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Linear direct connections in vector bundles and
Teleman’s theorem

Nicola Teleman in the papers
N.Teleman, Distance Function, Linear quasi-Connections and Chern
Character, June 2004, IHES/M/04/27
N.Teleman, Direct Connections and Chern Character, Proceedings
of the International Conference in Honor of Jean-Paul Brasselet, Luminy,
May 2005,
shows how the Chern character of the tangent bundle of a smooth mani-
fold may be extracted from the geodesic distance function by means of cyclic
homology.
The processing has the following steps:
1. Let M be a smooth Riemannian manifold and let

r: M x M —|0,00)

be the induced geodesic distance function.



The function r? is smooth on a neighbourhood of the diagonal.

2. Let x be a cut-off smooth monotone decreasing real valued func-
tion, identically 1 on a neighbourhood of 0, having support on a sufficiently
small interval, so that x o 72 be well defined and smooth. For z,y € M a
linear mapping

Ay, z) : T,M — T,M

is given by the formula

;0 & (xor i 9,
x)<;£axi) d ¢ szayj( y)g’“(y)m

1,5,k Yy

(A (y,x) is independent of the local coordinates).

For sufficiently close points z, v,

— A(y, ) is an isomorphism and

— A(xz,x) is the identity.

Therefore A is a linear direct connection (=linear quasi-connection), with
respect to the definition below.

3. With the object A there is associated the function ®; : U1 — R,

where Uy is a neighbourhood of the diagonal in AM/**!

Dy, (x0, 1, -, ) = Trace A (xg,x1)0A (21, 22)0...0 A (x)_1, 7)) 0 A (Tp, T0) -

4. Next, N.Teleman studies the function ®; in the context of cyclic
homology:

— firstly, he notices that ®;, & =even, is a cyclic cycle over the
algebra A = C> (M),

— secondly, he uses the Connes’ isomorphism which associates with
®;. a closed differential form

1 o o 9 i i
Q) (@) = 35 Z K mqu%(g;o,xl,...,zk)m:xl:m:xk:xdx1A...Ada;k,

(we use the same local coordinate system on each factor).
— thirdly, he proves

Theorem 1 The top degree component of the cyclic homology class of ®y. is
equal to

[Q(Poy)] = c- Chy (M)

where c is a constant and Chy, (M) is the k-component of the Chern character
of the tangent bundle of M.



The object A is a particular case of the linear direct connection intro-
duced by N.Teleman.

Definition 2 Let E be a real or complex smooth vector bundle over the
manifold M. A linear direct connection 7 in E consists of assigning to
any two points x,y € M, sufficiently close one to each other, an isomorphism

T (y,x) : E|:c - E\y7
such that
7 (x,2) = id,

and 7 (y, ) depends smoothly on the pair z,y.

The parallel transport defined by a usual linear connection in
E along the small geodesics of an affine connection in M induces a linear
direct connection in E (see for example A.Connes and H.Moscovici, " Cyclic
cohomology, the Novikov conjecture and hyperbolic groups", Topology 29, n
3 345-388, 1990).

-i) As for A with 7 there is associated the function ®; by the
formula

Oy (xo, 21, ..., xg) := Trace T (xg,x1) o T (x1,22) 0 ... oT (Tf_1, Tk) © T (Tk, To) -
The function
Oy (29, 21, 22) = Trace T (xg, 1) o T (21, x2) o T (T3, X¢)

plays a role of the curvature of 7 and the differential form 2 (®;) - the
curvature form of 7.

-ii) Any two smooth linear direct connections in a smooth vector
bundle are smoothly homotopic. The results above implay

Theorem 3 (N.Teleman) For any smooth linear direct connection T in
the smooth vector bundle E over the manifold M,

-i) O, k =even, is a cyclic cycle over the algebra C* (M),

-11) the cohomology class of 2 (Pay) is (up to a multiplicative constant) is
the k-component of the Chern character of E.



1 Underlying linear connection V™ and a di-
rect proof of this theorem

In the paper
J.Kubarski, N.Teleman, Linear direct connections, Banach Center
Publications, 2007, in print,
we study the geometry of direct connections 7:

e we construct the "infinitesimal part" V™ and show that V7™ is a usual
linear connection. We next determine the curvature tensor R of V™
and show that the equality of differential forms holds

Q(®g) =c-Tr R

We intend to extract from a direct connection its infinitesimal part along
the diagonal.

Definition 4 Let X be a smooth tangent field over M and ¢ a smooth section
in E. Let xy be an arbitrary point in M and let v : (—e,e) — M be an
integral path of the field X with the initial condition v(0) = xo. We define

Vian(©) = {7 (1(0).4(0)) (6 (D)} € B

Theorem 5 The right hand side of the above formula depends only on the
value of X at xo. The operator Vi, \(¢) is a usual linear connection in E.

The linear connection V" will be called associated, or underlying, linear
connection to the direct connection .

Proposition 6 Let R = (V7)? be the curvature tensor of the connection V.
R is given by
2 ) 2 ]
I _ j
(8xaayﬁ T3 (x‘y)ym: axﬁaya Ti (‘T'y)y:x—i_
o 0 0 0 N
+ 8_ya72(x|y)y:x ' a_y/gT?(xW)y:x - a—yﬁﬂg(ﬂy)y:x - a—wa(ﬂy)yzz)dﬁ A dx”.

Although, 7(z,y) = (7(y,x)) ! is not true in general, it is true, however,
that it holds infinitesimally. In fact, we have the
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Proposition 7 For any direct connection T, its matriz components satisfy
the identities
—i)

o . o .
%Ti(l’\y)y:x + 8—Z/C,Tf($|y)y=x = 0.

ii)
oz aly) 0 (01} e = 0 = 5 {raly) 0 7ol

As 7(z|z) = Id., we get that the directional derivative (5% + %) of
7 along the diagonal vanishes. This proves -i). The second identity is a
consequence of the first.

The above properties of any direct connection are fundamental for com-
paring the curvature tensor R to the differential form € (97, ).

We obtain an important explicit link between 2 ($o;) and the classical
Chern-Weil forms, at the level of differential forms rather than cohomol-
ogy classes.

Theorem 8 Let 7 be a direct connection and let V7 be its underlying linear
connection. Then

1
Q(PT) = 1 Tr R,
and more generally,

T 1 1 k

In consequence, the mentioned above Teleman’s theorem follows from this
directly.

2 Groupoids point of view and groupoids gen-
eralizations
N.Teleman in yours papers said:

"The arguments discussed here may be extended to the language of groupoids”.
My further talk is the first step in this direction.



2.1 Direct connections and the Lie groupoid GL (F)

Let E be a real or complex smooth vector bundle over the manifold M.
Consider the transitive Lie groupoid

® = GL(E)

of all linear fibre isomorphisms h : £, — E|, of the vector bundle F, with
the source a, a (h) = @, and the target 3, 8 (h) = y, and the unit u, = idp,, .

Remark 9 A linear direct connection in a vector bundle E is equivalently a
smooth mapping

7:U— GL(FE)
where U C M x M is an open neighborhood of the diagonal A = {(x,z); x € M},
such that
7(z,y) : By = B,
i.e.
aoT(x,y)=y, Pfor(yz)=ur,

and
T (.I,Qf) =id: E|$ — E|I.

2.2 Lie Groupoids and point of view of linear direct
connections and the using of the Lie algebroids

According to the Pradines definition, the Lie algebroid of an arbitrary
transitive Lie groupoid ® is equal to the vector bundle

A(D) = u* (T°D)

where u : M — ®, y — u,, and TP = ker o, equipped with the suitable
structures: the bracket of cross-sections and the anchor.

Let ® = GL (F) be the Lie groupoid of all linear fibre isomorphisms of
fibres of E.

For y € M the submanifold ®, = GL (E)
u € GL (FE) for which a (u) = v,

C GL(E) of all elements

Yy

GL(E),=a""(y),

is a GL (E,)-principal fibre bundle.



e Lie algebroid of the Lie groupoid is the infinitesimal object and play
analogous role to that of Lie algebras for Lie groups.

e The space [Lie algebra] of global cross-sections Sec (A (®)), ® = GL (E)
where F is a vector bundle, is naturally isomorphic to the Lie algebra
of all Covariant Derivative Operators, i.e. to the space of differential
operators of the rank <1

£:SeckE — SecE

such that £(f-&) = f-£(§) + X (f) - &, for a vector field X called the
anchor of £ f € C> (M), £ € SecE.

Let 7: (M x M), — GL(E) (where U C M x M is an open neighbour-
hood of the diagonal A = {(z,z); = € M} ) be a linear quasi-connection,

T(zy) * Ely = Ea,

SO (v (T(m,y)) =y and f (T(m,y)) =z and let V" be the underlying linear
connection of 7 in F.
Now, we fix y and take

7(,y): M — GL(FE)

yr T T (7).

It is a smooth mapping such that So7 (-, y) = id . Therefore the composition
of the differential

T(3 Yyt TaM = Tray) (GL (E)y)
with the differential of S|GL (E), — M is identity
id: 1M T (GL(E),) 25 T,
Taking x = y and using the fact 7 (y,y) = u, = idg, we see that
(9., TyM — T, (GL (E)y) .
Therefore 7 determines a usual connection

V' o TM — u* (T°®)
v’ (vy) = 7(, y)*y (vy) -
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in the Lie algebroid u* (T%®) (® = GL(F)), i.e. a splitting of the Atiyah
sequence
0—g— A(®) 25 TM — 0.
v
V' is the "usual covariant derivative" since the anchor of the Covariant

Derivative Operator V' (X) : SecE — SecE is just equal to X, therefore
noticing V' (X) (¢) in the form

Vi (€)

the usual axioms for covariant derivative are fulfilled.

Theorem 10 V™ = V7, i.e. the connection V' is equal to the underlying
linear connection of 7 in E.

Proof. (a sketch) Since we need to prove it at any point y € M so we
can prove it locally for £ = M x R" and M = R™. Then GL (F) = M X
GL(R") x M, o '(y)=GL(E), =M x GL(R") x {y}. Let {e;};_, be a
trivial local basis of F, then the induced linear connection V" is determined
by

or’
V7 e = L JY) - €
E)a%]ﬂy axm+k (y y) ]

We can obtain the same results for V'. =

2.3 Groupoids generalization

The above consideration has "groupoids sense" so we can it generalize to any
transitive Lie groupoids.

Let ® be an arbitrary transitive Lie groupoid with the anchor a and the
target 5. We denote by u, the unit of ® at y.

Definition 11 By a linear direct connection in ® we mean a mapping
T (M x M), — 2,

such that ao 7 (z,y) =y, LoT(x,y)=x, and 7 (r,2) = u,.



For y the submanifold ®, C ® of all elements h € ® for which « (h) = y.
Now, we fix y and take

T(y) M —, x+—1(2,9).
It is a smooth mapping such that o7 (-,y) = id. Taking the differential
T (', y)*x T M — T‘r(:c,y) ((I)y) .

7 determines a splitting of the Atiyah sequence of ®, 1i.e. a usual connection
in the Lie algebroid A (®) = u* (T*®),

VT :TM — u* (T®) = A(D)

VT (Uy) =T ('7 y)*y (Uy)
The connection V7 will be called the underlying linear connection of

the linear direct connection 7. .
Now we can ask on a very important question:

e How can we reconstruct the curvature tensor of V from the linear direct
connection in the Lie groupoid ®7? And next how can we reconstruct
the Chern-Weil homomorphism of Lie groupoids ® (i.e. equivalently of
the principal bundle ®,) from arbitrary taken linear direct connection
T?

2.4 Curvature tensor of the linear direct connection in
transitive Lie groupoids

Take any transitive Lie groupoid ® and its Lie algebroid A (®) with the
Atiyah sequence. For a linear direct connection 7 in ® denote by V™ : TM —
A (®) the underlying linear connection in the Lie algebroid A (®) induced by
7. Consider the curvature tensor Q7 € Q2 (M;g) of V7

Qr (X7 Y) = [[ 7)—(7V71—/]] - [TX,Y}'

The linear direct connection 7 determines the mapping

U | Mx...xM — O,
—_——
k+1 ‘U

UL (2o, 1, ..oy k) = T (20, 21) - 7 (21, X2) + oo - T (Tp—1, Tp) - T (2, Tp)



having the values in the associated Lie group bundle,
Uy (w0, 1, .0y 71) € L.
For example, for & = 2, the function
\P;:(MXMXM)lU—HI),
Ul (zg, x1,22) = 7 (T, 1) * T (21, 22) - T (X2, T0)

is called the curvature of 7. Analogously to the previous cases we can associate

some differential form to the function ¥,. Namely, fixing a point xq we
define

Ui (xo): [ Mx...x M e

xo’
(@1, xp) — O (20, 21, ..y 1) € B0

Next, we take a coordinate system (z',...,2™) (dimM = m) on an open
neighborhood V of the point z(. Using the same local coordinate system on
each factors of the direct product M x --- x M we take for (xy,...,z1) €
VXx..xV 5
@\Il; (z0) € T‘I’k(xo,m,-..,ﬂfk)q)ig'
k

This vector we can translate via right translation to the unit, therefore we
can write

0
— U (20) € Ty, (P50) = 91
ax‘ljc 0 0 0
The function obtained

0
(1, ooy T, Tf) — — U] (z9) € 9z
or;
k
can be differentiated usually as a vector valued function.

o 0 o 0

1 2 k—1 k
Oxy Oxy Q)| 0w}

(zl,...,xk,l,xk) \IJZ ($0,£L’1,...,.I'k) €g|1"0'

We put

, 1 o o0 0 _. ; ;
Q) (z) = " Z o @@\Pk (zo, 1, ..., xk)xozmz_“:%:x dx" A..Ndx'*.
21,2255k
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It is a k-form on M with values in the vector bundle g
Q(T7) € Q" (M; g)
Considering k£ = 2 we obtain a 2-form with values in g,
Q(03) € Q% (M3 9g),

called the curvature form of 7.
The fundamental role is playing by the following

Theorem 12 For an arbitrary linear direct connection 7 : (M x M )IU —
® in the Lie groupoid ® the curvature form of T and the curvature form of
the underlying connection in A (®) are differs on a constant

1
Q¥p) = ;-

2.5 Characteristic classes

The last theorem gives that we can extract the Chern-Weil homomorphism
of ® via any local direct connection 7 on the level of differential forms. The
Chern-Weil homomorphism of & is really the Chern-Weil homomorphism of
the Lie algebroid A (®) of ®.

We recall the construction of the Chern-Weil homomorphism for Lie al-
gebroids

e Jan Kubarski, The Chern-Weil homomorphism of regular Lie alge-
broids, UNIVERSITE CLAUDE BERNARD — LYON 1, Publications
du Départment de Mathématiques, nouvelle série, 1991, 1-70.

Consider a transitive Lie algebroid A with the Atiyah sequence
0—-9g—A—-TM—0

with the adjoint bundle of Lie algebras g.
The Chern-Weil homomorphism for transitive Lie algebroid A is defined
as follows:

k>0 k
ha: P (Sec g*) — Hyp (M)
JO
' — [%a‘, QV..V Q)}

11



where Q € Q% (M; g) is the curvature tensor of any connection in A, whereas
<Sec \/k g*) . is the space of invariant cross-sections of \/k g* with respect to
I

the adjoint representation of A.

We explain also that 2V ... vV Q is the usual skew multiplication of
differential forms with values multiplying symmetrically.

Take a local direct connection 7 in ¢ and consider once again the curva-
ture form Q (¥7) € Q2 (M;g). We known that 7 induces a usual connection
V" in A (®) and that the curvature of it is a constant time the form Q (¥7),

O =4-Q(U).

In conclusion, the Chern-Weil homomorphism of ® (i.e. of the A(®) ) can
be extracted via 7 on the level of differential forms by

T, QV..VQ) =45, Q(I]) V..V Q(I])).
Problem 13 How can we express the form
Q(T5) V...V Q(T5) € O (M; \/g)
with the help of Q (¥7,)?

Example 14 Let ® = GL (F) be a Lie groupoid of all linear fibre isomor-
phisms.
The equality holds

QL) =c- QW) o...oQ (V) (k times)
or equivalently

QUL)=c-Q 0...0Q" (k times).

12



Example 15 Pontryagin classes. Take the invariant cross section C €
r (sec \V* End (E)*) by

Crle = tr (1 0..Oepy,)

where for ¢; € End (Ey,) the linear mapping p,0...0cp;, : A" E, — A E,
is defined [Greub-Halperin-Vanstone] by

0.0, (v A oo Ayg) = Z sgno - o1 (Vgy) A oo Ay (Vg,,) -

oexk

Then the Ponryagin class is equal to

Pk (B) =pr (P) = h (Cy) = @ [(C%, Qv v Q)

The class pi (E) is represented by the differential form
c-tr(Q0...0Q) .

According to the notation of Greub-Halperin-Vanstone, the forms QV ...V
Q and QO..0Q are the usual skew multiplication of differential forms for
which the values are multiplicated by the suitable mappings

V i BEnd(B)x ...x End(E) - \/" End(E).

O : End(E)x ... x End(E) — End </\2k E).

Trace classes. Tuke the invariant cross section Try € I’ <Sec \/* End (E)*)

by
Try (01,0 0) = Z tr (pg, 0. 0 0,,) -

oexk

Then the trace class is equal to

tre (B) = try (®) = h (Trag) = ——

o] (Trog, 2V ...V Q)

N——’
2k times

dR

The class try, (E) is represented by the differential form
c-tr(Qo..oQ)
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(the values of the skew multiplication of Qo ... o Q are multilied by the com-
posing of the linear mapping.

Pffafian class for oriented 2k-dimensional vector bundle E. Take
the #nvariant cross-section pf € I' (Sec\/* Sk (E)*)

pfT (o1 npr) = (6,87 (@) A ABTH ()

where 3 : /\2 =5 Skp, Bz Ay)(2) = (z,2)y — (y,2)x and e € N'F
| =

determine the omentatzon and |{e, e) 1. Then the Atiyah sequence of

A(IsokE) is
0— Sk(E)— A(IsoE) — TM — 0.

and the Pfaffian class is equal to i* - h (pf) and it is represented by

(A, (BT A LA (B71Q)).
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