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Abstract

The aim of the paper is to construct Hirzebruch signature operator for
transitive invariantly oriented Lie algebroids

1 Signature of Lie algebroids

1.1 Definition of Lie algebroids, Atiyah sequence

Lie algebroids appeared as infinitesimal objects of Lie groupoids, principal fi-
bre bundles, vector bundles (Pradines, 1967), TC-foliations and nonclosed Lie
subgroups (Molino, 1977), Poisson manifolds (Dazord, Coste, Weinstein, 1987),
etc. Their algebraic equivalents are known as Lie pseudo-algebras (Herz 1953)
called also further as Lie-Rinehart algebras (Huebschmann, 1990).

A Lie algebroid on a manifold M is a triple

A= (A7 [[', ']]a #A)
where A is a vector bundle on M, (Sec 4, [-,-]) is an R-Lie algebra,
H#a:A—>TM

is a linear homomorphism (called the anchor) of vector bundles and the following
Leibniz condition is satisfied

Hgaf 77]] = f [[5777]] +#A (E) (f) =1, f € c= (M)7 5777 S Sec A.
The anchor is bracket-preserving [B-K-W], [H]

#a0[6,n] = [#a0& #a0n).

A Lie algebroid is called transitive if # 4 is an epimorphism.
For a transitive Lie algebroid A we have the Atiyah sequence

0—gA®ATM 0,



g := ker# 4. The fiber g, of the bundle g in the point « € M is the Lie algebra
with the commutator operation being

[v,w] = [¢,7](x), & ne€SecA, E&(z)=uv,n(z)=w, v,wEg,.

The Lie algebra g, is called the isotropy Lie algebra of A at x € M. The vector
bundle g is a Lie Algebra Bundle (LAB in short), called the adjoint of A, the
fibres are isomorphic Lie algebras.

TM is a Lie algebroid with ¢d : TM — T M as the anchor,

g -finitely dimensional Lie algebra - is a Lie algebroid over a point M = {x}.

1.2 Cohomology algebra, ellipticity of the complex of ex-
terior derivatives {d%}

To a Lie algebroid A we associate the cohomology algebra H (A) defined via the
DG-algebra of A-differential forms (with real coefficients) (Q (A),d4), where

Q(A) = Sec /\ A*, - the space of cross-sections of /\A*
da: Q% (A) = QT (A)

k
(daw) (€0, ) = D (=1 (#a0&) (@ (€ s €0))
+Z(—1)"“ w ([€:, €51, €0y -odensir Ek)

w € OF (A), & € Sec A. The operators d¥, satisfy

da(WAn) =dawAn—+ (=1 wAdan,
so they are of first order and the symbol of d% is equal to

k+1

S, @ N A=A A
S (dlj‘)(wj) () = (wo(#a),)Nu, 0F#veT;M.

In consequence the sequence of symbols

A

is exact if and only if A is transitive and then the complex {d’j‘} is an elliptic
complex.
The exterior derivative d4 introduces the cohomology algebra

H (A) = H(Q(A),dy).

For the trivial Lie algebroid T'M - the tangent bundle of the manifold M -
the differential drjs is the usual de-Rham differential d,; of differential forms
on M whereas, for L = g - a Lie algebra g - the differential dy is the usual
Chevalley-Eilenberg differential, dy = d.

k+1
dA

k
kA; S(d‘i(m,v) /\k+1 A: S( _>)(g:,1)) /\’€+2 A

x



1.3 Invariantly oriented Lie algebrois and signature

The following theorem describes the class of transitive Lie algebroids (over com-
pact oriented manifold) for which H*P (A) # 0.

Theorem 1 [K-M1]For each transitive Lie algebroid (A, [-, -], #.4) with the Atiyah
sequence

0—g— AFATM 0,

over a compact oriented manifold M the following conditions are equivalent
(m =dim M, n = dimg,,, i.e. rank A=m+n )

(o) H™ ™ (A) £0,
(b) H™ " (A) = R and H (A) is an Poincaré algebra, i.e. the pairing H (A)x

*

H™ =3 (A) — H™*" (A) 2 R is nondegenerate, HI (A) = (H™ "7 (A4))",

(c) there exists a global nonsingular cross-section ¢ € Sec(\"g) invariant
with respect to the adjoint representation ada, that is, A is the so-called
a TUIO-Lie algebroid, see [K1], (shortly, A is invariantly oriented),

(d) the vector bundle g is orientable and the modular class of A is trivial,

64 =0.

We recall the definition of the isomorphism H™*" (A) = R (for invariantly
oriented transitive Lie algebroids). In [K1] there is defined (for arbitrary tran-
sitive Lie algebroids) the so-called fibre integral operator

/ L Q° (A) - Q5" (M)
A

by the formula
(/ wk> (W1s oo W) = (= 1) o (£ 1y o in) s Ha (185) = wi,
A T

where € € Sec (A\" g) is a nonsingular cross-section. The operator f, commutes
with the differentials d4 and dj; if and only if ¢ is invariant. Then, the fibre
integral gives a homomorphism in cohomology

#
/ ‘H* (A) - H ;" (M).
A

Assume in the sequel that a transitive Lie algebroid A over compact oriented
manifold M is invariantly oriented and ¢ € Sec (A" g) is an invariant cross-
section. The scalar Poincaré product

P HY (A) x H™T"F (4) - R,

i fonn (= [, (o)



is defined and is nondegenerated [K2]; in consequence
ch (A) Heranc (A) ,
H™ ™ (4) (H (M))" =R,
dmH (M) < oo,

1%

1%

and we can consider an isomorphism
H™ ™ (A) =R, [w]+— / w.
A

The pairing of A-differential forms
(0" QF () x QminTh (4) - R (1)
({w,n))* = /w/\n
MJA
has the property
{(w,m)) = (=)0 (g, wyym et
and
((daw,m) = (=1 ((w,dan)) for weQF(A), neqmt=i (4).

If
m+n=4p

then
PP H? (A) x H? (A) —» R

is nondegenerated and symmetric. Therefore its signature is defined and is
called the signature of A, and is denoted by

Sign (A).
The problem is [K2]:
e to calculate the signature Sign (A) and give some conditions to the equal-

ity Sign(A) = 0. There are examples for which Sign (A4) # 0 (this is
announced in [K-M2]).

2 +-Hodge operator and exterior coderivative d’

2.1 Associated scalar product and *-Hodge operator

Consider

e any Riemannian tensor G in the vector bundle g = ker # 4 for which € is
the volume tensor (such a tensor exists).



e any Riemannian tensor Gs on M.

Next, taking an arbitrary connection A : T'M — A in the Lie algebroid A i.e.
a splitting of the Atiyah sequence

0—>g<—>A%>TM—>0,

and the horizontal space

H = TIm),
A = g@H

we define a Riemannian tensor G (called scalar product associated to £) on
A = g H such that g and H are orthogonal, on g we have G; but on H we
have the pullback A*G3. The vector bundle A is oriented (since g and M are
oriented).

At each point x € M we consider the scalar product G, on A}, and the
pairing of tensors

OF A A x AT N A s R

where p,, is defined via the volume form for G,.
We can notice that p, is equal to the composition

Pz

AN — R
L NG J PG
A" A; L NTTEM

iezwx ((Ula AR /kan)) = wa: (61271}17 "'7U]€77l) 9

g (Wa) (W1, e, Wi—p) = Wy (Exy Az (W1) o0y A (Wi—p)) -

Standartly, we can extend the scalar product G, in A, to a scalar product (-,-),
in A\ A%. There exists exactly one the so-called *-Hodge operator #, : /\k A —
ATTF A% such that

<awvﬁz> = (Otz, *Iﬁx) s
and it is given by

*

*y (eil A A eik) = 88N (J1, ooy Jrntn—s 11y -y U) ej N Nej L

where 1 < i1 < ... < i <m+n,1 < j1 < ... < Jman—k < m+n and
{i1, oy ik} N {J1, o, Jmtn—k} = & (for ON positive frame e; in A,). Using all
points € M we obtain two C'* (M)-linear 2-tensors

()5 () s 2(A) x Q(A) — C (M)



defined as above point by point. Integrating along M we get R-linear 2-tensors
(GNH((G): 2(A4) xQ(A) = R.

The first ((,)) is, clearly, given by (1)

(o) = [ = [ funn

The *-Hodge operator x : Q (A) — Q (A) is defined point by point
* (W) () = %2 (we)
and we have

(. B)) = ((a, %))

2.2 Exterior coderivative

We define exterior coderivative d* : QF (M) — Qm+"=k (A) by the formula
di (@) = ()T () dax (@), w e (4),

where * is the x-Hodge operator in €2 (A). We have
()
wox (w) = (=1)FTTR Ly L e QF (4), (2)

(b)
(@ (W), ) = ((w,da (1)),

i.e. d% is adjoint to d4 with respect to the scalar product ((,)) in 2 (4).

3 Laplacian and harmonic differential forms
It enables us to introduce the Laplacian
Ax = (da+dy)? =dady + dyda.

Clearly
ker Ay = (ImAy)™"

(with the respect to the scalar product ((,)) ).

Proposition 2 The Laplacian A 4 is elliptic, self-adjoint and nonnegative op-
erator. In consequence

Q(A) =ker Ay PImA,. (3)



Proof. The first property follows from the ellipticity of the complex {d } (namely:
the symbol of the adjoint operator d** is equal to the minus of the adjoint sym-
bol of dffl and to prove the ellipticity of the Laplacian we use Remark 6.34 from
[W]), the next two properties are trivial consequence of the definition. The last
property (3) can be proved in the same way as the Theorem 55 from [L-M]
using extension Sec A A* to the Hilbert Sobolev spaces Hy (A A*), extension A
to continuous operator Ag : Hy (A A*) — Hs_o (\ A*) and the fact that ker A4
consists only of smooth sections, ker Ay, = ker A. m

A A-differential form w € Q(A) is called harmonic if daw = 01 dfjw = 0.
Denote the space of harmonic A-differential forms by H (A) and harmonic k-
A-differential forms by H* (A). H (A) is a graded vector space

H(A) = @k’:" M (A)
and
H(A) =ker Ay.

is the eigenspace of the operator A corresponding to the zero value of the eigen-
value.
Simple calculations assert that ker AF and Im d*~! are orthogonal, therefore

the inclusion
H* (W) = ker A* < ker d*

induce a monomorphism

ker AF — HF (W). (4)

Since Im A* € Tmd” ! +Im dz(kﬂ), the inclusion (3) yields QF (A) = ker AK +
Im dffl_l + Im dz(kﬂ) and easily we can notice that these three subspaces are
orthogonal. Therefore

OF (4) = ker A% P Imdy ' @ Im arFrY

and
ker d* = ker AF @ ImdF—1!

which implies the Hodge Theorem for Lie algebroids:
Corollary 3 The monomorphism (4) is an isomorphism
HE (W) = ker d*/Tm d"~! = HF (W) .

It means that in each cohomology class o € H¥ (A) there is exactly one harmonic
A-differential form w € HE (W).

)k(nerfk:)

Let e = (—1 . Simple calculations yields the equality

*A AW = €L_16k (—1)n+m+1 Agxw, we QF (A),



therefore
« [HF (W) ¢ H™ R (W),

and (thanks (2) )
% HE (W) — H™H =R (W)

is an isomorphism. In consequence we obtain (independently on [K2]) the Du-
ality Theorem
H (A) ~ H™ T (A).

We restrict the scalar product ((-,-)) : Q% (4) x Q% (4) — R to the space of
harmonic A-differential forms

() = 1" (A) x H* (4) = R,

and we restrict the tensor ((-,-)) : Q% (A) x Qm*"=k(4) — R to harmonic
A-differential forms

BF = ((-,)) : HF (A) x H™ "7k (4) = R.
Using the isomorphism H* (4) 2 H* (A) we see that
B =P,
therefore, if m 4+ n = 4p then

Sign (A) = Sign B*.

4 Hirzebruch signature operator

Assume m +n = 4p. Considering the direct sum H?? (4) = H” (A) @ H? (A),
where

HP (W) = {weH?®(W); w=2w},

and noticing that B?? is positive on Hip (A), and is negative on H*” (A) we see
that
Sign (B*) = dimg H (W) — dimg H* (W) .

To construction the Hirzebruch signature operator the fundamental role is
played by an auxiliary operator

7:Q(A4) - Q(A)
defined by
T (Wh) =g x (WF), & e{-1,+1}, wF€QF(4),
fulfilling the properties

i) ToT =1d,



ii) dy =—Todgor,
i) 72 = x.

k(k+1)
2

Lemma 4 The operator T fulfils axioms i)-111) if and only if &, = (—1)

Proof. Easy calculations. m
We put

QA), = {we4); Tw=+w},
QA4)_. = {weQ(4); Tw=—-w},

The spaces 2 (A) . and  (A)_ are eigenspaces of 7 corresponding to the eigen-
values +1 i —1 and are spaces of cross-sections of suitable vector bundles.
We notice that
(da +d%y) [Q (A)+] cQ(A)_.

Definition 5 The operator
(DA)+ :dA—i—dZ : Q(A)+ —>Q(A)_

is called the Hirzebruch operator (or the signature operator) for the Lie alge-
broid A.

Clearly
(Da)} =da+dy:Q(A)_ —Q(A), .
Theorem 6
Sign A = Ind (D), = dimgker ((D4), ) — dimgker ((Da)}) .

Proof. It is sufficient to prove that Ind (D4), = Sign (B??) . The proof is
analogous to the classical case [Y]. Firstly, we notice that subspaces H* (A) +
H™F"=5 (A) are T-stable and for s = 0,1,...,2p — 1

oy HY(A) = (H* (A) + H™" 2 (4)) .

wr—>§(w:t7'w)

is an isomorphism of real vector spaces. Secondly Q% (4) . NH?P (A) = HP (A),
the space QF (A) + Q™5 (A) is T-stable and

Q (A) = @j:_ol (QS (A) + Qmtn—s (A)) @QQP (A) ,

therefore

Q), =@ (@ (A4) + e (4), DO (4), .

s=0

P



Thirdly, (a)

ker (Da)
=Q(A) Nker(da +djy : Q(A) — Q(A))
=Q(A), NH(A)

_ @21;1 (Qs (A) + Qmtn—s (A))+ @QQ;) (A)+
N (R () + T (A) @ Y (4)
_ @ji;l (Hg (A) + Hm+n—s (A))+ @H2p (A)+

(b)
dimker (D4), — dim ker (DA)i
2p—1
=Y dimg (H* (A) + H™ 77 (A)), + dimg H (A)
s=0
2p—1
— ) dimg (H* (A) + H™ "7 (4)) - dimg H* (A)
s=0
= dimg H? (A) — dimg H>” (A)
= Sign (B").
| ]

Thanks the above Theorem, we can use the Atiyah-Singer formula for cal-
culating the signature of A.
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