Lie Groupoid's point of view of linear direct connections and characteristic classes *Poisson Geometry in Mathematics and Physics* Lausanne, Switzerland, July 7-11, 2008

> Jan Kubarski Technical University of Łódź, Poland

> > March 6, 2009

Linear direct connections in vector bundles and Teleman's theorem

Nicola Teleman in the papers

N.Teleman, Distance Function, Linear quasi-Connections and Chern Character, June 2004, IHES/M/04/27

N.Teleman, *Direct Connections and Chern Character*, Proceedings of the International Conference in Honor of Jean-Paul Brasselet, Luminy, May 2005,

shows how the Chern character of the tangent bundle of a smooth manifold may be extracted from the geodesic distance function by means of cyclic homology.

The processing has the following steps:

1. Let M be a smooth Riemannian manifold and let

$$r: M \times M \to [0, \infty)$$

be the induced geodesic distance function.

The function r^2 is smooth on a neighbourhood of the diagonal.

2. Let χ be a cut-off smooth monotone decreasing real valued function, identically 1 on a neighbourhood of 0, having support on a sufficiently small interval, so that $\chi \circ r^2$ be well defined and smooth. For $x, y \in M$ a linear mapping

$$A(y,x): T_x M \to T_y M$$

is given by the formula

$$A(y,x)\left(\sum_{i}\xi^{i}\frac{\partial}{\partial x^{i}}\right) = \sum_{i,j,k}\xi^{i}\frac{\partial^{2}\left(\chi\circ r^{2}\right)\left(x,y\right)}{\partial x^{i}\partial y^{j}}g^{jk}\left(y\right)\frac{\partial}{\partial y^{k}}$$

(A(y, x) is independent of the local coordinates).

For sufficiently close points x, y,

-A(y,x) is an isomorphism and

-A(x,x) is the identity.

Therefore A is a linear direct connection (=linear quasi-connection), with respect to the definition below.

3. With the object A there is associated the function $\Phi_k : U_{k+1} \to \mathbb{R}$, where U_{k+1} is a neighbourhood of the diagonal in M^{k+1}

 $\Phi_{k}(x_{0}, x_{1}, ..., x_{k}) := Trace \ A(x_{0}, x_{1}) \circ A(x_{1}, x_{2}) \circ ... \circ A(x_{k-1}, x_{k}) \circ A(x_{k}, x_{0}).$

4. Next, N.Teleman studies the function Φ_k in the context of cyclic homology:

— firstly, he notices that Φ_k , k =even, is a cyclic cycle over the algebra $\mathcal{A} = C^{\infty}(M)$,

— secondly, he uses the Connes' isomorphism which associates with Φ_k a closed differential form

$$\Omega\left(\Phi_{k}\right)\left(x\right) = \frac{1}{k!} \sum_{i_{1},i_{2},..,i_{k}} \frac{\partial}{\partial x_{1}^{i_{1}}} \frac{\partial}{\partial x_{2}^{i_{2}}} \dots \frac{\partial}{\partial x_{k}^{i_{k}}} \Phi_{k}\left(x_{0},x_{1},...,x_{k}\right)_{x_{0}=x_{1}=...=x_{k}=x} dx^{i_{1}} \wedge \dots \wedge dx^{i_{k}}$$

(we use the same local coordinate system on each factor).

— thirdly, he proves

Theorem 1 The top degree component of the cyclic homology class of Φ_k is equal to

$$\left[\Omega\left(\Phi_{2k}\right)\right] = c \cdot Ch_k\left(M\right)$$

where c is a constant and $Ch_k(M)$ is the k-component of the Chern character of the tangent bundle of M.

The object A is a particular case of the linear direct connection introduced by N.Teleman.

Definition 2 Let E be a real or complex smooth vector bundle over the manifold M. A linear direct connection τ in E consists of assigning to any two points $x, y \in M$, sufficiently close one to each other, an isomorphism

$$\tau\left(y,x\right):E_{|x}\to E_{|y},$$

such that

$$\tau\left(x,x\right) = id,$$

and $\tau(y, x)$ depends smoothly on the pair x, y.

The parallel transport defined by a usual linear connection in E along the small geodesics of an affine connection in M induces a linear direct connection in E (see for example A.Connes and H.Moscovici, "*Cyclic cohomology, the Novikov conjecture and hyperbolic groups*", Topology 29, n 3 345-388, 1990).

-i) As for A with τ there is associated the function Φ_k by the formula

 $\Phi_k(x_0, x_1, ..., x_k) := Trace \ \tau(x_0, x_1) \circ \tau(x_1, x_2) \circ ... \circ \tau(x_{k-1}, x_k) \circ \tau(x_k, x_0).$

The function

$$\Phi_2(x_0, x_1, x_2) = Trace \ \tau(x_0, x_1) \circ \tau(x_1, x_2) \circ \tau(x_2, x_0)$$

plays a role of the *curvature* of τ and the differential form $\Omega(\Phi_2)$ - the *curvature form* of τ .

-ii) Any two smooth linear direct connections in a smooth vector bundle are smoothly homotopic. The results above implay

Theorem 3 (N.Teleman) For any smooth linear direct connection τ in the smooth vector bundle E over the manifold M,

- -i) Φ_k , k = even, is a cyclic cycle over the algebra $C^{\infty}(M)$,
- -*ii*) the cohomology class of $\Omega(\Phi_{2k})$ is (up to a multiplicative constant) is the k-component of the Chern character of E.

1 Underlying linear connection ∇^{τ} and a direct proof of this theorem

In the paper

J.Kubarski, N.Teleman, *Linear direct connections*, Banach Center Publications, 2007, in print,

we study the geometry of direct connections τ :

• we construct the "infinitesimal part" ∇^{τ} and show that ∇^{τ} is a usual linear connection. We next determine the curvature tensor R of ∇^{τ} and show that the **equality of differential forms** holds

$$\Omega\left(\Phi_{2k}\right) = c \cdot Tr \ R^k$$

We intend to extract from a direct connection its infinitesimal part along the diagonal.

Definition 4 Let X be a smooth tangent field over M and ϕ a smooth section in E. Let x_0 be an arbitrary point in M and let $\gamma : (-\varepsilon, \varepsilon) \longrightarrow M$ be an integral path of the field X with the initial condition $\gamma(0) = x_0$. We define

$$\nabla_{X(x_0)}^{\tau}(\phi) = \frac{d}{dt} \left\{ \tau(\gamma(0), \gamma(t)) \left(\phi(\gamma(t)) \right) \right\}_{|t=0} \in E_{|x_0}.$$

Theorem 5 The right hand side of the above formula depends only on the value of X at x_0 . The operator $\nabla^{\tau}_{X(x_0)}(\phi)$ is a usual linear connection in E.

The linear connection ∇^{τ} will be called *associated*, or underlying, linear connection to the direct connection τ .

Proposition 6 Let $R = (\nabla^{\tau})^2$ be the curvature tensor of the connection ∇^{τ} . *R* is given by

$$\begin{split} R &= (\frac{\partial^2}{\partial x^{\alpha} \partial y^{\beta}} \tau_i^j(x|y)_{y=x} - \frac{\partial^2}{\partial x^{\beta} \partial y^{\alpha}} \tau_i^j(x|y)_{y=x} + \\ &+ \frac{\partial}{\partial y^{\alpha}} \tau_k^j(x|y)_{y=x} \cdot \frac{\partial}{\partial y^{\beta}} \tau_i^k(x|y)_{y=x} - \frac{\partial}{\partial y^{\beta}} \tau_k^j(x|y)_{y=x} \cdot \frac{\partial}{\partial y^{\alpha}} \tau_i^k(x|y)_{y=x}) dx^{\alpha} \wedge dx^{\beta} \end{split}$$

Although, $\tau(x, y) = (\tau(y, x))^{-1}$ is not true in general, it is true, however, that it holds infinitesimally. In fact, we have the

Proposition 7 For any direct connection τ , its matrix components satisfy the identities

$$\frac{\partial}{\partial x^{\alpha}}\tau_{i}^{j}(x|y)_{y=x}+\frac{\partial}{\partial y^{\alpha}}\tau_{i}^{j}(x|y)_{y=x}=0$$

-ii)

-i)

$$\frac{\partial}{\partial x^{\alpha}} \{\tau(x|y) \circ \tau(y|x)\}_{y=x} = 0 = \frac{\partial}{\partial y^{\alpha}} \{\tau(x|y) \circ \tau(y|x)\}_{y=x}$$

As $\tau(x|x) = Id$, we get that the directional derivative $\left(\frac{\partial}{\partial x^{\alpha}} + \frac{\partial}{\partial y^{\alpha}}\right)$ of τ along the diagonal **vanishes**. This proves -i). The second identity is a consequence of the first.

The above properties of any direct connection are fundamental for comparing the curvature tensor R to the differential form $\Omega(\Phi_{2k}^{\tau})$.

We obtain an important explicit link between $\Omega(\Phi_{2k})$ and the classical Chern-Weil forms, at the level of **differential forms** rather than **cohomology classes**.

Theorem 8 Let τ be a direct connection and let ∇^{τ} be its underlying linear connection. Then

$$\Omega(\Phi_2^{\tau}) = \frac{1}{4} \cdot Tr \ R,$$

and more generally,

$$\Omega(\Phi_{2k}^{\tau}) = \frac{1}{(2k)!} \cdot \frac{1}{2^k} \cdot Tr \ R^k.$$

In consequence, the mentioned above Teleman's theorem follows from this directly.

2 Groupoids point of view and groupoids generalizations

N.Teleman in yours papers said:

"The arguments discussed here may be extended to the language of groupoids". My further talk is the first step in this direction.

2.1 Direct connections and the Lie groupoid GL(E)

Let E be a real or complex smooth vector bundle over the manifold M. Consider the **transitive Lie groupoid**

$$\Phi = GL(E)$$

of all linear fibre isomorphisms $h: E_{|x} \to E_{|y}$ of the vector bundle E, with the source α , $\alpha(h) = x$, and the target β , $\beta(h) = y$, and the unit $u_y = \mathrm{id}_{E_{|y}}$.

Remark 9 A linear direct connection in a vector bundle E is equivalently a smooth mapping

$$\tau: U \to GL(E)$$

where $U \subset M \times M$ is an open neighborhood of the diagonal $\Delta = \{(x, x); x \in M\}$, such that

$$\tau\left(x,y\right):E_{|y}\to E_{|x}$$

i.e.

$$\alpha \circ \tau (x, y) = y, \quad \beta \circ \tau (y, x) = x,$$

and

$$\tau(x,x) = \mathrm{id} : E_{|x} \to E_{|x}.$$

2.2 Lie Groupoids and point of view of linear direct connections and the using of the Lie algebroids

According to the Pradines definition, the **Lie algebroid** of an arbitrary transitive Lie groupoid Φ is equal to the vector bundle

$$A\left(\Phi\right) = u^*\left(T^{\alpha}\Phi\right)$$

where $u: M \to \Phi, y \to u_y$, and $T^{\alpha} \Phi = \ker \alpha_*$, equipped with the suitable structures: the bracket of cross-sections and the anchor.

Let $\Phi = GL(E)$ be the Lie groupoid of all linear fibre isomorphisms of fibres of E.

For $y \in M$ the submanifold $\Phi_y = GL(E)_y \subset GL(E)$ of all elements $u \in GL(E)$ for which $\alpha(u) = y$,

$$GL(E)_{y} = \alpha^{-1}(y),$$

is a $GL(E_y)$ -principal fibre bundle.

- Lie algebroid of the Lie groupoid is the infinitesimal object and play analogous role to that of Lie algebras for Lie groups.
- The space [Lie algebra] of global cross-sections $Sec(A(\Phi))$, $\Phi = GL(E)$ where E is a vector bundle, is naturally isomorphic to the Lie algebra of all Covariant Derivative Operators, i.e. to the space of differential operators of the rank ≤ 1

$$\mathfrak{L}: SecE \to SecE$$

such that $\mathfrak{L}(f \cdot \xi) = f \cdot \mathfrak{L}(\xi) + X(f) \cdot \xi$, for a vector field X called the anchor of $\mathfrak{L}, f \in C^{\infty}(M), \xi \in SecE$.

Let $\tau : (M \times M)_{|U} \to GL(E)$ (where $U \subset M \times M$ is an open neighbourhood of the diagonal $\Delta = \{(x, x) ; x \in M\}$) be a linear quasi-connection,

$$\tau_{(x,y)}: E_{|y} \to E_{|x},$$

so $\alpha(\tau_{(x,y)}) = y$ and $\beta(\tau_{(x,y)}) = x$ and let ∇^{τ} be the underlying linear connection of τ in E.

Now, we fix y and take

$$\tau\left(\cdot,y\right):M\to GL\left(E\right)_{y},\ x\longmapsto\tau\left(x,y\right).$$

It is a smooth mapping such that $\beta \circ \tau (\cdot, y) = id$. Therefore the composition of the differential

$$\tau (\cdot, y)_{*x} : T_x M \to T_{\tau(x,y)} \left(GL \left(E \right)_y \right)$$

with the differential of $\beta | GL(E)_y \to M$ is identity

$$\mathrm{id}: T_x M \xrightarrow{\tau(\cdot,y)_{*x}} T_{\tau(x,y)} \left(GL\left(E\right)_y \right) \xrightarrow{\beta_*} T_x M$$

Taking x = y and using the fact $\tau(y, y) = u_y = \mathrm{id}_{E_y}$ we see that

$$\tau\left(\cdot,y\right)_{*y}:T_{y}M\to T_{u_{y}}\left(GL\left(E\right)_{y}\right).$$

Therefore τ determines a usual connection

$$\overline{\nabla}^{\tau} : TM \to u^* \left(T^{\alpha} \Phi \right)$$
$$\overline{\nabla}^{\tau} \left(v_y \right) = \tau \left(\cdot, y \right)_{*y} \left(v_y \right).$$

in the Lie algebroid $u^{*}(T^{\alpha}\Phi)$ $(\Phi = GL(E))$, i.e. a splitting of the Atiyah sequence

$$0 \to \boldsymbol{g} \to A(\Phi) \xrightarrow[\nabla]{\beta_*} TM \to 0.$$

 $\bar{\nabla}^{\tau}$ is the "usual covariant derivative" since the anchor of the Covariant Derivative Operator $\bar{\nabla}^{\tau}(X) : SecE \to SecE$ is just equal to X, therefore noticing $\bar{\nabla}^{\tau}(X)(\xi)$ in the form

 $\bar{\nabla}_{X}^{\tau}\left(\xi
ight)$

the usual axioms for covariant derivative are fulfilled.

Theorem 10 $\overline{\nabla}^{\tau} = \nabla^{\tau}$, *i.e. the connection* $\overline{\nabla}^{\tau}$ *is equal to the underlying linear connection of* τ *in* E.

Proof. (a sketch) Since we need to prove it at any point $y \in M$ so we can prove it locally for $E = M \times \mathbb{R}^n$ and $M = \mathbb{R}^m$. Then $GL(E) = M \times GL(\mathbb{R}^n) \times M$, $\alpha^{-1}(y) = GL(E)_y = M \times GL(\mathbb{R}^n) \times \{y\}$. Let $\{e_i\}_{i=1}^n$ be a trivial local basis of E, then the induced linear connection ∇^{τ} is determined by

$$\nabla_{\frac{\partial}{\partial x^k}|y}^{\tau} e_i = \frac{\partial \tau_i^j}{\partial x^{m+k}} (y, y) \cdot e_j.$$

We can obtain the same results for $\overline{\nabla}^{\tau}$.

2.3 Groupoids generalization

The above consideration has "groupoids sense" so we can it generalize to any transitive Lie groupoids.

Let Φ be an arbitrary transitive Lie groupoid with the anchor α and the target β . We denote by u_y the unit of Φ at y.

Definition 11 By a linear direct connection in Φ we mean a mapping

$$\tau: (M \times M)_{|U} \to \Phi,$$

such that $\alpha \circ \tau(x, y) = y$, $\beta \circ \tau(x, y) = x$, and $\tau(x, x) = u_x$.

For y the submanifold $\Phi_y \subset \Phi$ of all elements $h \in \Phi$ for which $\alpha(h) = y$. Now, we fix y and take

 $\tau(\cdot, y): M \to \Phi_y, \quad x \longmapsto \tau(x, y).$

It is a smooth mapping such that $\beta \circ \tau (\cdot, y) = \text{id}$. Taking the differential

$$\tau (\cdot, y)_{*x} : T_x M \to T_{\tau(x,y)} (\Phi_y).$$

 τ determines a splitting of the Atiyah sequence of Φ , i.e. a usual connection in the Lie algebroid $A(\Phi) = u^*(T^{\alpha}\Phi)$,

$$\nabla^{\tau} : TM \to u^* \left(T^{\alpha} \Phi \right) = A \left(\Phi \right)$$
$$\nabla^{\tau} \left(v_y \right) = \tau \left(\cdot, y \right)_{*y} \left(v_y \right)$$

The connection ∇^{τ} will be called the **underlying linear connection of** the linear direct connection τ .

Now we can ask on a very important question:

• How can we reconstruct the curvature tensor of ∇ from the linear direct connection in the Lie groupoid Φ ? And next how can we reconstruct the Chern-Weil homomorphism of Lie groupoids Φ (i.e. equivalently of the principal bundle Φ_y) from arbitrary taken linear direct connection τ ?

2.4 Curvature tensor of the linear direct connection in transitive Lie groupoids

Take any transitive Lie groupoid Φ and its Lie algebroid $A(\Phi)$ with the Atiyah sequence. For a linear direct connection τ in Φ denote by $\nabla^{\tau} : TM \to A(\Phi)$ the underlying linear connection in the Lie algebroid $A(\Phi)$ induced by τ . Consider the curvature tensor $\Omega^{\tau} \in \Omega^2(M; \boldsymbol{g})$ of ∇^{τ}

$$\Omega^{\tau}(X,Y) = \llbracket \nabla_X^{\tau}, \nabla_Y^{\tau} \rrbracket - \nabla_{[X,Y]}^{\tau}.$$

The linear direct connection τ determines the mapping

$$\Psi_{k}^{\tau}:\left(\underbrace{M\times\ldots\times M}_{k+1}\right)_{|U}\to\Phi,$$
$$\Psi_{k}^{\tau}\left(x_{0},x_{1},\ldots,x_{k}\right)=\tau\left(x_{0},x_{1}\right)\cdot\tau\left(x_{1},x_{2}\right)\cdot\ldots\cdot\tau\left(x_{k-1},x_{k}\right)\cdot\tau\left(x_{k},x_{0}\right)$$

having the values in the associated Lie group bundle,

$$\Psi_{k}^{\tau}(x_{0}, x_{1}, ..., x_{k}) \in \Phi_{x_{0}}^{x_{0}}$$

For example, for k = 2, the function

$$\Psi_2^{\tau} : (M \times M \times M)_{|U} \to \Phi,$$

$$\Psi_2^{\tau} (x_0, x_1, x_2) = \tau (x_0, x_1) \cdot \tau (x_1, x_2) \cdot \tau (x_2, x_0)$$

is called the *curvature* of τ . Analogously to the previous cases we can associate some **differential form** to the function Ψ_k . Namely, fixing a point x_0 we define

$$\begin{split} \Psi_k^{\tau}\left(x_0\right) &: \left(\underbrace{M \times \ldots \times M}_k\right)_{|U} \to \Phi_{x_0}^{x_0},\\ (x_1, \ldots, x_k) &\longmapsto \Psi_k^{\tau}\left(x_0, x_1, \ldots, x_k\right) \in \Phi_{x_0}^{x_0}. \end{split}$$

Next, we take a coordinate system $(x^1, ..., x^m)$ (dim M = m) on an open neighborhood \mathcal{V} of the point x_0 . Using the same local coordinate system on each factors of the direct product $M \times \cdots \times M$ we take for $(x_1, ..., x_k) \in \mathcal{V} \times ... \times \mathcal{V}$

$$\frac{\partial}{\partial x_k^j} \Psi_k^\tau \left(x_0 \right) \in T_{\Psi_k(x_0, x_1, \dots, x_k)} \Phi_{x_0}^{x_0}.$$

This vector we can translate via **right** translation to the unit, therefore we can write

$$\frac{\partial}{\partial x_k^j} \Psi_k^\tau(x_0) \in T_{u_{x_0}}\left(\Phi_{x_0}^{x_0}\right) = \boldsymbol{g}_{|x_0}.$$

The function obtained

$$(x_1, ..., x_{k-1}, x_k) \longmapsto \frac{\partial}{\partial x_k^j} \Psi_k^{\tau}(x_0) \in \boldsymbol{g}_{|x_0|}$$

can be differentiated usually as a vector valued function.

$$(x_1, ..., x_{k-1}, x_k) \longmapsto \frac{\partial}{\partial x_1^{i_1}} \frac{\partial}{\partial x_2^{i_2}} ... \frac{\partial}{\partial x_{k-1}^{i_{k-1}}} \frac{\partial}{\partial x_k^{i_k}} \Psi_k^{\tau}(x_0, x_1, ..., x_k) \in \boldsymbol{g}_{|x_0}.$$

We put

$$\Omega\left(\Psi_{k}^{\tau}\right)\left(x\right) = \frac{1}{k!} \sum_{i_{1},i_{2},\ldots,i_{k}} \frac{\partial}{\partial x_{1}^{i_{1}}} \frac{\partial}{\partial x_{2}^{i_{2}}} \frac{\partial}{\partial x_{k}^{i_{k}}} \Psi_{k}^{\tau}\left(x_{0},x_{1},\ldots,x_{k}\right)_{x_{0}=x_{1}=\ldots=x_{k}=x} dx^{i_{1}} \wedge \ldots \wedge dx^{i_{k}}$$

It is a k-form on M with values in the vector bundle \boldsymbol{g}

$$\Omega\left(\Psi_{k}^{\tau}\right)\in\Omega^{k}\left(M;\boldsymbol{g}\right)$$

Considering k = 2 we obtain a 2-form with values in \boldsymbol{g} ,

$$\Omega\left(\Psi_{2}^{\tau}\right)\in\Omega^{2}\left(M;\boldsymbol{g}\right),$$

called the **curvature form** of τ .

The fundamental role is playing by the following

Theorem 12 For an arbitrary linear direct connection $\tau : (M \times M)_{|U} \rightarrow \Phi$ in the Lie groupoid Φ the curvature form of τ and the curvature form of the underlying connection in $A(\Phi)$ are differs on a constant

$$\Omega\left(\Psi_{2}^{\tau}\right) = \frac{1}{4} \cdot \Omega^{\tau}.$$

2.5 Characteristic classes

The last theorem gives that we can extract the Chern-Weil homomorphism of Φ via any local direct connection τ on the level of differential forms. The Chern-Weil homomorphism of Φ is really the Chern-Weil homomorphism of the Lie algebroid $A(\Phi)$ of Φ .

We recall the construction of the Chern-Weil homomorphism for Lie algebroids

Jan Kubarski, The Chern-Weil homomorphism of regular Lie algebroids, UNIVERSITE CLAUDE BERNARD – LYON 1, Publications du Départment de Mathématiques, nouvelle série, 1991, 1-70.

Consider a transitive Lie algebroid A with the Atiyah sequence

$$0 \to \boldsymbol{g} \to A \to TM \to 0$$

with the adjoint bundle of Lie algebras g.

The Chern-Weil homomorphism for transitive Lie algebroid A is defined as follows:

$$h_{A}: \bigoplus^{k \ge 0} \left(\operatorname{Sec} \bigvee^{k} \boldsymbol{g}^{*} \right)_{I^{0}} \longrightarrow \mathbf{H}_{dR} \left(M \right)$$
$$\Gamma \longmapsto \left[\frac{1}{k!} \langle \Gamma, \Omega \lor \dots \lor \Omega \rangle \right]$$

where $\Omega \in \Omega_E^2(M; \boldsymbol{g})$ is the curvature tensor of any connection in A, whereas $\left(\operatorname{Sec} \bigvee^k \boldsymbol{g}^*\right)_{I^0}$ is the space of invariant cross-sections of $\bigvee^k \boldsymbol{g}^*$ with respect to the adjoint representation of A.

We explain also that $\Omega \vee ... \vee \Omega$ is the usual skew multiplication of differential forms with values multiplying symmetrically.

Take a local direct connection τ in Φ and consider once again the curvature form $\Omega(\Psi_2^{\tau}) \in \Omega^2(M; \mathbf{g})$. We known that τ induces a usual connection ∇^{τ} in $A(\Phi)$ and that the curvature of it is a constant time the form $\Omega(\Psi_2^{\tau})$,

$$\Omega^{\tau} = 4 \cdot \Omega \left(\Psi_2^{\tau} \right).$$

In conclusion, the Chern-Weil homomorphism of Φ (i.e. of the $A(\Phi)$) can be extracted via τ on the **level of differential forms** by

$$\langle \Gamma, \Omega \lor ... \lor \Omega \rangle = 4^k \langle \Gamma, \Omega (\Psi_2^\tau) \lor ... \lor \Omega (\Psi_2^\tau) \rangle.$$

Problem 13 How can we express the form

$$\Omega\left(\Psi_{2}^{\tau}\right) \lor \ldots \lor \Omega\left(\Psi_{2}^{\tau}\right) \in \Omega^{2k}\left(M; \bigvee \boldsymbol{g}\right)$$

with the help of $\Omega\left(\Psi_{2k}^{\tau}\right)$?

Example 14 Let $\Phi = GL(E)$ be a Lie groupoid of all linear fibre isomorphisms.

The equality holds

$$\Omega\left(\Psi_{2k}^{\tau}\right) = c \cdot \Omega\left(\Psi_{2}^{\tau}\right) \circ \dots \circ \Omega\left(\Psi_{2}^{\tau}\right) \quad (k \ times)$$

or equivalently

$$\Omega\left(\Psi_{2k}^{\tau}\right) = c_1 \cdot \Omega^{\tau} \circ \dots \circ \Omega^{\tau} \quad (k \text{ times}).$$

Example 15 *Pontryagin classes.* Take the *invariant* cross section $C_k \in \Gamma\left(\operatorname{Sec}\bigvee^k End\left(E\right)^*\right)$ by

$$C_{k|x} = tr\left(\varphi_1 \Box ... \Box \varphi_k\right)$$

where for $\varphi_i \in End(E_{|x})$ the linear mapping $\varphi_1 \Box ... \Box \varphi_k : \bigwedge^k E_{|x} \to \bigwedge^k E_{|x}$ is defined [Greub-Halperin-Vanstone] by

$$\varphi_{1}\Box\ldots\Box\varphi_{k}\left(v_{1}\wedge\ldots\wedge v_{k}\right)=\sum_{\sigma\in\Sigma^{k}}sgn\sigma\cdot\varphi_{1}\left(v_{\sigma_{1}}\right)\wedge\ldots\wedge\varphi_{k}\left(v_{\sigma_{k}}\right).$$

Then the Ponryagin class is equal to

$$p_k(E) = p_k(\Phi) = h(C_{2k}) = \frac{1}{(2k)!} \left[\langle C_{2k}, \underbrace{\Omega \lor \dots \lor \Omega}_{2k \text{ times}} \rangle \right]_{dR}.$$

The class $p_k(E)$ is represented by the differential form

$$c \cdot tr\left(\Omega \Box ... \Box \Omega\right)$$
.

According to the notation of Greub-Halperin-Vanstone, the forms $\Omega \vee ... \vee \Omega$ and $\Omega \Box ... \Box \Omega$ are the usual skew multiplication of differential forms for which the values are multiplicated by the suitable mappings

$$\vee : End(E) \times ... \times End(E) \to \bigvee^{2k} End(E).$$
$$\Box : End(E) \times ... \times End(E) \to End\left(\bigwedge^{2k} E\right).$$

Trace classes. Take the **invariant** cross section $Tr_k \in \Gamma\left(\operatorname{Sec} \bigvee^k End\left(E\right)^*\right)$ by

$$Tr_{k}(\varphi_{1},...,\varphi_{k}) = \sum_{\sigma \in \Sigma^{k}} tr\left(\varphi_{\sigma_{1}} \circ ... \circ \varphi_{\sigma_{k}}\right).$$

Then the trace class is equal to

$$tr_{k}(E) = tr_{k}(\Phi) = h(Tr_{2k}) = \frac{1}{(2k)!} \left[\langle Tr_{2k}, \underbrace{\Omega \lor \dots \lor \Omega}_{2k \text{ times}} \rangle \right]_{dR}.$$

The class $tr_k(E)$ is represented by the differential form

$$c \cdot tr \left(\Omega \circ \dots \circ \Omega\right)$$

(the values of the skew multiplication of $\Omega \circ ... \circ \Omega$ are multiplied by the composing of the linear mapping.

Pffafian class for oriented 2k-dimensional vector bundle E. Take the invariant cross-section $pf \in \Gamma\left(\operatorname{Sec}\bigvee^k Sk\left(E\right)^*\right)$

$$pf^{F}(\varphi_{1},...,\varphi_{k}) = \langle e,\beta^{-1}(\varphi_{1}) \wedge ... \wedge \beta^{-1}(\varphi_{k}) \rangle$$

where $\beta : \bigwedge^2 (F) \xrightarrow{\cong} Sk_F$, $\beta (x \wedge y) (z) = \langle x, z \rangle y - \langle y, z \rangle x$ and $e \in \bigwedge^k F$ determine the orientation and $|\langle e, e \rangle| = 1$. Then the Atiyah sequence of A(IsoE) is

$$0 \to Sk(E) \to A(IsoE) \to TM \to 0.$$

and the Pfaffian class is equal to $i^k \cdot h(pf)$ and it is represented by

$$c \cdot \langle \Delta, (\beta^{-1}\Omega) \wedge ... \wedge (\beta^{-1}\Omega) \rangle.$$