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1 Preliminaries: foliated manifolds

Assume g : M ! M 0 is a smooth mapping between
paracompact Hausdor¤ manifolds and let �0 ! M 0 be a
vector bundle. Then the C1 (M 0)-module � (�0) is pro-
jective and �nitelly generated.
(1) Take a pullback g��0 !M

g��0 ! �0

# #
g :M ! M 0

and recall that

� (g��0)
� ��= C1 (M)
C1(M 0) � (�

0)

� (h
 � 0) (p) = h (p) � � 0 (g (p)) :
(2) For any linear homomorphism of vector bundles G :
� ! �0 over g :M !M 0

� ! �0

# #
g :M ! M 0

there exists a strong linear homomorphism ~G : � ! g��0

(i.e. over the identity id : M ! M ) such that for the
canonical one g��0 ! �0 we have the composition

G : �
~G! g��0 ! �0

# # #
M = M ! M 0:

Considering ~G on cross-sections,
~G : � (�)! � (g��0) = C1 (M)
C1(M 0) � (�

0)
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we see that for � 2 � (�) there exists some functions
ai 2 C1 (M) and cross-sections � 0i 2 � (�0) such that

~G (�) =
X
i

ai 
 � 0i:

(3) As the example consider the linear homomorphism:
the di¤erential of the mapping g

g� = dg : TM ! TM 0;

dg (Xp)! Tg(p)M
0;

dg (Xp) (�
0) = Xp (�

0 � g) ;

and the induced strong linear homomorphismfdg : TM ! g� (TM 0) :

We recall also that a vector �eld X 2 � (TM) = X (M)
is the same as a di¤erential of the algebra C1 (M)

X : C1 (M)! C1 (M) ; � 7�! X (�) ;

and
� (TM)! Der (C1 (M))

is an isomorphism of R-Lie algebras.
Analogously, a cross-section of g� (TM 0) is the same

as a di¤erential of the algebra C1 (M 0) in C1 (M) ;

� (g�TM 0)! Der (C1 (M 0) ; C1 (M)) ;

Y 0 7�! (�0 7�! Y 0�0)

where for Y 0 2 � (g�TM 0) and p 2M; Y 0 (p) 2 Tg(p)M 0:
In conclusion,fdg (X)p =fdg (Xp) 2 Tg(p)M 0
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and fdg (X) (�) = X (�0 � g) :
(4) The classical Frobenius Theorem say:
� If F � TM is a vector subbundle of the tangent

bundle, then the conditions are equivalent:
� F is a foliation, i.e. through any point p 2 M

pass an integral, i.e. immersed submanifold L ,! M
such that TqL = Fq; q 2 L;

� the the C1 (M)-module of cross-section � (F )
is involutive, i.e. [X; Y ] 2 � (F ) for X; Y 2 � (F ) ; in
other words, � (F ) � � (TM) = X (M) is a Lie subalge-
bra of the Lie algebra of vector �elds on M:
Clearly,

� Q := TM=F is a vector bundle, therefore the quo-
tient module

� (Q) = X (M) =� (F )

is projective and �nitely generated.

� F is a a direct summand in TM; therefore the same
holds for the module of tangent vector �elds fo F;
i.e.
� � (F ) is a direct summand in � (TM) = X (M) =
Der (C1 (M)) :

Proposition 1.1 Let g :M !M 0 be a smooth mapping, dg :
TM ! TM 0 andfdg : TM ! g� (TM 0) the induced linear
homomorphims. Take regular foliations F � TM and
F 0 � TM 0 on M and M 0 respectively. The conditions
are equivalent:
(a) dg [F ] � F 0 (we say that then g is a homomor-

phism of foliated manifolds and write g : (M;F ) !
(M 0; F 0) ),
(b) if L ,!M is an integral of F then g [L] is contained

in some integral of F 0;
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(c) fdg [F ] � g� [F 0] (i.e. g determines a strong linear
homomorphism of vector bundles fdg : F ! g� [F 0]),
(d) the strong linear homomorphismfdg : TM ! g� (TM 0)

has the property: for X 2 � (F ) the exists a natural
number s and functions ai 2 C1 (M) and vector �leds
X 0i 2 � (F 0) ; i = 1; 2; :::; s; such that

fdg (X) = sX
i=1

ai 
X 0i;

(equivalently

X (g��0) =

sX
i=1

ai � g�
�
X 0i (a0)

�
for �0 2 C1 (M 0) ;

where g� : C1 (M 0) ! C1 (M) ; �0 7�! �0 � g; is the
induced homomorphism of algebras).
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2 Foliated commutative algebras and examples

2.1 Foliated commutative algebras
The above yields the natural generalizations of a foliation
in arbitrary commutative algebras.
Assume

� R is commutative unital ring (mainly a �eld),

� (A; �) is an unital associative commutativeR-algebra,
i.e. an R-module A together with a R-bilinear map-
ping (called product)

� : A� A! A;

ful�lling the axiom of the associativity (u � v) � w =
u � (v � w) and there exists an unit 1A 2 A (1A � u =
u � 1A = u ). The set of derivations of the algebra
A is denoted by Der (A). It is a A-module and an
R-Lie algebra.

De�nition 2.1 By an [algebraic] foliation in A we mean a
subspace

F � Der (A)
such that
� F is an A-submodule, and
� F is an R-Lie subalgebra.
The foliation is called regular if the quotient A-module

Der (A) =F is projective and �nitely generated and F is
a direct summand in Der (A) :
The pair (A;F ) is then called a foliated commutative

algebra.

To determine the category of commutative foliated al-
gebras we must de�ne a notion of the morphism of fo-
liated algebras. Let A and A0 be two R-algebras and
f : A0 ! A any homomorphism of algebras. Then A can
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be considered usually as the A0-module with respect to
the action

A0 � A! A; (a0; a) 7! f (a0) � a:
Clearly, A is a symmetric A0-bimodule.

De�nition 2.2 Let (A;F ) and (A0; F 0) be two foliated com-
mutative algebras. By a homomorphism

g : (A;F )! (A0; F 0)

between them we mean a homomorphism g� : A0 ! A of
algebras such that for each derivation X 2 F there exist
s 2 N and alements ai 2 A and derivations X 0i 2 F 0;
i = 1; :::; s; such that

X (g��0) =
Xn

i=1
ai � g�

�
X 0i (�0)

�
; �0 2 A0:

If g : (A;F ) ! (A0; F 0) and h : (A0; F 0) ! (A00; F 00)
are homomorphisms of foliated algebras then their su-
perposition g � h : (A;F )! (A00; F 00) ;

(g � h)� = g� � h� : A00 h
�
! A0

g�! A

is also a homomorphism of foliated algebras.

2.2 Lie-Rinehart algebras - the important source
of foliated commutative algebras

The fundamental source of foliated commutative alge-
bras yields Lie-Rinehart algebras: the image of the so
called anchor in this algebras is foliated commutative al-
gebra.

De�nition 2.3 By an R-Lie Rinehart algebra [ H], [ R] over
a commutative R-algebra A we mean a triple

(L; [[�; �]];#L)
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such that the 2-R-linear tensor

[[�; �]] : L� L! L

gives a structure of a R-Lie algebra in L; and

#L : L! Der (A)

is a A-linear homomorphism of R-Lie algebras ful�lling
the Leibniz axiom:

[[x; a � y]] = a � [[x; y]] + #L (a) � y; a 2 A; x; y 2 L:
Then, sometimes the pair (L; [[�; �]];#L) is called a (R;A)-
Lie-Rinehart algebra.

If (L; [[�; �]];#L) is a Lie-Rinehart algebra, then

ker#L � L

and
Im#L � Der (A)

possesses natural structure of Lie-Rinehart algebras and

0! ker#L ! L! Im#L ! 0

is the short sequence of Lie-Rinehart algebras,

� ker#L � A is a A-Lie algebra with 0 as the anchor
and,

� Im#L is a Lie-Rinehart algebra with the inclusion
Im#L ,! Der (A) as the anchor.

Lie-Rinehart algebras are algebraic equivalence to dif-
ferential object for manifolds, called Lie algebroids (Jean
Pradines, 1966).

De�nition 2.4 By a Lie algebroid we mean a system (E; [[�; �]];#E)
for which E is a vector bundle onM; the module (� (E) ; [[�; �]])
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of global cross-sections of E is an R-Lie algebra, #E :
E ! TM is a linear homomorphism of vector bundles
(called the anchor ) ful�lling the Leibniz axiom

[[x; f �y]] = f �[[x; y]]+#E (x) (f)�y; f 2 C1 (M) ; x; y 2 � (E) :
If (E; [[�; �]];#E) is a Lie algebroid then the C1 (M)-

module � (E) of global cross-sections forms a Lie-Rinehart
algebra.
There are many di¤erential categories from which act

the so-called "Lie Functor" to the category of Lie alge-
broids (and next to the category of Lie-Rinehart alge-
bras)
�principal �bre bundles (Atiyah, Pradines),
�vector bundles,
�di¤erential groupoids (Libermann, Pradines),
�transverselly complete foliations (Molino),
�nonclosed Lie subgroups,
�Poisson manifolds (Coste, Dazord, Weinstein),
�Jacobi manifolds,
�etc.
Lie-Rinehart algebras appeared considerably earlier than

Lie algebroids (see [ M2, p. 100]),

� �rst in 1953 (Herz) under the name of pseudo-algèbre
de Lie.

Next they appeared independently more then ten times
under di¤erent names, for example:

� regular restricted Lie algebra extension (Hochschild,
1955),

� Lie d-ring (Palais, 1961),

� (R;C)-Lie algebra (Rinehart, 1963),

� Lie algebra with an associated module structure (Her-
mann, 1967),

� Lie module (Nelson, 1967),
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� (A; C)-system (Ne�eman, 1971; Kostant and Stern-
berg, 1990),

� sheaf of twisted Lie algebras (Kamber and Tondeur,
1971),

� algèbre de Lie sur C=R (Illusie, 1972),

� Lie algebra extension (Teleman, 1972),

� Lie-Cartan pairs (Kastler and Stora, 1985),

� Atiyah algebras (Beilinson and Schechtmann, 1988;
Manin, 1988) and

� di¤erential Lie algebra (Kosmann-Schwarzbach and
Magri, 1990).

We prefer Lie-Rinehart algebra according to:

� J. Huebschmann [ H], Poisson cohomology and quan-
tization, J. für die Reine und Angew. Math. 408
(1990), 57-113. 9.

Remark 2.5 Let (A;L;#L) be a Lie-Rinehart algebra with
the anchor

#L : L! Der (A) :

Since by de�nition that the anchor #L ia an A-linear
homomorphism of R-Lie algebras we obtain:
�the image of the anchor

Im#L � Der (A)
is a foliation in A called characteristic for the Lie-

Rinehart algebra L: This foliation is irregular, in general.

Now we give some very important algebraic categories
fromwhich act Lie Functor to the category of Lie-Rinehart
algebras.
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2.2.1 Covariant operators

As a preliminary take a vector bundle � over a manifold
M and arbitrary covariant derivative rX�; X 2 X (M) ;
� 2 � (�) : The operator

rX : � (�)! � (�)

is a covariant di¤erential operator with the anchorX; i.e.
for any smooth function f 2 C1 (M) and a cross-section
� 2 � (�) we have

rX (f � �) = f � rX (�) +X (f) � �:
Denote by CDO (�) the space of all covariant di¤erential
operators.

� It is a Lie algebra with the canonical structure bracket

[D;D0] = D �D0 �D0 �D
of the di¤erential operators,

� and let # : CDO (�) ! X (M) denote the map-
ping (homomorphism of C1 (M)-modules and R-Lie
algebras) whose assign the anchor to any covariant
di¤erential operator.

� Clearly, CDO (�) forms a Lie-Rinehart algebra over
the algebra C1 (M).
� Additionally, there exists a vector bundle A (�) such

that
� (A (�)) = CDO (�) ;

the anchor determines a linear surjective homomorphism
#� : A (�)! TM;
� and A (�) is then a Lie algebroid.
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� A covariant derivative r is exactly the same as the
splitting of the sequence

0! End (�)! A (�) !
 �
r

TM ! 0

The important generalization of the Lie-Rinehart al-
gebra CDO (�) is as follows:

De�nition 2.6 For arbitrary A-module M a R-linear oper-
ator D : M ! M is called a covariant operator if there
exists a di¤erential � 2 Der (A) such that

D (a �m) = a �D (m) + � (a) �m; a 2 A; m 2M:
� The di¤erental � is called the anchor of D:
� The set of all covariant operators is denoted by

CO (M) :

� It is A-module and R-Lie algebra under the bracket

[D1; D2] = D1 �D2 �D2 �D1;
D1; D2 2 CO (M).
� If D1; D2 2 CO (M) possesses �1 and �2 as anchors

then [D1; D2] is a covariant operator with [�1; �2] as the
anchor.
Under the assumption that the representation

� : A! EndR (M) ;

a 7�! (m 7�! a �m)

is faithfull, i.e. � is a monomorphism, than the anchor �
of any covariant operator D is uniquely determined. In
this assumption we have a correctly de�ned homomor-
phism

#M : CO (M)! Der (A) ;

#M (D) = anchor of D;
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which is a homomorphism od R-Lie algebras and is A-
linear. Clearly

ker#M = EndA (M) :

� The moduleCO (M) becomes a Lie-Rinehart algebra
over A:

By a covariant derivative in M we mean a R-linear
operator r : Der (A)! CO (M) such that #M �r = id;
i.e. the splitting of the sequence

0! EndA (M)! CO (M) !
 �
r

Der (A)! 0:

Theorem 2.7 If M is a projective A-module then there ex-
ists a covariant derivative in M , in consequence, the se-
quence

0! EndA (M)! CO (M) �! Der (A)! 0

is exact.
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2.2.2 Poisson algebra

De�nition 2.8 By a Poisson algebra we mean a pair (A; f�; �g) ;
where A is an R-algebra equipped with an R-Lie algebra
structure

f�; �g : A� A! A

such that for any a 2 A the mapping

fa; �g : A! A

is a di¤erential of the algebra,

fa; �g 2 Der (A) ;

i.e.
fa; bcg = fa; bg c+ b fa; cg :

The di¤erental fa; �g is denoted by Xa and it is called the
Hamiltonian of a:

Remark 2.9 The A-module generated by Hamiltonians forms
a foliation in A:

Example 2.10 AmanifoldM equipped with the Poisson struc-
ture in the algebra C1 (M) is called a Poisson manifold.
In the space of 1-forms (i.e. cross sections of the cotan-
gent bundle T �M ) there exists a structure od Lie alge-
broid given by the Lie algebra structure

[[�; �]] : 
1 (M)� 
1 (M)! 
1 (M)

determined uniquely by demanding that

[[df; dg]] = d ff; gg ; f; g 2 C1 (M)

and the anchor

# : T �M ! TM
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such that
#(df) = Xf :

How can we de�ne objects analogous to 1-forms and
its bracket [[�; �]] for arbitrary Poisson algebra?
It is appeared that the module 
1AjR of Kähler di¤er-

entiations is suitable.
We recall that by the Kähler module of di¤erentia-

tions of an R-algebra A we mean an A-bimodule 
1AjR
generated by formal set

fda; a 2 Ag

quotient by elements

d (ea+ sb)� rda� sdb;
d (ab)� a (db)� (da) b;

a; b 2 A; r; s 2 R:
We can prove that

d : A! 
1AjR; a 7�! da;

is a universal di¤erentiation, i.e. for any di¤erential � :
A!M of the algebra A in an A-bimoduleN there exists
exactly one A-linear mapping �� : 
1AjR ! N such that
�� � � = d

A
d�! 
1AjR

� & #
N

In conclusion (J.L. Loday [ L], Cyclic Homology, 1992)

Der (A;N) = HomA

�

1AjR; N

�
:

Using N = A and knowing that projective and �nitely
generated module is re�exive, we see that
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� if 
1A0jR is projective and �nitely generated module,
than:

Der (A)� = HomA(HomA(

1
AjR; A); A)

�= 
1AjR:

� Therefore, 
1C1(P )jR performs the same role as the
module of 1-forms on a smooth paracompact mani-
fold P because we have:


1C1(P )jR
�= Der (C1 (P ))� = � (T �P ) :

For an arbitrary Poisson algebra (A; f�; �g) we de�ne a
2-linear and alternating tensor

� : 
1AjR � 
1AjR ! A;

� (a (du) ; b (dv)) = ab fu; vg :
� gives the anchor

�# : 
1AjR ! HomA(

1
AjR; A) = Der (A)

whereas the mapping

[�; �] : 
1AjR � 
1AjR ! 
1AjR

de�ned by

[a (du) ; b (dv)] = a fu; bg dv+ b fa; vg du+ abd fu; vg ;
a; b; u; v 2 A; introduce a structure of R-Lie algebra in
A-module 
1AjR.

Theorem 2.11 J. Huebschmann [ H], 1990. The system�

1AjR; [�; �] ; �#

�
is a Lie-Rinehart algebra over A:
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2.3 Nonstrong homomorphisms of Lie-Rinehart
algebras

The characteristic homomorphisms de�ned below are nat-
ural with respect to nonstrong homomorphisms of Lie-
Rinehart algebras. They generalize the notion of the
homomorphisms between foliated commutative algebras.
On the other hand, there is a simple notion of the homo-
morphism� : G! G0 between two di¤erential groupoids
over a mapping f : M ! M 0 of the manifolds of units:
� must commute with the source, the tangent and must
keep the multiplication. Passing to the Lie algebroids
(the associated in�nitesimal obiects) we obtain a notion
of a nonstrong homomorphism of Lie algebroids.
If (L; [[�; �]];#L) is aR-Lie-Rinehart algebra over a com-

mutative R-algebra A then Im#L � Der (A) is of course
a foliation of the R-algebra A: By a strong homomor-
phism of (R;A)-Lie-Rinehart algebras H : (L;#L) !
(L0;#L0) we mean an A-linear homomorphism H : L !
L0 such that F is a homomorphism of R-Lie algebras and
commutes with the anchors #L0 � H = #L: One of the
sources of Lie-Rinehart algebras are Lie algebroids over
foliated manifolds. For regular Lie algebroids there is
an important notion of a nonstrong homomorphism [ K]
(see also [ M1], [ M2], [ H-M1]): if L and L0 are regular
Lie algebroids over foliated manifolds (N;F ) and (N 0; F 0)
with anchors #L : L ! F and #L0 : L0 ! F 0, respec-
tively, than the pair (H; f) when f : (N;F ) ! (N 0F 0)
is a morphism of foliated manifolds and H : L! L0 is a
linear homomorphism of vector bundles over f; is called a
homomorphism of Lie algebroids if (1) #L0 �H = f��#L;
(2) for arbitrary cross-sections �; �0 2 � (L) with H-
decomposition

H � � =
X
i

hi �
�
�0i � f

�
; H � � =

X
j

gj �
�
�0j � f

�
;
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hi; gj 2 C1 (N) ; �0i; � 0j 2 � (L0) we have

H � [[�; �0]]
=
X

i;j
hi � gj � [[�0i; � 0j]] � f +

X
i
(#L � �)

�
gj
�
� � 0j � f

�
X

j
(#L � �0)

�
hi
�
� �0i � f:

Nonstrong homomorphism of Lie algebroids over a mor-
phism f : (N;F ) ! (N 0F 0) of foliated manifolds can
be equivalently de�ned as a strong homomorphism �F :

L!f^L0 of Lie algebroids over (N;F ) ; where f^L0 is
the inverse image of L0 via f: The Lie algebroid f^L0 is
a vector subbundle of F

L
f �L0

f^L0 = f(v; w) ; f� (v) = #L0 (w)g

with the projection onto the �rst factor as the anchor and
the structure of a Lie algebra in � (f^L0) de�ned in such a
way that for ~�i =

P
j g
j
i ��

j
i �f 2 � (f �L0) and Xi 2 � (F )

ful�lled conditions f� (Xi (x)) =
P

j g
j
i (x) �0(�

j
i (f (x))),

x 2 N; we have:

[[(X1; ~�1); (X2; ~�2)]]

= ([X1; X2] ;
X

i;j
gi1 � g

j
2 � [[�0i1 ; �

0j
2 ]] � f +

X
j
X1(g

j
2) � �

0j
2 � f

�
X

i
X2(g

i
1) � �0i1 � �f):

Now we complete the category of R-Lie-Rinehart alge-
bras towards nonstrong homomorphisms over homomor-
phisms of foliated algebras. For slightly di¤erent no-
tion of a comorphism (not using foliated algebras) see
[ H-M2].
Let (L;#L) and (L0;#L0) be two R-Lie-Rinehart al-

gebras over R-algebras A and A0: respectively, and let
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f : (A; Im#L) ! (A0; Im#L0) be a homomorphism of
foliated algebras.
We construct the inverse-image f^L0 as aA-submodule

f^L0 � F
M

(A
O

A0
L0)

with a suitable structures. In this purpose take a homo-
morphism of A-modules

'0 : A
O0

A0
L
id
#L0�! A

O
A0
Im#L0

'�! Der (A0; A)

where ' is de�ned via

' : A
O

A0
Im#L0 �! Der (A0; A) ; h
X 0 7�! h�f�X 0:

We put

f^L0 =
n
(X;�) 2 Im#L

M
(A
O

A0
L0); X � f = '0 (�)

o
:

Clearly, f^L0 is an A-submodule and the projection on
the �rst factor is a surjection. The R-Lie bracket in f^L0

is introduced in the following way:

[[(X1; �1) ; (X2; �2)]]

= ([X1; X2] ;X
i;j
hi � gj 
 [[�0i; �0j]] +

X
j
X1(g

j)
 �0j �
X

i
X2(h

i)
 �0i)

for �1 =
P
hi 
 �0i and �2 =

P
gj 
 �0j; hi; gj 2 A and

�0i; �0j 2 L0: We check the correctness of the de�nition,
i.e. the independence of the choice of representations of
�1 and �2 , analogously to the situation considered in the
previous section using the R-2-linear homomorphism

G0 : A� L0 �! A
O

A0
L0;

(g; �0) 7�!
X

ih
i � g 
 [[�0i; �]] +X1 (g)
 �:
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and checking the conditionG0 (g � f (a0) ; �) = G0 (g; a0 � �)
for a0 2 A0 (this condition easily follows from the equality
X1�f = '0 (�1), i.e. fromX1 (fa0) =

P
hi�f

�
!0
�
�0i
�
(a0)

�
:

Therefore. there exists an R-linear homomorphism ~G0 :

A
N

A0 L
0 ! A

N
A0 L

0 such that ~G0 (g 
 �0) = G0 (g; �)

and

~G0 (�2) =
X

i;j
hi � gj 
 [[�0i; �0j]] +

X
j
X1
�
gj
�

 �0j:

The veri�cation of the Jacobi identity is left to the reader.
It remains to check the properties of the anchor de�ned
as the projection onto the �rst factor, but its A-linearity
and the fact that it is a homomorphism of R-Lie algebras
is evident as well as the equality

[[(X1; �1) ; ��(X2; �2)]] = a�[[(X1; �1) ; (X2; �2)]]+X1 (a)�(X2; �2) :

De�nition 2.12 By a homomorphismH : (L;#L)! (L0;#L0)

of R-Lie-Rinehart algebras over a homomorphism of fo-
liated algebras f : (A; Im#L) ! (A0; Im#L0) we mean
a strong homomorphism of (R;A)-Lie-Rinehart algebras
H : L ! f^L0; i.e. A-linear homomorphism of R-Lie
algebras such that pr1 � H = #L: This means, that if
H (�) =

�
#L (�) ;

P
hi 
 �0i

�
then #L (�)�f =

P
hi �f �

#L0
�
�0i
�
and if additionallyH (�) =

�
#L (�) ;

P
gj 
 �0j

�
than

H ([[�; �]])

= ([#L�;#L�] ;
X

i;j
higj 
 [[�0i; �0j]] +

X
j
#L (�)

�
gj
�

 �0j

�
X

i
#L (�)

�
hi
�

 �0i):
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2.4 Integrals and open problems
Preliminary from classical di¤erential geometry.
A smooth mapping g :M !M 0 between manifolds is

called immersion if for each point p 2M the di¤erential

g�p : TpM ! Tg(p)M
0

is a monomorphism.

� If g :M !M 0 is an immersion, then the pullback of
the smooth functions g� : C1 (M 0) ! C1 (M) has
the following property:

� for
X 2 X (M) = Der (C1 (M))

if
X � g� = 0 then X = 0:

Indeed, let X � g� = 0: Then for each point p 2 M
and a smooth function �0 2M 0

0 = (X � g�) (�0) (p) = X (�0 � g) (p) = Xp (�0 � g) = g�p (Xp) (�0) ;
0 = g�p (Xp)

therefore Xp = 0:

� The opposite does not hold; for example if g : R! R
is given by the formula g (t) = t3 then g is not an
immersion but the above condition is ful�lled.
� g ful�ling the previous condition will be called weak
immersion.

Lemma 2.13 g is immersion if and only if g is a weak im-
mersion and the image of the homomorphism ~g� : TM !
g� (TM 0) is a subbundle, i.e. for the modules of cross
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sections the image of the mapping

~g� : X (M) ! � (g�TM 0)

k k
Der (C1 (M)) ! Der (C1 (M 0) ; C1 (M))

X 7�! X � f

is a direct summand in Der (C1 (M 0) ; C1 (M)) :

Indeed, if the image of ~g� : TM ! g� (TM 0) is a sub-
bundle, then the kernel ker ~g� is also a subbundle. There-
fore, if g� (v) = 0 then there exists a vector �eld X such
that X 2 ker g�; i.e X � g� = 0; and Xp = v: From the
assumptions X = 0 so v = 0:

De�nition 2.14 A homomorphism of algebras f : A ! L

is called weak immersion if for an arbitrary derivation
X 2 Der (L) the following property holds

if X � f = 0 then X = 0;

i.e. if the homomorphism of L-modules

f� : Der (L) �! Der (A;L) ; X 7�! X � f;
is a monomorphism. A homomorphism f : A ! L is
called immersion if it is a weak immersion and the image
Im [f�] is a direct summand in Der (A;L) :

Proposition 2.15 Let f : A0 ! A and g : A ! B be two
immersions. Then the superposition g �f : A0 ! B is an
immersion provided that the modules of Kähler di¤eren-
tials 
1AjR and 


1
A0jR are projective and �nitely generated.

Now I would like to give a concept of the notion of the
integral of a foliation.

De�nition 2.16 Let (A;F ) be a foliated algebra. A homo-
morphism f : A ! L of algebras is called an integral of
F if
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� f is an immersion,

� f : (L;Der (L)) ! (A;F ) is a homomorphism of
foliated algebras.

LetX 2 Der (A) : Then F = LinA (X) := fa �X; a 2 Ag
is a foliation of A:

De�nition 2.17 Let X 2 Der (A) : By an integral algebra of
X we mean each triple

(A0; X 0; c)

consisting of an commutative algebra A0; a derivation
X 0 2 Der (A0) and an immersion c : A! A0 such that

(1) Der (A0) is a free A0-module with one generator X 0,

(2) c : (A0; LinA0 (X
0)) ! (A;F ) is a homomorphism of

foliated algebras such that

X 0 � c = c �X:
De�nition 2.18 A0 is called connected integral algebra if x =
0 or x = 1A is the unique solutions of the equation x2 =
x; x 2 A:
Problem 2.19 Existing of integral algebras is open. Also
any version of the Frobenius Theorem is not known.

In the case of algebras of smooth functions on mani-
folds the condition (1) corresponds to 1-dimensional man-
ifolds, whereas the condition (2) corresponds for a vector
�eld X on M , for the condition _c = X: The connect-
edness of A0 means precisely the connectedness of the
suitable manifold.
The problem of characterizing the injectivity of a smooth

mapping g : M ! M 0 of manifolds in the terms of ho-
momorphism of algebras

g� : C1 (M 0)! C1 (M 0)
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can be done in terms of reals spectrum Specr (C
1 (M))

of the algebras equipped with the Gelfand topology. In-
deed, for any paracompact manifoldM; we have an home-
omorphism

M �= Specr (C1 (M))
(see [N-G], Juan A. Navarro Gonzáles and Juan B. San-
cho de Salas, . C1-Di¤erentiable Spaces, Springer 2003).
Therefore, g is injective if and only if the induced ho-

momorphism

g� : Specr (C
1 (M 0))! Specr (C

1 (M))

is injective. Therefore we can post that for arbitrary R-
algebras A and A0 a homomorphism c : A! A0 is called
injective if the induced homomorphism of real spectrums
c� : Specr (A

0)! Specr (A) is injective.
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3 Characteristic classes associated with foliations

3.1 Primary characteristic classes
3.1.1 Lie-algebroid�s preliminary and a piece of

history
The ring of primary characteristic classes associated with
Lie-Rinehart algebra over algebraic foliation in an R-
algebra A generalizes the well known ring of primary
characteristic classes of principal �bre bundles or vector
bundles (generated by the Pontryagin or Chern classes).
These rings are images by the so-called Chern-Weil char-
acterisitic homomorphism.
In the language of Lie-Rinehart algebras it was �rstly

given by
� Nicolae Teleman, in 1972, A characteristic ring of

a Lie algebra extension, Accad. Naz. Lincei Rend. Cl.
Sci. Fis. Mat. Natur. 8 (1972), 498-506.
We must add that Teleman does not use the term "Lie-

Rinehart algebra" but "extension of Lie algebras".
He associated with a short exact sequence

e : 0 �! L0 �! L
��! L00 �! 0

of Lie-Rinehart algebras overR-algebraA; assuming that
there exists a splitting of this sequence

r : L00 ! L; � � r = idL00 ;

some characteristic homomorphism he: In particular this
concerns a sequence associative with one Lie-Rinehart
algebra

eL : 0! ker#L ! L! Im#L ! 0

(Im#L � Der (A) is an algebraic foliation in A). Tele-
man notice, that if the last sequence is associated with
the Lie algebroid of a principal �bre bundle P and

� the structure Lie group G of P is connected
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then the Chern-Weil homomorphism of eL and of P
are equivalent.
In the paper by J.K.
The Chern-Weil homomorphism of regular Lie alge-

broids, Publ. Dep. Math. Univ. Lyon 1, 1991.
it is proved that this hold without any assumptions

on structural Lie group G (we must only assume that P
is connected). The same results was repeated indepen-
dently by I. Belko in 1994.
The next step was to construction of the Chern-Weil

h(L;A) : I (A) �! H (L)

of the pair of of Lie algebroids (L;A) assuming that A is
regular over a foliation.
B. Balcerzak, J. Kubarski, W. Walas, Primary char-

acteristic homomorphism of pairs of Lie algebroids and
Mackenzie algebroid, Lie Algebroids and Related Topics
in Di¤erential Geometry, Banach Center Publications,
Volume 54, 71-97, IMPAN Warszawa 2001.
The Chern-Weil homomorphism h(L;A) of a pair (L;A)

h(L;A) : I (A) �! H (L)

is constructed by use the so-called L-connection in A, i.e
a linear homomorphism

r : L! A

commuting with the anchors

#A � r = #L:
The algebra I (A) (=domain of h(L;A) ) and the cohomol-
ogy algebra H (L) will be de�ned below in more general
algebraic context. We add only that for a regular foli-
ation F � TM (which is of course a Lie algebroid) the
cohomology algebra H (F ) is the cohomology of the tan-
gential di¤erential forms.
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The de�nition of L-connection in A covers
� usual and partial covariant derivatives in vector

bundles,
� usual and partial connections in principal bundles,
� connections in transitive or regular Lie algebroids,
� connections in extensions

e : 0! L0 ! A! L! 0

of Lie algebroids, in particular, complete di¤erentials
of higher order understood as the splittings of the jet-
bundles

0! Sk (TM; TM)! Jk (TM)! Jk�1 (TM)! 0;

� transversal connections in extensions of principal
�bre bundles,
� known in Poisson geometry covariant and contravari-

ant connections (the last are important also for Poisson
algebras).
The Chern-Weil homomorphism h(L;A) is trivial if there

exists a �at L-connection r : L! A in A; i.e. such that
r is a homomorphism of Lie algebras.
This approach generalizes the well known construc-

tions
� by Teleman 1972,
� Mackenzie 1988,
� Kubarski 1991,
� Vaisman 1994,
� Belko 1997,
� Moore and Schochet 1988,
� Huebschmann 1999,
� Itskov, Karasev and Vorobjev 1999,
� Fernandes (preprints 2000),
� Crainic (preprint 2001).
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The Chern-Weil homomorphism h(L;A) for a pair is
compared with the other Chern-Weil homomorphisms
hL, hA; and he in the case of an extension

e (�) : 0 �! L0 ! L
�! A �! 0

I(L) I(A)-�+� I(e(�))-j+�

H(F ) H(L):-

#]L

?
hA

?

he(�)hL
@
@
@
@R

hL;A
@
@
@
@R

(3.1)
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3.1.2 Primary characteristic classes for a pair of
Lie-Rinehart algebras

This part of my talk is based on the results by Witold
Walas (in printing) which is a generalization of the method
by Nicola Teleman (1972).
We �x two Lie-Rinehart algebras (L; [[�; �]];#L) ; (K; [[�; �]];#K)

over an R-algebra A: Let

g = ker#L:

The A-module g is also an A-Lie algebra.
A A-linear mapping

r : K ! L

compatible with the anchors

#L � r = #K
is called a K-connection in L: By the curvature of r we
mean an alternating 2-A-linear tensor 
r : K �K ! L;


r 2 Alt2A (K; g) de�ned by

r (x; y) = r[[x; y]]� [[rx;ry]]:

To any K-connection in L we associate standartly an
operator

dr : AltnA (K; g)! AltnA (K; g)

by the formula�
dr'

�
(x0; :::; xn) =

nX
i=0

(�1)i [[rxi; ' (x0; :::; x̂i; :::; xn)]]

+
X
i<j

(�1)i+j ' ([[xi; xj]]; x0; :::; x̂i; :::; x̂j; :::; xn) ;

' 2 AltnA (K; g) ; xi 2 K:
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Theorem 3.1 Bianchi identity

dr
�

r
�
= 0:

Remark 3.2 Since
�
dr
�2
' = (�1)n
r^'; then

�
dr
�2 6= 0;

in general.

Example 3.3 If r is �at, 
r = 0; then
�
dr
�2
= 0 and

the cohomology Hr (K;L) can be de�ned. In particular,
taking arbitrary Lie-Rinehart algebra K and

r = #K : K ! L := Im#K � Der (A) ;
we have �atness of r because the anchor #K is a homo-
morphism of Lie algebras. In this way, we have the usual
algebra of cohomology H (K) of a Lie-Rinehart algebra
K:

Considering CO (M) instead of L for any A-module
M we have a notion of K-covariant derivative

r : K ! CO (M)

assuming the axiom: the anchor of x 2 K is equal to
the anchor of rx: (We recall that for a covariant opera-
tor D 2 CO (M) its anchor is not uniquely determined
unless the assumption that the natural representation
� : A! EndR (M) is faithfull.
If r is here a homomorphism of Lie algebras, r is

called a representation, and the di¤erential and coho-
mology H (K;M) are de�ned.
An element m 2 M is called r-invariant if for each

x 2 K
rx (m) = 0

If K is projective then H (K;M) can be done via the
functor Ext (G.Rinehart 1963).
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Example 3.4 Adjoint representation. Let g = ker#K ;

then we have the adjoint representation

adK : K ! CO (g)

by
(adK)x = [[x; �]]:

A given representation r : K ! CO (M) determines
new one

Homkr : K ! CO
�
HomkA (M;A)

�
in the associated module HomkA (M ;A) by standard for-
mula�
Homkr

�
x
(') (m1; :::;mk)

= (#K) (x) (' (m1; :::;mk))�
kX
i=1

' (m1; :::;rxmi; :::;mk) ;

x 2 K; mi 2M; ' 2 HomkA (M;A) :
LetHomkA (M;A)I be the space of invariant tensors. Their
direct sum forms an algebra.
Now taking M := g = ker#K we consider symmetric

invariant tensors

Ik (g) :=
�
SymkA (g;A)

�
I
:

The direct sum

I (g) =
[k

Ik (g)

forms an algebra.
Let r : K ! L be any K-connection in L: We de�ne

a homomorphism of algebras

�r : I (g)! AltA (K;A)

�r (') = '
�

r; :::;
r

�
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where '
�

r; :::;
r

�
is the usual alternating multiplica-

tion of forms by using multilinear homomorphism ':

Theorem 3.5 (Witold Walas) The di¤erential forms from
the image of �r are closed and the induced homomor-
phism in cohomology

h : I (g)! H (K;A) ; ' 7�!
�
'
�

r; :::;
r

��
is independent on the chooice of the connection r:
The method of the independence on the connection

is analogous to the methods by Teleman but with some
strong modi�cation. The cause is as follows: the K-
connection in L do not possees a connection form which
was uses by Teleman for the connection in extensions.
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3.1.3 Exotic characteristic classes (sketch only)

The exotic (or secondary) characteristic classes compare
two di¤erential structures on a manifolds. For example:
a given �at or partially �at connection in a principal �-
bre bundle and a given reduction i.e. some its subbundle.
Among applications there are characteristic classes of a
foliation. There are many di¤erent algebraic generaliza-
tions of these characteristic classes. Mainly in the lan-
guage of Lie algebroids (Kubarski, Fernandes, Crainic)
and lastly for Lie-Rinehart algebras (B.Balcerzak).
The "�at" classes for principal �bre bundles were con-

sidered extensively by Kamber and Tondeur in 1973-76.
They have de�ned the characteristic homomorphism

�#P;P 0;! = �# : H
� (g; H) �! HdR (M) (3.2)

for a G-principal �bre bundle P , a �at connection ! in
P and an H-reduction P 0 � P (H � G is a closed Lie
subgroup of G). The domain H�(g; H) is the relative Lie
algebra cohomology.
The algebroids�generalization was done �rstly by Kubarski

a) for �at classes in:
� Algebroid nature of the characteristic classes of �at

bundles, in: Homotopy and Geometry, Banach Center
Publications, Volume 45, Institute of Mathematics, Pol-
ish Academy of Science, Warszawa 1998, pp. 199�224.
b) for partially �at in:
� The Weil algebra and the secondary characteristic

homomorphism of regular Lie algebroids, in: Lie Alge-
broids and Related Topics in Di¤erential Geometry, Ba-
nach Center Publications, Volume 54, Institute of Math-
ematics, Polish Academy of Science, Warszawa 2001, pp.
135�173.
Next, the generalization on Lie-Rinehart algebras was

given by B.Balcerzak (the paper is in preparation).
(A) In the context of "partially �at" characteristic
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classes a triple
(K;L;r)

is considered, where
� L � K are regular Lie algebroids over the same

foliated manifold, and
� r is a usual connection in K partially �at over

some subfoliation.
The classical �rst example is as follows:

� for arbitrary regular foliation F �M there exists the
Bott connection in the normal bundle Q = TM=F
which is �at over F:

� Now considering a Riemannian metric onM; we have
take the O (n) reduction of the frame bundle and

� post the question: Does this Bott connection is Rie-
mannian?, i.e. belongs to the geometry of this re-
duction?
� The exotic characteristic classes are measuring the
independence of these two di¤erential structures and
called characteristic classes of a foliation.

In algebraic context of an algebraic foliation F � Der (A)
we can also de�ne a Bott �at partial connection r in
M := Der (A) =F by the formula

rX �Y = [X; Y ]; X 2 F; Y 2 Der (A)
and �Y 2 Der (A) =F is corresponding elements in the
quotient. The construction of charactersistic classes in
this context is open.
(B) In the context of "�at" characteristic classes there

is constructed the secondary charactersistic homomor-
phism

�#K;L;r

of the triple
(K;L;r) ;
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where

� L � K are regular Lie algebroids over the same foli-
ated manifold and
� r : S ! K is a �at S-connection in K, S is an
arbitrary irregular (in general) Lie algebroid.

Remark 3.6 The particular case S = K and r = idK gives
rise to secondary characteristic homomorphism �#K;L of
Lie subalgebroid, L � K:

The characteristic homomorphism �#K;L;r is factor-
ized by �#K;L; i.e.

�#K;L;r = r# ��#K;L;
i.e. �#K;L ful�ls a fundamental universal role.
These exotic characteristic homomorphism is constructed

in the category of Lie-Rinehart algebras by Balcerzak.
This last can be used for a pair of Lie algebras (h; g) ; h �

g giving the well known Koszul homomorphism, as well
as for reductions of principal �bre bundles P 0 � P giving
a new characteristic homomorphism.
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