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Linear direct connections in vector bundles and
Teleman�s theorem

Nicola Teleman in the papers
N.Teleman, Distance Function, Linear quasi-Connections and Chern

Character, June 2004, IHES/M/04/27
N.Teleman, Direct Connections and Chern Character, Proceedings

of the International Conference in Honor of Jean-Paul Brasselet, Luminy,
May 2005,
shows how the Chern character of the tangent bundle of a smooth mani-

fold may be extracted from the geodesic distance function by means of cyclic
homology.
The processing has the following steps:

1. Let M be a smooth Riemannian manifold and let

r :M �M ! [0;1)

be the induced geodesic distance function.
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The function r2 is smooth on a neighbourhood of the diagonal.
2. Let � be a cut-o¤ smooth monotone decreasing real valued func-

tion, identically 1 on a neighbourhood of 0; having support on a su¢ ciently
small interval, so that � � r2 be well de�ned and smooth. For x; y 2 M a
linear mapping

A (y; x) : TxM ! TyM

is given by the formula

A (y; x)

 X
i

�i
@

@xi

!
=
X
i;j;k

�i
@2 (� � r2) (x; y)

@xi@yj
gjk (y)

@

@yk

(A (y; x) is independent of the local coordinates).
For su¢ ciently close points x; y;
� A (y; x) is an isomorphism and
� A (x; x) is the identity.
Therefore A is a linear direct connection (=linear quasi-connection), with

respect to the de�nition below.
3. With the object A there is associated the function�k : Uk+1 ! R,

where Uk+1 is a neighbourhood of the diagonal in Mk+1

�k (x0; x1; :::; xk) := Trace A (x0; x1)�A (x1; x2)� :::�A (xk�1; xk)�A (xk; x0) :

4. Next, N.Teleman studies the function �k in the context of cyclic
homology:

� �rstly, he notices that �k; k =even, is a cyclic cycle over the
algebra A = C1 (M) ;

� secondly, he uses the Connes�isomorphism which associates with
�k a closed di¤erential form


 (�k) (x) =
1

k!

X
i1;i2;::;ik

@

@xi11

@

@xi22
:::

@

@xikk
�k (x0; x1; :::; xk)x0=x1=:::=xk=x dx

i1^:::^dxik ;

(we use the same local coordinate system on each factor).
� thirdly, he proves

Theorem 1 The top degree component of the cyclic homology class of �k is
equal to

[
 (�2k)] = c � Chk (M)
where c is a constant and Chk (M) is the k-component of the Chern character
of the tangent bundle of M:
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The object A is a particular case of the linear direct connection intro-
duced by N.Teleman.

De�nition 2 Let E be a real or complex smooth vector bundle over the
manifold M: A linear direct connection � in E consists of assigning to
any two points x; y 2M; su¢ ciently close one to each other, an isomorphism

� (y; x) : Ejx ! Ejy;

such that
� (x; x) = id;

and � (y; x) depends smoothly on the pair x; y:

The parallel transport de�ned by a usual linear connection in
E along the small geodesics of an a¢ ne connection in M induces a linear
direct connection in E (see for example A.Connes and H.Moscovici, "Cyclic
cohomology, the Novikov conjecture and hyperbolic groups", Topology 29, n
3 345-388, 1990).

-i) As for A with � there is associated the function �k by the
formula

�k (x0; x1; :::; xk) := Trace � (x0; x1) � � (x1; x2) � ::: � � (xk�1; xk) � � (xk; x0) :

The function

�2 (x0; x1; x2) = Trace � (x0; x1) � � (x1; x2) � � (x2; x0)

plays a role of the curvature of � and the di¤erential form 
 (�2) - the
curvature form of � :

-ii) Any two smooth linear direct connections in a smooth vector
bundle are smoothly homotopic. The results above implay

Theorem 3 (N.Teleman) For any smooth linear direct connection � in
the smooth vector bundle E over the manifold M;

-i) �k; k =even, is a cyclic cycle over the algebra C1 (M) ;

-ii) the cohomology class of 
 (�2k) is (up to a multiplicative constant) is
the k-component of the Chern character of E:
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1 Underlying linear connection r� and a di-
rect proof of this theorem

In the paper
J.Kubarski, N.Teleman, Linear direct connections, Banach Center

Publications, 2007, in print,
we study the geometry of direct connections � :

� we construct the "in�nitesimal part" r� and show that r� is a usual
linear connection. We next determine the curvature tensor R of r�

and show that the equality of di¤erential forms holds


 (�2k) = c � Tr Rk:

We intend to extract from a direct connection its in�nitesimal part along
the diagonal.

De�nition 4 Let X be a smooth tangent �eld overM and � a smooth section
in E. Let x0 be an arbitrary point in M and let 
 : (�"; ") �! M be an
integral path of the �eld X with the initial condition 
(0) = x0. We de�ne

r�
X(x0)

(�) =
d

dt
f�(
(0); 
(t)) (� (
 (t)))gjt=0 2 Ejx0 :

Theorem 5 The right hand side of the above formula depends only on the
value of X at x0: The operator r�

X(x0)
(�) is a usual linear connection in E:

The linear connection r� will be called associated, or underlying, linear
connection to the direct connection � :

Proposition 6 Let R = (r� )2 be the curvature tensor of the connection r� .
R is given by

R = (
@2

@x�@y�
� ji (xjy)y=x �

@2

@x�@y�
� ji (xjy)y=x+

+
@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x �

@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x)dx� ^ dx�:

Although, �(x; y) = (�(y; x))�1 is not true in general, it is true, however,
that it holds in�nitesimally. In fact, we have the
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Proposition 7 For any direct connection � ; its matrix components satisfy
the identities
-i)

@

@x�
� ji (xjy)y=x +

@

@y�
� ji (xjy)y=x = 0:

-ii)

@

@x�
f�(xjy) � �(yjx)gy=x = 0 =

@

@y�
f�(xjy) � �(yjx)gy=x:

As �(xjx) = Id:, we get that the directional derivative ( @
@x�

+ @
@y�
) of

� along the diagonal vanishes. This proves -i). The second identity is a
consequence of the �rst.
The above properties of any direct connection are fundamental for com-

paring the curvature tensor R to the di¤erential form 
 (��2k) :
We obtain an important explicit link between 
 (�2k) and the classical

Chern-Weil forms, at the level of di¤erential forms rather than cohomol-
ogy classes.

Theorem 8 Let � be a direct connection and let r� be its underlying linear
connection. Then


(��2) =
1

4
� Tr R;

and more generally,


(��2k) =
1

(2k)!
� 1
2k
� Tr Rk:

In consequence, the mentioned above Teleman�s theorem follows from this
directly.

2 Groupoids point of view and groupoids gen-
eralizations

N.Teleman in yours papers said:
"The arguments discussed here may be extended to the language of groupoids".
My further talk is the �rst step in this direction.
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2.1 Direct connections and the Lie groupoid GL (E)

Let E be a real or complex smooth vector bundle over the manifold M:
Consider the transitive Lie groupoid

� = GL (E)

of all linear �bre isomorphisms h : Ejx ! Ejy of the vector bundle E; with
the source �; � (h) = x; and the target �; � (h) = y; and the unit uy = idEjy :

Remark 9 A linear direct connection in a vector bundle E is equivalently a
smooth mapping

� : U ! GL (E)

where U �M�M is an open neighborhood of the diagonal� = f(x; x) ; x 2Mg ;
such that

� (x; y) : Ejy ! Ejx

i.e.
� � � (x; y) = y; � � � (y; x) = x;

and
� (x; x) = id : Ejx ! Ejx:

2.2 Lie Groupoids and point of view of linear direct
connections and the using of the Lie algebroids

According to the Pradines de�nition, the Lie algebroid of an arbitrary
transitive Lie groupoid � is equal to the vector bundle

A (�) = u� (T��)

where u : M ! �; y ! uy; and T�� = ker��; equipped with the suitable
structures: the bracket of cross-sections and the anchor.
Let � = GL (E) be the Lie groupoid of all linear �bre isomorphisms of

�bres of E:
For y 2 M the submanifold �y = GL (E)y � GL (E) of all elements

u 2 GL (E) for which � (u) = y;

GL (E)y = �
�1 (y) ;

is a GL (Ey)-principal �bre bundle.
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� Lie algebroid of the Lie groupoid is the in�nitesimal object and play
analogous role to that of Lie algebras for Lie groups.

� The space [Lie algebra] of global cross-sections Sec (A (�)) ; � = GL (E)
where E is a vector bundle, is naturally isomorphic to the Lie algebra
of all Covariant Derivative Operators, i.e. to the space of di¤erential
operators of the rank � 1

L : SecE ! SecE

such that L (f � �) = f �L (�) +X (f) � �; for a vector �eld X called the
anchor of L; f 2 C1 (M) ; � 2 SecE:

Let � : (M �M)jU ! GL (E) (where U �M �M is an open neighbour-
hood of the diagonal � = f(x; x) ; x 2Mg ) be a linear quasi-connection,

� (x;y) : Ejy ! Ejx;

so �
�
� (x;y)

�
= y and �

�
� (x;y)

�
= x and let r� be the underlying linear

connection of � in E:
Now, we �x y and take

� (�; y) :M ! GL (E)y ; x 7�! � (x; y) :

It is a smooth mapping such that ��� (�; y) = id : Therefore the composition
of the di¤erential

� (�; y)�x : TxM ! T�(x;y)

�
GL (E)y

�
with the di¤erential of �jGL (E)y !M is identity

id : TxM
�(�;y)�x�! T�(x;y)

�
GL (E)y

�
���! TxM:

Taking x = y and using the fact � (y; y) = uy = idEy we see that

� (�; y)�y : TyM ! Tuy

�
GL (E)y

�
:

Therefore � determines a usual connection

�r�
: TM ! u� (T��)

�r�
(vy) = � (�; y)�y (vy) :
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in the Lie algebroid u� (T��) (� = GL (E)), i.e. a splitting of the Atiyah
sequence

0! ggg ! A (�)
���!
 �
r�

TM ! 0:

�r� is the "usual covariant derivative" since the anchor of the Covariant
Derivative Operator �r�

(X) : SecE ! SecE is just equal to X; therefore
noticing �r�

(X) (�) in the form

�r�
X (�)

the usual axioms for covariant derivative are ful�lled.

Theorem 10 �r�
= r� , i.e. the connection �r� is equal to the underlying

linear connection of � in E:

Proof. (a sketch) Since we need to prove it at any point y 2 M so we
can prove it locally for E = M � Rn and M = Rm: Then GL (E) = M �
GL (Rn)�M; ��1 (y) = GL (E)y = M �GL (Rn)� fyg : Let feigni=1 be a
trivial local basis of E, then the induced linear connection r� is determined
by

r�
@

@xk jy
ei =

@� ji
@xm+k

(y; y) � ej:

We can obtain the same results for �r�
:

2.3 Groupoids generalization

The above consideration has "groupoids sense" so we can it generalize to any
transitive Lie groupoids.
Let � be an arbitrary transitive Lie groupoid with the anchor � and the

target �. We denote by uy the unit of � at y:

De�nition 11 By a linear direct connection in � we mean a mapping

� : (M �M)jU ! �;

such that � � � (x; y) = y; � � � (x; y) = x; and � (x; x) = ux:
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For y the submanifold �y � � of all elements h 2 � for which � (h) = y:
Now, we �x y and take

� (�; y) :M ! �y; x 7�! � (x; y) :

It is a smooth mapping such that � � � (�; y) = id : Taking the di¤erential

� (�; y)�x : TxM ! T�(x;y) (�y) :

� determines a splitting of the Atiyah sequence of �; i.e. a usual connection
in the Lie algebroid A (�) = u� (T��) ;

r� : TM ! u� (T��) = A (�)

r� (vy) = � (�; y)�y (vy)
The connection r� will be called the underlying linear connection of
the linear direct connection � : .
Now we can ask on a very important question:

� How can we reconstruct the curvature tensor ofr from the linear direct
connection in the Lie groupoid �? And next how can we reconstruct
the Chern-Weil homomorphism of Lie groupoids � (i.e. equivalently of
the principal bundle �y) from arbitrary taken linear direct connection
�?

2.4 Curvature tensor of the linear direct connection in
transitive Lie groupoids

Take any transitive Lie groupoid � and its Lie algebroid A (�) with the
Atiyah sequence. For a linear direct connection � in � denote byr� : TM !
A (�) the underlying linear connection in the Lie algebroid A (�) induced by
� : Consider the curvature tensor 
� 2 
2 (M ;ggg) of r�


� (X; Y ) = [[r�
X ;r�

Y ]]�r�
[X;Y ]:

The linear direct connection � determines the mapping

	�k :

0@M � :::�M| {z }
k+1

1A
jU

! �;

	�k (x0; x1; :::; xk) = � (x0; x1) � � (x1; x2) � ::: � � (xk�1; xk) � � (xk; x0)
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having the values in the associated Lie group bundle,

	�k (x0; x1; :::; xk) 2 �x0x0 :

For example, for k = 2; the function

	�2 : (M �M �M)jU ! �;

	�2 (x0; x1; x2) = � (x0; x1) � � (x1; x2) � � (x2; x0)

is called the curvature of � :Analogously to the previous cases we can associate
some di¤erential form to the function 	k: Namely, �xing a point x0 we
de�ne

	�k (x0) :

0@M � :::�M| {z }
k

1A
jU

! �x0x0 ;

(x1; :::; xk) 7�! 	�k (x0; x1; :::; xk) 2 �x0x0 :

Next, we take a coordinate system (x1; :::; xm) (dimM = m) on an open
neighborhood V of the point x0: Using the same local coordinate system on
each factors of the direct product M � � � � � M we take for (x1; :::; xk) 2
V � :::� V

@

@xjk
	�k (x0) 2 T	k(x0;x1;:::;xk)�x0x0 :

This vector we can translate via right translation to the unit, therefore we
can write

@

@xjk
	�k (x0) 2 Tux0

�
�x0x0
�
= gggjx0 :

The function obtained

(x1; :::; xk�1; xk) 7�!
@

@xjk
	�k (x0) 2 gggjx0

can be di¤erentiated usually as a vector valued function.

(x1; :::; xk�1; xk) 7�!
@

@xi11

@

@xi22
:::

@

@x
ik�1
k�1

@

@xikk
	�k (x0; x1; :::; xk) 2 gggjx0 :

We put


 (	�k) (x) =
1

k!

X
i1;i2;::;ik

@

@xi11

@

@xi22

@

@xikk
	�k (x0; x1; :::; xk)x0=x1=:::=xk=x dx

i1^:::^dxik :
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It is a k-form on M with values in the vector bundle ggg


 (	�k) 2 
k (M ;ggg)

Considering k = 2 we obtain a 2-form with values in ggg,


 (	�2) 2 
2 (M ;ggg) ;

called the curvature form of � :
The fundamental role is playing by the following

Theorem 12 For an arbitrary linear direct connection � : (M �M)jU !
� in the Lie groupoid � the curvature form of � and the curvature form of
the underlying connection in A (�) are di¤ers on a constant


 (	�2) =
1

4
� 
� :

2.5 Characteristic classes

The last theorem gives that we can extract the Chern-Weil homomorphism
of � via any local direct connection � on the level of di¤erential forms. The
Chern-Weil homomorphism of � is really the Chern-Weil homomorphism of
the Lie algebroid A (�) of �:
We recall the construction of the Chern-Weil homomorphism for Lie al-

gebroids

� Jan Kubarski, The Chern-Weil homomorphism of regular Lie alge-
broids, UNIVERSITE CLAUDE BERNARD �LYON 1, Publications
du Départment de Mathématiques, nouvelle série, 1991, 1-70.

Consider a transitive Lie algebroid A with the Atiyah sequence

0! ggg ! A! TM ! 0

with the adjoint bundle of Lie algebras ggg.
The Chern-Weil homomorphism for transitive Lie algebroid A is de�ned

as follows:

hA :

k�0M 
Sec

k_
ggg�

!
I0

�! HdR (M)

� 7�!
�
1

k!
h�;
 _ :::: _ 
i

�
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where 
 2 
2E (M ;ggg) is the curvature tensor of any connection in A, whereas�
Sec
Wk ggg�

�
I0
is the space of invariant cross-sections of

Wk ggg� with respect to

the adjoint representation of A:
We explain also that 
 _ ::: _ 
 is the usual skew multiplication of

di¤erential forms with values multiplying symmetrically.
Take a local direct connection � in � and consider once again the curva-

ture form 
 (	�2) 2 
2 (M ;ggg) : We known that � induces a usual connection
r� in A (�) and that the curvature of it is a constant time the form 
 (	�2) ;


� = 4 � 
 (	�2) :

In conclusion, the Chern-Weil homomorphism of � (i.e. of the A (�) ) can
be extracted via � on the level of di¤erential forms by

h�;
 _ ::: _ 
i = 4kh�;
 (	�2) _ ::: _ 
 (	�2)i:

Problem 13 How can we express the form


 (	�2) _ ::: _ 
 (	�2) 2 
2k
�
M ;
_
ggg
�

with the help of 
 (	�2k)?

Example 14 Let � = GL (E) be a Lie groupoid of all linear �bre isomor-
phisms.
The equality holds


 (	�2k) = c � 
 (	�2) � ::: � 
 (	�2) ( k times)

or equivalently


 (	�2k) = c1 � 
� � :::: � 
� ( k times).
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Example 15 Pontryagin classes. Take the invariant cross section Ck 2
�
�
Sec
Wk End (E)�

�
by

Ckjx = tr ('1�:::�'k)

where for 'i 2 End
�
Ejx
�
the linear mapping '1�:::�'k :

Vk Ejx !
Vk Ejx

is de�ned [Greub-Halperin-Vanstone] by

'1�:::�'k (v1 ^ ::: ^ vk) =
X
�2�k

sgn� � '1 (v�1) ^ ::: ^ 'k (v�k) :

Then the Ponryagin class is equal to

pk (E) = pk (�) = h (C2k) =
1

(2k)!

"
hC2k;
 _ :::: _ 
| {z }

2k times

i
#
dR

:

The class pk (E) is represented by the di¤erential form

c � tr (
�:::�
) :

According to the notation of Greub-Halperin-Vanstone, the forms 
 _ :::: _

 and 
�:::�
 are the usual skew multiplication of di¤erential forms for
which the values are multiplicated by the suitable mappings

_ : End (E)� :::� End (E)!
_2k

End (E) :

� : End (E)� :::� End (E)! End
�^2k

E
�
:

Trace classes. Take the invariant cross section Trk 2 �
�
Sec
Wk End (E)�

�
by

Trk ('1; :::; 'k) =
X
�2�k

tr
�
'�1 � ::: � '�k

�
:

Then the trace class is equal to

trk (E) = trk (�) = h (Tr2k) =
1

(2k)!

"
hTr2k;
 _ :::: _ 
| {z }

2k times

i
#
dR

:

The class trk (E) is represented by the di¤erential form

c � tr (
 � ::: � 
)
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(the values of the skew multiplication of 
 � ::: � 
 are multilied by the com-
posing of the linear mapping.
P¤a�an class for oriented 2k-dimensional vector bundle E: Take

the invariant cross-section pf 2 �
�
Sec
Wk Sk (E)�

�
pfF ('1; :::; 'k) = he; ��1 ('1) ^ ::: ^ ��1 ('k)i

where � :
^2

(F )
�=�! SkF ; � (x ^ y) (z) = hx; zi y � hy; zix and e 2

Vk F

determine the orientation and jhe; eij = 1: Then the Atiyah sequence of
A (IsoE) is

0! Sk (E)! A (IsoE)! TM ! 0:

and the Pfa¢ an class is equal to ik � h (pf) and it is represented by

c � h�;
�
��1


�
^ ::: ^

�
��1


�
i:
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