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ABSTRACT This is the first paper of the series of the author’s works
devoted to applications of the theory of differential spaces in the sense of Sikorski
[19] to groupoids. Much more general than differential groupoid, the notion of
a smooth groupoid over a C*°-manifold is defined here. Next, J.Pradines’ [15],
[16] idea of constructing, for each differential groupoid, some vector bundle
with natural algebraic structures (called an algebroid of this diff. groupoid) —
playing the analogous role to that of a Lie algebra of a Lie group — is used for
smooth groupoids. Namely, some object, more general than a vector bundle,
is assigned to each smooth groupoid. A particularly interesting situation takes
place in the case when, for a given smooth groupoid, this object is a vector
bundle. The groupoid is then called a groupoid of Pradines type. There are
much more groupoids of this type than differential ones. For example, the
equivalence relation of any (not only simple) foliation is such a groupoid. A
large class of other examples is given. The idea of Pradines-type groupoids with
singularities, inspired by foliations with singularities in the sense of P.Stefan,
and the Frobenius-Sussmann theorem, — is given. Some new facts from the
theory of differential spaces we shall need are obtained.
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Introduction

The differential groupoids introduced by Ehresmann [6] are a natural extension
of Lie groups, firstly — by the nature of the definitions, secondly — by some
geometric circumstance. They constitute an appropriate direction for the de-
velopment of certain geometric theories such as connexions (also those of higher
orders) and Lie pseudogroups; besides, they find an application in problems of
the equivalence and deformation of structures, and even in some problems of
partial differential equations. One of the first applications of these objects was
a new approach to the theory of Cartan pseudogroups.

One of the important works concerning Lie pseudogroups was that written
by Libermann [12] in 1959. The author found a natural relation between the
vector bundle J* (TV) and the Lie groupoid II* (V). It is a family of linear
isomorphisms

A STV, — T (M (V),), hell*(V),, zeV,

where IT¥ (V) denotes the principal fibre bundle of k-jets with source x, which
enables one to define a linear isomorphism between the C'*°-module of global
sections of the bundle J* (T'V) and the C* (V')-module of right-invariant vector
fields on IT* (V') , and next, to define an R-algebra structure in the space of global
sections of J* (TV).

The works by J.Pradines of the years 1966-1967, mainly [15], [16], were the
landmark in the theory of differential groupoids. The author defined, for each
differential groupoid ®, some vector bundle T§*® C T'® consisting of all vectors
tangent to the units of the groupoid ®. Each smooth section of the bundle
T5'® extends uniquely to exactly one smooth right-invariant vector field on the
groupoid ®, which enables us to carry some R-Lie algebra structure (with the
Lie product denoted by [-, ] into the C°° (V')-module of global sections of T§*®.
SecT§® — X (V) is a homomorphism of Lie algebras, where 8 : ® — V is the
target and B* : T§*® — TV is the restriction of 3,. The constructed object

(T(?(I)v [['7 }]73*)

was called by J.Pradines the Lie algebroid of the diff. groupoid ®. In the case
when ® = IT¥ (V) , the bundle T§'® is isomorphic to J* (T'V) via the canonical
isomorphism A : J¥ (TV) — T¢TI* (V) defined by the formula A, = Ay, , Uy —
the unit of II* (V) over x.Sec\ is then an isomorphism of the Lie algebras
Sec J¥ (TV) and Sec T¢TIF (V). However, in the case when ® is a Lie group,
T5'® is simply the Lie algebra of the Lie group. The functor introduced by
J.Pradines (the so-called Lie functor) made possible to build a theory of diff.
groupoids, similar to the general theory of Lie groups, and thereby, to formulate
problems of the type of fundamental Lie theorems (partly solved by Pradines).
The next stage was the defining of the exponential mapping and its applications,
first, in a particular situation, by N.V.Que [17], and next — in general case —
for all diff. groupoids by A.Kumpera [9], [10]. In the author’s papers [K1]-[K3]



there are a development and applications of the exponential mapping method
to the global (general) theory of Lie groupoids and algebroids. The proofs out
in such a way that one makes in them no use of the classical theorems from the
theory of Lie groups. In the author’s opinion, the reasoning induced in these
proofs can be helpful in a much more general case of nontransitivity groupoids
in which the space is not a manifold. The theory of foliations is the source
of such groupoids. For example, the equivalence relation R on a manifold V'
determined by a foliation is not, in general, regular in the sense of Godement
or the subgroupoid ®’ of a Lie groupoid @, consisting of the elements for which
the source and the target lie on some leaf of a given foliation F, is not — in
general — a submanifold. The latter situation is a description (in the language
of groupoids) of the important geometrical objects consisting of a principal fibre
bundle P and a foliation F on the base, studied, for example, by F.Kamber
and Ph.Tondeur [1]. However, it is not difficult to notice that in the cases
considered: the equivalence relation R C V x V and — more generally — the
subgroupoid ®’ of the Lie groupoid ®, one can always define on the sets R
and ®' some natural structures of differential spaces in the sense of Sikorski
[19], as differential (proper) subspaces of the spaces (V x V,C> (V x V)) and
(®,C* (®)), respectively. All operations in these groupoids are then smooth.
This gives rise to the defining of groupoids in the category of differential spaces,
and next, of smooth groupoids over manifolds.

The present author’s observations show that, by following the idea of Pradines,
one can construct, for each smooth groupoid, an object, analogous to the Lie
algebroid of a diff. groupoid, not being — a general — a vector bundle. The
two above examples of smooth groupoids (R and ®’) have the property that
the constructed objects are vector bundles although R and &’ are hardly ever
differential groupoids. The importance of these examples is a sufficient reason
for the author to call the groupoids for which this object is a vector bundle —
Pradines-type groupoids. An especially important role will be played by those
groupoids from among them which are the so-called smooth groupoids over foli-
ations. They are — in the author’s opinion — a proper generalization of principal
fibre bundles (from the geometric point of view), for they enable one to build
a sensible theory of connexions [K4] (let us add that these connexions in the
groupoid @’ defined above correspond to those partial connexions in the princi-
pal fibre bundle P which project onto the tangent bundle of the foliation F).

In the end, it should be mentioned here that the elasticity of the language
of groupoids and diff. spaces is so great that, without especial difficulties, one
can describe and study smooth groupoids over foliations with singularities in
the sense of P.Stefan [22], and construct characteristic classes.



2 Groupoids - fundamental definitions, notations
and examples

By a groupoid (N.V.Que [16]) we mean the system
(¢7OZ75,‘/, ) (1)

consisting of sets ® and V and mappings o, : ® — V, - : & x & — & where
O+ P:={(g,h) € DxP; ag = Ph} for (g,h) € D % P, fulfilling the axioms

e a(gh) = ah and 3 (gh) = Bg for (g,h) € D * D,
b (fg)h:f(gh) for (fag)v (g7h)€©*®a

e for each point x € V| there exists an element u, € ® such that

— a(ug) = B (ug) =z,
— h-u, = h when ah =z,

— Uy - g = g when 8g =z,

for each element h € ®, there exists an element A~ € ® such that
* (h_l) = Bh, B (h_l) = ah,
x h-h™1= UBh,
¥ h™lh = uqp.

The mapping « is called a source and [ - a target, as well as - : P xd —
- a (partial) multiplication. The elements u, and h~! are uniquely determined
and called the unity over the point x and the element inverse to h, respectively.
The mapping
1. - P, h— bl

is called an inverse. The rule of reduction :
ghl = ghg — h1 = h2

holds in each groupoid.
For a given groupoid (1), briefly denoted by ®, we denote the following:

(a) ui=(Vozr—u, €9),

(b) Gy :={h € ®; ah = ph =z}, z € V. G, with the operation induced from
the groupoid is a group called the isotropy group at the point,

(c) @, :=at(2),

(d) Dy : ®gp, — Pon, g+ gh, h € ®. We notice the relations

Dgn=DpoD, and D, = (Dy)"".



(e) Ry == {(z,y) € VXV; Jpeo (ah =2 and Sh=1y)}. Re is an equiva-
lence relation on V. The set

Ly = B [®,]
is the abstract class of Rg containing x,
(f) B, = B|®, : ®, — L,. Of course, G, = ;" (z),
(g) for each point = € V, the mapping
1P, x Gy — Py, (hya) — ha, (2)

is a right, free action of G, on ¥, and its orbits are equal to the fibres of
the projection S,

Groupoids are in one-to-one correspondence to small categories in which
every morphism is an isomorphism (the categorial definition of a groupoid stems
from Ehresmann’s work of 1957 [5], and the above-mentioned correspondence,
for example, from the paper by Waliszewski [24]).

Groupoid (1) is called transitive if R = V x V (the notion of a transitive
groupoid corresponds to that of a groupoid in the sense of Brandt [1]).

Example 1 A group G, or a little more generally, a set V. x G x V (for any
set V') forms a groupoid if we put o (z,a,y) = z, B(x,a,y) =y and (y,a,z) -
(z,b,y) = (z,ab, z). It is called a trivial groupoid. We notice that the canonical
mapping H : G — G, a — (x,a,x), is an isomorphism of groups.

Example 2 Any equivalence relation R CV X V determines a groupoid
(R7 «, B7 ‘/7 )

in which a(z,y) =z, B(z,y) =y, (y,2) - (x,y) = (x,2) for (z,y), (y,2) € R.
It is called a groupoid of the equivalence relation R. Of course, u, = (x,x),
(z,y)"' = (y,2), Go = {(#,2)}, Ry = {2} x Ly. Besides, Dy : Ry — Ry,
(Y, 2) — (2, 2).

Example 3 (Ehresmann’s groupoid PP~ [3]) Let (P, 7, V,G,-) be a prin-
cipal fibre bundle with the projection w: P — V| the structural Lie group G and
the right action - : P x G — P. We define the right action of G on P X P by the
formula

(PXxP)xG—PxP, ((z21),a) — (za,za),

and denote by [z; z1] the orbit of this action including (2, z1) . According to Ehres-
mann, the set of orbits is denoted by PP~1. The orbit [z, 21] may be interpreted
as a diffeomorphism

z10z 1 P, — Py, =7z, x1:=72



(where, for any z € P, the symbol Z stands for the diffeomorphism G — P,
a — za). In the set PP~! there exists exactly one structure of a groupoid in
which a ([z,21]) = 7z, B([z,z1]) = w21 and [z1, 22] - [, 21] = [2, 22] . Of course,
PP~ is a transitive groupoid, u, = [z,2] for each z € P, and [z,zl]_1 =
[21, 2] . After the identification of the orbits with the above diffeomorphisms, the
multiplication formula is then an ordinary superposition. We notice that, for the
trivial bundle P = {e} x V, the multiplication formula - after the identification
of the orbit [z, z1] with a couple (x,z1) - is equal to that in Ezample 2 (for
R =V x V). Whereas, for the trivial principal fibre bundle P = G x V and
the identification of the orbit [(a, ), (b,y)], first of all, with the diffeomorphism
G x{z} = G x{y}, (¢,z) —> (ba’lc, y) , and next, with the trio (m,bail,y) ,
we get the multiplication formula equal to that in Example 1.

Example 4 Let (E,p,V) be any vector bundle. The set GL(E) of all linear
isimorphisms between the fibres at this bundle becomes a groupoid if, for h :
E, — E), and g: E|y, — E|,, we put ch=x, Bh =1y and g-h = go h.

Example 5 Any transitive groupoid (1) and any equivalence relation R C V xV
determine a new groupoid (<I>’, o, BV, -’) in which ® = («, B)_l [R], a'h = ah,
g'h-=g-h forghed.

3 Review of the definitions of groupoids with
differential structures

The first groupoids with differential structures were transitive ones: the Ehres-
mann groupoids PP~! [3] and the groupoid IT* (V) of all k-jets of local diffeo-
morphisms of a manifold V' [4]. Both PP~! and I1* (V) are differential manifolds
(of the class C'™), whereas the mappings source and target are submersions.
Next, Y.Matsuhima in 1955 [13], while examining G-structures and Lie tran-
sitive pseudogroupes of higher orders, defined a Lie subgroupoid II C II¥ (V)
as a subgroupoid being a submanifold of II* (V') for which the mappings: mul-
tiplication and inverse are smooth (i.e. C*-class), and (o, ) : II - V x V
is a submersion (onto). These axioms were used by N.V.Que in 1967 [17] to
formulate the definition of a Lie groupoid as a transitive one (1) in which ® and
V are diff. manifolds, o, 3 : ® — V are submersions and the mappings u,-,~!
are smooth.

Another example is GL (E), where E is a vector bundle.

A more general definition of the so-called differential groupoid stems from
Ehresmann’s work of 1958 [6] (see also N.V.Que [17], A.Kumpera [9], [10]). Be-
low, by this notion we shall mean any groupoid (1) which fulfils all the axioms
of a Lie groupoid (above-mentioned) except transitivity. In the authors men-
tioned above we can find different deviations from this definition, concerning
the assumptions about the mappings « and (.

In J.Pradines’ paper of 1966 [14] there is another definition - quite differ-
ent from the above one - of a partly differential groupoid as a couple (&, W)



consisting of an (algebraical) groupoid (1) and a differerential manifold W such
that

o u[V]C W C 9,

e W generates @ (as a groupoid),

there exists some structure of a manifold on the set V, such that o : W —
V is a submersion and v : V — W - an immersion,

the multiplication and inverse mappings are - with respect to W - C'*°-
class.

The notion of a nice-groupoid, introduced by the author (for other reasons
than in Pradines’ paper) is similar to the above notion.

4 Some facts from the theory of differential spaces

By using only differential manifolds, there is no possibility of a global differen-
tial description of many important groupoids, for example, of the equivalence
relations (except regular ones in the sense of Godement [18, Ch.III, §12]. It
turns out that this is possible in the language of differential spaces - much more
general objects. Now, we give a short introduction to this theory and some new
facts we shall need further.

Let M be any set and C' - a family of real functions defined on M. By 7¢
[19], [20] we mean the weakest topology on M in which the functions from C
are continuous. For A C M, we denote

o ClA={gl4; g},

e (4 - the family of real functions on A which may be extended locally to
functions on M, i.e. the set

{h A — R; VZEEAHUETCHQEC (.’E S 147 h‘UﬂA = g|UﬂA)},

L4 SCC = {SO o (917 ---agm) ,ym S Na g1,y 9m S 07 "2 S COO (R7n)} .
The equalities:
Tc|lA=Tcla="Tc,, To=Tscc and (ClA), =Ca

hold, moreover for B C A

(Ca)g =Cs.
The set (scC),, is the smallest of the sets C’ of real functions on M such that
C C C" and scC’' = C" = O, [11], [26]. By a differential space [1], [11], [19]
we mean each couple (M, C) (briefly denoted by M) consisting of a set M and
a non-empty family C' of real functions on M such that

Cy =C=scC, (3)



or equivalently, such that if f : M — R is any function which locally (i.e. with
respect to the topology 7¢) equals ¢ o (g1,...,gm) for some m € N, g; € C,
i <m, e C>®(R™), then f € C. Every diff. space (M,C) is also considered
a the topological space (M, 7¢). Any non-empty set C' of real functions on M

fulfilling (3) is called a differential structure on M. If C' = (sc C’)M, then we

say that the diff. structure C is generated by C. If C is a diff. structure on M,
then for any subset A C M, the family Cy4 is a diff. structure on A [19]. It is
easy to check that if C' is a diff. structure on M generated by C, then, for any
A C M, the diff. structure C4 is generated by C’|M

Examples of diff. spaces are:

o (R,sc({z — |z|})g),

(
(R™, C> (R")),

o (M,C* (M)) where M is any C*°-manifold and, more generally,
o (A,C>(M),) for any A C M.

Let (M,C) and (N, D) be any diff. spaces. The mapping f : M — N is
called

(1) smooth [19] if go f € C for g € D. Then we write

f:(M,C)— (N, D), (4)

(2) a diffeomorphism [19] if it is a bijection and f and f~! are smooth,
(3) an embedding if f: (M,C) — (f [M], D) is a diffeomorphism.

It is easy to see [19] that if D is generated by Dand gofeCforgeD,
then (4) is continuous if we investigate the topologies T¢ and 7p in M and N,
repsectively.

Let M be any C*°-manifold. Then the topology of M is equal to Toe(ar)
iff M is Hausdorff. In the Hausdorff case, for any open set A C M, the equal-
ity C> (M‘U) = C* (M), holds. In this connection, we adopt the following
definition [19]: a diff. space (M, C) is called an n-dim. differential manifold if
each point of M has a neighbourhood diffeomorphic to an open subset of R™
(of course, with the diff. structure induced from C*° (R™)). The topology 7¢ is
then Hausdorft.

By the product of diff. spaces (M, C) and (N, D) [19] we mean the diff. space
(M x N,CxD) where CxD is the diff. structure generated by {gopry; g € C}U
{hopry; h € D} (M x N,CxD) is also denoted by (M,C) x (N,D) ). It is
easy to prove that if A C M and B C N, then

(CxD) g =CaxDp. (5)



Besides, if M and N are manifolds then
C® (M x N)=C>*(M)xC*(N).

By a tangent vector to a diff. space (M,C) at a point z € M [19] we mean
each linear mapping v : C — R such that v (f-g) =v(f) - g(z) + f(z) - v (9)
for f,g € C. All tangent vectors at x form a vector space which is denoted by
T, (M,C) and called a tangent space at x. By a differential at x of any smooth
mapping (4) we mean the linear mapping f., : T (M, C) — T(y) (N, D) defined
by the formula: f.. (v)(g9) =v(go f), g€ D.

Proposition 6 (see also [26]) If (M,C) x (N, D) is a connected diff. mani-
fold, then the diff. spaces (M,C) and (N, D) are diff. manifolds, too.

Proof. Let the product (M,C) x (N, D) be a connected diff. manifold, say
- of dimension k. Take g € M and yo € N and put m := dimT,, (M,C),
n = dim Ty, (N, D). Of course k = m + n. There exist some neighbourhoods
U € 17¢ and V € 7p of zyp and yp, respectively, and a diffeomorphism ¢ :
(U,Cy) x (V,Dy) — (Q,C> (Rk)ﬂ) for some open subset Q C RF. We put
Ui :=¢[U x {yo}] and V7 := ¢ [{zo} x V] and take the diffeomorphisms

o1+ =w(,):(UCy) — (Ul,C"’o (Rk)Ul) ,
¢y i =9 @o,): (V,Dy) = (1,0 (RY),, ).

From the main theorem of paper [7], we infer - diminishing U and V' if necessary
- that there exists some diffeomorphisms

o+ (0LC% (RN, ) = (0,0° (R™)g,), Q1 CR™,
o ¢ (V1.0% (RY), ) = (2,0 (RY),,), Q2 CR™
Hence, by (5), the superposition
(61 % ) 0 (1 X ga) 0071+ (2,0 (RF) ) — (2 x 22,0 (RY), )

is a diffeomorphism. Therefore §; x €5 is open in R¥, so Q; and €, are open
in R™ and R"™, respectively, which finishes the proof. m

It is easy to check that, for any Hausdorff C'°°-manifold M, the ring of
smooth functions on the tangent bundle T'M is the diff. structure generated by
{gom; ge C>®(M)}U{dg; g€ C® (M)} where 7 : TM — M is the canonical
projection and dg (v) = v (g), v € TM. Following A .Kowalczyk [8], we accept

Definition 7 Let (M,C) be any diff. space. We put
Case 8 °

(a) T(M,C) = |_| T, (M, C) (disjoint union),

zeM
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(b) ©:T (M,C)— M - the canonical projection,

(c) TC = (sc C)T(M’C) where C' = {gom; g€ CYU{dg; g € C} anddg (v) =
v(g) forveT (M,C).

The diff. space (T'(M,C),TC) (denoted briefly by T'(M,C)) is called the
tangent bundle over (M,C).

Proposition 9 The tangent bundle T (M, C) over a diff. space (M,C) has the
properties:
(1) the mappings
+ : T(M,C)eT(M,C)—T(M,C), (v,w)r— v+w,
RxT(M,C)—T(M,C), (r,v)r—r-v,
are smooth, where T (M, C)®T (M, C) is the proper diff. subspace of T (M,C) xT (M, C')
consisting of all pairs (v,w) for which 7 (v) = w (w),

(2) for any smooth vector fields X1, ..., Xp € X (M,C) and U € 7¢ such that
the vectors Xi (x), ..., X (x) are linearly independt for x € U, the mapping

p:UxR™—T(M,C), (x,a)r—>zai'Xi($),
i=1

18 a diffeomorphism onto its image.

Proof. (2) The smoothness of ¢! (the rest is easy). Put pry : U x R™ — U,
(z,a) — z,and p° : U x R™ — R, (ac, (al, ...,am)) — a®, s < m. Of course,

pryop ™t = 7lp[U X R™] € (TC) 1y xgom -
It suffices to show that
pPople (TC) prsmm) -

For this purpose, we notice that p* o =1 (Z?il at - X; (x)) = a® and we take
any point o € U and functions f!,..., f™ € C such that [20] X; (f7) (zo) = ol
Then, for some neighbourhood U of zy, we have det [Xi (fj) (x)] £0,zeU,
and we can define the mapping ¢ : U — GL(n,R) by the formula x +—
(Xi (f7) (2)] . Let “ oy (z) = ¢} (x)], x € U. For

m
F:R*™ LR, (xl,...,xm,yl,...,ym) — Zyj -z,
j=1

we have

(1) F(ciom,....ci om dft,....df™) € (TC’)ﬁ_l[U] ,

11



which ends the proof.

[
The notion of a subspace of a diff. space can be found in [19] and [20]. It
turns out that it is too strong for us. We adopt

Definition 10 A diff. space (N', D’) is called a differential subspace of a diff.
space (N, D) if N' C N and, for each y € N', there exists a neighbourhood
U € 7p of y such that D, = Dy. Then we write

(N',D") — (N, D).

By means of the differential of the inclusion ¢ : (N, D") — (NN, D) we shall
systematically identify the vector space T, (N', D’) with the vector subspace
Im (i), of Ty (N, D), y € N'. As an example we take any C*°-manifold M and
any immersion submanifold L < M. Then (L,C* (L)) — (M,C*> (M)).

A diff. subspace (N’,D’) is called a proper subspace of (N, D) id D' = Dy
(equivalently, the inclusion 4 is an embedding), The following proposition will
be fundamental for constructing many new subspaces.

Proposition 11 For any smooth mapping (4) and any diff. subspace (N', D) —
(N, D), we have: on the set M’ := f~1[N'] there exists exactly one diff. struc-
ture C' which fulfils the condition

if A€ 1p and D'y = D4, then f~'[A] € Tcr and Cirpa = Cp114- (6)
Besides, fIM': (M',C") — (N', D') is a smooth mapping.

Proof. Uniqueness. Let C' and C” be two diff. structures on M’ fulfilling (6).
We take any g € C’, any point € M’ and a set A € Tps, such that f (z) € A
and D)y = Da. Thus f~'[A] € 7 and g|f 71 [A] € Cfipy = Cprja) =
C}’,I[A], sogeC”.

Ezistence. Put A:={A € 71p; Dy = D4} and

Ci={g: M —R; Vaca(9lf " [A] € Csa)}-

We shall prove that C fulfils (6). Of course, C|M’ C C’, which proves the non-
emptiness of C’. First, we shall show that C’ is a diff. structure (i.e. scC’ C C’

12



and C}, C C"). For the purpose, let us take ¢1,...,gm € C’, p € C*° (R™) and
A € A, we then have

Soo(gl,"'agm)|f71[A} = o (gl|f71[A})7gm|f71[A]) € sc (C/‘fil [A]) C
C se(Cpapa) = Oy,

while, for g € C, and A € A,
glf 'Al € (wa)f*l[A] = C},l[A} =Cp-1a)-

Now, we prove the smoothness of f|M’ : (M',C') — (N’,D’). In order to do
this, we take any g € D', A € A and x € f~1[A]. Since g|A € D’y = D4, there
exist a neighbourhood U € 7p and a function h € D such that f (z) € U and
glANU =h|ANU. But f~1[U] € 7¢ and ho f € C, so

go (FIM)[f~H AN f~H U]
= glAnUo (fIf AN U) =hlANU o (FI/7 Al N f7HU])

= (ho NI AN U) € Charpang—oys

which proves that
go(folM)|f A € C-ipa,

thus g o (f|[M') € C'. From the above it follows that f~![A] € ¢/ for A € A.
It remains to show the equality

Chrpa) = Crr1a5-

Seeing that C|M’' C C’, we have Cy-1p4 C C’},l[A]. On the other hand, di-
rectly from the definition of C’ we have: C'[f~![A] C Cj-1pa), s0 Chipy =
(')t [A])f,l[A] C Cf-114), which completes the proof. m

In paper [25] there exists some generalizations of the notion of a coregular

mapping to the case of maps between diff. spaces. However, a considerably
stronger notion will be more useful to our purposes.

Definition 12 Smooth surjective mapping (4) is called strong-coregular if for
natural number n and each point x € M, there exist neighbourhoods U € T¢ and
V erp of x and f (x), respectively, and a diffeomorphism

¥ (U,Cy) = (V, Dy) x (R", C*= (R")),

such that
fIU = pry oy

According to Proposition 6 and [18, Ch.III,§10], we see that, in the case
when (M, C) is a manifold, smooth surjective mapping (4) is strong-coregular
iff (a) (N, D) is a manifold, (b) the differential f., is an epimorphism for each
x e M.
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Proposition 13 If mapping (4) is strong-coregular, (N',D’) — (N, D) and
C' is the diff. structure on M' = f=1[N'] fulfilling (6), then the mapping
fIM' . (M',C") — (N', D') is strong-coregular, too. What is more, if (N',D")
is a diff. manifold, then (M',C") is a diff. manifold, too.

Proof. Let x € M’. We take any neighbourhood U € 7¢ and V € 7p of
the points = and f (z), respectively, a number n and a diffeomorphism ¢ :
(U,Cy) — (V,Dy) x (R*,C> (R™)) such that f|U = pr; otp. Besides, we take
any set A C V such that f(z) € A, A € 7p and D’y = Dy. Since z €
UnftiA =v! [prfl [A]] € 7¢r and Cy1pajnu = C}*l[A]nU’ we have the
commuting diagram

(PN Chger) T (A DL (@0 ()
Nflf 1A l

(4,D})
which proves the proposition. =

Definition 14 By a (k-) leaf of a diff. space (M,C) we mean a subset L C M
if there exists a diff. structure D on L such that

(1) (L, D) is a diff. manifold (of dimension k),
(2) (L, D) is a diff. subspace of (M,C) (see def. 5),

(3) for each locally arcwise connected topological space X and a continuous
mapping f : X — (M,C) such that f[X] C L, the mapping f : X —
(L, D), defined by the same formula, is continuous, too.

We notice that the diff. structure D is uniquely determined. Besides, if
(X, E) is any diff. space whose topology 7 is locally arcwise connected, then,
for each smooth mapping f : (X, E) — (M, C) such that f [X] C L, the mapping
f:(X,E)— (L, D) is also smooth.

Sometimes, the manifold (L, D) is called a leaf of (M,C).

As an example we take any (k-dim.) foliation F on a C*°-manifold M. Then,
each element L € F is a (k-) leaf of (M,C> (M)).

5 Smooth groupoids over differential manifolds
Having differential spaces at our disposal, we are able to give the following

Definition 15 By a groupoid in the category of differential spaces we mean a
groupoid

<I>:(<I>,a,ﬁ,V,-) (7)
in which ® and V are diff. spaces and the mappings o, : ® —- V, u:V — @,
“1:® > ®and-: PxP — O (where ®x® denotes the ptoper subspace of ®xP)
are smooth.

14



We notice that u : V — & is an embedding.

Example 16 Let R be any equivalence relation on a C°°-manifold V. Then the
system (see Example 2)

R=((R,C®(V xV)g),a,B,V,-) (8)
s a groupoid in the category of diff. spaces.

Example 17 Let T' be any pseudogroup of smath transformation on a C*°-
manifold V. Then, for each k = 1,2, ..., the set of jests

{i¥f; f €T, e Ds} c J*(V,V),

with the diff. structure induced from J* (V, V), forms a groupoid in the category
of diff. spaces.

Definition 18 By a smooth groupoid over a differential manifold we mean a
groupoid in the category of diff. spaces (7) in which V is a diff. manifold and
for each point x € V, the set o' (x) is a leaf of the diff. space ®.

The set o~ ! (x) equipped with the suitable diff. manifold structure is called
the leaf of the groupoid ® over x and denoted by ®,.

Remark 19 (1) Connected components of the leaf ®, are equal to arcwise con-
nected components of the proper diff. subspace a=' (x) of ®,
(2) the mapping Dy, : g, — Pan, h € D, is a diffeomorphism.

Example 20 Let R be any equivalence relation on a diff. manifold V' for which
the family of all abstract classes is a foliation F on V. We denote by L, the leaf
of F through x, equipped with the natural structure of an immerse submanifold
of V. Then the system (8) is a smooth groupoid over V called a groupoid of the
foliation F. The manifold R, for which the mapping

Vot Le = Ray y— (2,9), 9)
18 a diffeomorphism is the leaf of this groupoid over x.

Note that a smooth groupoid over V' may also be obtained for a more general
equivalence relation. Namely, it may be an equivalence reelation for which every
abstract class L is a leaf of V, for example, the equivalence relation of a foliation
with singularities in the sense of P.Stefan [21], [22].

Example 21 Differential groupoid (7), see section 3, is, of course, a smooth
groupoid over V, besides, the proper submanifold a1 (z) of ® is the leaf over .

Definition 22 A groupoid in the category of diff. spaces (7) is called strong-
coregular if the mapping
(o, ) : ® — Ry (10)

is strong-coreqular (where Re is the proper subspace of V- x V).
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Proposition 23 If (7) is a strong-coregular diff. groupoid, then the equivalence
relation Re is regular (in the sense of Godement [18, Ch.III, §12]), in particular,
the family of all connected components of all equivalence classes is a simple
foliation.

Proof. One should prove that (a) Re is a proper submanifold of V' x V, (b)
pr; : Rg — V is a submersion. We see that (a) results from Proposition 3 and
the assumption of the strong coregularity of (10), while (b) - from the equality
a = pr; o (a, 8), which ends the proof. m

The theorem below gives a large class of examples of smooth groupoids over
V.

Theorem 24 Let (7) be any Lie groupoid and R C V X V - any equivalence
relation such that each equivalence class is a leaf of V. Then the groupoid ®' =
(04,5)71 [R] defined in example 5, equipped with the diff. structure of a proper
diff. subspace of ®, turns out to be a smooth groupoid over V. What is more,
this is a strong-coregular groupoid for which 3., : ®, — L, is a submersion. The
number dim ®/, — dim L,, does not depend on x and R.

Proof. Of course, the system (<I>’7 o, BV, -') is a groupoid in the category of
diff. spaces. The strong coregularity of this groupoid results from Prop. 13.
Now, we consider the submersion 8, : ®, — V. On the set ®, - which is equal to
6.1 [Ly] - we define the diff. structure according to Prop. 11. By Prop. 13, we
see that (a) @, is then a diff. manifold and (b) 8, : ®. — L, is a submersion.
It remains to show that @/, is a leaf of ® but this follows from the fact (which
is easy to see) that ®/ is a leaf of the manifold ®,. In the end we notice that

dim®/, —dim L, = dim® — 2 - dim V' which ends the proof. m

Example 25 A foliation F of V' determines some smooth groupoid over V, for
example, the groupoids of all linear isomorphisms

(a) h:E, — E,, zy&clL, LeF, where B, =T, (L),

(b) h:T,V/E, — T,V/E),, x and y as above.

These groupoids are obtained according to Theorem 24 with the help of
some Lie groupoid GL (F) and the equivalence relation R of F; in case
(a) - E=TF, while in (b) - E=TV/TF.

At the end of this section we discuss briefly the relation between Lie groupoids
and principal fibre bundles (over the same manifold V). First of all, we see that
G, = ;' () is a Lie group, and the system

(¢za/63;a ‘/a G:Ea )

is a principal fibre bundle (briefly, p.f.b.), where "-" means action 2 (see [17]).
For two points x and y, the p.f.b.’s ®, and ®, are isomorphic; indeed, for any
element h € ® such that ah = x and Sh = y, the pair of mappings (D, H)
where H : G, — G, a — h™'ah, is an isomorphism of ®, onto ®,.
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On the other hand, the p.fb. (P,7, V,G,-) determines the Ehresmann
groupoid PP~! according to Example 3. This is a Lie groupoid. The man-
ifold PP~! is the only one for which r : P x P — PP~! ((z,2') — [z, 2/]) is a
submersion and it is characterized by the property:

— for any two sections ¢, : U; — P, U; C V, i = 1,2, of the projection ,
the mapping

(Ur x G x U2) 3 (z,a,y) — [y (2) 05 (y) - a] € (a, )" [U1 x Up] € PP

is a diffeomorphism.
In the end, we notice (fixing the a x € V) that

(1) the p.f.b.’s P and (PP_l)r are isomorphic (noncanonically!). Namely, for
any 29 € P, the pair (¢, H), where ¢ : P — (PP_l)x, z +— [z0, 2], and
H:G— Gy, a— |20, 20 - a] , establishes an isomorphism between them;

(2) the Lie groupoid ®,®,' and ® are isomorphic in the sense that there
exists a diffeomorphism F : ®,®; 1 — & such that

(a) a(Fz) =z,

—~
o
eS|

—~

z-2Y=F(2) - F (7).

Of course, we ought to put F ([z,2]) = 2" - 27 1;

(3) the naturally appearing functors ¥ and © between the categories of p.f.b.’s
- P and Lie groupoids - G (both over V'), defined by the formulae

() ¥:P—G;P— PP ' (p:P—P)+— (V(p): PPt — P'P'71)
where ¥ () ([2, 2']) = [92, 0#']
() ©:G—P; 0+ &, (F: @ — &) — (F|, : &, — P),) where F, :=
F|®,,
have the following properties:
(i) the functors ¥ o © and idg are naturally equivalent (the family of
isomorphisms from remark (2) above is a natural equivalence),
(ii) the functors © o ¥ and idp are not naturally equivalent because the

mapping

Hom (P, P') — Hom ((PP~") ,(P'P'™") ), ¢— ¥ (p)

|z

is not, in general, a bijection (for example, ¥ (p o R,) = ¥ (¢) where
R,:P—P,z+—z-a).

The above properties cause that the functors ¥ and © do not establish the
quasi-isomorphy of the categories considered.
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6 The Pradines-type groupoids

P.Libermann [12] discovered a relationship between the vector bundle J* (T'V')

and the Lie groupoid IT* (V). It is the family of linear isomorphisms
JETV), = T (U7 (V),), hell*(V),, zeV,

which enables one to define a linear isomorphism between the C*° (V')-module of

global sections of the bundle J* (T'V) and the C* (V')-module of right-invariant

vector fields on IT* (V).

J.Pradines following P.Libermann constructed (in papers [15], [16]), for each
differential groupoid, some vector bundle which fulfils the analogous property
(for details, see A.Kumpera [9], [10]). That bundle (with natural algebraic
structures) was called by Pradines the Lie algebroid of a given diff. groupoid.
It plays the analogous role to that of a Lie algebra of a Lie group.

The present author’s observations show that by following the idea of Pradines
and making inescapabable use of differential spaces in the sense of Sikorski, one
can construct an object analogous to groupoids from a much wider class, namely
to smooth groupoids. The algebraic aspect of these objects will be dealt with in
the fourth paper of this series. Now, we shall only define the objects. In general
they are not vector bundles (among other things, for lack of the equality of
dimensions of fibres). A particularly interesting situation will take place in the
case when these objects are vector bundles.

First of all, any smooth groupoid (7) determines

(1) the diff. space
(4(®),(TC) 4a)) (1)

where
A(®) = |_|er T,,®, C TP

and C is the diff. structure of @,
(2) the projection
p:A@) =V, pv)=2 < veTl,, P,
Diff. space (11), which will be briefly denoted by A (®), is (by definition) a
proper diff. subsapce of the tangent bundle T® (see def. (4). Of course, p is
smooth because

p = 7|A(®) where 7 : T® — & is the natural projection. The structure of a
vector space is defined in each fibre of p. Below it will be shown that system

(A(®),p,V) (12)

possesses some other structures of algebraic nature with which it will be called
the algebroid of this groupoid ®.
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Proposition 26 System (12) has the properties:
(1)

A@)oA(®) = A(P), (v,w)r—v+uw,
Rx A(®)— A(D), (r,v)— 1 v,

are smooth, where A (P)DA (D) is the proper diff. subspace of A (P) x A (P)
consisting of all pairs (v,w) for which p (v) =p(w),

(2) for any sections &, ...,&,, of the projection p and an open set U C'V such
that the vectors &; (x),...,&,, (x) are linearly independent for x € U, the

mapping
@:UxR™ = A(®), (z,a) '—>Zai'€i($)v
i=1

s a diffeomorphism onto its image.
Proof. This is an immediate consequence of Proposition 5. m

Definition 27 By a groupoid of Pradines type we shall mean each smooth
groupoid (7) for which the system (12) is a vector bundle.

Example 28 (J.Pradines [15], [16]) Differential groupoid (7) (in particular,
Lie algebroid) is of Pradines type. Indeed, A(®) = uw*T*® where TP :=
{veT®; a,v=0}.

Example 29 Groupoid (8) of any regular foliation F (see Example 20) is of
Pradines type. Indeed, we define the mapping

w:TF — A(R)

by the formula >, = (7,),, (see (9)). 4 is, of course, a linear isomorphism,
so to notice that A(R) is a vector bundle, it suffices to show that > is a dif-
feomorphism. The smoothness of s follows from the fact that it is an appro-
priate restriction of the monomorphism TV 3 x +—— (0,v) € T(V x V) (over
V 3 ax v+ (v,2) € V x V), while the smoothness of =1 - of the mapping

(pr2)* -

Example 30 The smooth groupoid ®', defined in Theorem 24 with the help of
the equivalence relation R of a foliation F, is a groupoid of Pradines type. In
fact, since B, = B,|A(®) : A(®) — TV is an epimorphism and &, = 8, [L,],
therefore

A(@) =B, [17]
is a vector subbundle of the bundle A (P).

Proposition 26 immediately implies
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Proposition 31 A smooth groupoid (7) is a groupoid of Pradines type if and
only if

(1) for each vectorv € A(®), there exists a section & of p such that £ (p (v)) =
U7

(2) the function V> x+—— dim A (@)‘w is constant.

Some other conditions (in terms of the elements of ®) characterizing the
Pradines-type property will be looked below.

Now, we give a generalization of the definition of groupoids of Pradines type,
inspired by foliations with singularities in the sense of P.Stefan [21] and by the
Frobenius-Sussmann theorem [23].

Definition 32 By a Pradines-type groupoid with singularities we shall mean
any smooth groupoid (7) for which system (12) has the property:

o for each vector w € A (®), there exists a smooth section & : V — A(®) of
the projection p, such that £ (pw) = w.

Example 33 Groupoid (8) of any foliation F with singularities is of Pradines
type with singularities. Indeed, we ought to notice that the distribution TF =

U €VT_1c (Ly) CTV (x € Ly € F) is the so-called smooth distribution in the
sense of Sussmann [23], i.e. for each vector v € TF, there exists a smooth
vector field X € X (TF) such that X (mv) = v.

Example 34 The smooth groupoid ®', defined in Theorem 24 with the help of
the equivalence relation R of a foliation F with singularities, is a groupoid of
Pradines type with singularities. Indeed, first of all, A(®') = B*_l [TF]. Neat,
we takew € A(P'), v ::ﬁ* (w) and X € X (TF) such that X (mv) = v. Because
of the surjectivity of Sec 3, : Sec A (®) — X (M), we find a section & € Sec A (®)
such that 5,.£ = X and & (p(w)) = w. Of course, £ € Sec A (D).

Proposition 11 and the above examples justify the adoption of the followng
generalization of the notion of a vector bundle:

Definition 35 By a vector bungle with singularities we mean the system
(A,p,V)

consisting of diff. spaces A and V and a smooth mapping p : A — V in whose
fibres there are structures of vector spaces, and we assume the axioms:

(1)

+ . AdA—- A (v,w) —v+w,
RxA— A (rv)—r-uv,

are smooth, where A ® A is the proper diff. subspace of Ax A consisting
of all pairs (v,w) for which p(v) =p(w),
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(2) if&q, ..., &, are smooth sections of p and U is open in V| such that &, (x), ..., &, ()
are linearly independent for x € U, then the function

o UXR™ = A, (v,0)— 3 a'-& (),

s a diffeomorphism onto its image,

(3) for each v € A, there exists a section & of p such that & (p (v)) = v.

Example 36 If (M,C) is any diff.space, then the system (T" (M, C) , =’ (M, C))

where (a) T (M,C) is the proper diff. subspace of the tangent bundle over

(M, C), equal to |_| . T. (M, C) where T, (M, C) is the vector space consist-
x

ing of those vectors v for which there exists a smooth vector field X € X (M, C)

such that X () =wv, (b) ' : T"(M,C) — (M, C) is the restriction of .

Proposition 37 Smooth groupoid (7) is a Pradines-type groupoid with singu-
larities if and only if system (12) is a vector bundle with singularities.

7 Smooth groupoids over foliations

Definition 38 By a smooth groupoid over a foliation F on a diff. manifold V'
we mean a smooth groupoid (7) for which

(1) the family of abstract classes of Re is equal to F,

(2) B, : @, — L, is a submersion for each x € V.

Axiom (2) enables one to equip the isotropy group G, = 8, (z) with the
structure of the proper submanifold of ®,. Of course, G, is a diff. subspace of
O (see Def. 6).

Smooth groupoids over foliations are examples of the so-called -regular Lie
groupoids, according to terminology of A.Kumpera [10, p.41].

Example 39 By Theorem 2/ the groupoid ®' from Ezample 30 is a smooth
groupoid over the foliation JF.
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