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Before the presentation of the plan of my talk I give some introduction.
Since I would like to describe Hirzebruch signature operators for Lie algebroids,
firstly I recall the definition of a Lie algebroid, its signature and some facts
concerning to it.

A Lie algebroid on a manifold M is a triple

A= <A7 [['7 ']]7 #A)
where A is a vector bundle on M, (Sec A, [-,-]) is an R-Lie algebra,
#A cA—=TM

is a linear homomorphism (called the anchor) of vector bundles and the fol-
lowing Leibniz condition is satisfied

[[fafn]] :f [[@W]]“‘#A(f)(f)% fGCOO<M)7 f,nESGCA

The anchor is bracket-preserving, # 40[&,n] = [#4 0 &, #4 o). A Lie alge-
broid is called transitive if the anchor # 4 is an epimorphism.



For a transitive Lie algebroid A we have:

e the Atiyah sequence

0— g A4 TM —0, (1)

g = ker#Av

e the fiber g, of the bundle g at the point z € M is a Lie algebra (called
the isotropy Lie algebra of A at x € M) with the commutator operation
being

v,w] = [&,n](x), &neSecA, &(x)=uv,n(x)=w, v,wEg,,

e the vector bundle g is a Lie Algebra Bundle (LAB in short), called the
adjoint of A, its fibres are isomorphic Lie algebras.



The word "transitive" comes from the theory of differential groupoids. Each
differential groupoid
=M
B

on a manifold M with the source o : & — M and the target 5 : & — M and
the inclusion of M onto the units

u:M— @ x+— u,,

posseses a Lie algebroid (nontransitive in general) defined as follows: from the
submersivity of « it follows that the a-vertical vectors

T® = ker a,
form a vector bundle. Next we restrict it to the submanifold of units
A(®) :=u" (TP) = (T“(b)'M.
We take the linear homomorphism called the anchor:

#A:AHTMa U'—>6*(U)'
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Any right invariant vector field on ® determines a crosss-section of A (®) and
opposite, the bracket of right invariant vector fields is right invariant therefore
the space of cross-sections of A (®) is a Lie algebra. In this way we obtain a
Lie algebroid.

What is the image of the anchor # 4@ : A(®) = TM ? Let RC M x M
be the equivalence relation defined as follows

R={(x,y);3nce (ah =z, fh=1y)}.

The equivalence classes are immersed submanifolds and they form a foliation
with singularities in the sense of P.Stefan.

The "tangent bundle" to this foliation is just equal to the image of the
anchor # 4(¢). The groupoid @ is called transitive if R = M x M.

e Therefore, the Lie algebroid A (®) of a differential groupoid ® is transi-
tive if and only if the groupoid ® is transitive.



To an arbitrary (transitive or not) Lie algebroid A we associate the coho-
mology algebra H (A) defined via the DG-algebra of A-differential forms (with
real coefficients) (2 (A),d4), where

Q2 (A) = Sec /\ A*, - the space of cross-sections of /\ A*
d% : QF (A) — QFFL(A)

k

(d5w) (€9, &4) = Z (—1)7 (#40&) (@ (s dEp) (2)

7=0
+ > (=D w (66,0, €0 Do )
1<j

w € QF(A), £ € Sec A.

Lemma 1 For a transitive Lie algebroid A the complex {dfﬁl} 1s an elliptic
complezx.



To consider the notion of the signature of a transitive Lie algebroid we need
to restrict our considerations to some class of Lie algebroids for which the top
cohomology group H™™™ (A) # 0 (m = dim M, n = dimg, = rankg, clearly
rank A = m + n, see the Atiyah sequence 0 — g — A FATM — 0).
Theorem 2 (Kubarski-Mishchenko, 2004) For each transitive Lie alge-
broid (A, [, ], #4) with the Atiyah sequence over a connected compact ori-
ented manifold M the following conditions are equivalent (m = dim M,
n =dimg,, i.e. rank A=m+n )

(1) H™™ (A) # 0,
(2) H™™ (A) =R,

(8) A is the so-called invariantly oriented, i.e. there exists a global non-
singular cross-section

€€ Sec/\ng,

0#£e, e \" 9|, tnvariant with respect to the adjoint representation of A
in the vector bundle \" g, which is extending of the adjoint representation
ada of A in g given by (ads) (§) : Secg — Secg, v +—[&, v].
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The condition (3) yields that structure Lie algebras g, are unimodular.
These Lie algebroids are called TUIO-Lie algebroids (transitive unimodular
invariantly oriented).

The implication (A is invariantly oriented)—> (H™" (A) = R) comes
from Kubarski 1996.

The isomorphism H™" (A) = R is constructed via integral:

H™"(4) — R

4= fe=f

where ﬂA is the so-called fibre integral
/:Qk(A)—%ka(M), kE>m, and/w:()for lw| < m,
A A

is defined in such a way that (#4)" (Jjw) = (—=1)"iw.



Theorem 3 (Kubarski 2002) The scalar Poincaré product

PE L HF (A) x H™™ 7 (A) — R,

@l — [wnn=[ (fwnn)

is nondegenerated. And if m + n = 4p, then
PP H? (A) x H? (A) — R

1s nondegenerated and symmetric. Therefore its signature is defined and is
called the signature of A, and is denoted by

Sig (A) .

To investigate the signature of A we can use the techniques of spectral
sequences.



Theorem 4 (Kubarski-Mishchenko, 2003) . Let
(B7 BT; U7 D7 B])

be any DG-algebra with a decreasing filtration B; and (EP?,d,) its spectral
sequence. Assume

e the reqularity axiom By = B of the filtration,

e and that there exist natural numbers m,n such that m +n = 4p and
EY' =0, for j>m, and i>n,

o the second term FEs is a Poincaré algebra with respect to the total grada-
tion and the top group E§m+n) = Ey"", (so dim E"" = 1),

then

e cach term (E'é*)7 U, ds) 2 < 5 <00, 18 a Poincaré algebra with Poincaré

differentiation,
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e the cohomology algebra H(B) = @""H" (B) is a Poincaré algebra,
dimH™™™(B) =1 and

Sig Fy = Sig B3 = ... = Sig Ew,. = SigH (B) .

— If m and n are odd then Sig E5 = 0,

— if m and n are even then

SigF, = Sig (Eg2k> x EEY _, plmtm _ pman R)
= 2

— Sig <E2 T B2 BT = g R) .

11



Using this theorem to the Cech-de Rham complex of a Lie algebroid we
prove

Theorem 5 (Kubarski-Mishchenko 2003) Sig(A) = 0 if the Leray type
presheaf of cohomology
M= (U — H(4))

(which is locally constant on a good covering) is constant (equivalently, if the
monodromy representation my (M) — Aut (H (g)) /g - the isotropy Lie algebra/
is trivial). For example Sig (A) =0 if

o M is simply connected,

e Aut G = Int G where G is a simply connected Lie group with Lie algebra
g (for example if G is of type B;, Cy, Er, Es, Fy, Gy ).

Remark 6 There are examples with g is abelian for which Sig (A) # 0.
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In my talk I construct four Hirzbruch signature operators for Lie algebroids.

e Two in the category of smooth differential forms (one of them will be
constructed using Hochschild-Serre spectral sequence),

e and analogously two others in the category of Lo-differential forms.

To the case of Lo-technique I present an algebraic point of view on distrib-
utional exterior derivative on Lipschitz manifolds and the signature operator.

This permits us to extend our considerations to some other cases, important
for Lie algebroids.
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PLAN:

1) Let us recall [Kubarski-Mishchenko, 2009, in print| the algebraic point
of view on the smooth case and uniform approach to the following four exam-
ples. In these examples we have

({a, B)) = /a/\ﬂ, for dega + deg f = maximal

(o, B)) = /(a, B), («,B) is the inner product, dega = deg/
* is the Hodge operator such that ((«, 8)) = ((a, %))

e classical case of compact oriented manifold M*, (2 (M), ((,)),((,)),*,dar) ,
e TUIO Lie algebroid A on compact oriented manifold M, m +n =
4p, m = dim M, n = dimg,, g, is the isotropy Lie algebra of A at =z,
(Q (A) ) <<7 >> ) ((7 )) 3 %, dA)
e Lusztig example (1972) of a vector bundle with flat covariant deriva-
tive and equipped with nondegenerated indefinite symmetric parallel quadratic
form on a compact oriented manifold M7,

(Q (M7E) ) <<,>>,((,)),*,dv),
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e Gromov example (1995) of a f vector bundle with flat covariant derivative
and equipped with a parallel symplectic form on a compact oriented manifold

M4p+2’
(Q (M> E) ) <<7>> ) ((a)) ) *adV) :

Lusztig and Gromov examples are very important for calculation of the
signature of Lie algebroids, because for the Hochschild-Serre spectral sequence
of a TUIO Lie algebroid A over a manifold M the second term Fj is equal to

By = Hg, (M;H (g))

where H? (g) is the vector bundle of the g-cohomology groups of the isotropy
Lie algebras of A HY(g), = H%(g,) and VY is a canonical flat covariant deriv-
ative. Via suitable theorem on spectral sequences

Sig A = SigH (A) = Sig F».

If n is odd then Sig E» = 0, if 5 is even then we obtain in this way a Lusztig
example, while if § is odd — a Gromov example.
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2 The remaining of Teleman’s theory of the distributional exterior deriv-
ative (called by me in the sequel shortly a "subderivative") of Lo-differential
forms and the signature operator on Lipschitz manifolds (the term "subderiv-
ative" is motivated by the fact that it is an operator defined only on some
subspace of Ly-forms.) The great value of these theory is that the space of all
Lo-forms is Hilbert.

3) Algebraical point of view on Teleman’s theory.

4 Some applications of the above algebraical approach to four above
examples after passing to the Hilbert completion of the spaces of smooth forms
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1 Algebraic aspects of the Hirzebruch signa-
ture operator for smooth cases

1.1 Hodge space
Let W be a real vector space of an arbitrary dimension (finite or infinite).

Definition 7 By a Hodge space we mean the system

(W7<7>’(7)a*W)

where (,), (,) : W x W — R are 2-linear tensors such that

(1) (,) is symmetric and positive definite (i.e. it is an inner product),

(2) *w : W — W (called x-Hodge operator) is a linear mapping such that,

— sy 18 an isometry with respect to (),
— forallv e W, (v,w) = (v, *y (w)).

Clearly, the x-Hodge operator *y, is uniquely determined (if exists).
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Lemma 8 If(V, (-, )y, (-, )y . *v) and (W, (-, )y, (-, )y » *w) are Hodge spaces
then their tensor product

(V@W, )y @G () @ G s kv @ xw)

is a Hodge space (i.e. xygw = *y Q xy ).

1.2 Finitely dimensional Hodge spaces, examples.

Lemma 9 Let (W, (-,-)) be a finite dimensional real vector space equipped with
a 2-linear tensor (-,-) : W x W — R. Then there exists an inner product (-, -)
and operator xy such that the system (W, (,),(,),*w) is a Hodge space if and
only if there exists a basis of W in which the matriz of (,) is orthogonal.

— The inner product and the *-Hodge operator play an auxiliary role in
the study of properties of the pairing () .
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Now we give a some examples of finite dimensional Hodge spaces.

Example 10 (Classical) Let (V, Q) be a real N-dimensional oriented Euclid-
ean space with an inner product G : V. x V. — R and the volume tensor
e=erA..Ney € NV V, (where {e;}) | is a positive ON-base of V). Via  we
identify /\N V =R. We have the classical Hodge space

(/\v=é/\’“v,<,>,<,>,*)

where

LY /\Vx/\Nk /\NV:Rand<vk,UT>:0z'fk—i—r;éN,
se/\

o ()"

e the subspaces /\ V., k=0,1,.... N are orthogonal (by definition),

. (
v
AN VXAV SR, (0 A A wy A Awg)F = det [G (v, w)]

o k(€ Ao N€iy) = €6 ju i) " € N Nej, . where (e;) is an ON-base
of Voand €y, j. ) =S80 (J1, s Jn—ks i1, -, i) . [We notice some slight
difference (the sign) with the classical case].
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Example 11 (Lusztig example, 1972) [L] Let (,),: Ex E — R be a sym-
metric (indefinite in general) nondegenerated tensor on a finite dimensional
vector space EI. Let G be an arbitrary positive scalar product in E. Then there
exists exactly one direct sum decomposition F = E, & FE_ which is ON with
respect to the both scalar product (,), and G and such that (,), on E is pos-
itive definite and on E_ is negative definite. We denote by xg the involution
xp: B — FE such that

Then, the quadratic form

,b) : ExE—R

(v,w) : = (v,*pw),

s symmetric and positive definite. The involution xg is an isometry, therefore

(E7(7)0’<7)>*E)

15 a Hodge-space.
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Example 12 (Gromov example, 1995) [Gro] Let (,),: E x E — R, be a
symplectic form on a finite dimensional vector space E. There exists an anti-
involution T in E, 72 = —id (i.e. a complex structure) such that

(tv,Tw)y = (v,w),, v,wEE,

(v,TV)g >0  forall v#0.

Then the tensor

(,)) : ExE—R

(U,U)) = <U77—w>0
is symmetric and positive defined and (Tv, Tw) = (v,w). The system

(E7<7>07(7)=_T>

is a Hodge-space [since —T is an isometry and (v, w), = (v, —Tw)].
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Definition 13 By the Hodge vector bundle we mean a system
(57 <’>7<7)7*E)
consisting of a vector bundle & and two smooth tensor fields

<7>7<a):5X€_>MXR

and linear homomorphism
*g 1§ — ¢,

such that for each x € M the system (&,,(,),,(;), *E,) s a finitely dimen-
stonal Hodge space.

Example 14 (of Hodge vector bundles)
o (= /\ T*M for a Riemannian manifold M,

o Lusztig example of a vector bundle & with flat covariant derivative,
equipped with nondegenerated indefinite symmetric parallel quadratic form,

e Gromov example of a vector bundle & with flat covariant derivative and
equipped with a parallel symplectic form.
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Example 15 Consider an arbitrary Riemannian oriented manifold M of di-
mension N and a Hodge vector bundle (&,(,),(,),*g) [for example of Lusztig
or Gromov vector bundle]. Then for any point x € M we take the tensor
product of Hodge spaces

ATM®E,.

Assuming compactness of M we can define by integration along M two 2-R-
linear tensors

((a, 8)), (e, B)) - (M;€) x Q(M;€) — R,

= zy Mg dM7 ) = zy Pa dM =
(@) = [ (@5 () = [ tanpyint = [ an,s
where @, = <,)]; NT Moo, x NVFTrM @ ¢, — NNT*M =R is the

wedge product with respect to the multiplication (,), of the values. The 2-form
((+,+)) is symmetric and positive definite and the triple

(Q(M;€), {(a, 8)), (e, B)) , %)

is a Hodge space with the x-Hodge operator (x83), = *p. (8,)-
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Example 16 Let A be a TUIO Lie algebroid. For any o, € Q(A) =

F(/\A*) we put
(o B)) Z/Aomﬁ, o +18] = N = m +n,

Theorem 17 (Kubarski 2008) There exists an inner product (,), in A,
x € M, such that (N A%, (,),,(,),,*z) 1 finite dimensional Hodge space where

<,>§:/\kA;i, X /\N*kA;;ﬁ/\NA;:R

After integration along M

gives an inner product in Q¥ (A) for which the x-Hodge operator is an isometry
and the condition

{(a, 8)) = ((a, %))
holds. It follows that
(€@ (A4), (), (())*)

1s a Hodge space.
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1.3 Graded differential Hodge space

Definition 18 By a graded differential Hodge space we mean a system

(W — EB::O Wk () *,d)

where (W, (-,-),(+,-),*) is a Hodge space (finitely or infinitely dimensional)
and
(1) (-,-Y Wk x W™ =0 if k47 # N. (notation: (,)* := (,) |[W*k x WN-* )
(2) W* are orthogonal with respect to (-,-),
(3) d is homogeneous of degree +1, i.e. d: Wk — W and d*> = 0,
(4) (dw,u) = (=)™ (w, du) for w e Wk, v e WN-k-1,

Clearly, a) the induced cohomology pairing
(O HY W) x BYF (W) =R, ([u], [v]) — ([u], [w])gg == (u,w)",
is correctly defined,

b) * [WF c W¥"* and «:W* — W¥=* is an isomorphism.
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Proposition 19 Let (W = @szo WE (), (0) %, d) be a graded differen-
tial Hodge space. Let e, € {—1,+1} be given such thatey, = ey_g, k=0, ..., N.
Assume e-anticommutatwvity of (,)*, i.e.

<vk,vN_k>:5k <vN_k,’Uk>, for  oF e Wk oNTF e W
then
1) x% (wh) = g, - wk,
2) the linear operator § : W* — Wk=L defined by
& (wh) = e (—1)F « d « (w*), w*ewh,
s the adjoint operator

(6 (w1) ,w2) = (w1, d (wz)),

3) the Laplacian A := (d+6)° = dd + dd is homogeneous of degree 0,
self-adjoint (Av,w) = (v, Aw) , and nonnegative (Av,v) > 0.
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Definition 20 A vector v € W 1is called harmonic if
dv=0 and dv=0,
or equivalently if v L (Awv). Denote
HW)={veW; dv=0, év=0},
HF (W) = {veW" dv=0, 6v=0}.
e The harmonic vectors forms a graded vector space H (W) = @]kvzo HE (W) .
o H* (W) =kerA* and H(W)=kerA=(ImA)".
e The spaces ker A¥ and Imd*~! are orthogonal, therefore the inclusion
H* (W) = ker AF — ker d"
induces a monomorphism (called the Hodge homomorphism)

H* (W) = ker A¥ — HF (W) := ker d" / Tm d" .

Problem 21 When the Hodge homomorphism is an isomorphism? i.e. when
in each cohomology class there is (exactly one) a harmonic vector?
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Theorem 22 [f

W=ImA@ ImA)"|
i.e. W =ImA@kerA, then

o Wk =ker A*@Imd" ' @Im "™ (strong Hodge decomposition),

o ker d® = ker A @ Im d*~1, in particular, the Hodge homomorphism is an
1somorphism

H* (W) = ker A* =5 kerd*/Im d"~' = H* (W),

It means that in each cohomology class there is exactly one harmonic
vector.

e (Poincaré Duality Theorem) H* (W) ~ HYN =% (W),
HE (W) x HY % (W) — R is nondegenerated.
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In all four examples given above (standard, Lie algebroid, Lusztig’s and
Gromov’s) we have W = Imn A @ (Im A)* according to the well-known theo-
rem.

Theorem 23 Let £ be a Riemannian vector bundle over a compact oriented
Riemannian manifold M. If A : Sec{ — Secé is a self-adjoint nonnegative
elliptic operator then ker A is a finite dimensional space and

SecfzImA@kerA = ImAEB(ImA)L.

In particular, this holds if /A comes from an elliptic complex d* : T (Sk) —
r (fkﬂ) L E=EF (as for example in our four cases).
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1.4 Signature and the Hirzebruch operator

Consider a graded differential Hodge space assuming an e-anticommutativity

of (,)k, i
(W - @kzo WE () *,d) :

We restrict the positive definite product (-, -) : W* x W* — R to the space
of harmonic vectors

() s HE (W) x HE (W) — R,
and we restrict the tensor (-,-) : W* x W¥=*F — R also to harmonic vectors
BY = (), s HF (M) x HN % (M) — R,
We want to find an operator 7 : W — W defined by the formula
T (uk) =Ep - * (uk) ,

for some complex numver &, € C such that || = 1.fulfilling the condition:
i) 72=1Id, i) &= —7dr.
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Theorem 24 e Operator T fulfilling i) and ii) exists if and only if the
coefficient i, of - antycommutativity is equal to

£p = (_1)k(N7k)’ E<N or £ = — (_1)k(ka)’ k< N.

(Remark: in the proof of the part " — " we have to add the "natural”
assumption that d* # 0 for all k < N)

e For a given € there are two possibilities of T :
— ifep = (=) YP) then

. {i—l gdy N =4dp, 4p+1,

T i gy N=4p+2, 4p+3.
— if e, = — (=" then opposite

. | £l gdy N =4p+2, 4p+3.

TN 4 gdy N =4p, 4p+ 1.

The above justify the use of (but only sometimes !) the complex valued
differential forms.
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From the point of view of the signature we need to consider only even N
and the additional conditions ¢,, = +1

N=2n and ¢,=+1 (the pairing (-,-)" is then symmetric).

We additionally assume
ii) 7 =, ie. &, = L.
Theorem 25 If N = 2n  and &, = +1, then the operator T fulfilling i),
i), and i) exists if and only if

= (—)F (=) T = (=) (1),

and then T is unique, and

k(k+1) n(n+1)
> (=1)" 2z /real number

B = (-1

Particularly

k(k+1)
2

o If N =4p thene, = (—1)" and &, = (—1) (—=1)".

k(k+1)
2

o If N=4p+ 2 then g, = —(—1)k and & = — (—1)
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Assume the natural (for the signature theory) case
N=2n and ¢,=+1.
Then
o ()" WrXW" =R,
o ()y=B"H"(W)xH"(W) =R,
o ()m:H'(W)xH" (W) - R
are symmetric and nondegenerated quadratic forms.

Definition 26 If
dimH" (W) < o0

we define the signature of W as the signature of (-, )5

Sig (W) == Sig (", )g -
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Remark 27 Under the assumption

W =ImA@ (ImA)"

we have H" (W) = H" (W), therefore B" = (-,-)7, = (-, ) q-
Then if dimH" (W) < oo we have

Sig (W) = Sig (-, -}y = Sig B".

Assume in the sequel that
N=2n, & =(-1)"(-1)",
and take the suitable operator 7
™ (W) = (-1)
uniquely determined by the conditions

i) ror=1Id

E(k+1)
2

ii) d* =—-7odor,

n

i) 7 = *, ie. &, = L.
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We put
Wy ={weW; tw==xuw},

the eigenspaces corresponding to the eigenvalues +1 and —1 of 7. We notice
that

(d+0)[Wy] CcW_.
Definition 28 The operator
Dy=d+0: Wy —W_
is called the Hirzebruch operator (or the signature operator).
Take the adjoint one to D,

Dy = D_:W_—W,,
Do = d+68:W_ —W,.

Remark 29 If dim’H < oo then the index
Ind D := dimg ker (D) — dimg ker (D_)

is correctly defined (the dimensions are finite).
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Theorem 30 (Hirzebruch Signature Theorem) If dimH < oo, then
Ind D, = Sig(B" : H" (W) x H" (W) — R).

If, additionally, |W = Im A @ (Im A)" |, then

Ind D, = Sig W’
Proof. (a) H" (W) =H" (W)@ H" (W) for
HE (W) ={aeH"(W); xa==*a}.
(b) The subspaces H* (W)+H?"~* (W) are T-stable and for s = 0,1, ...,n—1
pu s M (W) = (H (W) + -2 (),

X|—>%(X:i:TX)

is an isomorphism of real spaces.
(c) The subspaces W* + W?"~¢ are 7-invariant. Therefore

W= W W), Pwr
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which yields

ker Dy — @":_01 (K= (W) +H%= (M), D H (W),

and in consequence (since 7" = %™ then W N'H" = H. )

dimker D, — dimker D_ ¥ dimg H" (W) — dimg H" (W) = Sig (B") .
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1.5 Four fundamental examples

The above general algebraic approach to the Hirzebruch signature operator
can be used to the four above mentioned fundamental examples.

;

[manifold, classical example],
(QF (M), dgr); dimM = N = 4p,
here g, = (—1)P™H = (—1)F

[Lie algebroid example]
(Qk (A), dA) ; rankA=N=m+n=4p, A -a TUIO-Lie algebroid
here ¢, = (—1)"

[Lusztig’s example]
(QF(M;E), dv); (E,V,(,),) flat vector bundle,
(,)o - symmetric nondegenerated parallel, dim M = N = 4p,
here ¢, = (—1)"

[Gromov’s example]
(QF(M; E), dv); (E,(,),) flat vector bundle,
(,)o -symplectic parallel, dimM = N =4p + 2,

here ¢, = — (=1)", e




The Lusztig anf Gromov examples are important for Lie algebroids.

Example 31 For a TUIO-Lie algebroid A over a compact oriented manifold
M for which m = dim M, n = rankg =dimg,, and under the assumption
H™" (A) # 0 and m + n = 4p we have two signature Hirzebruch operators:

o The first one.
D+IdA—|—(5A : Q(A>+ —>Q(A>7

where §4 is adjoint to da with respect to the scalar product ((a, 3)) =
Jo (o, B) with respect to the suitable inner product (,).

e The second one. We can use the mentioned above theorem on spectral
sequences:

SigH (A) = Sig E»
for the second term Es, of the Hochschild-Serre spectral sequence of the

Lie algebroid and : . _
E}' =HL, (M;H' (g)) .

H' (g) is the flat vector bundle of q-group of cohomology of isotropy Lie
algebras H' (g), = H' (g,) with respect to some natural flat structure V'
depending on the structure of the Lie algebroid A.
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Let m+n =4p, m = dim M, n =rankg = dimg,. The signature Sign Fs
is equal to the signature of the quadratic form

m
2

()% HE, (MHE (9)) x HE, (M;HE (9)) — HZ, (M;H" (g) =R,

The bundle H" (g) is trivial, H" (¢9) = M x R, the connection V" is equal to
0, and the multiplication of values is taken with respect to multiplication of
cohomology classes

(,):H? (g) xH? (g) - H" (g) = M x R.
We need to consider two different cases:

e 7 and 7 even, then the above form is symmetric and we can use Lusztig
type Example to obtain the Hirzebruch signature operator

Dy =dgg +0g3 2y (M3H% (g)) — 1 (MSH% (g)),

e 7 and § are odd, then the above is symplectic and we can use Gromov

type Example to obtain the Hirzebruch signature operator

Dy =dgy 605 : Q. (M;H? (g)) — Q (M;H? (g)) .
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2 Lipschitz manifolds and distributional exte-
rior derivative (subderivative)

2.1 Lipschitz manifolds

We briefly recall the notion of a Lipschitz manifold and differential forms of
the class Ly on them.

Definition 32 (Teleman 1983) A Lipschitz structure on a topological man-
ifold M of dimension n is a mazimal atlas U = {Us, ¢n},cp, where ¢, :
M>U,—V, CR" (U,, V, - open subsets) are homeomorphisms, such that
changes coordinates

Aaﬁ:¢ﬁo¢;la Oé,ﬁEA

are Lipschitz mappings.

Of course, a C"*°-manifold possesses a canonical Lipschitz structure.
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The crucial role is played by the Rademacher theorem:

Theorem 33 (Rademacher) If U — R is a Lipschitz function on an open
subset U C R", then

e the partial derivatives g 9{2 ezist almost everywhere,

.a‘f

5.7 are measurable and bounded.

Definition 34 We say that a Lipshitz manifold with the atlasU = {Us, ¢y} pen
is orientable if there exists a subatlas A C A for which the homeomorphisms
Ao have positive jakobian (in all points of differentiability). If such an atlas
15 given we call M oriented. .
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2.2 Differential forms

Let L5 (U) denote the space of differential forms of the class Ly on an open
subset U C R™". If A : U — U’ is a Lipschitz homeomorphism and w € Ly (U’)
then the pullback A* (w) € Ly (U) (defined point by point in all points of the
differentiability of A).

Definition 35 Let M be a Lipshitz manifold with the atlasU = {Us, ¢o}ocp » -
By Ls-differential form on M we mean a system

W= {wa}aeA

where w,, s a [real] Lo-differential form on the open subset V,, = ¢, [U,] C R™,
a € A\, such that

Lo (M) - the vector space of Lo-differential forms on M.

The O-differential form determines a measurable function on M.

For oriented Lipschitz manifold, using the Lipschitz partition of unity, we
define the integral [,, w dla w € L (M) (n = dim M) in a standard way.
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2.3 Lipschitz Riemannian metric

Definition 36 A Lipschitz Riemannian metric on M is a collection

F = {Fa}aeA

where Ty, is a Riemannian metric on V, = ¢, [Us] C R" with measurable
components, which satisfy

e compatibility condition
(Aap) Ts =T,

e [5-norms on V, determined by I', and by standard metric are equivalent.

Theorem 37 (Teleman, 1983) . Any compact Lipschitz manifold M has
Lipschitz Riemannian metric.

Clearly, any Lipschitz Riemannian metric detrmines a measure on M.
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Let *,, be a Hodge star isomorphism in /\ (R™)* defined of the metric T,
at x € R" defined as in the previous sections

*o,z (eil VANPYRVAN eik) = €(j1 ..... k) €4, VANPIRAN €Clnis (67,) is Fa (I) -ON.

The family {*,,}, determines the *-Hodge operator for differential forms
from Lo (V'), V is open in R".

Definition 38 For a Lipschitz Riemannian metricT' = {[',} andw € L (M),
w={w.}, we define

o Ly-differential form srw = {*wq},, -

o forw,n of the same degree we define the inner product (w,n)p := {(Wa, Ny) 4}
(it is a 0-form, i.e. a function on M ).

. ((wa 77))1‘ = fM (w>77>1“-

1)*=Rand

Clearly  ((w,m))p =&k fyyw A#rn,  where g = (—

XX = € - [d
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Theorem 39 (Teleman 1983) The space L5 (M) with unitary structure ((,))p
is Hilbert, two Lipschitz Riemannian metrics define equivalent norms in L5 (M) .

Introducing the pairing of differential forms in complementary degrees by

(o) = [ wnn

we have
((w,m) = ((w, *rn))p
which means that

(L2 (M), ((,)) (()) %)

is a Hodge space. The operations ((-,-)) and *p are continuous.
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2.4 Distributional exterior derivative

Definition 40 Let 0 € Ly (U) be any Ls-differential form on U C R™ of
degree r < n. We say that o has distributional exterior derivative in the class
Lo if there exists an Lo-differential form of degree r + 1

do € Lyt (U)
such that for any C*-differential form ¢ of degree n — 1 — r with compact

support in U
/ do A @ = (—1)T+1/ o Adp.
U U

If r = n, we put do = 0 for each o € Ly (U).
_ Distributional exterior derivative do is uniquely determined and clearly
d (da) exists and d (da) =0.

Proposition 41 If w = {wa},cp 5 an Ly-differential form on M of degree r
and dw,, € Ly (V,) is the distributional exterior derivative of w,, then

do = {dwa}.,
is an Lo-differential form on M of degre r + 1.
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Denote by ) (M) C Lj (M) the subspace of Lo-differential forms of degree
r possessing the distributional exterior derivative

Qy (M) ={we Ly(M); dve Ly (M)} .
d?> = 0 na Q7 (M) . We obtain a cohomology complex
0—QY(M) = QY (M) — ... = Q) (M) — QT (M) — ... = Q1 (M) = Ly (M) — 0.

Theorem 42 (Teleman (1983)) For a compact oriented Lipschitz manifold
M

e the pairing
H, (2} (M)) % Hyar—y (0 (M)) — R, (] [1]) — /M w A

is nondegenerated and H, (2 (M)) = (Hamum—r (5 (M)))" . Therefore
dim H (2 (M)) < oo (Ly-Poincaré duality),

o for a C'™° manifold M and induced Lipschitz structure, the inclusion
J:Q (M) — Q5 (M)
induces isomorphism in cohomology ju : H (M) SH (Q8(M)) .
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Theorem 43 (Teleman (1983)) Suppose that w and 1 possesse distribu-
tional exterior derivatives dw and dn and |w| + |n| =n — 1, then

({w, dn)) = (=) ((dw,m)) .

Let w be a given Lo-form and let there exist W' such that

({w,dn))y = (=D (W )

Jor all n with distributional exterior derivative dn, then ' is the distributional
exterior deriwative of w, dw = W' .

In particular, if <<w, ,Jn>> = 0 for all n with distributional exterior deriv-
ative dn then dw = 0.

The remaining elements needed to construct the signature operator are of
algebraic nature only.
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3 Algebraic aspect of the signature operator
on Lipschitz manifolds

3.1 Graded Hilbert subdifferential Hodge space

Definition 44 By a Hilbert graded subdifferential Hodge space we mean a
system

(W _ @Nzo Wk, (Y500, sy, d: Wy — Wd>

consisting of a Hodge space (W, {(-,-) | (-,-),*w) with gradation W = @iv:o Wk
and a subdifferential d defined on some subspace with gradation Wy = @szo Wk C
W, Wk =W*"n Wy, such that

(1) the unitary space (W, (,)) is complete (i.e. it is Hilbert),

(2) () |[WFXxWT™=0ifk+r# N, the subspaces W™ are orthogonal with
respect to (-, ),

(8) Wy is dense in W,
(4) d is degree +1, d" = d|W}; : Wi — Wit
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(5) (dw,u) = (—1) (w,du) forw e Wj, ue Wy "

(6) If forw € W there existsw' € W' such that (w',u) = (—1)" <w, cZu>
for eachu € WY1 then w € W} and dw = ',

(7) the cohomology space Hy (W) = @,ivzo H: (W) of the complex (Wy,d)
fulfills the Poincaré duality, i.e. the pairing

H (W7 (M) x HY" (W3 (M) = R, ([w],[v]) — (w,v)

is nondegenerated, i.e. H (W3 (M)) = L (HN"(Wg (M)),R), what
follows H (W3 (M))=L(H (W3 (M)),R) and dimH (W) < occ.

— Clearly, the operation (-, -) and * are continuous in the norm ||-|| = /(:, ).
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Notation 45 Let W be a Hilbert graded subdifferential Hodge space. We put
WNTT o= sy W]
This space is dense in WN™" and xy : Wi — WN™" is an isometry.

Let w, — w and let w,, € Wj. Question: when the limit w possesses a
subdifferential 7

Theorem 46 Let w, possess a subdifferential dw, and assume that the se-
quence (wy,) is Cauchy and w = limw,. Then w has a subdifferential if and
only if the sequence (an) is partially weak convergent to some wektor w' with
respect to the space Wy 1 in the following sense:

— for each h € W™ we have

(dw,. h) — (dw,h)

the e-antycommutativity of (,) (v, vV=%) =g, (VN7 vF) for
k

some ¢; € {—1,1}. Then we recall that % * (u*) = g uF.
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Definition 47 By a cosubdifferential of the degree N —r in Hilbert Hodge space

with gradation and subdiffefrential and with e-antycommutativity we mean the
oparator

<N-—r — —r—
o WY s W

defined by
<N—r -r .r Jr -
O = (=DM d (k)

It is easy to prove that the condition of jointness holds
<<_5N_T'U,w> = (U,CZN’T’lw) ,

for v having a cosubdifferential and w having a subdifferential.
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Notation 48 W[ =W;N Wy = {w ceWm weWy, xwe WdN’T} )
Theorem 49 The space W] with the norm ||w||, defined as
llwlls = llwll® + ([l + |16l
s Hilbert.
Definition 50 We define now the spaces of harmonic vectors
Hy={weW; dw=0=bw}.

Clearly
w0 Hy — HY

is an isomorphism. Any harmonic vector is a cocycle, therefore there exists a
Hodge homorphism
xlH, — H(W3).
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As in the paper by Teleman (1983) we can prove

Lemma 51 The subspaces H" and Imd" =" are perpendicular, therefore H™ N
Imd™~! = {0}, which gives that x'; is a monomorphism.

From Axiom (6) we see that
Lemma 52 The subspace Ker d” is closed in W, therefore it is a Hilbert space.
From Axiom (7) [Poincaré duality for H (W) | we see that

Lemma 53 The subsapce Imd™~" is closed in W7, therefore it is a Hilbert
space.

From Axiom (5)

Lemma 54 H; = {w e W"; heKerd, hilmd '}, ie Hj;= (Im cZ”_l)L
in Kerd".
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Conclusion 55 (Hodge Theorem) Imd™~(C Kerd") is a closed subspace of
the Hilbert space Kerd", therefore

Kerd" =Imd " @ (Im CZT’I)L =Imd ' ®H,
which means that
n=Kerd /Imd ' =H" (W, (M)),
i.e. the Hodge homomorphism is an isomorphism.

Theorem 56 There is a strong Hodge decomposition.

Wr=Hyed[W; ] @d [Wit].
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3.2 The signature operator for graded Hilbert subdif-
ferential Hodge space

Consider a graded Hilbert subdifferential Hodge space and e-antycommutativity
N - N

(W= @D W5 ) ) W W, WaC W, Wa= @D W),

W o= sy W], PR W= — WN-""! — the cosubdifferential.

e As an example can serve a space of La-differential forms on a Lipschitz
Riemannian compact oriented manifold.

For the uniformity of notation we put
o Wi =W"(M) with the norm ||w|| = /(w,w).

o Wy =W (M)NW; (M) with the norm |w||, such that ||Jw||? = ||lw|]®+
HJwW + ||(_5wH2 . The both are Hilbert.

Analogously as in Teleman paper we show
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Theorem 57 The operator
D'=d+6: W] — W]
18 a continuous Fredholm operator,
Ker D" = H;,

and
ImD" =d W] &8 [WH]

(so Coker D = 'HJ, ).
As in the previous part we assume
N=2n ¢ =+1
and use the operator 7 : W — W defined by
T (uk) = & * (uk) . &k =1, & €C,
such that
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i) 7'_2 =1d,
ii) = —7d7 on the subspapce s, of course.
iii) &, = 1.
) k N(N-1) k n
For this we must assume that ¢, = (—=1)" (=1)" 2 = (=1)"(—-1)", and
then 7 is uniquely determined by

& = (—1)

As previously since dim H (£27) is finite [from the Poincaré duality] we define
as above the signature of W, and

Sig (W) := Sig (, )i = Sig By.

k(k+1) n(n+1)
2 (—=1)" 2 /real number

Puting
Wy = {weW; tw=+w},
Wiy = WenW,

Wor = Wi
we notice that
(d+0) W] © W,
(d+3) W] C Wos,
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Definition 58 The operator
Diy=d+6: Wiy — Wy
is called the signature operator. Also we consider the adjoint one
D, _ = d+9: Wi — Wy,
for which the condition of duality holds
(Dy o, B) = (a, Dy ), for aeW;,,BeW;_.
Analogously as in the previous part we prove the signature theorem
Theorem 59
Sig (W) := Sig (, )y = Sig (B};) = dimg ker (D; 1) — dimg ker (D ).

We see that in the Hilbert case there are very simple considerations to
obtain a Hodge theorem (no analysis !, only algebraic topology, may be with
the exception of the condition like (dw, u) = (—1) " (w, du) ).
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4 Completion of the graded Hodge differential
space

Consider a graded Hodge differential space

N k
(W - @k:OW 7<'7'>>('7')7*7d> )
le
) (-,w) = (-, *w), * is Hodge operator (v, w) = (*v, *w),
) I/V’~€ are mutually orthogonal, and (-,-) | : W*¥ x W" =0 if k +r # N,
) d is of degree +1,
) (dw,u) = (— 1)’</’+1 (w, du) for w € W* and u € WN-+-1,

We complete the unitary space (W, (,)) to Hilbert one W. The inner prod-
uct and the norm in W will be denoted by the same symbol. We extend the
x-Hodge isometry to the isometry * : W — W and the pairing (,) to a new
one denoting by the same symbol. Of course this pairing remains continuous.

We obtain a Hilbert graded Hodge space <V_V = @i\f oWE Y (), *> _

Now we extend the differential d* : W* — W*+! to some bigger subspace
W¥ C W* in a "distributional manner".

(0
(1
(2
(3
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Definition 60 We say that a vector w € W* has a distributional differential
if there exists a vector belonging to W*! denoted by dw such that for each
vector v € WN=F=1 the following condition

(w,d" o) = (—1)FH (dw,v)

holds, equivalently if B
(w, 6h) = (duw, h)

for each h € Wk where
5= (=N Fwdh st

The differential dw is unique (if it exists). The vector space of vectors v
possessing distributional differential will be denoted by Wj. Clearly, if w € Wk
then dw exists and dw = dw, as well as d*™ (d* (w)) = 0 for w € Wy.

Theorem 61 Let w, € W and assume that (w,) is Cauchy and w, — w € W.
Then w possesses distrbutional differential of and only if there exists a vector
w' € Wk such that for each v € W the condition

(dwy,v) — (W', v)
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holds (i.e. it is the condition of partially weak convergence of d with respect to
WHL ). The vector w' is then a distributional differential of w, w' = dw.

It is easy to see that dd = 0 and that the inclusion i : W — W, induces a
homomorphism in cohomology

Problem 62 (1) Does (dw,u) = (—=1) {(w,du) forw e Wi, ue W, "
for a given Hodge graded differential space?
We introduce B B
W =« [W)]
and codifferential 5" " : W5N —* W(SN ~*=1 1y the formula
sV = (—D)N s dh st

0 is an extension of 9.

Problem 63 (2) Does the inclusion j : H — H (which of course commutes
with differentials d and d ) induces an isomorphism H (H) — H (H) in coho-
mology? Particularly, then the space H (H ) 18 with Poincare duality.
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Remark 64 Now consider the four examples W = Q (M), Q(A) for a Lie
algebroid A, Q (M, E) for the Lusztig or the Gromov vector bundle. Now we
pass to the spaces of Lo-differential forms W = Q (M), Q(A), Q (M, E). The
first one has been considered as a special case in Teleman’s theory (each smooth
manifold possesses a Lipschitz structure, so an La-signature operator).

We need to check only whether the problems (1) and (2) in the remaining
three cases have also a positive answer. We can use to solve (1) some local
calculations but to (2) the comparison theorem for suitable spectral sequences
coming from Cech-de Rham complexes.

Conclusion 65 Thus we obtain graded Hilbert subdifferential Hodge space.
Consequently, each of four examples considered above: manifold, Lie algebroid,
Lusztig and Gromov examples produces easily such a space.

In consequence, the signature of A can be calculated as the index of the two
Lo-Hirzebruch signature operators using graded Hilbert subdifferential Hodge
spaces QL (A) or Q (M, E), respectively.
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