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Lie algebroids appeared as in�nitesimal objects of Lie groupoids, principal
�bre bundles, vector bundles (Pradines, 1967), TC-foliations and nonclosed Lie
subgroups (Molino, 1977), Poisson manifolds (Dazord, Coste, Weinstein, 1987),
etc. Their algebraic equivalences are known as Lie pseudo-algebras (Herz 1953)
called also further as Lie-Rinehart algebras (Huebschmann, 1990).
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1 Signature of Lie algebroids

For a transitive Lie algebroid A we have the Atiyah sequence

0 �! ggg ,!A #A�! TM �! 0:

The �ber gggx possesses a structure of a Lie algebra, called the isotropy Lie
algebra of A at x 2M .
To a Lie algebroid A we associate the cohomology algebra H (A) de�ned

via the DG-algebra of A-di¤erential forms (with real coe¢ cients) (
 (A) ; dA) ;
where


 (A) = Sec
^
A�; - the space of cross-sections of

^
A�

dA : 

� (A)! 
�+1 (A)

(dA!) (�0; :::; �k) =

kX
j=0

(�1)j
�
#A � �j

�
(! (�0; :::|̂:::; �k))

+
X
i<j

(�1)i+j !
�
[[�i; �j]]; �0; :::̂{:::|̂:::; �k

�
;
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! 2 
k (A), �i 2 SecA. The operators dkA satisfy

dA (! ^ �) = dA! ^ � + (�1)k ! ^ dA�;

so they are of �rst order and the symbol of dkA is equal to

S
�
dkA
�
(x;v)

:
^k

A�x !
^k+1

A�x

S
�
dkA
�
(x;v)

(u) = ~v ^ u;

where for 0 6= v 2 T �xM
~v : Ax

#x! TxM
v! R

In consequence the sequence of symbols

^k
A�x

S(dkA)(x;v)!
^k+1

A�x
S(dk+1A )

(x;v)!
^k+2

A�x

is exact which imply that

� the complex
�
dkA
	
is an elliptic complex.
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Theorem 1 (Kubarski and Mishchenko, CEJM, Vol. 2(5), 2004) For
each transitive Lie algebroid (A; [[�; �]];#A) over compact oriented mani-
fold M the following conditions are equivalent (m = dimM; n = dimgggjx; i.e.
rankA = m+ n )

(1) Hm+n (A) 6= 0;

(2) Hm+n (A) = R;

(3) A is the so-called invariantly oriented, i.e. there exists a global non-
singular cross-section " of the vector bundle

Vn ggg,

" 2 Sec
�^n

ggg
�

0 6= "x 2
^n

gggjx

invariant with respect to the adjoint representation of A in the vector
bundle

Vn ggg:

(4) the vector bundle ggg is oriented and the modular class of A vanish, �A = 0:
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Assume that A is invarianty oriented. The scalar Poincaré product

P iA : Hi (A)�Hm+n�i (A)! R;

([!] ; [�]) 7�!
Z #

A

! ^ �
�
:=

Z
M

�
6
Z #

A

! ^ �
��

where the so-called �bre integral

6
Z
A

: 
� (A)! 
��ndR (M)

is de�ned by the substitution operator�
6
Z
A

!k
�
x

(w1; :::; wk�n) = (�1)kn !x ("x; ~w1; :::; ~wk�n) ; #A ( ~wi) = wi;

Thanks to the assumption that " is invariant, the operator 6
R
A
commutes with

the di¤erentials dA and dM (Kubarski, KLUWERACADEMIC PUBLISHERS,
Dordrecht, 1999) giving a homomorphism in cohomology

6
Z #

A

: H� (A)! H��n
dR (M) :
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In particular, we have

6
Z #

A

: Hm+n (A)
�=! Hm

dR (M) = R:

The scalar product P iA is nondegenerated and if

m+ n = 4k

then
P2kA : H2k (A)�H2k (A)! R

is nondegenerated and symmetric. Therefore (Kubarski, Topology Appl., Vol
121, 3, June 2002) its signature is de�ned and is called the signature of A;
and is denoted by

Sign (A) :

The problem is:

� to calculate the signature Sign (A) and give some conditions to the equal-
ity Sign (A) = 0: There are examples for which Sign (A) 6= 0 (this is
announced in the paper by Kubarski and Mishchenko, Doklady Mathe-
matical Sciences, 68, 5/1, 2003).
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2 Signature and spectral sequences

Now, I give a general mechanism of the calculation of the signature via spectral
sequences (Kubarski and Mishchenko 2003) and use two of spectral sequences
associated with Lie algebroids:

a) the spectral sequence of the µCech-de Rham complex,
b) the Hochschild-Serre spectral sequence.

The idea of applying spectral sequences to the signature comes from

� Chern, Hirzebruch and Serre On the index of a �bered manifold, Proc.
AMS, 8 (1957),

where the Leray spectral sequence was used to calculation of the signature
of the total space E of a �ber bundle E !M wih the typical �ber F :

Theorem 2 (Chern, Hirzebruch, Serre, Proc. AMS, 8 (1957)) If the fun-
damental group �1 (M) acts trivially on the cohomology ring H� (F ) of F then

Sign (E) = Sign (F ) � Sign (M) :
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The Chern-Hirzebruch-Serre arguments are purely algebraic and lead to
the following general theorem (Kubarski and Mishchenko, Matem. Sbornik
194, No 7, 2003).

Theorem 3 Let ((A; h; i) ; Ar;[; D;Aj) be any DG-algebra with a decreasing
regular �ltration Aj

A = A0 � � � � � Aj � Aj+1 � � � �

and (Ep;qs ; ds) its spectral sequence. We assume that there exist natural numbers
m and n with the following conditions:

� Ep;q2 = 0 for p > m and q > n, m+ n = 4k;

� E2 is a Poincaré algebra with respect to the total gradation and the top
group E(m+n)2 = Em;n2 = R.

Then all terms
�
E
(�)
s ;[; ds

�
2 � s <1; and

�
E
(�)
1 ;[

�
are Poincaré alge-

bras and
SignE2 = SignE3 = ::: = SignE1 = SignH (A) :
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If m and n are odd then SignE2 = 0;
if m and n are even then

SignE2 = Sign
�
E
(2k)
2 � E(2k)2 ! E

(m+n)
2 = Em;n2 = R

�
= Sign

�
E

m
2
;n
2

2 � E
m
2
;n
2

2 ! E
(m+n)
2 = Em;n2 = R

�
a) Using the spectral sequences for the µCech-de Rham com-

plex of the Lie algebroid A:
Given a good cover U = fU�g�2J ofM; where J is a countable ordered index

set (this means that all U� and all �nite intersections
T
i U�i are di¤eomorphic

to an Euclidean space Rm) we can form the double complex (of the µCech-de
Rham type)

Kp:q = Cp (U;
q (A)) :=
Y

�0<:::<�p


q
�
AjU�0:::�p

�
p; q � 0; with the standard product structure [ and two boundary homomor-
phisms, d and �: Now, consider the �horizontal�decreasing �ltration Kj, the
total di¤erential operator D = d + � and the spectral sequence of the graded
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di¤erential algebras (K = �Kp;q; Kj;[; D)

(Ep;qs ; ds);

The �ltrationKj is regular,K0 = K, therefore we can use the general theorem
on signature.
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Theorem 4 If the presheaf

H (A) =
�
U 7�! H

�
AjU

��
is constant on the good covering U (i.e. the monodromy representation � :
�1 (M) = �1 (N (U))! Aut (H (g)) is trivial) then

Ep;q2
�= Hp

dR (M)
Hq (g) :

All isomorphisms are canonical isomorphisms of bigraded algebras. E2 lives in
the rectangle p � m; q � n;

E
(m+n)
2 = Em;n2 = Hm

dR (M)
Hn (g) = R

and

Sign (A) = SignH (A) = SignE2

= Sign (HdR (M)
H (g)) = SignHdR (M) � SignH (g)
= SignHdR (M) � 0 = 0;

since for a unimodular Lie algebra g SignH (g) = Sign
V
g� = 0:
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Example 5 The condition of the triviality of the monodromy holds if

� M is simply connected,

� AutG = IntG, where G is simply connected Lie group with the Lie
algebra g, for example, if g is a simple Lie algebra of type

Bl (= SO (2l + 1)); Cl (= Sp (2l) ); E7; E8; F4; G2:

� the adjoint Lie algebra bundle ggg is trivial in the category of �at bundles
(the bundleH (ggg) of cohomology of isotropy Lie algebras with the typical
�bre H (g) possess canonical �at covariant derivative - which will be
important for studying of the Hochshild-Serre spectral sequence). For
example for the Lie algebroid A (G;H) of the the TC-foliation of left
cosets of a nonclosed Lie subgroup H in any Lie group G.
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b) Using the Hochshild-Serre spectral sequence.
For a transitive Lie algebroid A = (A; [[�; �]];#A) with the Atiyah sequence

0 ! ggg ,! A
#A! TM ! 0 we will consider the pair of R-Lie algebras (g; k)

where
g = Sec (A) ; k = Sec (ggg) :

Following Mackenzie (1987) (see also Itskov, Karashev, and Vorobjev (1998)),
we will consider in the C1 (M)-module of A-di¤erential forms 
k (A) the
Hochschild-Serre decreasing �ltration 
j � 
 (A) as follows:

� 
j = 
(A) for j � 0;
� if j > 0; 
j =

L
k�j 


k
j ; 


k
j = 
j \
k (A) ; where 
kj consists of all

those k-di¤erential forms ! for which

! (�1; :::; �k) = 0

whenever k � j + 1 of the arguments �i belongs to k: We obtain in this way a
graded �ltered di¤erential space�


 (A) =
M
k


k (A) ; dA;
j
�

13



and its spectral sequence �
Ep;qA;s; dA;s

�
:

Assume as above

m = dimM; n = dimgggjx; i.e. rankA = m+ n:

Theorem 6 There is a �at covariant derivative rq in the vector bundleHq (ggg)
such that

Ep;qA;2
�= Hp

rq (M ;H
q (ggg)) :

The �at covariant derivativerq is de�ned by the formula: for f 2 
p (M ;Z [
Vq ggg�]) ;

[f ] 2 
p (M ;Hq (ggg))
rq
X [f ] = [LXf ]

where (LXf) (�1; :::; �q) = @X (f (�1; :::; �q)) �
Pq

i=1 f (�1; :::; [[�X; �i]]; :::; �q)
(where � : TM ! A is arbitrary auxiliary connection in A).

For a detailed proof see: Kubarski and Mishchenko, CEJM, 2004.
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Theorem 7 If A is a transitive invariantly oriented Lie algebroid such that
m+ n = 4k (m = dimM; n = dimgggjx ) then
a) if m and n are odd then SignA = 0;
b) if m and n are even then

SignA = SignE2 = Sign
�
E
(2k)
2 � E(2k)2 ! E

(m+n)
2 = Em;n2 = R

�
= Sign

�
E

m
2
;n
2

2 � E
m
2
;n
2

2 ! E
(m+n)
2 = Em;n2 = R

�
where

E
m
2
;n
2

2 = H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
and

H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
�H

m
2

r
n
2

�
M ;H

n
2 (ggg)

�
! Hm

rn (M ;H
n (ggg)) = R

is de�ned via the usual multiplication of di¤erential forms with respect to the
multiplication of cohomology classes for isotropy Lie algebras.

�x : H
n
2 (gggx)�H

n
2 (gggx)! Hn (gggx) = R:

15



We notice that

� if n
2
is even then m

2
is even, dimM = m = 4p for some p;

� : H
n
2 (ggg)�Hn

2 (ggg)! R is symmetric and nondegenerated,

� if n
2
is odd then m

2
is odd, dimM = 4p+ 2 for some p;

� : H
n
2 (ggg)�Hn

2 (ggg)! R is symplectic (i.e skew-symmetric nondeg.)

However, for each k Hk
�
M ;H

n
2 (ggg)

�
�Hm�k �M ;Hn

2 (ggg)
�
! R is strongly

nondegenerated

Hk
�
M ;H

n
2 (ggg)

�
= Hm�k �M ;Hn

2 (ggg)
��
;

H
�
M ;H

n
2 (ggg)

�
= H

�
M ;H

n
2 (ggg)

��
;

dimH
�
M ;H

n
2 (ggg)

�
< 1;

and
H

m
2
r
�
M ;H

n
2 (ggg)

�
�H

m
2
r
�
M ;H

n
2 (ggg)

�
! R

is symmetric and nondegenerated. We want to calculate the signature of this
pairing.
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3 Algebraic Hirzebruch operator and the sig-
nature.

3.1 Four foundamental examples

We describe a general approach to the following four fundamental examples
of the spaces with gradation and di¤erential operator

�
W = �Nk=0W k; d

�
: In

what follows, M is a compact oriented Riemann manifold.

W k =

8>>>>>>>>>>>><>>>>>>>>>>>>:

�

k (M) ; ddR

�
; N = 4p; [classical example]�


k (A) ; dA
�
; N = m+ n = 4p;

A - a transitive inv. or. Lie algebroid
[Lie algebroids example]�


k (M ;E) ; dr
�
; (E; (; )0) �at vector bundle,
(; )0 - symmetric nondegenerated parallel, N = 4p
[Lusztig example]�


k (M ;E) ; dr
�
; (E; h; i0) �at vector bundle,

h; i0 -symplectic parallel, N = 4p+ 2
[Gromov example]
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In all cases the sequences of di¤erentials
�
dkdR
	
;
�
dkA
	
;
�
dkr
	
are elliptic com-

plexes, dimHk (W ) <1 and the pairing

Hk (W )�HN�k (W )! R

is de�ned, which in the middle degree N
2
is symmetric. Its signature is de�ned

to be the signature of W; Sign (W ) :
Below, we give a common algebraic approach to calculate the signature

Sign (W ) via the Hirzebruch signature operator.
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3.2 General approach

We give algebraic point of view on the �-Hodge operator, Hodge The-
orem and Hirzebruch operator

De�nition 8 By a Hodge space we mean the triple (W; h; i ; (; )) where W
is a real vector space (dimW �nite or in�nite), h; i ; (; ) : W �W ! R are
2-linear tensors such that
(1) (; ) is symmetric and positive de�nite (i.e. is an inner product),
(2) there exists a linear homomorphism

�W : W ! W

called �-Hodge operator ful�lling properties
(i) for all v 2 V;

hv; wi = (v; �W (w)) ;
(ii) �W is an isometry with respect to (; ) ; i.e.

(v; w) = (�Wv; �Ww) ;

Clearly, the �-Hodge operator is uniquely determined (if exists).
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Lemma 9 Let (W; h�; �i) be a �nite dimensional real vector space equipped with
a 2-tensor h�; �i : Then there exists an inner product (�; �) such that the system
(W; h; i ; (; )) is a Hodge space if and only if in some basis of W the matrix of
h; i is orthogonal.

Lemma 10 If (V; h�; �iV ; (�; �)V ) and (W; h�; �iW ; (�; �)W ) are Hodge spaces then
their tensor product

(V 
W; h�; �iV 
 h�; �iW ; (�; �)V 
 (�; �)W )

is a Hodge space and
�V
W = �V 
 �W :

Remark: Two 2-tensors f : V � V ! R i g : W �W ! R determine
tensor product

f 
 g : (V 
W )� (V 
W )! R

which is 2-linear. The tensor f 
 g is symmetric and positive de�nited if both
are the same (the dimensions of V and W can be in�nite).
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Now we give a number of �nite domensional Hodge spaces.

Example 11 (Classical) Let (V;G) be a real N-dimensional oriented Euclid-
ean space with inner product G : V � V ! R and the volume tensor

" = e1 ^ ::: ^ eN 2
VN V; (where ei is a positive ON basis). We identifyVN V = R via the isomorphism

� :
^N

V
�=�! R; s � " 7�! s:

We have the classical Hodge space�^
V; h; i ; (; )

�
where h�; �i :

V
V �

V
V ! R;

h�; �ik :
^k

V �
^N�k

V !
^N

V = R;

vk; vN�k

�
= �

�
vk ^ vN�k

�
;

be the usual duality (we put h; i = 0 outside the pairs (k;N � k) ),

(�; �)k :
^k

V �
^k

V ! R; (v1 ^ ::: ^ vk; w1 ^ ::: ^ wk)k = det [G (vi; wk)] ;
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the subspaces
Vk V; k = 0; 1; :::; N are orthogonal (by de�nition).

The �-Hodge operator exists and it is determined via an ON base ei by the
formula

� (ei1 ^ ::: ^ eik) = "(j1;:::;jn�k) � ej1 ^ ::: ^ ejn�k
where i1 < ::: < ik and j1 < ::: < jn�k and the sequence (j1; :::; jn�k) is
complementary to (i1; :::; ik) and "(j1;:::;jn�k) = sgn (j1; :::; jn�k; i1; :::; ik) :

The above can be used

� for V = TxM or V = T �xM where M is a Riemnann manifold (tensor
metryczny Gx indukuje iloczyn skalarny w przestrzeni dualnej T �xM).

� for V = Ax where A is a transitive invariantly oriented Lie algebroid
over a Riemann manifold (see below).
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Example 12 (Lusztig example, 1972) [L]Let (; )0 : E �E ! R be a sym-
metric (inde�nite) nondegenerated tensor on a �nite dimensional vector space
E: We �x some positive de�nite scalar product (; )0 on E: Then we take a
unique splitting E = E+ �E� which is both (; )0 and (; )

0 orthogonal and such
that (; )0 on E+ is positive and (; )0 on E� is negative. We denote by � the
involution � : E ! E (� 2 = id ) such that � jE+ = id; � jE� = �id: Then, the
quadratic form

(v; w) = (v; �w)0

is symmetric positive de�nite. The involution � is the �-Hodge operator in
(E; (; )0 ; (; )) ; i.e.

(v; w)0 = (v; �w) ;

and is an isometry

(�v; �w) =
�
�v; � 2w

�
0
= (�v; w)0 = (w; �v)0 = (w; v) :

Therefore (E; (; )0 ; (; )) is a Hodge-space.

Example 13 (Gromov example, 1995) [G]Let h; i0 : E � E ! R; be a
skew-symmetric nondegerated tensor on a �nite dimensional vector space E:
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There exists an anti-involution � in E, � 2 = �id (i.e. a complex structure)
such that

h�v; �wi0 = hv; wi0 ; v; w 2 E;
hv; �vi0 > 0 dla v 6= 0:

Then the tensor

(; ) : E � E ! R
(v; w) : = hv; �wi0

is symmetric and positive de�ned and

(�v; �w) = (v; w) ;

i.e. � preserves both forms h; i0 and (; ) : The system (E; h; i0 ; (; )) is a Hodge-
space since the operator �� is the �-Hodge operator

hv; wi0 =


v;�� 2w

�
0
= hv; � (��w)i0 = (v;��w) ;

and �� is an isometry (��v;��w) = (�v; �w) = (v; w) :
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Example 14 (Important example) Consider an arbitrary Riemann oriented
manifold M of dimension N and a vector bundle � of Hodge spaces

(�x; h; ix ; (; )x)

where h; i and (; ) are C1 (M) 2-tensor �elds. Then for any point x 2 M we
take the tensor product of Hodge spaces

V
T �xM 
 �x: Assuming compactness

of M we can de�ne two 2-R-linear tensors

((�; �)) ; hh�; �ii : 
 (M ; �)� 
 (M ; �)! R;

by integrating along the Riemannian manifold

((�; �)) =

Z
M

(�x; �x) dM; hh�; �ii =
Z
M

h�x; �xi dM =

Z
M

� ^' �

where

'x = h�; �i
k
x :
^k

T �xM 
 �x �
^N�k

T �xM 
 �x !
^N

T �xM = R

is the wedge product with respect to the multiplication h; ix of the values. The
2-form ((�; �)) is symmetric and positive de�nite and the triple

(
 (M ;W ) ; hh�; �ii ; ((�; �)))
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is a Hodge space with the �-Hodge operator hh�; �ii = ((�; ��)) de�ned point
by point

(��)x = �x (�x)
gdzie �x jest iloczynem tensorowym zwyk÷ej gwiazdki Hodge w

V
T �xM i gwiazdki

w �x:

De�nition 15 By a Hodge space with gradation and di¤erential oper-
ator we mean the system�

W =
MN

k=0
W k; h�; �i ; (�; �) ; d

�
where (W; h�; �i ; (�; �)) is a Hodge space and
(1) h�; �ik : W k �WN�k ! R and h; i = 0 outside the pairs (k;N � k),
(2) W k are orthogonal with respect to (�; �) ;
(3) d is homogeneous of degree +1; i.e. d : W k ! W k+1; and d2 = 0;
(4) hdw; ui = (�1)k+1 hw; dui for w 2 W k:

Clearly,
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a) the pairing
h; ikH : Hk (W )�HN�k (W )! R;

h[u] ; [w]ikH = hu;wi
k ;

is correctly de�ned,

b) �
�
W k
�
� WN�k; and � : W k ! WN�k is an isomorphism.

Assume that W is a Hodge space with gradation and di¤erential
operator, and let d� : W ! W be the adjoint operator with respect to (; ),
i.e. the one such that

(d� (w1) ; w2) = (w1; d (w2)) :

Assume that d� exists.

Lemma 16 The operator (called the Laplacian)

� := (d+ d�)2 = dd� + d�d

is self-adjoint (�v; w) = (v;�w) ; nonnegative (�v; v) � 0; and

fv 2 W ; (�v; v) = 0g = fv 2 W ; dv = 0 = d�vg :
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De�nition 17 A vector v 2 W is called harmonic if dv = 0 i d�v = 0:

H (W ) = fv 2 W ; dv = 0; d�v = 0g ;
Hk (W ) =

�
v 2 W k; dv = 0; d�v = 0

	
:

The harmonic vectors form a graded vector space

H (W ) =
MN

k=0
Hk (W ) :

Lemma 18 Hk (W ) = ker
�
d+ d� : W k ! W

	
= ker

�
�k : W k ! W k

	
; i.e.

H (W ) = ker�:

is the eigenspace of the operator � corresponding to the zero value of the eigen-
value.

Lemma 19
H (W ) = ker� = (Im�)? :

Proof. Simple calculations.
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Remark 20 If W is a Hilbert space and Y � W is closed, then we have the

direct sum W = Y
L
(Y )? :

For a Riemannian vector bundle � over a Riemannian manifold, the space
W = Sec (�) is not a Hilbert one (is not complete).
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But we have the well known

Theorem 21 Let � be a Riemannian vector bundle over a compact oriented
Riemann manifold M: If � : Sec � ! Sec � is a self-adjoint elliptic opera-
tor then ker� = (Im�)? and

Sec � = Im�
M

ker� = Im�
M

(Im�)? :
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In the sequelW is an arbitrary Hodge space with gradation and di¤erential
operator d.

Theorem 22 (a) ker�k and Im dk�1 are orthogonal, therefore the inclusion

Hk (W ) = ker�k ,! ker dk

induce a monomorphism
ker�k � Hk (W ) :

(b) Hodge Theorem. If W = Im�
L
(Im�)? then

ker dk = ker�k
M

Im dk�1:

Therefore the above inclusion Hk (W ) = ker�k ,! ker dk induces the isomor-
phism

Hk (W ) �= ker dk= Im dk�1 = Hk (W ) :

It means that in each cohomology class there is exactly one harmonic vector.
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Lemma 23 Let
�
W =

LN
k=0W

k; h�; �i ; (�; �) ; d
�
be a Hodge space with grada-

tion and di¤erential operator. Let " : f0; 1; :::; Ng ! f�1; 1g be an arbitrary
function. If the 2-tensor h; i is "-antycommutative, i.e.


vk; vN�k
�
= "k



vN�k; vk

�
for vk 2 W k; vN�k 2 WN�k; then
(a) the adjoint operator d� exists and is given by

d�
�
wk
�
= "k (�1)k � d �

�
wk
�
; wk 2 W k;

where � is the �-Hodge operator in W:
(b)

� �
�
wk
�
= "k � wk;

(c) if "k�1 = "k+1 then �� = ���; to be precise

��wk = "k�1"k (�1)N+1� � wk;

therefore
�
�
Hk (W )

�
� HN�k (W ) ;
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and
� : Hk (W )! HN�k (W )

is an isomorphism.
As a corollary we have

(d) (Duality Theorem) If additionally W = Im�
L
(Im�)? then

Hk (W ) ' HN�k (W ) :

We restrict the scalar positive product (�; �) : W k �W k ! R to the space
of harmonic vectors

(�; �) : Hk (W )�Hk (W )! R;

and we restrict the tensor h�; �i : W k �WN�k ! R to harmonic vectors

Bk = h�; �i : Hk (M)�HN�k (M)! R:
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Assumption. From the point of view of the signature we need to consider
that N is even,

N = 2n and "n = +1;

then
h; in : W n �W n ! R

and
Bn : Hn (W )�Hn (W )! R

are symmetric. Therefore in cohomology, the tensor

h; inH : Hn (W )�Hn (W )! R

is also symmetric. If
dimHn (W ) <1

we de�ne the signature of W as the signature of h; inH
Sign (W ) := Sign h; inH :

� Under the assumption W = Im�
L
(Im�)? we have Hn (W ) �=

Hn (W ) and
Bn = h; inH :
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Therefore if dimHn (W ) <1 then

Sign (W ) = Sign h; inH = SignBn:

In the construction of the Hirzebruch signature operator [for N = 2n] the
fundamental role is played by an operator (small modi�cation of the �-Hodge
operator)

� : W ! W;

� k : W k ! WN�k;

� k (w) = ~"k � �w; ~"k 2 f�1; 1g :

such that

i) � � � = Id;

ii) d� = �� � d � � ;

iii) �n = �; i.e. ~"n = 1; (N = 2n).

We check the existence of � :
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Theorem 24 If N = 2n and

"k = (�1)n (�1)k(N�k) = (�1)n (�1)k ;

then the operator � exists and it is given by

� k (w) = (�1)
k(k+1)

2 (�1)
n(n+1)

2 � �w:

(Conversely, if dk 6= 0 for all k = 0; 1; :::; N � 1 and � exists then "k must be
given by the above formula).

Assume N = 2n; "k = (�1)n (�1)k ; and take the operator � : We put

W� = fw 2 W ; �w = �wg ;

the eigenspaces corresponding to the eigenvalues +1 i �1 of the operator � :

� We notice that
(d+ d�) [W+] � W�:
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De�nition 25 The operator

D+ = d+ d
� : W+ ! W�

is called the Hirzebruch operator (or the signature operator).

Remark 26 If dimH (W )<1 then the index

IndD+ = dimR ker (D+)� dimR ker
�
D�
+

�
is correctly de�ned (the dimensions are �nite)

ker (D+) =W+ \H (W )

and analogously for the adjoint operator (D+)
� = D� : W� ! W+

ker (D�) =W� \H (W ) :

Theorem 27 (Hirzebruch Theorem on signature) If dimH (W )<1 then

IndD+ = Sign (Bn : Hn (W )�Hn (W )! R) :

If additionally W = Im�
L
(Im�)? then IndD+ = SignW:
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3.3 General setting of the above four examples

We give some applications of the above theory and theorems to vector bundles
over manifolds. The other applications to more general objects than manifolds
are available.

Example 28 Consider a graded vector bundle � =
LN

k=0 �
k of Hodge spaces

over a compact oriented Riemann manifold M;�
� =

MN

k=0
�k; h; i ; (; ) ; d

�
;

1) h; i ; (; ) are �elds of smooth 2-tensors in � such that

(�x; h; ix ; (; )x)

is a Hodge space, x 2 M; with a �-Hodge operator �x : �x ! �x, and
assume that

hv; wi = 0 if v 2 �r; w 2 �s; r + s 6= N; and that
subbundles �k are orthogonal,
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2) the axiom "-anticommutativity holds

vk; vN�k

�
= "k



vN�k; vk

�
;

where
"k 2 f�1;+1g :

By integration along M we de�ne 2-linear tensors

hh; ii ; ((; )) : Sec (�)� Sec (�)! R;

hh�; �ii :=
Z
M

h�x; �xi dM

((�; �)) :=

Z
M

(�x; �x) dM:

Then ((; )) is an positive de�nite scalar product in Sec (�) ; the �-Hodge operator
is an isometry

((�; �)) = ((��; ��))
and

hh�; �ii = ((�; ��)) :
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3) d is a di¤erential in Sec (�) ; d2 = 0, of the degree +1;

dk : Sec
�
�k
�
! Sec

�
�k+1

�
;

such that, by de�nition

3a) dk are di¤erential operators of �rst order,

3b) hhdw; uii = (�1)k+1 hhw; duii for w 2 Sec
�
�k
�
; u 2 Sec (�) :

Summing up,�
Sec (�) =

MN

k=0
Sec (�)k ; hh�; �ii ; ((�; �)) ; d

�
is a Hodge space with gradation and di¤erential operator.

Then the adjoint operator d� : Sec (�)! Sec (�)

((�; d��)) = ((d�; �))

exists and d�
�
�k
�
= "k (�1)k � d �

�
�k
�
:
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Question. When the Laplacian � = (d+ d�)2 = dd� + d�d is elliptic?

Theorem 29 If
�
dk
	
is an elliptic complex, i.e., is exact on the level of sym-

bols ( 0 6= v 2 T �xM )

�kx
S(dk)

(x;v)�! �k+1x

S(dk+1)
(x;v)�! �k+2x

then the Laplacian � is elliptic. In consequence

Sec (�) = Im�
M

(Im�)?

and if we assume that N = 2n and "k = (�1)n (�1)k and

dimH� (Sec (�) ; d) <1

we get the Hirzebruch operator D+ = d + d� : Sec (�)+ ! Sec (�)� and the
equality

Sig hh; iinH = IndD+:

In all four above examples the complexes of di¤erentials,
�
dk
	
;
�
dkA
	
;�

dkr
	
are elliptic, since the sequnces of symbols are exact.
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APPLICATIONS.
We describe four fundamental examples of the Hodge space with gradation

and di¤erential operator. The fundamental idea is as follows: we have a 2-
tensor h; i and we want to �nd a scalar positive tensor (; ) such that the �-Hodge
operator exists and is an isometry.

Example 30 1. (standard) M is compact oriented Riemannian manifold,

dimM = 4p:

W k = 
k (M) = Sec
�Vk T �M

�
;

hh; iik : W k �WN�k ! R; (�; �) 7�!
R
M
� ^ �:

hh�; �iik =
Z
M

� ^ � = (�1)k(N�k)
Z
M

� ^ � = (�1)k| {z }
"k

hh�; �iiN�k :

In the middle degree 2p, the tensor hh; ii is symmetric.
d : W k ! W k+1 is the di¤erntiation of di¤erential forms.
hhd�; �ii = (�1)k+1 hh�; d�ii for � 2 W k; � 2 WN�(k+1) (which follows

from
R
M
d (� ^ �) = 0).
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With respect to the standard de�ned inner product in
V
T �xM we have a

�nite dimensional Hodge-space�^
T �xM; h; ix ; (; )x

�
:

By integrating along the Riemannian manifoldM we obtain 2-linear tensors

hh; ii ; ((; )) : 
 (M)� 
 (M)! R;

hh�; �ii =
Z
M

h�; �i dM =

Z
M

� ^ �; ((�; �)) =

Z
M

(�; �) dM

and the equality
hh�; �ii = ((�; ��))

holds giving a graded Hodge-space with di¤erentaial operator (
 (M) ; hh; ii ; ((; )) ; d) :
The signature SignM = Sign hh; ii2pH can be calculated as the index of the Hirze-
bruch operator.

D+ = ddR + d
�
dR : 
 (M)+ ! 
 (M)�

(d�dR is the adjoint operator to ddR with respect to the scalar product ((; )).

43



Example 31 2. (NEW) Let A be a transitive Lie algebroid over a compact
oriented manifold M and let

rankA = N = 4p = m+ n; m = dimM; n = dimgjx:

We assume that A is invariantly oriented via a volume tensor

" 2 Sec
�^n

g
�

invariant with respect to the adjoint representation AdA.
W k = 
k (A) = Sec

�Vk A�
�
;

hh; iik : W k �WN�k ! R; (�; �) 7�!
R
M
6
R
A� ^ �:

hh�; �iik =
Z
M

6
Z
A

� ^ � = (�1)k(N�k)
Z
M

6
Z
A

� ^ � = (�1)k| {z }
"k

hh�; �iiN�k :

This tensor is symmetric in the middle degree

hh; ii2p : W 2p �W 2p ! R; (�; �) 7�!
Z
M

6
Z
A

� ^ �:

hh�; �ii2p = (�1)2p hh�; �ii2p = hh�; �ii2p :
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dA : W
k ! W k+1 is the di¤erentiation of A-di¤erential forms,

hhdA�; �ii = (�1)k+1 hh�; dA�ii for � 2 W k; � 2 WN�(k+1):
Now we �nd a scalar product ((; )) in W = 
(A) such that the

(
 (A) ; hh; ii ; ((; )))

is a graded Hodge space with di¤erential. To this aim consider
� any Riemannian tensor G1 in the LAB ggg = ker#A for which " is the

volume tensor (such a Riemannian tensor exists).
� any Riemannian tensor G2 on M:
Next, taking an arbitrary connection

� : TM ! A (#A � � = idTM)

i.e. a splitting of the Atiyah sequence

0 �! ggg ,!A #A�!
�
TM �! 0;

and the horizontal space

H = Im�;

A = ggg
M

H
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we de�ne a Riemannian tensor G on A = ggg
L
H such that ggg and H are

orthogonal, on ggg we have G1 but on H we have the pullback ��G2: The vector
bundle A is oriented (since ggg and M are oriented).
At each point x 2 M we consider the de�ned above scalar product Gx on

Ajx and the multiplication of tensors

h; ikx :
^k

A�x �
^N�k

A�x !
^N

A�x
�x! R

where �x is de�ned via the volume form for Gx:
We can notice that �x is the compositionVN A�x

�x! R
# (�1)Nn i"x 6

R
Ap & %�G2xVmA�x
�1x�!

Vm T �xM

The scalar product Gx in Ax we extend to a scalar product in
V
A�x and we can

notice that we obtain the classical �nite dimensional Hodge-space�^
A�x; h; ix ; (; )x

�
:
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We obtain two C1 (M)-tensors

h; i ; (; ) : 
 (A)� 
 (A)! C1 (M)

de�ned as above point by point. Integrating along M we get a graded Hodge-
space with di¤erential operator

(
 (M) ; hh; ii ; ((; )) ; dA)

and

hh�; �ii =
Z
M

h�; �i =
Z
M

6
Z
A

� ^ �:

The tensor hh; ii induces a 2-tensor in cohomology

hh; iiH : Hk (M)�HN�k (M)! R

which in the middle degree

hh; ii2pH : H2p (M)�H2p (M)! R

is symmetric. The dimension dimH (A) is �nite (Kubarski, Mishchenko, 2003).
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Therefore, the signature of hh; ii2rH can be calculated as the index of the
Hirzebruch operator

D+ = dA + d
�
A : 
 (A)+ ! 
 (A)�

where d�A is adjoint to dA with respect to the scalar product ((; )) :
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By the facts given at the beginning - concerning the calculation of the
signature of a Lie algebroid via Hochschild-Serre spectral sequence of A
- we can calculate the signature of a Lie algebroid using a di¤erent Hirzebruch
operator following the Lusztig and Gromov examples.

Example 32 Lusztig (1971), Gromov (1995). Signature for �at bun-
dles. LetM be a compact oriented N = 4p-dimensional manifold and E !M
a �at bundle equipped with a �at covariant derivative r and nondegenerated
inde�nite symmetric tensor

G0 = (; )0 : E � E !M � R; (; )0x : Ex � Ex ! R;

constant for r; i.e. satisfying @X (�; �) = (rX�; �) + (�;rX�) :
W k = 
k (M ;E) ;
the di¤erential operator dr : W k ! W k+1 de�ned standartly via r: From

rG0 = 0 we have

d (� ^G0 �) = dr� ^G0 � + (�1)
j�j (� ^G0 dr�)

therefore if j�j+ j�j = N � 1 thenZ
M

(dr�) ^G0 � = � (�1)
j�j
Z
M

� ^G0 dr�: (1)
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De�ne the duality

hh�; �iik : W k �WN�k ! R

hh�; �iik =

Z
M

� ^G0 �:

and we see that
hhdr�; �ii = (�1)k+1 hh�; d�ii

is ful�lled. Since G is symmetric we have

� ^G0 � = (�1)
k(N�k) � ^G0 �

and

hh�; �iik =
Z
M

� ^G � = (�1)k(N�k)
Z
M

� ^G � = (�1)k| {z }
"k

hh�; �iiN�k :

The tensor is symmetric in the middle degree

hh; ii2p : W 2p �W 2p ! R; (�; �) 7�!
Z
M

� ^G0 �:

hh�; �ii2p = (�1)2p hh�; �ii2p = hh�; �ii2p :
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We �nd a scalar product ((; )) in W k for which (W; hh; ii ; ((; ))) is a Hodge
space. To this aim we �x some positive de�nite scalar product (; )0 on the
vector bundle E: Then we take a unique splitting E = E+ � E� which is both
(; )0 and (; )

0 orthogonal and such that (; )0 on E+ is positive and (; )0 on E�
is negative. We denote by � the involution � : E ! E (� 2 = id ) such that
� jE+ = id; � jE� = �id: Then, the quadratic form

(v; w) = (v; �w)0

is symmetric positive de�nite. The involution � is the �-Hodge operator in
(Ex; (; )0x ; (; )x) ; i.e.

(v; w)0 = (v; �w) ;

and is an isometry

(�v; �w) =
�
�v; � 2w

�
0
= (�v; w)0 = (w; �v)0 = (w; v) :

Therefore (Ex; (; )0x ; (; )x) is a Hodge-space.
In each �bre

V
T �xM

N
Ex we introduce the tensor product of Hodge-spaces:

the classical one
V
T �xM and the above Ex:
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Point by point we obtain tensors

h; i : 
 (M ;E)� 
 (M ;E)! C1 (M) ;

(; ) : 
 (M ;E)� 
 (M ;E)! C1 (M) ;

� : 
 (M ;E)! 
 (M ;E)

h�; �i = (�; ��)

and integrating alongM we obtain a Hodge-space (
 (M ;E) ; hh; ii ; ((; ))) where

hh�; �ii =

Z
M

h�; �i dM =

Z
M

� ^G �;

((�; �)) =

Z
M

(�; �) dM

and
hh�; �ii = ((�; ��)) :

Let d�r be the adjoint operator to dr with respect to ((; )) : The tensor hh; ii
induce a 2-tensor in cohomology hh; iiH : Hk (M) �HN�k (M) ! R which in
the middle degree

hh; ii2pH : H2p (M ;E)�H2p (M ;E)! R
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is symmetric and the signature of it is the index of the Hirzebruch operator

D+ = dr + d
�
r : W+ ! W�

where W� = f� 2 
 (M ;E) ; �� = ��g for

�
�
�k
�
= (�1)

k(k+1)
2 (�1)p �

�
�k
�
:

Example 33 Gromov (1995) [G]. Let M be a compact oriented manifold
M of dimension dimM = N = 4p + 2 and let E ! M be a symplectic
vector bundle equipped with a �at covatiant derivative r and parallel symplectic
structure [i.e. skew symmetric nondegenerated] S = h; i : E � E ! M � R;
h; ix : Ex � Ex ! R; rS = 0:
W k = 
k (M ;E) ;
dr : W

k ! W k+1 - the di¤erential operator de�ned via r:
The condition Z

M

(dr�) ^S � = � (�1)j�j
Z
M

� ^S dr�: (2)

holds for j�j+ j�j = N � 1:
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hh�; �iik : W k �WN�k ! R is de�ned by

hh�; �iik =
Z
M

� ^S �

and hhdr�; �ii = (�1)k+1 hh�; d�ii is ful�lled. Since S is skewsymmetric, then

� ^S � = � (�1)k(N�k) � ^S �

and

hh�; �iik =
Z
M

� ^G � = � (�1)k(N�k)
Z
M

� ^S � = � (�1)k| {z }
"k

hh�; �iiN�k

= (�1)k (�1)
N
2 hh�; �iiN�k /

N

2
= 2p+ 1 is odd

We �nd a scalar product ((; )) in W k for which (W; hh; ii ; ((; ))) is an Hodge
space..

� There exists an anti-involution � in E, � 2 = �� (i.e. a complex struc-
ture)such that
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(1) h�v; �wi = hv; wi ; v; w 2 Ex;
(2) hv; �vi > 0 dla v 6= 0:

Then the tensor (v; w) := hv; �wi is symmetric and positive de�ned and
(�v; �w) = (v; w) ; i.e. � preserves both forms h; i and (; ) : The operator
�� is the �-Hodge operator in (Ex; h; ix ; (; )x) : In consequence, the system
(Ex; h; ix ; (; )x) is a Hodge-space.
At each point x 2 M we take the tensor product

V
T �xM

N
Ex of the clas-

sical Hodge space
V
T �xM and the above Ex: The remaining procedure as in the

above example to obtain a graded Hodge-space (
 (M ;E) ; hh; ii ; ((; )) ; d) with
di¤erential (where the �-Hodge operator is de�ned point by point � : 
 (M)!

 (M) ; � (�) (x) = �x (�x) ) We obtain in cohomology hh; iiH : Hk (M) �
HN�k (M)! R;

hh�; �iik =
Z
M

� ^G � = � (�1)k(N�k)
Z
M

� ^S � = � (�1)k| {z }
"k

hh�; �iiN�k

which in the middle degree 2p + 1 is symmetric (thanks to the fact that h; i is
skewsymmetric)

hh; ii2p+1H : H2p+1 (M ;E)�H2p+1 (M ;E)! R
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hh�; �ii2p+1 = � (�1)2p+1 hh�; �ii2p+1 = hh�; �ii2p+1 :
We can calculate the signature of hh; ii2p+1H as the index of the Hirzebruch
operator D+ = dr + d

�
r : 
 (M ;E)+ ! 
 (M ;E)� :

Example 34 In consequence, for a transitive invariantly oriented Lie alge-
broid A over a compact oriented manifold M and the Atiyah sequence

0 �! ggg ,!A #A�! TM �! 0;

m = dimM; n = rankg = dimgx;

and under the assumption Hm+n (A) 6= 0 and

m+ n = 4p

we have two signature Hirzebruch operators.
(I) The �rst one. D+ = dA+ d

�
A : 
 (A)+ ! 
 (A)� where d

�
A is adjoint to

dA with respect to the scalar product ((�; �)) =
R
M
(�; �) de�ned in the example

2 above, and W� = f� 2 
 (A) ; �� = ��g ; for �
�
�k
�
= (�1)

k(k+1)
2 (�1)p �

�
�
�k
�
:
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(II) The second one. We use the equality

SignH (A) = SignE2

for the second term E2 of the Hochschild-Serr spectral sequence

Ep;q2 = Hp
rq (M ;H

q (ggg)) :

The �at covariant derivative rq in the cohomology vector bundle Hq (ggg) de-
pends on the Lie algebroid A:
Let m + n = 4p: The signature SignE2 is equal to the signature of the

quadratic form
E2p2 � E

2p
2 ! Em+n2 = R;

and
a) if n is odd then SignE2 = 0;
b) if n is even then

SignE2 = Sign
�
E

m
2
;n
2

2 � E
m
2
;n
2

2 ! Em+n2 = Em;n2 = R
�

E
m
2
;n
2

2 = H
m
2

r
n
2

�
M ;H

n
2 (ggg)

�
:
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Consider the form hh; ii : Hr
n
2

�
M ;H

n
2 (ggg)

�
�Hr

n
2

�
M ;H

n
2 (ggg)

�
! R,

hh; iik : Hk

r
n
2

�
M ;H

n
2 (ggg)

�
�Hm�k

r
n
2

�
M ;H

n
2 (ggg)

�
! Hm

rn (M ;H
n (ggg)) = R,

which is symmetric in the middle degree k = m
2
and its signature is equal to

the signature of A: For k = n, the bundle Hn (ggg) is trivial, Hn (ggg) �= M � R,
the connection rn is equal to @, and the multiplication of values is with respect
to h; i : Hn

2 (g)�Hn
2 (g)! Hn (g) =M � R:

We have m
2
+ n

2
= 2p: We need to consider two di¤erent cases:

(a) m
2
and n

2
even, then the form

H
n
2 (g)�Hn

2 (g)! Hn (g) =M � R

is symmetric and we can use Example 3 above to give a Hirzebruch signature
operator D+ = dr

n
2
+ d�

r
n
2
: 
+

�
M ;H

n
2 (g)

�
! 
�

�
M ;H

n
2 (g)

�
;

(b) m
2
and n

2
are odd, then the form H

n
2 (g)�Hn

2 (g)! Hn (g) =M�R is
symplectic and we can use Example 4 to give a Hirzebruch signature operator.

THE END
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