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Lie algebroids appeared as infinitesimal objects of Lie groupoids, principal
fibre bundles, vector bundles (Pradines, 1967), TC-foliations and nonclosed Lie
subgroups (Molino, 1977), Poisson manifolds (Dazord, Coste, Weinstein, 1987),
etc. Their algebraic equivalences are known as Lie pseudo-algebras (Herz 1953)
called also further as Lie-Rinehart algebras (Huebschmann, 1990).



A Lie algebroid on a manifold M is a triple
A= (AT T #4)
where A is a vector bundle on M, (Sec A, [-,-]) is an R-Lie algebra,
Hr:A—TM

is a linear homomorphism (called the anchor) of vector bundles and the fol-
lowing Leibniz condition is satisfied

[[f?fn]] :f Hgan]]—i_#A(g)(f)na fEOOO(M)a 577']ESGCA

The anchor is bracket-preserving,

#a0l6,m] = [#a0& F#a0m|

A Lie algebroid is called transitive if # 4 is an epimorphism.



For a transitive Lie algebroid A we have the Atiyah sequence
0—g—A TN — 0,

g := ker# 4. The fiber g, of the bundle g in the point x € M is the Lie algebra
with the commutator operation being

[, w] =[&n](x), &mneSecA, &(x)=uv,n(x)=w, v,wEg,.

The Lie algebra g, is called the isotropy Lie algebra of L at x € M. The vector
bundle g is a Lie Algebra Bundle (LAB in short), called the adjoint of A, the
fibres are isomorphic Lie algebras.

T'M is a Lie algebroid with id : T'"M — T'M as the anchor,
g -finitely dimensional Lia algebra - is a Lie algebroid over M = {x} .



To a Lie algebroid A we associate the cohomology algebra H (A) defined
via the DG-algebra of A-differential forms (with real coefficients) (2 (A),d4),
where

Q(A) = Sec /\ A*, - the space of cross-sections of /\ A*
dy:Q°(A) — QL (A)

k

(daw) (€or &) = Y (=1) (#a0&;) (@ (o -JorrsEk)
5=0
) (D w ([6, 60, €or b G )
i<j
w e Q*(A), & € Sec A. The operators d¥ satisfy
da(wAn) =dswAn+ (—l)kw A dam,
so they are first order and the symbol of d¥ is equal to
k . k * k+1 *
Sd)pw = N =N A
S(dh) (@) = (vo(#a),)Au, 0#veTIM.
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In consequence the sequence of symbols

k+1

k S(dk k S(d k

is exact which imply that the complex {dfﬁl} is an elliptic complex.
The exterior derivative d4 introduces the cohomology algebra

H (A) = H (Q(A), d4).

For the trivial Lie algebroid T'M - the tangent bundle of the manifold M -
the differential drjs is the usual de-Rham differential dj; of differential forms
on M whereas, for L = g - a Lie algebra g - the differential dy is the usual
Chevalley-Eilenberg differential, dq = dg.



For each transitive Lie algebroid (A, [-, -], #4) with the Atiyah sequence

0—g— ATSTM — 0,

over compact oriented manifold M the following conditions are equivalent
(Kubarski-Mishchenko, 2004) (m = dim M, n = dimg,,, i.e. rank A =m+n )

(1) H™™ (A) #0,

(2) H™*" (4) = R,

(3) A is the so-called invariantly oriented, i.e. there exists a global non-
singular cross-section € of the vector bundle A" g,

e € Sec(/\ng>
0 # €x€/\n9\x

invariant with respect to the adjoint representation of A in the vector bundle
A" g (which is extending of the adjoint representation ad4 of A in g given by
(ada) (&) : Secg — Secg, v —[&, v]; in other words, ad, is a homomorphism
of A into the Lie algebroid A (g) of the vector bundle g, and next into A (A" g).



Assume that A is invarianty oriented. The scalar Poincaré product

Pl H (A) x H"™ 7 (A) — R,

i — [Conn (= [ (fonn))

where the so-called fibre integral
[ o — o on
is defined by the formula ( € € Sec (A" g) is nonzero)
(/;ﬂf) (W1, ooy W) = (1) Wy (€0, W1, ooy W), Fa () = w;,

The operator [, commutes with the differentials d4 and dps giving a homo-
morphism in cohomology

#
/ CH® (A) — HY (M),
A
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In particular we have

# ~
/ CHT (A) S HTL (M) = R
A

The scalar product P is nondegenerated and if m + n = 4k then
P H* (A) x H* (4) — R

is nondegenerated and symmetric. Therefore its signature is defined and is
called the signature of A, and is denoted by

Sign (A).
The problem is:

e to calculate the signature Sign (A) and give some conditions to the equal-
ity Sign (A) = 0. There are examples for which Sign (A) # 0.

My talk concerns this problem.



(I) Firstly, I give a general mechanism of the calculation of the signature
via spectral sequences (Kubarski-Mishchenko 2003) and use to two kinds of
spectral sequences associated with Lie algebroids:

a) the spectral sequence of the Cech-de Rham complex,
b) the Hochschild-Serre spectral sequence.

(IT) Secondly, using the x-Hodge operator we construct two Hirzebruch
operators to calculate the signature. For each of them the index is equal to
the signature of A. Therefore the Atiyah-Singer formula for the index can be
used to calculate of the signature.



AD(I)
(i) The general approach to the use of the spectral sequences.
The idea of applying spectral sequences to the signature comes from

e Chern-Hirzebruch-Serre On the index of a fibered manifold, Proc. AMS,
8 (1957), 587-596.

Via spectral sequences the authors proved

Theorem 1 Let E — M be a fiber bundle, wih the typical fiber F', such that
the following conditions are satisfied:

(1) E, M, F are compact connected oriented manifolds;

(2) the fundamental group m, (M) acts trivially on the cohomology ring H* (F)
of F.

Then, if E, M, ' are oriented coherently, so that the orientation of E is

induced by those of F' and M, the index of E is the product of the indices of
F and M, that

Sign (E) = Sign (F) - Sign (M) .
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The authors consider the cohomology Leray spectral sequence EP¢ of the
bundle £ — B with the real fields as the coefficients field. The term F, by
hypothesis (2) is the bigraded algebra

Ey' = H (M;H'(F)) = H" (M) @ H (F)

therefore
EPT=0 for p>m or g¢>n.

Clearly, F, is a Poincaré algebra by hypothesis (1). Using the spectral
sequence argument the authors noticed that

(Esyd& ) S Z 27
and
(EOCH )
are Poincaré algebras and
Sign Fy = Sign F3 = ... = Sign F, = Sign H (F) .
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It appears that the Chern-Hirzebruch-Serre arguments used to prove the
above theorems on the signature of the total space of the bundle £ — M

are pure algebraic and lead to the following general theorems (Kubarski-
Mishchenko 2003).

Theorem 2 Let ((4,(,)),A",U,D, A;) be any DG-algebra with o decreasing
regular filtration A;

and (EP1,dy) its spectral sequence. We assume that there exist natural numbers
m and n with the following conditions:

o EYY =0 forp>m and ¢ > n, m+n = 4k,

e [y is a Poincaré algebra with respect to the total gradation and the top
group ES" = E = R,

Then each term (Es(‘),u,dS) 2 < s < o0, and (EQ,U) are Poincaré
algebra

Sign Fy = Sign F3 = ... = Sign F, = Sign H (A) .
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If m and n are odd then Sign Es = 0, if m and n are even then

Sign B = Sign (Eé%) X Eé%) — E§m+") = By = ]R)

i3 m
27 2

— Sign <E2 P B2 gt = g R)

(ii) Using the Leray spectral sequence (the spectral sequence
of the Cech-de Rham complex).
We use this mechanism to
(a) the spectral sequence for the Cech-de Rham complex of the Lie
algebroid A.
Let A be any transitive Lie algebroid on a manifold M with isotropy Lie
algebras gy, isomorphic to a given Lie algebra

g.

If U € M is an open subset diffeomorphic to R™ then the restriction Ay is
the Lie algebroid isomorphic to the trivial one TU x g and

H (Ay) 2 H(U) @ H(g) = H(g).
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Given a good cover U = {Uy,},.; of M, where J is a countable ordered index
set (this means that all U, and all finite intersections (), U,, are diffeomorphic
to an Euclidean space R™) we can form the double complex (of the Cech-de
Rham type)

KP1=CP (4,Q7(A)) := H Qf (A\Uao.‘.ap>

Qo< ..<ap
p,q > 0, with the product structure
U: KP4 % KM% — Ptmats
(WU ag...aper = (FD Wao..ap Vo apir Alay...api [ Uao..api

This complex has two boundary homomorphisms, d and 9.
The vertical homomorphism d : C? (4,07 (A)) — C? (U, Q4 (A)) acts as
external differential of A-forms

d=(—1)"dy.
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The horizontal homomorphism ¢ : C? (U, Q4 (A)) — CPT! (4, Q7 (A)) acts
as a coboundary homomorphism

pt+1

(5w)a0_._o¢p+1 = Z (_1)1/ wao...i...ap+1|Ua0...ap+1~

=0

The horizontal and vertical homomorphisms ¢ and d are antiderivations of
degree +1 therefore
(K, K™ ,U,d,0)

is a double complex of the first quadrant with a product structure. Now,
consider the "horizontal” decreasing filtration

K; =P K.
=
Due to the general construction of spectral sequences for the filtration
above which is in accord with the multiplicative structure of the DG-algebra,
(K K U, D, K j), one can construct the spectral sequence of the graded dif-
ferential algebras
(E§7q’ dS)?
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The filtration K; is regular, K, = K, therefore the spectral sequence (E??, d)
converge to H (K, D).

Theorem 3 (1) The zero term (Ey, dy) :

Eg = Kp/Kp—l-la qu = K™,
dy = d:KPT=CP(UQI(A) — Kpatl — v (il, Qatt (A)) ,

(2) The first term (E1,d;)
EP? = WP (K, d) = CP (4,1 (A)), dy =67 BPY — BYT

where

H(A) = (Ur— H (Ap))

s the Leray type presheaf of cohomology, locally constant on the good covering
i, with values in the cohomology algebra H* (g) of the structural Lie algebra g.
(8) The second term

ER? =HP (H (K,D),6%) = HY, (U, H(A)).
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We assume that
e the presheaf H (A) is constant on the good covering il.

The condition is equivalent to that the monodromy representation of the
presheaf H (A)
p:my (M) =m (N (&) — Aut (H(g))

is trivial.
Example 4 The condition of the triviality of the monodromy holds if

e M is simply connected,

e AutG = IntGG, where G is simply connected Lie group with the Lie
algebra g, for example, if g is a simple Lie algebra of type

Bl (: SO (2l+ 1))7 Cl (: Sp (2l> ), E7, Eg, F147 GQ.
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e the adjoint Lie algebra bundle g is trivial in the category of flat bundles
(the bundle H (g) of cohomology of isotropy Lie algebras with the typical
fibre H (g) possess canonical flat covariant derivative - which will be
important for studying of the Hochshild-Serre spectral sequence). For
example for the Lie algebroid A (G; H) of the the TC-foliation of left
cosets of a nonclosed Lie subgroup H in any Lie group G.

If the monodromy representation of the presheaf H (A) is trivial then

E3" Hi, (4, H(A)) = H” (U H (g))
= H(U,R)® H(g)

Hgp (M) @ H' (g) .

I

All isomorphisms are canonical isomorphisms of bigraded algebras. It
means that E5 lives in the rectangle p < m, ¢ < n, and

B = Byt = Hy, (M) @ H" (g) = R

therefore we have:
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Theorem 5 If A is a transitive Lie algebroid on a compact oriented connected
manifold M with unimodular isotropy Lie algebras g, = g and monodromy
representation of the presheaf H (A) is trivial than the terms Es, ..., Ey as
well as the cohomomology algebra H (A) are Poincaré algebras and

Sign (A) = SignH (A) = Sign F»
= Sign (Har (M) ® H(g)) = Sign Har (M) - Sign H (g)

because for unimodular Lie algebra g
SignH (g) = Sign/\g* =0.

(iii) Using the Hochshild-Serre spectral sequences.
Following Hochschild-Serre (Cohomology of Lie algebras, Ann. Math. 57,
1953, 591-603) for a pair of R-Lie algebras (g, ) one can consider
— a graded cochain group of R-linear alternating functions

Ap = P A*, A+ =C"(g),

k>0
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— with the standard R-differential operator d of degree 1
— and Hochschild-Serre decreasing filtration A; C Ag as follows:

— A; = Ag for j <0,

—ifj >0, 4; = @, A}, A} = A;N A", where A} consists of all those
k-cochains f for which f (v4,...,7;) = 0 whenever k — j + 1 of the arguments
7, belongs to €

fe AP =C%(g)
Af: f(’717"'77k):0
YY1y s Ye—jp1 € B

In this way, we have obtained a graded filtered differential R-vector space

(Ar = P A*.d. A))

k>0
and we can use its spectral sequence
'D,q
(B, d,).

For a transitive Lie algebroid A = (A, [, ], #4) with the Atiyah sequence
0—g— A 4 TM — 0 we will consider the pair of R-Lie algebras (g, £)
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where
g =Sec(A), t=Sec(g).

Following K.C.M.Mackenzie (1987) (see also V.Itskov, M.Karashev, and Y.Vorobjev
(1998)), we will consider the C'* (M )-submodule of C'*° (M )-linear altarnating
cochains

0 (A) C C*(g)
and the induced filtration

of C*° (M)-modules. We obtain in this way a graded filtered differential space

(2(A) =P (4),da, )

and its spectral sequence
(ER%,das).

Assume as above

m = dim M, n =dimg,, ie rankA=m+n.
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Theorem 6 There is a flat covariant derivative V? in the vector bundle HY (g)
such that
ELS = Hg, (M;HY (g)).
The flat covariant derivative VY is defined by the formula: for f € QF (M; Z [\ g*]),
[f] € Qr (M;H* (g))
Vi [f]=[£x/]
where (Lxf) (01,...,04) = Ox (f (01, ....04)) — >ty [ (01, ..., [N X, 03], ..., 04)

(where A : TM — A is arbitrary auziliary connection in A).

Theorem 7 If A is a transitive invariantly oriented Lie algebroid such that
m+n =4k (m =dim M, n=dimg, ) then

a) if m and n are odd then Sign A =0,

b) if m and n are even then

SinA = Sign B, = Sign (B x B — B < g < R)

where



and
HZ, (M;H? (9)) x H, (M;HF (g)) — HY. (M; H" (9)) = R

is defined via the usual multiplication of differential forms with respect to the
multiplication of cohomology class for Lie algebras.

¢:H? (g) x H? (9) — H" (9) = M x R.

23



We notice that

e if 3 is even then % is even, dim M = m = 4s for some s, ¢ is symmetric
nondegenerated,

e if § is odd then % is odd, dim M = 4s + 2 for some s, ¢ is symplectic.

However always H* (M;H: (g)) x H™* (M;H?2 (g)) — R is strong non-
degenerated

H* (M;H: (g)) = H™ " (M;H? (g)),
H(M;H: (g)) = H(M;H:(g)),
dimH (M;H:? (9)) < oo,

and

is symmetric nondegenerated.
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AD(IT) Hirzebruch operator and the signature.
(i) general approach.
Four foundamental examples
We describe a general approach to the following four fundamental examples
of the spaces with gradation and differential operator (W =@M Wk d) .M
is here compact oriented Riemann manifold.

( Qk (M), ddR; N:47’,
QF(A), dy; N =m+n=4r, A- atransitive inv. or. Lie algebroid
QOF (M3 E), dy; (E,(,),) flat vector bundle,
(,)o - symmetric nondegenerated parallel, N = 4r
QF (M E), dy; (E,{(,),) flat vector bundle,
(,)o -symplectic parallel, N = 4r + 2

Wk

\

In all cases the sequences of differentials {d%.}, {d%}, {d%} are elliptic com-
plexes, dim H* (W) < oo and the pairing

H* (W) x HYF (W) - R

is defined, which in the middle degree % is symmetric. Its signature is defined
to be the signature of W, Sign (W).
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Below, we give a common algebraic approach to calculate the signature
Sign (W) via the Hirzebruch signature operator.
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Algebraic point of view on the x-Hodge operator, Hodge Theorem
and Hirzebruch operator

Definition 8 By a Hodge space we mean the triple (W, (,),(,)) where W
is a real vector space (Aim W finite or infinite), (,), (,) : x W — R are
2-linear tensors such that

(1) (,) is symmetric positive (i.e. is an inner product),

(2) there exists a linear homomorphism

sy W — W
called x-Hodge operator fulfilling properties
(i) (v, w) = (v, (), for all v € V,
(i1) (v, w) = (xwv, *xpw), i.e. xy is an isometry with respect to ().
Clearly, the x-Hodge operator is uniquely determined (if exists). The 2-
tensor (,) is nondegenerated.
A 2-linear homomorphism f : W x W — R is called nondegenerated if both
null-spaces are zero, if
(v,) = 0 = v=0,
(wv) = 0 = v=0.



Two 2-tensors f : V xV — Rig: W x W — R determine tensor product
fRg:(VW)x (VeW)—R

which is 2-linear. The tensor f ® ¢ is nondegenerated if both f and g are

nondegenerated and is symmetric positive if both are the same (the dimensions
of V and W can be infinite).

Lemma 9 If (V. (-, ), (-,")y) and (W, (-, )y, (-, )y ) are Hodge spaces then
their tensor product

(V @ W, <'a '>V ® <'> '>W ) ('> ')V ® ('a )W)

15 a Hodge space and
*ew = *y & *w.
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Example 10 (Classical) Let (V,G) be a real n-dimensional oriented Fucli-
den space with inner product G : V x V — R and the volume tensor

56/\n‘/, e=eN...Ne,
(where e; is a positive ON basis). We identify \" V =R wvia the isomorphism
p:/\nVi]R, 5.+ 8.
Let
() AVxAV-R,
G NV AT VS ATV =R,
<Uk’ UN—k> - ) (Uk A UN—k) ,

be the usual duality (we put (,) =0 outside the pairs (k,n — k) )

Then there exists a positive scalar product (, ) in \'V such that (AV,(,),(,))
is a Hodge space. Clearly

a) the subspaces NV are orthogonal and
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b)
X k k
AN VAN VoR
(VP Ao Avg,wp AL A wk)k = det [G (v;, wg)] .
The x-Hodge operator is determined via an ON base e; by the formula
Xx (61'1 VANV 6ik> = E(jl,m,jnfk) * €45 VANPPRVAN €t

where iy < ... < ix and J1 < ... < jo_x and the sequence (ji,...,Jn—k) 1S
complementary to (i, ..., 1) and €, j. ) = S8 (J1, s Jnks 115 -y Ik) -

The above x-Hodge operator differes from classical by the coefficient (then
there is €(;,,...5) ). If change the definition of the duality (,) by multiplication
on (—=1)""M e if take (,>§ = (=1)* "™ ()| then the *-Hodge operator
will agree with the classical one.

The obtained Hodge space

(AV4). ()

1s called classical.
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Example 11 Let (V,G) be n-dimensional Fucliden spave and (W, (-,-),(,))
any Hodge space then there exists canonically defined Hodge spaces - the tensor
products

AVew ad AV ew

Lemma 12 Let (W, (-,-),(+,-)) be a finitely dimensional real vector space equipped
with two 2-tensors (-, ), (+,-) such that the second one (,) is symmetric positive.
Let e; be an ON basis of (W, (,)). Then the x-Hodge operator sy : W — W
(i.e. linear homomorphism such that (v,w) = (v,*w)) is an isometry if and
only if the matriz

hij = (ei, €;)
of the form (,) is orthogonal.

31



Example 13 Consider arbitrary Riemann oriented manifold M and finitely
dimensional Hodge space (W, (-} (-,-)). Then for any point x € M there
exists a Hodge space \TiM @ W. Taking an ON basis of T, M and arbitrary
basis s, of W the x-Hodge operator *, : NTi MW — NTiM QW is defined
by

k(€ Ao AN €iy @ 8a) =S8N (J1s ey ks 81y s Ty ) €53 A oo A€y, @ Zhﬂasﬁ-
B

Assuming compactness of M we can define two 2-R-linear tensors
((a,8)), {(a,8)) : QM; W) x Q(M; W) — R,

by the formulae

(@) = [ @epart, (i) = [ sy [ an.s

where
o= N TMewx N e w - \' DM =R
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is the (-,-)-wedge product. The 2-form ((-,-)) is symmetric positive and the
triple
QM W), (a,8)), (o, 8)))

is a Hodge space with the x-Hodge operator ({c, 3)) = ((a, %3)) defined point
by point
(#5), = *(Bz) -

The above example can be easily generalized taking arbitrary flat vector
bundles instead of a single vector space W.

Definition 14 By a Hodge space with gradation and differential oper-
ator we mean the system

(W = EB;V:O W () ) ,d)

where (W, (-,-),(-,+)) is a Hodge space and
(1) (-, Wk x WN=F LR and (,) = 0 outside the pairs (k,n — k),
(2) W* are orthogonal with respect to (-,-),
(3) d is homogeneous of degree +1, i.e. d: Wk — W ' and d*> = 0,
(4) (dw,u) = (=D (w, du) for w e W*.
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Clearly, a pairing
(g HE(W) x HYF (W) — R,

is correctly defined.
For such a Hodge space * [Wk] C WN=k and

w0 Wh— WAH

is an isomorphism.
Let d* : W — W be the adjoint operator, i.e. the one such that

(d (w1) ,w2) = (w1, d (ws)) .
Lemma 15 The operator (called the Laplacian)
A= (d+d*)? =dd* + d*d
is self-adjoint (Av,w) = (v, Aw) , nonnegative (Av,v) > 0 and
{veW; (Av,v) =0} ={veW; dv=0=dv}.
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Definition 16 A vector v € W is called harmonic if dv =0 ¢ d*v = 0.

HW)={veW; dv=0, dv=0},
HE W) ={veW" dv=0, dv=0}.

The harmonic vectors form a graded vector space

N
_ k
HW) =, HW).
Lemma 17 H* (W) =ker {d+ d* : W* — W} = ker {A*: WF — WF} e
H (W) = ker A.

is the etgenspace of the operator A corresponding to the zero value of the eigen-
value.

Lemma 18
H (W) =kerA = (ImA)".
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Remark 19 If W is a Hilbert space and Y C W is closed, then we have the
direct sum

W=y®)

In applications to Riemannian vector bundles over Riemannian compact
oriented manifolds, the space W = Sec (€) is not a Hilbert one (is not com-
plete), but

e the equality W = Im AP ker A holds if A is self-adjoint elliptic
operator.

Theorem 20 (a) ker A* and Im d*~! are orthogonal, therefore the inclusion
H* (W) = ker AF — ker d*

induce a monomorphism
ker A* — H* (W) .

(b) [fIWV =Tm AP (Im A) ] e

ker d* = ker AF @ Im d* 1.
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Therefore the above inclusion H* (W) = ker AF — ker d* induce the isomor-

phism
HE (W) 2 ker d*/ Im d*~' = H* (W).

It means that in each cohomology class there is exactly one harmonic vector.

Lemma 21 Let <W = EchV:() Wk Y () ,d) be a Hodge space with grada-

tion and differential operator. Let ¢ : {0,1,..,N} — {—1,1} be arbitrary
function. If 2-tensor (,) is e-antycommutative, i.e.

<Uk’UN7k> — e <UN7k’Uk>

for vk e Wk oN=F c WN=F_ then
(a) the adjoint operator d* exists and is given by

d* (w*) = g (=1)F % d (w*), w*ew,
where x s the x-Hodge operator in W.

) k

**(wk)zek-w,
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(c) if ex_1 = epy1 then xA = £Ax, more detailed
xAwF = g,_12;, (—1)NJrl A s w”,

therefore
« [HE(W)] € HYE (),
and
x HY (W) — HYF (W)
18 an isomorphism.
T
(d) (Duality Theorem) If additionally WV =1mA @ (Im A)* ey,

HY (W) ~HY* ().

We cut the scalar positive product (-,-) : W* x W* — R to the space of
harmonic vectors

() s HE (W) x HE (W) = R,

and we cut the tensor (-,-) : W* x W% — R to harmonic vectors
BY = (., HM (M) x HN* (M) — R.
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The first remains a positive and the second - nondegenerate.
To construction of the Hirzebruch signature operator the fundamental role
is played by an operator

T WRC—-WxC

such that
T (wk) = Ep % (wk) , €k € (C, yék’ =1,

and
° i) 72 = Id,
° i) d*=—7Todor.

We check the existence of 7.
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Proposition 22 (1) If

Er=2cC- (—1)k(N_k)

for all k, where c € {—1,1},

then the operator T exists and &, = (—1)2N_2k_1k§0 for & € {1,—1,i,—i}
such that (2¢)° = ¢ - (—l)N(Nil) .

(2) (in opposite) If d* # 0 for all k and the operator T exists then g, =
¢ (=DPNR) for e e {~1,1}.

Remark 23 Ife, =c- (—1)k(N_k) then €1 = €py1.
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Assuming. From the point of view of the signature we need to consider
that N is even,
N=2n and ¢,=+1,
then
("W x W' - R

and

B":H"(W)xH"(W)—R
are symmetric. Therefore in cohomology, the tensor

(g H' (W)xH"(W)—-R
is also symmetric. If

dimH" (W) < o0

we define the signature of W' as the signature of (, )5
Sig (W) = Sig ()}

e Under the assumption W =TmAP (ImA)] we have H (W) =
H" (W) and B" = (, )§; - Therefore if dimH" (W) < oo then

Sig (W) = Sig (, )i = Sig B".
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Lemma 24 H" (W) =V, PV, dla

HE (W) =Vi={a e H"(W); xa =a},
HE(W)=Va={aeH"(W); *a=—a}.
The 2-tensor B"™ on Vi is positive, on Vy is negative and if dim H™ (W) < oo

then
Sig (B") = dimg MY (W) — dimg H™ (W).

Assume N = 2n, ¢, = +1, and the operator 7 : W — W such that
T (wk) = &y * (wk) , &, €C, |&x] =1, and 7> = Id, d* = —Tod o T exists. In
this situation must be e, = ¢+ (1" = . (=1)* but e, = 41, so

e =(=1)" (1",

and Kby
2

gk = (—1) o

for &g € {—1,1}. Therefore in this case the operator 7 is real, 7 : W — W.
We choose £j in such a way that in the middle degree n

En = +]-a
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1.e.
T (w") =% (w"),
n(n+1)

therefore &g = (—1)~ 2 . Then

k(k+1) n(n+1)
2= (-1 ()"

We put
Wy ={weW; tw==xuw},

they are eigenspaces corresponding to the eigenvalues +1 i —1 of the operator
T.
We notice that
(d+d") W] CcW_.

Definition 25 The operator
D+:d+d*ZW+—>W_

is called the Hirzebruch operator (or the signature operator).

Theorem 26 If dim H (W) < oo and W = Im A @ (Im A) ypep
SigW = Ind D, = dimg ker (D) — dimg ker (D7) .
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General setting of the above four examples

Example 27 Consider a graded vector bundle & = @Q;O &% over a compact
oriented Riemann manifold M, with suitable structures

(=D, ,€0).().d).
1) (,),(,) are field of 2-tensors in &

(or ()oi€ex & =R,

such that
la) <£k, §T> =01ifk+r # N, and the axiom e-anticommutativity
holds

<vk,vN_k> = & <UN_k,Uk> , V¥ € Sec (fk) , vNF € Sec (£N_k) ,

where
€k € {—1, +1} ,

1c) (,) is symmetric positive tensor such that the subbundles £ are
orthogonal,
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2) there exists an isometry * : £ — & (with respect to (,), (v,w) =
(xv, xw) )

(called *-Hodge operator) such that
(v,w), = (v, *x,w),, v,wef,, x€M.
By integration along M we define 2-linear tensors

(())2((,)) : Sec (€) x See (€) — R,
(e B)) = /M (s B,) dM

(@, 8)) = /M (a0 B,) M.

Then ((,)) is an positive scalar product in Sec (€) , the x-Hodge operator is still
isometry ((«, 5)) = ((xa, %)) and

({o, B)) = ((a, %B))
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3) d is a differential in Sec (€) , d* = 0, of the degree +1, d* : Sec (5’“) —
Sec (§k+1) , such that, by definition
3a) d* are first order,
3b)
((dw,u)) = (=D ((w, du))

for w € Sec (£") , u € Sec ().

In conclusion

N
(Sec(€) =P, _, Sec (€ ({0, () . d)
is a Hodge space with gradation and differential operator.
Then, the adjoint operator d* : Sec (§) — Sec (&)
((a,d*B)) = ((da, B))

exists and

d* (o) = ey (=1)F % d (a")
Problem 28 When the laplacian A = (d + d*)* = dd* + d*d is elliptic?
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Theorem 29 If the sequence of the differentials {d’“ }
-+ — Sec (fk) — Sec (Sk“) — Sec (§k+1) — e

is elliptic, i.e. is exact on the level of symbols (0 #v € TEM )

é-l; S(%_’v) €§+1 S(dlﬂ(z,v) §§+2
then the Laplacian A is elliptic. In consequence Sec (¢) = Im A @ (Im A)*
and for asumptions N = 2n and e = (—1)" (=1)" and dim H3 (€) < oo we
can obtain a Hirzebruch operator D, = d + d* : W, — W_ and the equality
Si ((,))}y = Ind D

Ellipticity of the A follows trivially from the following facts:
(i) the symbol S (D*),, , of the dual operator to arbitrary first order
differential operator D : Sec (E) — Sec (F') is equal to the minus dual to the
symbol,

S(D7), =S (D) (g

(ii) the symbol of the composition S (D;Ds) is the composition of the
Symbols S (Dng)(mw) =8 (Dl) oS (DQ)

zw)

(z,v) (z,v)
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(iii) Lemma: Let U, V, W be finite dimensional inner product spaces,

and suppose that U AvEWwisa complex (i.e. BA=0). Let A*:V - U
and B* : W — V be the adjoints of A and B respectively. Then the complex
is exact if and only if

B*B + AA*

is an isomorphism.
From the above and ellipticity of the complex {dk} we have

S( )xv) dk ld(k 1)* dk*dk)( »)

S
S (d ) - (d(k_l)*)(:v,v) +5 (dk*)($,v) °s (dk)
S (1), (—s (@), 0) + (=5 (@), 08 (@),,,)

== (S (@), 08 (@), + S8 (@), 08 ([@),,)

is an isomorphism.

In all four above examples the complex of differentials, {dk} {d } {d }
are elliptic, since the sequnces of symbols are exact. It follows from the fact
that the sequences of symbols look as follows:

(z,v)
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— we have finitely dimensional vector spaces V' and E and a vector 0 # v €
V' and the sequence

/\k_1V®E—>/\kV®E—>/\k+1V®E

of the homomorphisms giving by u ® e — (v A u) ® e.
ok A Kk

APPLICATIONS.

We describe four fundamental examples of the Hodge space with gradation
and differential operator. The fundamental idea is as follows: we have a 2-
tensor (, ) and we want to find a scalar positive tensor (, ) such that the *-Hodge
operator exists and is an isometry.

Example 30 1. (standard) M is compact oriented manifold,
dim M = N = 4p.

Wk = QF (M) = Sec (/\’“ T*M) ,
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(N WEXWNF SR (o, B) — [, @A B.

<<a,6>>’“:/Momﬁ 1)FV- ’“/ BAa
= (=" (8, an " WL (B, a))V™

€k

In the middle degree, the tensor ({,)) is symmetric
N W X W SR, (a4 H/@Ag
(e, )7 = (=D" (8, )" = ({8, )

d: WF — Wk s defined to be the differntiation of differential forms.

({da, B>> (=) (o, dB)) for o € W*, B € WN-G+D (yhich follows
from [, d(aA\B)=0).

We find a scalar product ((,)) in W for which the x-Hodge operator for
(W, {(,)),((,))) is an isometry. To this aim take arbitrary Riemannian tensor
G in M, and for each point x € M take the standard scalar product

G, : /\kT;Mx /\kT;M—>R
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G, in N*T*M and multiplication (), of tensors tensors
k N—k N
O NTiMmx N TiMm— N\ ;M5 R

where p is defined by the volume tensor € = e A ... ANe’ (for ON positive frame

€; )

Consider the classical finite dimensional Hodge-space

(ATM) (),

We notice that the x-Hodge operator *, is defined (via ON positive basis e; of
T.M) by

*

* (e;-kl A efk) = SN (15 oy TNk B15 s Tk) - €], A e NS
and is an isometry (the sequence (j1, ..., JN—k) 1S increasing and complementary
to (il, ,Zk>
Now we take all points v € M and consider the volume differential forms
Q, Q. =¢€] A...Ne} for positive ON frames e; € T,,M. We define auxiliarily
C> (M) linear 2-tensors

(,) + QM) xQ(

;8
=53



(@, 0) (2) = (@ Ba)y, (@) -Q=anp,
(@, 8) (x) = (a2, 5,), -

Let the operator

be defined point by point
x () (z) = *; () -
Then for o, f € (M)
(o, B) = (@, %3)

By integrating along the Riemannian manifold M we obtaind 2-linear tensors
(G« QM) xQ (M) — R,
(@on = [ mar= [ ans
M M

() : QM) xQ(M) =R,
(.0) = /M (a, B) dM
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and the equality
{(a, B)) = ((a, %B))
holds giving o Hodge-space (2 (M), ()}, ((,))) -
The tensor ((,)) induces 2-tensor on cohomology
(())e - HY (M) x HYF (M) — R
which in the middle degree

((:))g - HY (M) x H” (M) — R
is symmetric and its signature Sign M = Sign (, ))Z can be calculated as the
index of the Hirzebruch operator.D, = dqp + dijy - Wi — W_ (d}y is the
adjoint operator to dyr with respect to the scalar product ((,)). We recall that
Wye={aeQ(M); Ta ==+a} for

7 (af) = (—1)@ —1)" - xa*.
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Example 31 2. (NEW) Let A be a transitive Lie algebroid over a compact
oriented manifold M and let

rank A=N=4p=m+n, m=dimM, n=dimg,.

We assume that A is invariantly oriented via a volume tensor

€ € Sec (/\ng>

invariant with respect to the adjoint representation Ad 4.
Wk = QF (A) = Sec (/\’“ A*) ,
(D WEXWNE SR, (0, 8) = [y faa A B.

e o
“DMTR (B, a) T = (D (8, e

€k
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This tensor s symmetric in the middle degree

(N W2 X W2 SR, (o, H/ /a/\ﬁ
({a, B) = (=1 ((B,a))" = ((B,a))™".

da: Wk — WL s the differentiation of A-differential forms,

((daa, B)) = (=1)*"" (o, daB)) for a € Wk, B € WN-(+1),

Now we find a scalar product ((,)) in W such that the x-Hodge operator in
(W, ((,)),((,))) is an isometry. To this aim consider

— any Riemannian tensor Gy in the anchor g = ker # 4 for which € s the
volume tensor (such a tensor exists).

— any Riemannian tensor G5 on M.

Next, taking arbitrary connection

AN:TM — A (#AO)\:ZCZTM)
i.e. a splitting of the Atiyah sequence

O—>g%A%TM—>O,
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and the horizontal space

H = Im),
A = gEBH

we define a Riemannian tensor G on A = g@ H such that g and H are
orthogonal, on g we have G but on H we have the pullback \*Gy. The vector
bundle A is oriented (since g and M are oriented).

At each point v € M we consider the scalar product G, on A, and the
multiplication of tensors

A AN A

where p,, is defined via the volume form for G,.
We can notice that p, is the composition

AN Ax s R
1 (_1>N" e, Ja, \ PGy
A" A: D, N TEM
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Defined a scalar product G, in A, we extend to a scalar product in \ A% and
we consider the classical finitely dimensional Hodge-space

(A4 60

The x-Hodge operator x, such that by definition
<acc7 ﬁm> = (Oéx, *xﬁz)

s given by

*

*,, (e;-kl Ao A e;kk) =880 (Ji1, oy IN—ky 01, -, 0k) €, A e A €],

(for ON positive frame e; ). Using all points x € M we obtain two C* (M)-
tensors

(1,() - Q(A) xQ(A4) — C= (M)
defined as above point by point. Integrating along M we get a Hodge-space

(@ (M), () (()))

(o) = [ s =[ fans

o7

and



The x-Hodge operator x : Q (M) — Q (M) is defined point by point
* () (7) = *4 (0a)

and we have
({o, B)) = ((a, %B))
The tensor ((,)) induces a 2-tensor in cohomology
(D) HE (M) B (1) — R
which in the middle degree
() HY (M) x H” (M) — R

is symmetric. The dimension dim H (A) is finite (Kubarski, Mishchenko, 2003).
The signature of ({, >)i7£ can be calculated as the index of the Hirzebruch oper-
ator

Dy =ds+dy Wy —W_
where d is adjoint to da with respect to the scalar product ((,)). We recall
that Wy ={a € Q(A); Ta = ta}, for

(b)) = (1) (=1) x (uh)
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Example 32 Lusztig (1971) [L], Gromov (1995) [G] . Signature for
flat bundles. Let M be a compact oriented N = 4p-dimensional manifold
and E — M a flat bundle equipped with a flat covariant derivative V and
nondegenerated indefinite symmetric tensor

G=()y:ExE—-MxR, (,),:E;xE;, —R,

constant for V, i.e. satisfying Ox (o,1), = (Vxo,n), + (0, Vxn),-

Wk =Qk(M;E),

the differential operator dy : W* — WH*L defined standartly via V. From
VG =0 we have

d (o Ag B) = dva A B+ (=1) (a Ag dy3)
therefore if |a| + |3 = N — 1 then

/ (dv()é) Na ﬁ = — (—1)'04 / a Ng dvﬁ (1)
M M
Define the duality

Ua, BV o WExWNF SR
(o, B = /Mom(;ﬁ.
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and we see that
((dva, B)) = (1) ({a,dB))

is fulfilled. Since G is symmetric we have
aNg B = (—1)k(N7k) B NG Q0
and
k _
(fo ) = [ anas=(- /mga
= (=D (g™ )" (8™
\V-’

€k

The tensor is symmetric in the middle degree
()T WX WP SR, (a,8) — [ ancp.
M

(o, B)) = (=17 ({8, )™ = ((B, )

We find a scalar product ((,)) in W* for which the x-Hodge operator for
(W, {(,)),((,))) is an isometry. To this aim we fix some positive definite scalar
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product (,)" on E. Then we take a unique splitting E = E, ® E_ which is both
(,)o and (,) orthogonal and such that (,), on E, is positive and (), on E_
is negative. We denote by T the involution 7 : E — E (1* = id ) such that
T|E, =1id, T|E_ = —id. Then, the quadratic form

(v,w) = (v, Tw),

1s symmetric positive definite. The involution T s the x-Hodge operator in
(Exa (7 )Ox ) (7 )x) 5 1.€.

(v,w), = (v, TwW) ,

and 1s an isometry

(Tv,Tw) = (TU,T2U])0 = (1v,w), = (v, V), = (w,v).

Therefore (Ey, (,)os+ (+),) i a Hodge-space.

In each fibre N TiM Q) E, we introduce the tensor product of Hodge-spaces:
the classical one \'T;M and the above E,.
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Point by point we obtain tensors
() QM E) x Q(M; E) — C™ (M),
() : QM; E) x Q(M; E) — C% (M),
x: Q(M;E)— Q(M;E)
(o, B) = (a, %)
and integrating along M we obtain a Hodge-space (2 (M; E),{(,)),((,))) where

(s = [ tapir=[ ancs.
(@) = [ g

and

{{a, ) = (@, %)) -
Let d% be the adjoint operator to dy with respect to ((,)). The tensor ((,))
induce a 2-tensor in cohomology ({,))g : H* (M) x HN=% (M) — R which in
the middle degree

((,))a: H? (M; E) x H? (M; E) — R
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is symmetric and the signature of it is the index of the Hirzebruch operator
D+:dv+d*V:W+—>Wf

where Wy = {a € Q(M; E); Ta = ta} for

E(k+1)

() =(=1)" 2 (1)« (a").

Example 33 Gromov (1995) [G]. Let M be a compact oriented manifold
M of the dimension dimM = N = 4p + 2 and let E — M be a symplectic
vector bundle equipped with a flat covatiant derivative V and parallel symplectic
structure S = (,) : EXE — M xR, (,) : E, x E, =R, VG =0.

Wk =QF(M;E),

dy : WF — WHk*L _ the differential operator defined via V.

The condition

/M (dva) As B = — (~1) / o A dyf. 2)

M

holds for |a| +|B] = N — 1.
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(o, BYYF - WF x WN=F L R s defined by
ko
(o) = [ anss
and ({dya, B)) = (=1)*"' ({ar, dB)) is fulfilled. Since S is skewsymmetric, then
aNg 5 = — (—1)k(N_k) ﬁ Ng @
and

<<a7ﬂ>>k:/1\‘/104/\6'6:_ - /ﬂ/\sa
= — (=)™ (B, a)N" (B, a)N™

€k

= (_1>k (_1)% <<5,04>>N_k /% =2p+1 is odd

We find a scalar product ((,)) in W* for which (W,{(,)),((,))) is a Hodge

space.
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o There exists an anti-involution T in E, 7> = —7 (i.e. a complex struc-
ture)such that
(1) {Tv,7w) = (v, W), v,w € Fy,
(2) (v, 7v) >0 dla v # 0.

Then the tensor (v,w) := (v,Tw) is symmetric and positive defined and
(v, 7w) = (v,w), i.e. T preserves both forms (,) and (,). The operator —T is
the x-Hodge operator in (E,,(,),,(,),) since

(v,w) = <v, —72w> = (v, 7 (—7Tw)) = (v, —TW),

and —7 is an isometry (tv,Tw) = (v,w) to (—Tv, —TwW) = (v,w). In conse-
quence, the system (E,,(,),.(,),) is a Hodge-space.

At each point x € M we take the tensor product NT:M Q) E,. of the clas-
sical Hodge space \T:M and the above E,. The remaining procedure as in
the above example to obtain a Hodge-space (2 (M;E),{(,)),((,))), with the
x-Hodge operator *: Q (M) — Q (M), x (a) (x) = *, (o) , and

{(a, ) = ((a,%5)) .
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We obtain in cohomology ({,))g : H* (M) x HY =% (M) — R,

<<a,6>>’“=/MozAGﬁ=—<—1)‘“<N““>/ B Ag

M

— (=) (B, )N = = (=) (B, )™
———
Ek
which in the middle degree 2p + 1 is symmetric (thanks to the fact that (,) is
skewsymmetric)

(g™ BT (M B) x B (MG E) — R

(o, )7 = = (1) ((B,a))™ = ((B,))"" .

We can calculate the signature of ((,))3*" as the index of the Hirzebruch

operator Dy = dy +d& : Wy — W_ where Wy ={a € Q(M; E); Ta = ta},
for

(0F) = (=1)" 7 (1P (ah) |
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Example 34 In consequence, for a transitive invariantly oriented Lie alge-
broid A over a compact oriented manifold M and the Atiyah sequence

0—g—ASTM 0,

m=dimM, n=rankg=dimg,,
and under the assumption H™ " (A) # 0 and
m—+n=4p

we have two signature Hirzebruch operators.
(I) The first one. Dy = da+d}y : Q(A), — Q(A)_ where d}y is adjoint to
d 4 with respect to the scalar product ((ov, B)) = [, («, B) defined in the example

2 above, and Wy = {a € Q(A); Ta = *a}, for 7 (a*) = (—l)k(kgl) (—1)" -
x (o).
(II) The second one. We use the equality
Sign H (A) = Sign F,
for the second term FEy of the Hochschild-Serr spectral sequence

E3* = Hg, (M;H' (g)).
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The flat covariant derivative V? in the cohomology vector bundle H?(g) de-
pends on the Lie algebroid A.
Let m +n = 4p. The signature Sign Fy is equal to the signature of the
quadratic form
EY x By — By =R,

and
a) if n is odd then Sign Ey = 0,

b) if n is even then

Consider the form ((,)) : Hgy (M;Hz2 (g9)) x Hgy (M;H:? (9)) — R,

(0" HEy (M;HE (9)) x HZN (M HE (9)) — Hy. (M;H” (g)) = R,

I3

and its signature is equal to
) is trivial, H" (9) = M x R,

which is symmetric in the middle degree k =
the signature of A. For k = n, the bundle H" (

Qw
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the connection V" is equal to 0, and the multiplication of values is with respect
to (,):H2 (g) x H2 (g) — H" (g) = M x R.

We have 5 + 5 = 2p. We need to consider two different cases:

(a) 3 and § even, then the form

2
H: (g) x H? (g) — H"(g) = M xR
1s symmetric and we can use the Fxample 3 above to give a Hirzebruch signa-
ture operator Dy = dgy + d*V% (0 (M; H: (g)) — Q_ (M; H: (g)) ,
(b) 2 and 2 are odd, then the form Hz (g) x H2 (g) —» H" (g) = M x R

1s symplectic and we can use the Example 4 to give a Hirzebruch signature
operator.

Remark 35 In all four examples W = In A @ (Im A)* for A = (d + d*)?,
thanks to this
kerA =kerD=H = H (W)

and

Ind D, = Sig W.

It follows, for example, from the fact that A = dd* + d*d are self-dual elliptic
operators.
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