oriented).
The implication (A is invariantly oriented)=) (Hm+n (A) = R) comes

from Kubarski 1996.
The isomorphism Hm+n (A) = R is constructed via integral:

Hm+n (A) ! R

[!] �!
Z
A

! =

Z
M

6
Z
A

!

where 6
R
A
is the so-called �bre integral

6
Z
A

: 
k (A)! 
k�m (M) ; k � m; and 6
Z
A

! = 0 for j!j < m;

is de�ned in such a way that (#A)
� � 6R

A
!
�
= (�1)nj!j i"!:
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Theorem 3 (Kubarski 2002) The scalar Poincaré product

PkA : Hk (A)�Hm+n�k (A)! R;

([!] ; [�]) 7�!
Z
A

! ^ � =
Z
M

�
6
Z
A

! ^ �
�

is nondegenerated. And if m+ n = 4p; then

P2pA : H2p (A)�H2p (A)! R

is nondegenerated and symmetric. Therefore its signature is de�ned and is
called the signature of A; and is denoted by

Sig (A) :

To investigate the signature of A we can use the techniques of spectral
sequences.
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Theorem 4 (Kubarski-Mishchenko, 2003) . Let

(B;Br;[; D;Bj)

be any DG-algebra with a decreasing �ltration Bj and (Ep;qs ; ds) its spectral
sequence. Assume

� the regularity axiom B0 = B of the �ltration,

� and that there exist natural numbers m;n such that m + n = 4p and
Ej;i2 = 0; for j > m; and i > n;

� the second term E2 is a Poincaré algebra with respect to the total grada-
tion and the top group E(m+n)2 = Em;n2 ; (so dimEm;n2 = 1),

then

� each term
�
E
(�)
s ;[; ds

�
2 � s � 1; is a Poincaré algebra with Poincaré

di¤erentiation,
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� the cohomology algebra H (B) =
Lm+n

r=0 H
r (B) is a Poincaré algebra,

dimHm+n (B) = 1 and

SigE2 = SigE3 = ::: = SigE1: = SigH (B) :

� If m and n are odd then SigE2 = 0;

� if m and n are even then

SigE2 = Sig
�
E
(2k)
2 � E(2k)2 ! E

(m+n)
2 = Em;n2 = R

�
= Sig

�
E

m
2
;n
2

2 � E
m
2
;n
2

2 ! E
(m+n)
2 = Em;n2 = R

�
:
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Using this theorem to the µCech-de Rham complex of a Lie algebroid we
prove

Theorem 5 (Kubarski-Mishchenko 2003) Sig (A) = 0 if the Leray type
presheaf of cohomology

H =
�
U 7�! H

�
AjU
��

(which is locally constant on a good covering) is constant (equivalently, if the
monodromy representation �1 (M)! Aut (H (g)) [g - the isotropy Lie algebra]
is trivial). For example Sig (A) = 0 if

� M is simply connected,

� AutG = IntG where G is a simply connected Lie group with Lie algebra
g (for example if G is of type Bl; Cl; E7; E8; F4; G2 ).

Remark 6 There are examples with g is abelian for which Sig (A) 6= 0.
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In my talk I construct four Hirzbruch signature operators for Lie algebroids.

� Two in the category of smooth di¤erential forms (one of them will be
constructed using Hochschild-Serre spectral sequence),

� and analogously two others in the category of L2-di¤erential forms.

To the case of L2-technique I present an algebraic point of view on distrib-
utional exterior derivative on Lipschitz manifolds and the signature operator.
This permits us to extend our considerations to some other cases, important

for Lie algebroids.

13



PLAN:

1) Let us recall [Kubarski-Mishchenko, 2009, in print] the algebraic point
of view on the smooth case and uniform approach to the following four exam-
ples. In these examples we have

hh�; �ii =
Z
� ^ �; for deg�+ deg � = maximal

((�; �)) =

Z
(�; �) ; (�; �) is the inner product, deg� = deg �

� is the Hodge operator such that hh�; �ii = ((�; ��))

� classical case of compact oriented manifoldM4p; (
 (M) ; hh; ii ; ((; )) ; �; ddR) ;
� TUIO Lie algebroid A on compact oriented manifold M , m + n =

4p; m = dimM; n = dimgggx; gggx is the isotropy Lie algebra of A at x;
(
 (A) ; hh; ii ; ((; )) ; �; dA)
� Lusztig example (1972) of a vector bundle with �at covariant deriva-

tive and equipped with nondegenerated inde�nite symmetric parallel quadratic
form on a compact oriented manifold M4p;

(
 (M;E) ; hh; ii ; ((; )) ; �; dr) ;

14



� Gromov example (1995) of a f vector bundle with �at covariant derivative
and equipped with a parallel symplectic form on a compact oriented manifold
M4p+2;

(
 (M;E) ; hh; ii ; ((; )) ; �; dr) :

Lusztig and Gromov examples are very important for calculation of the
signature of Lie algebroids, because for the Hochschild-Serre spectral sequence
of a TUIO Lie algebroid A over a manifold M the second term E2 is equal to

Ep;q2
�= Hp

rq (M ;H
q (ggg))

where Hq (ggg) is the vector bundle of the q-cohomology groups of the isotropy
Lie algebras of A Hq (ggg)x = H

q (gggx) and rq is a canonical �at covariant deriv-
ative. Via suitable theorem on spectral sequences

SigA = SigH (A) = SigE2:

If n is odd then SigE2 = 0; if n2 is even then we obtain in this way a Lusztig
example, while if n

2
is odd �a Gromov example.
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2)The remaining of Teleman�s theory of the distributional exterior deriv-
ative (called by me in the sequel shortly a "subderivative") of L2-di¤erential
forms and the signature operator on Lipschitz manifolds (the term "subderiv-
ative" is motivated by the fact that it is an operator de�ned only on some
subspace of L2-forms.) The great value of these theory is that the space of all
L2-forms is Hilbert.

3) Algebraical point of view on Teleman�s theory.
4) Some applications of the above algebraical approach to four above

examples after passing to the Hilbert completion of the spaces of smooth forms
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1 Algebraic aspects of the Hirzebruch signa-
ture operator for smooth cases

1.1 Hodge space

Let W be a real vector space of an arbitrary dimension (�nite or in�nite).

De�nition 7 By a Hodge space we mean the system

(W; h; i ; (; ) ; �W )

where h; i ; (; ) : W �W ! R are 2-linear tensors such that

(1) (; ) is symmetric and positive de�nite (i.e. it is an inner product),

(2) �W : W ! W (called �-Hodge operator) is a linear mapping such that,

� �W is an isometry with respect to (; ) ;

� for all v 2 W; hv; wi = (v; �W (w)) :

Clearly, the �-Hodge operator �W is uniquely determined (if exists).
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Lemma 8 If (V; h�; �iV ; (�; �)V ; �V ) and (W; h�; �iW ; (�; �)W ; �W ) are Hodge spaces
then their tensor product

(V 
W; h�; �iV 
 h�; �iW ; (�; �)V 
 (�; �)W ; �V 
 �W )

is a Hodge space (i.e. �V
W = �V 
 �W ).

1.2 Finitely dimensional Hodge spaces, examples.

Lemma 9 Let (W; h�; �i) be a �nite dimensional real vector space equipped with
a 2-linear tensor h�; �i : W �W ! R: Then there exists an inner product (�; �)
and operator �W such that the system (W; h; i ; (; ) ; �W ) is a Hodge space if and
only if there exists a basis of W in which the matrix of h; i is orthogonal.

� The inner product and the �-Hodge operator play an auxiliary role in
the study of properties of the pairing h; i :
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Now we give a some examples of �nite dimensional Hodge spaces.

Example 10 (Classical) Let (V;G) be a real N-dimensional oriented Euclid-
ean space with an inner product G : V � V ! R and the volume tensor
" = e1 ^ :::^ eN 2

VN V; (where feigNi=1 is a positive ON-base of V ). Via " we
identify

VN V = R: We have the classical Hodge space ^
V =

kM^k
V; h; i ; (; ) ; �

!
where

� h�; �ik :
Vk V �

VN�k V �!
VN V = R and



vk; vr

�
= 0 if k + r 6= N;

vs 2
Vs V;

� (�; �)k :
Vk V�

Vk V ! R; (v1 ^ :::: ^ vk; w1 ^ ::: ^ wk)k = det [G (vi; wk)] ;

� the subspaces
Vk V; k = 0; 1; :::; N are orthogonal (by de�nition),

� � (ei1 ^ ::: ^ eik) = "(j1;:::;jn�k) � ej1 ^ ::: ^ ejn�k where (ei) is an ON-base
of V and "(j1;:::;jn�k) = sgn (j1; :::; jn�k; i1; :::; ik) : [We notice some slight
di¤erence (the sign) with the classical case].
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Example 11 (Lusztig example, 1972) [L] Let (; )0 : E�E ! R be a sym-
metric (inde�nite in general) nondegenerated tensor on a �nite dimensional
vector space E: Let G be an arbitrary positive scalar product in E: Then there
exists exactly one direct sum decomposition E = E+ � E� which is ON with
respect to the both scalar product (; )0 and G and such that (; )0 on E+ is pos-
itive de�nite and on E� is negative de�nite. We denote by �E the involution
�E : E ! E such that

�EjE+ = id; �EjE� = �id:

Then, the quadratic form

(; ) : E � E ! R
(v; w) : = (v; �Ew)0

is symmetric and positive de�nite. The involution �E is an isometry, therefore

(E; (; )0 ; (; ) ; �E)

is a Hodge-space.
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Example 12 (Gromov example, 1995) [Gro] Let h; i0 : E � E ! R; be a
symplectic form on a �nite dimensional vector space E: There exists an anti-
involution � in E, � 2 = �id (i.e. a complex structure) such that

h�v; �wi0 = hv; wi0 ; v; w 2 E;

hv; �vi0 > 0 for all v 6= 0:
Then the tensor

(; ) : E � E ! R
(v; w) : = hv; �wi0

is symmetric and positive de�ned and (�v; �w) = (v; w) : The system

(E; h; i0 ; (; ) ;��)

is a Hodge-space [since �� is an isometry and hv; wi0 = (v;��w)].
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De�nition 13 By the Hodge vector bundle we mean a system

(�; h; i ; (; ) ; �E)

consisting of a vector bundle � and two smooth tensor �elds

h; i ; (; ) : � � � !M � R

and linear homomorphism
�E : � ! �;

such that for each x 2 M the system (�x; h; ix ; (; )x ; �Ex) is a �nitely dimen-
sional Hodge space.

Example 14 (of Hodge vector bundles)

� � =
^
T �M for a Riemannian manifold M;

� Lusztig example of a vector bundle � with �at covariant derivative,
equipped with nondegenerated inde�nite symmetric parallel quadratic form,

� Gromov example of a vector bundle � with �at covariant derivative and
equipped with a parallel symplectic form.
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Example 15 Consider an arbitrary Riemannian oriented manifold M of di-
mension N and a Hodge vector bundle (�; h; i ; (; ) ; �E) [for example of Lusztig
or Gromov vector bundle]. Then for any point x 2 M we take the tensor
product of Hodge spaces ^

T �xM 
 �x:

Assuming compactness of M we can de�ne by integration along M two 2-R-
linear tensors

((�; �)) ; hh�; �ii : 
 (M ; �)� 
 (M ; �)! R;

((�; �)) =

Z
M

(�x; �x) dM; hh�; �ii =
Z
M

h�x; �xi dM =

Z
M

� ^' �

where 'x = h�; �ikx :
Vk T �xM 
 �x �

VN�k T �xM 
 �x !
VN T �xM = R is the

wedge product with respect to the multiplication h; ix of the values. The 2-form
((�; �)) is symmetric and positive de�nite and the triple

(
 (M ; �) ; hh�; �ii ; ((�; �)) ; �)

is a Hodge space with the �-Hodge operator (��)x = �E;x (�x) :
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Example 16 Let A be a TUIO Lie algebroid. For any �; � 2 
 (A) =

�
�^

A�
�
we put

hh�; �ii =
Z
A

� ^ �; j�j+ j�j = N = m+ n;

Theorem 17 (Kubarski 2008) There exists an inner product (; )x in Ax;
x 2M; such that (

V
A�x; h; ix ; (; )x ; �x) is �nite dimensional Hodge space where

h; ikx :
^k

A�x �
^N�k

A�x !
^N

A�x = R

After integration along M

((�; �)) :=

Z
(�; �)

gives an inner product in 
k (A) for which the �-Hodge operator is an isometry
and the condition

hh�; �ii = ((�; ��))
holds. It follows that

(
 (A) ; hh; ii ; ((; )) ; �)
is a Hodge space.
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1.3 Graded di¤erential Hodge space

De�nition 18 By a graded di¤erential Hodge space we mean a system�
W =

MN

k=0
W k; h�; �i ; (�; �) ; �; d

�
where (W; h�; �i ; (�; �) ; �) is a Hodge space (�nitely or in�nitely dimensional)
and
(1) h�; �i jW k �W r = 0 if k + r 6= N: (notation: h; ik := h; i jW k �WN�k )
(2) W k are orthogonal with respect to (�; �) ;
(3) d is homogeneous of degree +1; i.e. d : W k ! W k+1; and d2 = 0;
(4) hdw; ui = (�1)k+1 hw; dui for w 2 W k; u 2 WN�k�1:

Clearly, a) the induced cohomology pairing

h; ikH : Hk (W )�HN�k (W )! R; ([u] ; [v]) 7�! h[u] ; [w]ikH := hu;wi
k ;

is correctly de�ned,

b) �
�
W k
�
� WN�k; and � : W k ! WN�k is an isomorphism.
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Proposition 19 Let
�
W =

LN
k=0W

k; h�; �i ; (�; �) ; �; d
�
be a graded di¤eren-

tial Hodge space. Let "k 2 f�1;+1g be given such that "k = "N�k; k = 0; :::; N:
Assume "-anticommutativity of h; ik ; i.e.


vk; vN�k
�
= "k



vN�k; vk

�
; for vk 2 W k; vN�k 2 WN�k;

then

1) � �
�
wk
�
= "k � wk;

2) the linear operator � : W k ! W k�1 de�ned by

�k
�
wk
�
= "k (�1)k � d �

�
wk
�
; wk 2 W k;

is the adjoint operator

(� (w1) ; w2) = (w1; d (w2)) ;

3) the Laplacian � := (d+ �)2 = d� + �d is homogeneous of degree 0;
self-adjoint (�v; w) = (v;�w) ; and nonnegative (�v; v) � 0:
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De�nition 20 A vector v 2 W is called harmonic if

dv = 0 and �v = 0;

or equivalently if v ? (�v) : Denote

H (W ) = fv 2 W ; dv = 0; �v = 0g ;
Hk (W ) =

�
v 2 W k; dkv = 0; �kv = 0

	
:

� The harmonic vectors forms a graded vector spaceH (W ) =
LN

k=0Hk (W ) :

� Hk (W ) = ker�k and H (W ) = ker� = (Im�)? :

� The spaces ker�k and Im dk�1 are orthogonal, therefore the inclusion

Hk (W ) = ker�k ,! ker dk

induces a monomorphism (called the Hodge homomorphism)

Hk (W ) = ker�k � Hk (W ) := ker dk= Im dk�1:

Problem 21 When the Hodge homomorphism is an isomorphism? i.e. when
in each cohomology class there is (exactly one) a harmonic vector?
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Theorem 22 If
W = Im�

L
(Im�)? ;

i.e. W = Im�
L
ker�; then

� W k = ker�k
L
Im dk�1

L
Im �k+1 (strong Hodge decomposition),

� ker dk = ker�k
L
Im dk�1; in particular, the Hodge homomorphism is an

isomorphism

Hk (W ) = ker�k �=�! ker dk= Im dk�1 = Hk (W ) ;

It means that in each cohomology class there is exactly one harmonic
vector.

� (Poincaré Duality Theorem) Hk (W ) ' HN�k (W ) ;

Hk (W )�HN�k (W )! R is nondegenerated.
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In all four examples given above (standard, Lie algebroid, Lusztig�s and
Gromov�s) we have W = Im�

L
(Im�)? according to the well-known theo-

rem.

Theorem 23 Let � be a Riemannian vector bundle over a compact oriented
Riemannian manifold M: If � : Sec � ! Sec � is a self-adjoint nonnegative
elliptic operator then ker� is a �nite dimensional space and

Sec � = Im�
M

ker� = Im�
M

(Im�)? :

In particular, this holds if � comes from an elliptic complex dk : �
�
�k
�
!

�
�
�k+1

�
; � =

L
�k (as for example in our four cases).
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1.4 Signature and the Hirzebruch operator

Consider a graded di¤erential Hodge space assuming an "-anticommutativity
of h; ik ; �

W =
MN

k=0
W k; h�; �i ; (�; �) ; �; d

�
:

We restrict the positive de�nite product (�; �) : W k�W k ! R to the space
of harmonic vectors

(�; �)H : Hk (W )�Hk (W )! R;

and we restrict the tensor h�; �i : W k �WN�k ! R also to harmonic vectors

Bk = h�; �iH : Hk (M)�HN�k (M)! R:

We want to �nd an operator � : W ! W de�ned by the formula

�
�
uk
�
= ~"k � �

�
uk
�
;

for some complex numver ~"k 2 C such that j~"kj = 1:ful�lling the condition:
i) � 2 = Id; ii) � = ��d� :
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Theorem 24 � Operator � ful�lling i) and ii) exists if and only if the
coe¢ cient "k of "- antycommutativity is equal to

"k = (�1)k(N�k) ; k � N or "k = � (�1)k(N�k) ; k � N:

(Remark: in the proof of the part " =) " we have to add the "natural"
assumption that dk 6= 0 for all k < N)

� For a given " there are two possibilities of � :

� if "k = (�1)k(N�k) then

~"k =

�
�1 gdy N = 4p; 4p+ 1;
�i gdy N = 4p+ 2; 4p+ 3:

� if "k = � (�1)k(N�k) then opposite

~"k =

�
�1 gdy N = 4p+ 2; 4p+ 3:
�i gdy N = 4p; 4p+ 1:

The above justify the use of (but only sometimes !) the complex valued
di¤erential forms.
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From the point of view of the signature we need to consider only even N
and the additional conditions "n = +1

N = 2n and "n = +1 (the pairing h�; �in is then symmetric).

We additionally assume

iii) �n = �; i.e. ~"n = 1.
Theorem 25 If N = 2n and "n = +1; then the operator � ful�lling i),
ii), and iii) exists if and only if

"k = (�1)k (�1)
N(N�1)

2 = (�1)k (�1)n ;
and then � is unique, and

~"k = (�1)
k(k+1)

2 (�1)
n(n+1)

2 /real number

Particularly

� If N = 4p then "k = (�1)k and ~"k = (�1)
k(k+1)

2 (�1)p :

� If N = 4p+ 2 then "k = � (�1)k and ~"k = � (�1)
k(k+1)

2 :
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Assume the natural (for the signature theory) case

N = 2n and "n = +1:

Then

� h�; �in : W n �W n ! R ,

� h�; �inH = Bn : Hn (W )�Hn (W )! R ,

� h�; �inH : Hn (W )�Hn (W )! R

are symmetric and nondegenerated quadratic forms.

De�nition 26 If
dimHn (W ) <1

we de�ne the signature of W as the signature of h�; �inH

Sig (W ) := Sig h�; �inH :
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Remark 27 Under the assumption

W = Im�
L
(Im�)?

we have Hn (W ) �= Hn (W ) ; therefore Bn = h�; �inH = h�; �i
n
H.

Then if dimHn (W ) <1 we have

Sig (W ) = Sig h�; �inH = SigBn:

Assume in the sequel that

N = 2n; "k = (�1)n (�1)k ;

and take the suitable operator �

� k
�
wk
�
= (�1)

k(k+1)
2 (�1)

n(n+1)
2 � �

�
wk
�
:

uniquely determined by the conditions

i) � � � = Id;

ii) d� = �� � d � � ;

iii) �n = �; i.e. ~"n = 1:
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We put
W� = fw 2 W ; �w = �wg ;

the eigenspaces corresponding to the eigenvalues +1 and �1 of � : We notice
that

(d+ �) [W+] � W�:

De�nition 28 The operator

D+ = d+ � : W+ ! W�

is called the Hirzebruch operator (or the signature operator).

Take the adjoint one to D+;

D�
+ = D� : W� ! W+;

D� = d+ � : W� ! W+:

Remark 29 If dimH <1 then the index

IndD+ := dimR ker (D+)� dimR ker (D�)

is correctly de�ned (the dimensions are �nite).
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Theorem 30 (Hirzebruch Signature Theorem) If dimH <1, then

IndD+ = Sig (Bn : Hn (W )�Hn (W )! R) :

If, additionally, W = Im�
L
(Im�)? , then

IndD+ = SigW:

Proof. (a) Hn (W ) = Hn
+ (W )

L
Hn
� (W ) for

Hn
� (W ) = f� 2 Hn (W ) ; �� = ��g :

(b) The subspacesHs (W )+H2n�s (W ) are � -stable and for s = 0; 1; :::; n�1

'� : Hs (W )!
�
Hs (W ) +H2n�s (W )

�
�

X 7�! 1

2
(X � �X)

is an isomorphism of real spaces.
(c) The subspaces W s +W 2n�s are � -invariant. Therefore

W� =
Mn�1

s=0

�
W s +W 2n�s�

�

M
W n
�
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which yields

kerD� =
Mn�1

s=0

�
Hs (W ) +H4k�s (M)

�
�

M
Hn (W )�

and in consequence (since �n = �n then W n
� \Hn = Hn

� )

dimkerD+ � dimkerD�
(b)
= dimRHn

+ (W )� dimRHn
� (W ) = Sig (Bn) :
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1.5 Four fundamental examples

The above general algebraic approach to the Hirzebruch signature operator
can be used to the four above mentioned fundamental examples.

W k =

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

[manifold, classical example],�

k (M) ; ddR

�
; dimM = N = 4p;

here "k = (�1)k(N�k) = (�1)k

[Lie algebroid example]�

k (A) ; dA

�
; rankA = N = m+ n = 4p; A - a TUIO-Lie algebroid

here "k = (�1)k

[Lusztig�s example]�

k (M ;E) ; dr

�
; (E;r; (; )0) �at vector bundle,

(; )0 - symmetric nondegenerated parallel, dimM = N = 4p;

here "k = (�1)k

[Gromov�s example]�

k (M ;E) ; dr

�
; (E; h; i0) �at vector bundle,

h; i0 -symplectic parallel, dimM = N = 4p+ 2;

here "k = � (�1)k ; 38



The Lusztig anf Gromov examples are important for Lie algebroids.

Example 31 For a TUIO-Lie algebroid A over a compact oriented manifold
M for which m = dimM; n = rankg = dimgx; and under the assumption
Hm+n (A) 6= 0 and m+ n = 4p we have two signature Hirzebruch operators:

� The �rst one.
D+ = dA + �A : 
 (A)+ ! 
 (A)�

where �A is adjoint to dA with respect to the scalar product ((�; �)) =R
M
(�; �) with respect to the suitable inner product (; ).

� The second one. We can use the mentioned above theorem on spectral
sequences:

SigH (A) = SigE2

for the second term E2; of the Hochschild-Serre spectral sequence of the
Lie algebroid and

Ej;i2 = Hj
rq
�
M ;Hi (ggg)

�
:

Hi (ggg) is the �at vector bundle of q-group of cohomology of isotropy Lie
algebras Hi (ggg)x = H

i (gggx) with respect to some natural �at structure ri

depending on the structure of the Lie algebroid A:
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Let m+ n = 4p; m = dimM; n = rankggg = dimgggx: The signature SignE2
is equal to the signature of the quadratic form

hh; ii
m
2 : H

m
2

r
n
2

�
M ;H

n
2 (ggg)

�
�H

m
2

r
n
2

�
M ;H

n
2 (ggg)

�
! Hm

rn (M ;H
n (ggg)) = R,

The bundle Hn (ggg) is trivial, Hn (ggg) �= M � R, the connection rn is equal to
@, and the multiplication of values is taken with respect to multiplication of
cohomology classes

h; i : Hn
2 (g)�Hn

2 (g)! Hn (g) =M � R:

We need to consider two di¤erent cases:

� m
2
and n

2
even, then the above form is symmetric and we can use Lusztig

type Example to obtain the Hirzebruch signature operator

D+ = dr
n
2
+ �r

n
2
: 
+

�
M ;H

n
2 (g)

�
! 
�

�
M ;H

n
2 (g)

�
;

� m
2
and n

2
are odd, then the above is symplectic and we can use Gromov

type Example to obtain the Hirzebruch signature operator

D+ = dr
n
2
+ �r

n
2
: 
+

�
M ;H

n
2 (g)

�
! 
�

�
M ;H

n
2 (g)

�
:
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2 Lipschitz manifolds and distributional exte-
rior derivative (subderivative)

2.1 Lipschitz manifolds

We brie�y recall the notion of a Lipschitz manifold and di¤erential forms of
the class L2 on them.

De�nition 32 (Teleman 1983) A Lipschitz structure on a topological man-
ifold M of dimension n is a maximal atlas U = fU�; ��g�2� ; where �� :
M � U� ! V� � Rn (U�; V� - open subsets) are homeomorphisms, such that
changes coordinates

��� = �� � ��1� ; �; � 2 �
are Lipschitz mappings.

Of course, a C1-manifold possesses a canonical Lipschitz structure.
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The crucial role is played by the Rademacher theorem:

Theorem 33 (Rademacher) If U ! R is a Lipschitz function on an open
subset U � Rn, then

� the partial derivatives @f
@xi

exist almost everywhere,

� @f
@xi

are measurable and bounded.

De�nition 34 We say that a Lipshitz manifold with the atlas U = fU�; ��g�2�
is orientable if there exists a subatlas �0 � � for which the homeomorphisms
��� have positive jakobian (in all points of di¤erentiability). If such an atlas
is given we call M oriented. .
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2.2 Di¤erential forms

Let Lk2 (U) denote the space of di¤erential forms of the class L2 on an open
subset U � Rn: If � : U ! U 0 is a Lipschitz homeomorphism and ! 2 L2 (U 0)
then the pullback �� (!) 2 L2 (U) (de�ned point by point in all points of the
di¤erentiability of �).

De�nition 35 LetM be a Lipshitz manifold with the atlas U = fU�; ��g�2� ; :
By L2-di¤erential form on M we mean a system

! = f!�g�2�

where !� is a [real] L2-di¤erential form on the open subset V� = �� [U�] � Rn;
� 2 �; such that

����!� = !�:

L2 (M) - the vector space of L2-di¤erential forms on M:
The 0-di¤erential form determines a measurable function on M:
For oriented Lipschitz manifold, using the Lipschitz partition of unity, we

de�ne the integral
R
M
! dla ! 2 Ln2 (M) (n = dimM) in a standard way.
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2.3 Lipschitz Riemannian metric

De�nition 36 A Lipschitz Riemannian metric on M is a collection

� = f��g�2�

where �� is a Riemannian metric on V� = �� [U�] � Rn with measurable
components, which satisfy

� compatibility condition
(���)

� �� = ��;

� L2-norms on V� determined by �� and by standard metric are equivalent.

Theorem 37 (Teleman, 1983) . Any compact Lipschitz manifold M has
Lipschitz Riemannian metric.

Clearly, any Lipschitz Riemannian metric detrmines a measure on M:
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Let ��;x be a Hodge star isomorphism in
^
(Rn)� de�ned of the metric ��

at x 2 Rn de�ned as in the previous sections

��;x (ei1 ^ ::: ^ eik) = "(j1;:::;jn�k) � ej1 ^ ::: ^ ejn�k ; (ei) is �� (x) -ON.

The family f��;xgx determines the �-Hodge operator for di¤erential forms
from L2 (V ) ; V is open in Rn:

De�nition 38 For a Lipschitz Riemannian metric � = f��g and ! 2 Lr2 (M) ;
! = f!�g ; we de�ne

� L2-di¤erential form ��! = f��!�g� :

� for !; � of the same degree we de�ne the inner product (!; �)� := f(!�; ��)�g
(it is a 0-form, i.e. a function on M ).

� ((!; �))� :=
R
M
(!; �)� :

Clearly ((!; �))� = "k
R
M
! ^ ���; where "k = (�1)k(N�k) and

���� = "k � Id:
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Theorem 39 (Teleman 1983) The space Lk2 (M) with unitary structure ((; ))�
is Hilbert, two Lipschitz Riemannian metrics de�ne equivalent norms in Lk2 (M) :

Introducing the pairing of di¤erential forms in complementary degrees by

hh!; �ii =
Z
M

! ^ �

we have
hh!; �ii = ((!; ���))�

which means that
(L2 (M) ; hh; ii ; ((; )) ; �)

is a Hodge space. The operations hh�; �ii and �� are continuous.
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2.4 Distributional exterior derivative

De�nition 40 Let � 2 Lr2 (U) be any L2-di¤erential form on U � Rn of
degree r < n: We say that � has distributional exterior derivative in the class
L2 if there exists an L2-di¤erential form of degree r + 1

�d� 2 Lr+12 (U)

such that for any C1-di¤erential form ' of degree n � 1 � r with compact
support in U Z

U

�d� ^ ' = (�1)r+1
Z
U

� ^ d':

If r = n; we put �d� = 0 for each � 2 Ln2 (U) :
Distributional exterior derivative �d� is uniquely determined and clearly

�d
�
�d�
�
exists and �d

�
�d�
�
= 0:

Proposition 41 If ! = f!�g�2� is an L2-di¤erential form on M of degree r
and d!� 2 L2 (V�) is the distributional exterior derivative of !�; then

�d! :=
�
�d!�
	
�2�

is an L2-di¤erential form on M of degre r + 1.
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Denote by 
rd (M) � Lr2 (M) the subspace of L2-di¤erential forms of degree
r possessing the distributional exterior derivative


rd (M) =
�
! 2 Lr2 (M) ; �d! 2 Lr+12 (M)

	
:

�d2 = 0 na 
rd (M) : We obtain a cohomology complex

0! 
0d (M)! 
1d (M)! :::! 
rd (M)! 
r+1d (M)! :::! 
nd (M) = L
n
2 (M)! 0:

Theorem 42 (Teleman (1983)) For a compact oriented Lipschitz manifold
M

� the pairing

Hr (

�
d (M))�HdimM�r (


�
d (M))! R; ([!] ; [�])!

Z
M

! ^ �

is nondegenerated and Hr (

�
d (M)) = (HdimM�r (


�
d (M)))

� : Therefore
dimH (
�d (M)) <1 (L2-Poincaré duality),

� for a C1 manifold M and induced Lipschitz structure, the inclusion

j : 
� (M) ,! 
�d (M)

induces isomorphism in cohomology j# : H (M)
�=! H (
�d (M)) :
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Theorem 43 (Teleman (1983)) Suppose that ! and � possesse distribu-
tional exterior derivatives �d! and �d� and j!j+ j�j = n� 1; then



!; �d�
��
= (�1)j!j+1




�d!; �

��
:

Let ! be a given L2-form and let there exist !0 such that


!; �d�

��
= (�1)j!j+1 hh!0; �ii

for all � with distributional exterior derivative �d�; then !0 is the distributional
exterior derivative of !; �d! = !0 .
In particular, if




!; ; �d�

��
= 0 for all � with distributional exterior deriv-

ative �d� then �d! = 0:

The remaining elements needed to construct the signature operator are of
algebraic nature only.
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3 Algebraic aspect of the signature operator
on Lipschitz manifolds

3.1 Graded Hilbert subdi¤erential Hodge space

De�nition 44 By a Hilbert graded subdi¤erential Hodge space we mean a
system �

W =
MN

k=0
W k; h�; �i ; (�; �) ; �W ; �d : Wd ! Wd

�
consisting of a Hodge space (W; h�; �i ; (�; �) ; �W ) with gradation W =

LN
k=0W

k

and a subdi¤erential �d de�ned on some subspace with gradationWd =
LN

k=0W
k
d �

W; W k
d = W

k \Wd; such that

(1) the unitary space (W; (; )) is complete (i.e. it is Hilbert),

(2) h�; �i jW k �W r = 0 if k + r 6= N; the subspaces W r are orthogonal with
respect to (�; �) ;

(3) Wd is dense in W;

(4) �d is degree +1; �dr = djW r
d : W

r
d ! W r+1

d ;
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(5)


�dw; u

�
= (�1)r+1



w; �du

�
for w 2 W r

d ; u 2 WN�r�1
d ;

(6) If for w 2 W r there exists w0 2 W r+1; such that hw0; ui = (�1)r+1


w; �du

�
for each u 2 WN�r�1

d ; then w 2 W r
d and �dw = w

0;

(7) the cohomology space Hd (W ) =
LN

k=0H
k
d (W ) of the complex

�
Wd; �d

�
ful�lls the Poincaré duality, i.e. the pairing

Hr (W �
d (M))�HN�r (W �

d (M))! R; ([w] ; [v]) 7�! hw; vi

is nondegenerated, i.e. Hr (W �
d (M)) = L

�
HN�r (W �

d (M)) ;R
�
; what

follows H (W �
d (M)) = L (H (W

�
d (M)) ;R) and dimH (Wd) <1:

�Clearly, the operation h�; �i and � are continuous in the norm k�k =
p
(�; �):
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Notation 45 Let W be a Hilbert graded subdi¤erential Hodge space. We put

WN�r
� := �W [W r

d ] :

This space is dense in WN�r and �W : W r
d ! WN�r

� is an isometry.

Let wn ! w and let wn 2 W r
d : Question: when the limit w possesses a

subdi¤erential ?

Theorem 46 Let wn possess a subdi¤erential �dwn and assume that the se-
quence (wn) is Cauchy and w = limwn: Then w has a subdi¤erential if and
only if the sequence

�
�dwn
�
is partially weak convergent to some wektor w0 with

respect to the space W r+1
� in the following sense:

� for each h 2 W r+1
� we have�

�dwn; h
�
!
�
�dw; h

�
:

We assume the "-antycommutativity of h; i


vk; vN�k

�
= "k



vN�k; vk

�
for

some "k 2 f�1; 1g : Then we recall that � �
�
uk
�
= "ku

k:
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De�nition 47 By a cosubdi¤erential of the degree N�r in Hilbert Hodge space
with gradation and subdi¤efrential and with "-antycommutativity we mean the
oparator

��
N�r

: WN�r
� ! WN�r�1

�

de�ned by
��
N�r

= (�1)N�r �rW �dr (�W )�1 :

It is easy to prove that the condition of jointness holds�
��
N�r

v; w
�
=
�
v; �dN�r�1w

�
;

for v having a cosubdi¤erential and w having a subdi¤erential.
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Notation 48 W r
1 = W

r
d \W r

� =
�
w 2 W r; w 2 W r

d ; �w 2 WN�r
d

	
:

Theorem 49 The space W r
1 with the norm jj!jj1 de�ned as

jj!jj21 = jj!jj
2 + jjd!jj2 + jj�!jj2

is Hilbert.

De�nition 50 We de�ne now the spaces of harmonic vectors

Hr
d =

�
w 2 W r

1 ;
�d! = 0 = ��!

	
:

Clearly
� : Hr

d ! HN�r
d

is an isomorphism. Any harmonic vector is a cocycle, therefore there exists a
Hodge homorphism

xrd : Hr
d ! Hr (W �

d ) :
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As in the paper by Teleman (1983) we can prove

Lemma 51 The subspaces Hr and Im �dr�1 are perpendicular, therefore Hr \
Im dr�1 = f0g ; which gives that xrd is a monomorphism.

From Axiom (6) we see that

Lemma 52 The subspace Ker �dr is closed inW r; therefore it is a Hilbert space.

From Axiom (7) [Poincaré duality for H (Wd) ] we see that

Lemma 53 The subsapce Im �dr�1 is closed in W r; therefore it is a Hilbert
space.

From Axiom (5)

Lemma 54 Hr
d =

�
w 2 W r; h 2 Ker �dr; h? Im �dr�1

	
; :i.e. Hr

d =
�
Im �dr�1

�?
in Ker �dr:
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Conclusion 55 (Hodge Theorem) Im �dr�1(� Ker �dr) is a closed subspace of
the Hilbert space Ker �dr, therefore

Ker �dr = Im �dr�1 �
�
Im �dr�1

�?
= Im �dr�1 �Hr

d

which means that

Hr
d = Ker

�dr= Im �dr�1 = Hr (Wd (M)) ;

i.e. the Hodge homomorphism is an isomorphism.

Theorem 56 There is a strong Hodge decomposition.

W r = Hr
d � �d

�
W r�1
d

�
� ��

�
W r+1
�

�
:

56



3.2 The signature operator for graded Hilbert subdif-
ferential Hodge space

Consider a graded Hilbert subdi¤erential Hodge space and "-antycommutativity�
W =

MN

k=0
W k; h�; �i ; (�; �) ; �W ; �d : Wd ! Wd; Wd � W; Wd =

MN

k=0
W k
d

�
;

WN�r
� := �W [W r

d ] ;
��
N�r

: WN�r
� ! WN�r�1

� �the cosubdi¤erential.

� As an example can serve a space of L2-di¤erential forms on a Lipschitz
Riemannian compact oriented manifold.

For the uniformity of notation we put

� W r
0 = W

r (M) with the norm jjwjj =
p
(w;w):

� W r
1 = W

r
d (M)\W r

� (M) with the norm jjw1jj ; such that kwk
2
1 = kwk

2+

 �dw

2 + 

��w

2 : The both are Hilbert.
Analogously as in Teleman paper we show
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Theorem 57 The operator

Dr = �d+ �� : W r
1 ! W r

0

is a continuous Fredholm operator,

KerDr = Hr
d

and
ImDr = �d

�
W r�1
d

�
� ��

�
W r+1
�

�
(so CokerD �= Hr

d ).

As in the previous part we assume

N = 2n; "n = +1

and use the operator � : W ! W de�ned by

�
�
uk
�
= ~"k �

�
uk
�
; j~"kj = 1; ~"k 2 C;

such that
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i) � 2 = Id;
ii) �� = �� �d� on the subspapce 
�; of course.
iii) ~"n = 1:

For this we must assume that "k = (�1)k (�1)
N(N�1)

2 = (�1)k (�1)n ; and
then � is uniquely determined by

~"k = (�1)
k(k+1)

2 (�1)
n(n+1)

2 /real number

As previously since dimH (
�b) is �nite [from the Poincaré duality] we de�ne
as above the signature of W; and

Sig (W ) := Sig h; inH = SigBnd :
Puting

W� = fw 2 W ; �w = �wg ;
W1;� = W� \W1

W0;� = W�

we notice that �
�d+ ��

�
[W1;+] � W0;�;�

�d+ ��
�
[W1;�] � W0;+;
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De�nition 58 The operator

D1;+ = �d+ �� : W1;+ ! W0;�

is called the signature operator. Also we consider the adjoint one

D1;� = �d+ �� : W1;� ! W0;+;

for which the condition of duality holds

(D1;+�; �) = (�;D1;��) ; for � 2 W1;+; � 2 W1;�:

Analogously as in the previous part we prove the signature theorem

Theorem 59

Sig (W ) := Sig h; inH = Sig (Bnd ) = dimR ker (D1;+)� dimR ker (D1;�) :

We see that in the Hilbert case there are very simple considerations to
obtain a Hodge theorem (no analysis !, only algebraic topology, may be with
the exception of the condition like



�dw; u

�
= (�1)r+1



w; �du

�
).
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4 Completion of the graded Hodge di¤erential
space

Consider a graded Hodge di¤erential space�
W =

MN

k=0
W k; h�; �i ; (�; �) ; �; d

�
;

i.e
(0) h�; wi = (�; �w) ; � is Hodge operator (v; w) = (�v; �w) ;
(1) W k are mutually orthogonal, and h�; �i j : W k �W r = 0 if k + r 6= N;
(2) d is of degree +1;
(3) hdw; ui = (�1)k+1 hw; dui for w 2 W k and u 2 WN�k�1:
We complete the unitary space (W; (; )) to Hilbert one �W: The inner prod-

uct and the norm in �W will be denoted by the same symbol. We extend the
�-Hodge isometry to the isometry � : �W ! �W and the pairing h; i to a new
one denoting by the same symbol. Of course this pairing remains continuous.
We obtain a Hilbert graded Hodge space

�
�W =

LN
k=0

�W k; h�; �i ; (�; �) ; �
�
:

Now we extend the di¤erential dk : W k ! W k+1 to some bigger subspace
�W k
d � �W k in a "distributional manner".
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De�nition 60 We say that a vector w 2 �W k has a distributional di¤erential
if there exists a vector belonging to W k+1 denoted by �dw such that for each
vector v 2 WN�k�1 the following condition


w; dN�k�1v
�
= (�1)k+1



�dw; v

�
holds, equivalently if

(w; �h) =
�
�dw; h

�
for each h 2 W k+1; where

� := (�1)N�k � dk ��1 :

The di¤erential �dw is unique (if it exists). The vector space of vectors v
possessing distributional di¤erential will be denoted by �Wd: Clearly, if w 2 W k

then �dw exists and �dw = dw; as well as �dk+1
�
�dk (w)

�
= 0 for w 2 �Wd:

Theorem 61 Let wn 2 W and assume that (wn) is Cauchy and wn ! w 2 �W:
Then w possesses distrbutional di¤erential if and only if there exists a vector
w0 2 �W k+1 such that for each v 2 W k+1 the condition

(dwn; v)! (w0; v)
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holds (i.e. it is the condition of partially weak convergence of d with respect to
W k+1 ). The vector w0 is then a distributional di¤erential of w; w0 = �dw:

It is easy to see that �d �d = 0 and that the inclusion i : W ! �Wd induces a
homomorphism in cohomology

i# : H (W )! H
�
�Wd

�
:

Problem 62 (1) Does


�dw; u

�
= (�1)r+1



w; �du

�
for w 2 �W r

d ; u 2 �WN�r�1
d

for a given Hodge graded di¤erential space?

We introduce
�WN�k
� = �

�
�W k
d

�
and codi¤erential ��N�k : �WN�k

� ! �WN�k�1
� by the formula

��
N�k

:= (�1)N�k � �dk ��1 :
�� is an extension of �:

Problem 63 (2) Does the inclusion j : H ! �H (which of course commutes
with di¤erentials d and �d ) induces an isomorphism H (H)! H

�
�H
�
in coho-

mology? Particularly, then the space H
�
�H
�
is with Poincare duality.
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Remark 64 Now consider the four examples W = 
(M) ; 
 (A) for a Lie
algebroid A, 
 (M;E) for the Lusztig or the Gromov vector bundle. Now we
pass to the spaces of L2-di¤erential forms �W = 
(M); 
 (A); 
 (M;E): The
�rst one has been considered as a special case in Teleman�s theory (each smooth
manifold possesses a Lipschitz structure, so an L2-signature operator).
We need to check only whether the problems (1) and (2) in the remaining

three cases have also a positive answer. We can use to solve (1) some local
calculations but to (2) the comparison theorem for suitable spectral sequences
coming from µCech-de Rham complexes.

Conclusion 65 Thus we obtain graded Hilbert subdi¤erential Hodge space.
Consequently, each of four examples considered above: manifold, Lie algebroid,
Lusztig and Gromov examples produces easily such a space.
In consequence, the signature of A can be calculated as the index of the two

L2-Hirzebruch signature operators using graded Hilbert subdi¤erential Hodge
spaces 
 (A) or 
 (M;E); respectively.
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