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1 Preliminaries: foliated manifolds

Assume g : M — M’ is a smooth mapping between
paracompact Hausdorff manifolds and let ¢ — M’ be a
vector bundle. Then the C'* (M’)-module I' (¢') is pro-
jective and finitelly generated.

(1) Take a pullback ¢*¢" — M

g — ¢
l l
g: M — M

and recall that
[ (g€') 2= C% (M) @c=y T (€)

p(h@)(p)="h(p) v (g([®)-

(2) For any linear homomorphism of vector bundles G :
E—&overg: M — M

{§ — ¢
| |
g: M — M

there exists a strong linear homomorphism G : £ — ¢*¢’
(i.e. over the identity id : M — M ) such that for the
canonical one ¢*¢' — & we have the composition

G: ¢ 5 g¢ - ¢
| ! |
M = M — M.
Considering G on cross-sections,

G:T(€) =T (g°¢) = C® (M) ®c(an T (€)



we see that for v € I'(£) there exists some functions
a' € C™ (M) and cross-sections v € T' (¢') such that

G(v) = Zai®u’i.

(3) As the example consider the linear homomorphism:
the differential of the mapping ¢

gy =dg: TM — TM,

dg (Xp) — Ty M,
dg (Xp) (@) = X, (o’ 0 g),
and the induced strong linear homomorphism
EZE :TM — g (TM').

We recall also that a vector field X € I'(TM) = X (M)
is the same as a differential of the algebra C'*>° (M)

X:C®°(M)—-C*(M), a— X(a),
and
['(TM) — Der (C*™ (M))
is an isomorphism of R-Lie algebras.

Analogously, a cross-section of ¢* (T'M') is the same
as a differential of the algebra C*° (M') in C* (M),

['(¢*TM") — Der (C*(M'),C*>*(M)),
Y — (o/ — Y/o/)
where for Y' € I' (¢*TM') and p € M, Y' (p) € Ty, M’
In conclusion,

—

ZZE (X), =dg(X,) € Ty M’
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and .
dg (X) (@) = X (a0 g).

(4) The classical Frobenius Theorem say:
— If ¥ C T'M is a vector subbundle of the tangent
bundle, then the conditions are equivalent:
— F'is a foliation, i.e. through any point p € M
pass an integral, i.e. immersed submanifold L — M
such that T,L = F}, q € L,

— the the C*° (M )-module of cross-section I' (F)
is involutive, i.e. [X,Y] € ['(F) for X,Y € I'(F), in
other words, I' (F)) C I' (T'M) = X (M) is a Lie subalge-
bra of the Lie algebra of vector fields on M.

Clearly,

e« Q := TM/F is a vector bundle, therefore the quo-
tient module

Q) =x (M) /T (F)

is projective and finitely generated.

e F'is a a direct summand in T'M, therefore the same
holds for the module of tangent vector fields fo F,
ie.

« ['(F) is a direct summand in I'(TM) = X (M) =
Der (C* (M)) .

Proposition 1.1 Let g : M — M ""be a smooth mapping, dg :
TM — TM" anddg : TM — g* (T'M") the induced linear
homomorphims. Take regular foliations F C T'M and

F' ¢ TM on M and M' respectively. The conditions
are equivalent:

(a) dg[F|] C F' (we say that then g is a homomor-
phism of foliated manifolds and write g : (M, F) —
(M F) )

(b) if L — M 1is an integral of F' then g [L] is contained
in some integral of F’,



(c) dg [F] C g*[F'] (i-e. g determines a strong linear
homomorphism of vector bundles dg : F — g* [F"]),

(d) the strong linear homomorphism@ :TM — g (TM')
has the property: for X € I'(F) the exists a natural

number s and functions o' € C* (M) and vector fileds
X"eT(F),i=1,2,..,s, such that

S
=1

(equivalently
Za% g (X" (d))  for o €C®(M),
1=1
where g* : C*°(M') — C* (M), o — o og, is the
induced homomorphism of algebras).



2 Foliated commutative algebras and examples

2.1 Foliated commutative algebras

The above yields the natural generalizations of a foliation
in arbitrary commutative algebras.
Assume

« R is commutative unital ring (mainly a field),

« (A, ) is an unital associative commutative R-algebra,
i.e. an R-module A together with a R-bilinear map-
ping (called product)

T AXA— A,

fulfilling the axiom of the associativity (u - v) - w =
u - (v-w) and there exists an unit 14 € A (14-u =
u-14 = u ). The set of derivations of the algebra
A is denoted by Der (A). It is a A-module and an
R-Lie algebra.

Definition 2.1 By an [algebraic/ foliation in A we mean a

subspace
F C Der (A)

such that
— F is an A-submodule, and

— F'is an R-Lie subalgebra.

The foliation is called reqular if the quotient A-module
Der (A) /F is projective and finitely generated and F is
a direct summand in Der (A) .

The pair (A, F) is then called a foliated commutative
algebra.

To determine the category of commutative foliated al-
gebras we must define a notion of the morphism of fo-
liated algebras. Let A and A’ be two R-algebras and
f: A" — A any homomorphism of algebras. Then A can



be considered usually as the A’-module with respect to
the action

A'xA— A (d,a)— f(d)a
Clearly, A is a symmetric A’-bimodule.

Definition 2.2 Let (A, ') and (A, F") be two foliated com-
mutative algebras. By a homomorphism

g: (A F)— (A, F)

between them we mean a homomorphism g*: A — A of
algebras such that for each derivation X € F there exist
s € N and alements a' € A and derivations X" € F',
1 =1,...,s, such that

* I\ __ n Tk I ! ! !
X (g a)—zizla g (X" (o), o/ € A
Ifg: (AF)— (A, F')and h : (A, F') — (A" F")
are homomorphisms of foliated algebras then their su-
perposition go h: (A, F) — (A", F"),
(goh)*:g*oh*:A”h—tA/g—iA
is also a homomorphism of foliated algebras.
2.2 Lie-Rinehart algebras - the important source
of foliated commutative algebras

The fundamental source of foliated commutative alge-
bras yields Lie-Rinehart algebras: the image of the so
called anchor in this algebras is foliated commutative al-
gebra.

Definition 2.3 By an R-Lie Rinehart algebra [ H], [ R] over
a commutative R-algebra A we mean a triple

(L7 [['7 ']]7 #L)

7



such that the 2-R-linear tensor
[,]:LxL—L

gives a structure of a R-Lie algebra in L, and
#p: L — Der(A)

15 a A-linear homomorphism of R-Lie algebras fulfilling
the Leibniz axiom:
[z,a-y] =a-[z,y] +#L(a) -y, a€ A, z,y€L.

Then, sometimes the pair (L, [-, ], #1) is called a (R, A)-
Lie- Rmehart algebra.

If (L,[-,-], #1) is a Lie-Rinehart algebra, then
ker#; C L

and
Im #j, C Der (A)

possesses natural structure of Lie-Rinehart algebras and

0 —ker#;, — L — Im+#; — 0
is the short sequence of Lie-Rinehart algebras,

e ker #; C A is a A-Lie algebra with 0 as the anchor
and,

o Im #; is a Lie-Rinehart algebra with the inclusion
Im #; — Der (A) as the anchor.

Lie-Rinehart algebras are algebraic equivalence to dif-
ferential object for manifolds, called Lie algebroids (Jean
Pradines, 1966).

Definition 2.4 By a Lie algebroid we mean a system (FE, [, -], #
for which E is a vector bundle on M, the module (I (E), [,
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of global cross-sections of E is an R-Lie algebra, #p :
E — TM s a linear homomorphism of vector bundles
(called the anchor ) fulfilling the Leibniz axiom

Hx7fy]] - fﬂxmy]H_#E (513) (f)ya f eC” (M)7 xr,y € F(E)

If (E,[-,-],#E) is a Lie algebroid then the C* (M)-
module I (E) of global cross-sections forms a Lie-Rinehart
algebra.

There are many differential categories from which act
the so-called "Lie Functor" to the category of Lie alge-
broids (and next to the category of Lie-Rinehart alge-
bras)

— principal fibre bundles (Atiyah, Pradines),

— vector bundles,

— differential groupoids (Libermann, Pradines),

— transverselly complete foliations (Molino),

— nonclosed Lie subgroups,

— Poisson manifolds (Coste, Dazord, Weinstein),

— Jacobi manifolds,
— etc.
Lie-Rinehart algebras appeared considerably earlier than

Lie algebroids (see [ M2, p. 100]),

o first in 1953 (Herz) under the name of pseudo-algébre
de Lie.

Next they appeared independently more then ten times
under different names, for example:

e reqular restricted Lie algebra extension (Hochschild,
1955),

e Lie d-ring (Palais, 1961),
e (R,C)-Lie algebra (Rinehart, 1963),

e Lie algebra with an associated module structure (Her-
mann, 1967),

e Lie module (Nelson, 1967),
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e (A,C)-system (Ne’eman, 1971; Kostant and Stern-
berg, 1990),

« sheaf of twisted Lie algebras (Kamber and Tondeur,
1971),

e algébre de Lie sur C'/R (Illusie, 1972),
e Lie algebra extension (Teleman, 1972),
o Lie-Cartan pairs (Kastler and Stora, 1985),

o Atiyah algebras (Beilinson and Schechtmann, 1988;
Manin, 1988) and

e differential Lie algebra (Kosmann-Schwarzbach and
Magri, 1990).

We prefer Lie-Rinehart algebra according to:

« J. Huebschmann | H], Poisson cohomology and quan-
tization, J. fiir die Reine und Angew. Math. 408
(1990), 57-113. 9.

Remark 2.5 Let (A, L, #1) be a Lie-Rinehart algebra with
the anchor
#r: L — Der(A).
Since by definition that the anchor #p ia an A-linear
homomorphism of R-Lie algebras we obtain:
— the image of the anchor

Im # C Der (A)

is a foliation in A called characteristic for the Lie-
Rinehart algebra L. This foliation is irreqular, in general.

Now we give some very important algebraic categories
from which act Lie Functor to the category of Lie-Rinehart
algebras.

10



2.2.1 Covariant operators

As a preliminary take a vector bundle £ over a manifold
M and arbitrary covariant derivative Vxv, X € X (M),
v € I'(§). The operator

Vx :T'(§) = T(E)

is a covariant differential operator with the anchor X, i.e.
for any smooth function f € C* (M) and a cross-section
v eI (&) we have

Vx(f-v)=f-Vx )+ X (f) - v

Denote by C'DO (£) the space of all covariant differential
operators.

« It is a Lie algebra with the canonical structure bracket
[D,D'|=DoD' —D' oD
of the differential operators,

eand let # : CDO(() — X (M) denote the map-
ping (homomorphism of C* (M )-modules and R-Lie
algebras) whose assign the anchor to any covariant
differential operator.

— Clearly, C DO (¢) forms a Lie-Rinehart algebra over
the algebra C'* (M).

— Additionally, there exists a vector bundle A (§) such
that
['(A(£)) = CDO(9),
the anchor determines a linear surjective homomorphism
e A(E) = TM,
— and A (&) is then a Lie algebroid.

11



— A covariant derivative V is exactly the same as the
splitting of the sequence

0— End (&) — A(§) = TM — 0

—
-
v

The important generalization of the Lie-Rinehart al-
gebra C'DO (§) is as follows:

Definition 2.6 For arbitrary A-module M a R-linear oper-
ator D : M — M s called a covariant operator if there
exists a differential 6 € Der (A) such that

D(a-m)=a-D(m)+d(a)-m, a€A meM.

— The differental ¢ is called the anchor of D.
— The set of all covariant operators is denoted by

CO (M).
— It is A-module and R-Lie algebra under the bracket

D1, D] = Dy o Dy — Dyo Dy,

D1, Dy € CO (M).
—If Dy, Dy € CO (M) possesses 61 and &2 as anchors

then [Dy, Dy is a covariant operator with [d;, d5] as the
anchor.

Under the assumption that the representation

p:A— Endg (M),

ar— (mr——a-m)
is faithfull, i.e. p is a monomorphism, than the anchor ¢
of any covariant operator D is uniquely determined. In
this assumption we have a correctly defined homomor-
phism

#y : CO (M) — Der (4),

# 1 (D) = anchor of D,
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which is a homomorphism od R-Lie algebras and is A-
linear. Clearly

ker #y; = Endy (M) .

« The module CO (M) becomes a Lie-Rinehart algebra
over A.

By a covariant derivative in M we mean a R-linear
operator V : Der (A) — CO (M) such that #,,0V = id,
i.e. the splitting of the sequence

0 — Endy (M) — CO (M) — Der (A) — 0.

v

Theorem 2.7 If M s a projective A-module then there ex-
1sts a covariant derivative in M, in consequence, the se-
quence

0 — Endy (M) — CO (M) — Der (A) — 0

18 exact.
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2.2.2 Poisson algebra

Definition 2.8 By a Poisson algebra we mean a pair (A, {-,-}),
where A is an R-algebra equipped with an R-Lie algebra
structure

{,}:AxA— A
such that for any a € A the mapping

{a,-} :A— A

1s a differential of the algebra,

{a7 } € Der (A) )
1.e.

{a,bct ={a,b} c+b{a,c}.

The differental {a,-} is denoted by X, and it is called the
Hamiltonian of a.

Remark 2.9 The A-module generated by Hamiltonians forms
a foliation in A.

Example 2.10 A manifold M equipped with the Poisson struc-
ture in the algebra C*> (M) is called a Poisson manifold.
In the space of 1-forms (i.e. cross sections of the cotan-
gent bundle T*M ) there exists a structure od Lie alge-
broid given by the Lie algebra structure

[ ]9 (M) x Q' (M) — Q' (M)
determined uniquely by demanding that
ldf, dg] = d{f.g}, [f.g€C* (M)
and the anchor
#:T"M —TM
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such that
# (df) = Xy.

How can we define objects analogous to 1-forms and
its bracket [-,-] for arbitrary Poisson algebra?

It is appeared that the module Q}M » of Kahler differ-
entiations is suitable.

We recall that by the Kéhler module of differentia-
tions of an R-algebra A we mean an A-bimodule th R
generated by formal set

{da; a € A}
quotient by elements
d (ea + sb) — rda — sdb,
d (ab) — a (db) — (da) b,
a,be A, r,s € R.
We can prove that
d:A—>Qh|R, a — da,

is a universal differentiation, i.e. for any differential ¢ :
A — M of the algebra A in an A-bimodule N there exists
exactly one A-linear mapping ¢; : 9}4‘ r — IV such that

¢50(5:d
d

A — Q}4|R
s\ |
N

In conclusion (J.L. Loday [ L], Cyclic Homology, 1992)
Der (A, N) = Homy (Q}4|R7N> :

Using N = A and knowing that projective and finitely
generated module is reflexive, we see that
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o if Q}M r is projective and finitely generated module,
than:

Der (A)* = HomA(HomA(QiHR, A)A) = QiHR.

o Therefore, Q}jm( PR performs the same role as the
module of 1-forms on a smooth paracompact mani-
fold P because we have:

Qo (pyp = Der (C (P))" =T (T*P).

For an arbitrary Poisson algebra (A, {-,-}) we define a
2-linear and alternating tensor
T QiuR X Q114|R — A,
7 (a (du),b(dv)) = ab{u,v}.
7 gives the anchor
¥ Qﬁ”R — HomA(Q}LHR, A) = Der (A)
whereas the mapping
] : Q}4|R X Q}4|R - Q}4|R
defined by
la (du),b(dv)] = a{u,b}dv+b{a,v}du+ abd{u,v},

a,b,u,v € A, introduce a structure of R-Lie algebra in
A-module Q}M B

Theorem 2.11 J. Huebschmann [ HJ, 1990. The system
(Q}MRa ['7 ] 777#>

is a Lie-Rinehart algebra over A.
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2.3 Nonstrong homomorphisms of Lie-Rinehart
algebras

The characteristic homomorphisms defined below are nat-
ural with respect to nonstrong homomorphisms of Lie-
Rinehart algebras. They generalize the notion of the
homomorphisms between foliated commutative algebras.
On the other hand, there is a simple notion of the homo-
morphism ® : G — G’ between two differential groupoids
over a mapping f : M — M’ of the manifolds of units:
® must commute with the source, the tangent and must
keep the multiplication. Passing to the Lie algebroids
(the associated infinitesimal obiects) we obtain a notion
of a nonstrong homomorphism of Lie algebroids.

If (L,[,-], #1) is a R-Lie-Rinehart algebra over a com-
mutative R-algebra A then Im #; C Der (A) is of course
a foliation of the R-algebra A. By a strong homomor-
phism of (R, A)-Lie-Rinehart algebras H : (L,#1) —
(L', #1/) we mean an A-linear homomorphism H : L —
L' such that F' is a homomorphism of R-Lie algebras and
commutes with the anchors #; o H = #. One of the
sources of Lie-Rinehart algebras are Lie algebroids over
foliated manifolds. For regular Lie algebroids there is
an important notion of a nonstrong homomorphism [ K]
(see also [ M1], [ M2], [ H-M1]): if L and L’ are regular
Lie algebroids over foliated manifolds (N, F') and (N, F")
with anchors #; : L — F and # : L' — F’, respec-
tively, than the pair (H, f) when f : (N, F) — (N'F")
is a morphism of foliated manifolds and H : L — L’ is a
linear homomorphism of vector bundles over f, is called a
homomorphism of Lie algebroids if (1) #0 H = f.o#y,
(2) for arbitrary cross-sections &,¢& € T'(L) with H-
decomposition

Ho&= Zh“n”of Hon—Zg (Vof),
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ht, g’ € C* (N), ", € T'(L') we have

Ho[€,¢]

=D hg Do+ ) (#io8) (o) VoS
S ho€) () onof

Nonstrong homomorphism of Lie algebroids over a mor-

phism f : (N, F) — (N'F’) of foliated manifolds can

be equivalently defined as a strong homomorphism F :

L — f L’ of Lie algebroids over (N, F), where f"L’ is

the inverse image of L’ via f. The Lie algebroid f"L’ is
a vector subbundle of F'@) f*L’

L = {(v,w); fu (v) = #fr (w)}

with the projection onto the first factor as the anchor and
the structure of a Lie algebra in I" (f"L’) defined in such a
way that for & = ngg-fgof e (f'L')and X; € ' (F)
fulfilled conditions f. (X; (z)) = >, ¢/ (x)-7'(& (f ())),

xr € N, we have:

[(X1,£1), (X2, &)]
= ([X3, Xo], Z 9195 €1, f+z Xi(g

_ZiXQ g1) - & - of).

Now we complete the category of R-Lie-Rinehart alge-
bras towards nonstrong homomorphisms over homomor-
phisms of foliated algebras. For slightly different no-
tion of a comorphism (not using foliated algebras) see
[ H-M2].

Let (L,#r) and (L', #r/) be two R-Lie-Rinehart al-
gebras over R-algebras A and A’. respectively, and let
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f (A Im#;) — (A, Im#) be a homomorphism of
foliated algebras.
We construct the inverse-image "L’ as a A-submodule

'L c FEPA (X)A, L)

with a suitable structures. In this purpose take a homo-
morphism of A-modules

/ id@#
¢ AQ, L AR, Ity 5 Der (4, 4)
where ¢ is defined via
© A®A, Im#7 — Der (A", A), h®X' — h-foX'.
We put

fAL’:{(Xa eIm#L@ A® ); Xof=¢'(a )}

Clearly, f"L' is an A-submodule and the projection on
the first factor is a surjection. The R-Lie bracket in f"L’
is introduced in the following way:

[(X1, 1), (X2, a2)]
= ([X1, Xa],

lehz j® /z /J ZXl ®B] ZXQhZ ®Oé)

fora; =Y W ®a"and as = > ¢’ ® 87, h', ¢’ € A and
o', 37 € L'. We check the correctness of the definition,
i.e. the independence of the choice of representations of
a1 and as , analogously to the situation considered in the
previous section using the R-2-linear homomorphism

G’:AxL’—>A® L
(9.8) — Y ' g@[a”, 8] + X1 (9) @ B.
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and checking the condition G’ (¢ - f (a'),8) = G’ (g,d’ - B)
for a’ € A’ (this condition easily follows from the equality
Xiof = ¢ (), 1e. from X; (fa') =Y hi-f (& () (d)).
Therefore. there exists an R-linear homomorphism G -
ARy L — AR, L' such that G’ (9@ ) = G'(g,5)

and
Glon) = Y, 19 @ 0.8+ Y, X (6) 0 8"

The verification of the Jacobi identity is left to the reader.
It remains to check the properties of the anchor defined
as the projection onto the first factor, but its A-linearity
and the fact that it is a homomorphism of R-Lie algebras
is evident as well as the equality

H(Xl, 041) ,Oé'(XQ, 042)]] = CL'H(Xl, 041) s (XQ, QQ)]]‘{‘Xl (CL)'(XQ, 042) .

Definition 2.12 By a homomorphism H : (L, #1) — (L', #1/)
of R-Lie-Rinehart algebras over a homomorphism of fo-

liated algebras f : (A, Im+#r) — (A, Im#r) we mean

a strong homomorphism of (R, A)-Lie-Rinehart algebras

H: L — fML. ie. A-linear homomorphism of R-Lie

algebras such that pri o H = #. This means, that if
H (o) = (#1 (), > b ®a") then #1 (a)of = > h'- fo

#1 (") and if additionally H (8) = (#1 (8).,>. ¢/ ® 87)
than

H ([a, 5])

= ([, #208), 3, o @[, 8]+ ) #1(e) (¢) 87

_ ZZ 41 (8) (hz) ®Oz/i).
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2.4 Integrals and open problems

Preliminary from classical differential geometry.
A smooth mapping g : M — M’ between manifolds is
called immersion if for each point p € M the differential

Gup * TpyM — T, 9(p )M
is a monomorphism.

o If g: M — M’ is an immersion, then the pullback of
the smooth functions g* : C* (M') — C* (M) has
the following property:

— for

X € X (M) = Der (C* (M))
if

Xog"=0 then X =0.

Indeed, let X o ¢g* = 0. Then for each point p € M
and a smooth function o € M’

0=(Xog")(d)(p)=X(a"0g)(p)=X,(a" 0g) =gy (X,) (),
0= gup (Xp)
therefore X, = 0.

« The opposite does not hold; for exampleif g : R — R
is given by the formula g (t) — t3 then ¢ is not an
immersion but the above condition is fulfilled.

« ¢ fulfiling the previous condition will be called weak
immersion.

Lemma 2.13 g s immersion if and only if g is a weak im-
mersion and the image of the homomorphism g, : TM —
g" (T'M') is a subbundle, i.e. for the modules of cross
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sections the image of the mapping
Jx X (M) — I (g*TM')
I I
Der (C* (M)) — Der(C*(M"),C*(M))
X — Xof

is a direct summand in Der (C> (M'),C> (M)).

Indeed, if the image of g, : TM — g* (T'M’) is a sub-
bundle, then the kernel ker g, is also a subbundle. There-
fore, if g. (v) = 0 then there exists a vector field X such
that X € kerg,, i.e X og” = 0, and X, = v. From the
assumptions X =0 so v = 0.

Definition 2.14 A homomorphism of algebras f : A — L
1s called weak immersion if for an arbitrary derivation
X € Der (L) the following property holds

if Xof=0 then X =0,
i.e. if the homomorphism of L-modules
fs«:Der(L) — Der (A, L), X — X o f,

is a monomorphism. A homomorphism f : A — L is
called immersion if it is a weak immersion and the image
Im [f.] is a direct summand in Der (A, L).

Proposition 2.15 Let [ : A\ — A and g : A — B be two
immersions. Then the superposition go f : A' — B is an
immerston provided that the modules of Kdhler differen-

tials Q}M r and Q}M r are projective and finitely generated.

Now I would like to give a concept of the notion of the
integral of a foliation.

Definition 2.16 Let (A, F') be a foliated algebra. A homo-
morphism f : A — L of algebras is called an integral of
F if
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o f 18 an tmmersion,
e f: (L,Der (L)) — (A, F) is a homomorphism of
foliated algebras.

Let X € Der (A). Then F' = Ling (X) :={a-X; a € A}
is a foliation of A.

Definition 2.17 Let X € Der (A). By an integral algebra of
X we mean each triple

(4", X', )

consisting of an commutative algebra A’, a derivation
X' € Der (A") and an immersion ¢ : A — A’ such that

(1) Der (A") is a free A'-module with one generator X',

2) c: (A", Ling (X)) — (A, F) is a homomorphism of
foliated algebras such that

X'oc=rcoX.

Definition 2.18 A’ is called connected integral algebra if x =

0 or x = 14 is the unique solutions of the equation x° =

x, r € A.

Problem 2.19 Existing of integral algebras is open. Also
any version of the Frobenius Theorem is not known.

In the case of algebras of smooth functions on mani-
folds the condition (1) corresponds to 1-dimensional man-
ifolds, whereas the condition (2) corresponds for a vector
field X on M, for the condition ¢ = X. The connect-
edness of A’ means precisely the connectedness of the
suitable manifold.

The problem of characterizing the injectivity of a smooth
mapping g : M — M’ of manifolds in the terms of ho-
momorphism of algebras

g O (M') — C (A1)
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can be done in terms of reals spectrum Spec, (C* (M)
of the algebras equipped with the Gelfand topology. In-
deed, for any paracompact manifold M, we have an home-
omorphism
M = Spec, (C* (M))

(see [N-G], Juan A. Navarro Gonzéles and Juan B. San-
cho de Salas, . C*°-Differentiable Spaces, Springer 2003).

Therefore, g is injective if and only if the induced ho-
momorphism

g" : Spec, (C* (M')) — Spec, (C* (M)

is injective. Therefore we can post that for arbitrary R-
algebras A and A’ a homomorphism c¢: A — A’ is called
injective if the induced homomorphism of real spectrums
c* : Spec, (A") — Spec, (A) is injective.
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3 Characteristic classes associated with foliations

3.1 Primary characteristic classes

3.1.1 Lie-algebroid’s preliminary and a piece of
history

The ring of primary characteristic classes associated with
Lie-Rinehart algebra over algebraic foliation in an R-
algebra A generalizes the well known ring of primary
characteristic classes of principal fibre bundles or vector
bundles (generated by the Pontryagin or Chern classes).
These rings are images by the so-called Chern-Weil char-
acterisitic homomorphism.

In the language of Lie-Rinehart algebras it was firstly
given by

— Nicolae Teleman, in 1972, A characteristic ring of
a Lie algebra extension, Accad. Naz. Lincei Rend. CI.
Sci. Fis. Mat. Natur. 8 (1972), 498-506.

‘We must add that Teleman does not use the term "Lie-
Rinehart algebra" but "extension of Lie algebras".

He associated with a short exact sequence

e: 0 L L= L 0

of Lie-Rinehart algebras over R-algebra A, assuming that
there exists a splitting of this sequence

V:L//—>L, Wov:idL//,

some characteristic homomorphism he. In particular this
concerns a sequence associative with one Lie-Rinehart
algebra

e;: O—ker#; — L —Im+#; —0

(Im#; C Der (A) is an algebraic foliation in A). Tele-
man notice, that if the last sequence is associated with
the Lie algebroid of a principal fibre bundle P and

« the structure Lie group G of P is connected
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then the Chern-Weil homomorphism of e; and of P
are equivalent.

In the paper by J.K.

The Chern-Weil homomorphism of regular Lie alge-
broids, Publ. Dep. Math. Univ. Lyon 1, 1991.

it is proved that this hold without any assumptions
on structural Lie group G (we must only assume that P
is connected). The same results was repeated indepen-
dently by I. Belko in 1994.

The next step was to construction of the Chern-Weil
h(IuA) : I(A) — H(L)

of the pair of of Lie algebroids (L, A) assuming that A is
regular over a foliation.

B. Balcerzak, J. Kubarski, W. Walas, Primary char-
acteristic homomorphism of pairs of Lie algebroids and
Mackenzie algebroid, Lie Algebroids and Related Topics
in Differential Geometry, Banach Center Publications,
Volume 54, 71-97, IMPAN Warszawa 2001.

The Chern-Weil homomorphism £z, 4y of a pair (L, A)
ha :1(A) — H(L)

is constructed by use the so-called L-connection in A, i.e
a linear homomorphism

V:L—- A
commuting with the anchors

#a0V = 5.

The algebra I (A) (=domain of h(z, 4y ) and the cohomol-

ogy algebra H (L) will be defined below in more general
algebraic context. We add only that for a regular foli-
ation I C T'M (which is of course a Lie algebroid) the
cohomology algebra H (F') is the cohomology of the tan-
gential differential forms.
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The definition of L-connection in A covers
— usual and partial covariant derivatives in vector

bundles,
— usual and partial connections in principal bundles,
— connections in transitive or regular Lie algebroids,

— connections in extensions
e:0>L —>A—>L—>0

of Lie algebroids, in particular, complete differentials
of higher order understood as the splittings of the jet-
bundles

0— S*(TM, TM) — J*(TM) — J* (T M) — 0,

— transversal connections in extensions of principal
fibre bundles,

— known in Poisson geometry covariant and contravari-
ant connections (the last are important also for Poisson
algebras).

The Chern-Weil homomorphism /iy, 4y is trivial if there

exists a flat L-connection V : L, — A in A, i.e. such that
V is a homomorphism of Lie algebras.

This approach generalizes the well known construc-
tions

— by Teleman 1972,

— Mackenzie 1988,

— Kubarski 1991,

— Vaisman 1994,

— Belko 1997,

— Moore and Schochet 1988,

— Huebschmann 1999,

— Itskov, Karasev and Vorobjev 1999,
— Fernandes (preprints 2000),

— Crainic (preprint 2001).
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The Chern-Weil homomorphism /) for a pair is
compared with the other Chern-Weil homomorphisms
hr, hy, and he in the case of an extension

e(r):0 —L -L5A—0

1) = (A I(e(m))

]’h\hA hL,A he(7r) (31)

H H(L).

Tt

F)

#
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3.1.2 Primary characteristic classes for a pair of
Lie-Rinehart algebras

This part of my talk is based on the results by Witold
Walas (in printing) which is a generalization of the method
by Nicola Teleman (1972).

We fix two Lie-Rinehart algebras (L, [-, -], #1) , (K, [, -], #x)

over an R-algebra A. Let

g = ker #,.
The A-module g is also an A-Lie algebra.
A A-linear mapping

V:K— L
compatible with the anchors
#roV =k

is called a K-connection in L. By the curvature of V we
mean an alternating 2- A-linear tensor QV : K x K — L,
QV € Alt% (K, g) defined by

Qv ([L’,y) — V[[[L’,y]] - [[V%,Vy]]

To any K-connection in L we associate standartly an
operator

dv . Alt'y (K, g) — Alt; (K, g)
by the formula

n

(dV) (o, ..., wn) = Z (=1)' [Vas, @ (€0, oo Ty ooy )]

Z+] A ~
+ g o ([, 2], o, ooy Tiy oy T,y oo

1<j

QOEAltZ(K,g), x; € K.
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Theorem 3.1 Bianchi identity
dv (QY) =o0.

Remark 3.2 Since (dv)2 0= (—=1)"QVAp, then (alv)2 =+ 0,
i general.

Example 3.3 If V is flat, QY = 0, then (dv)2 = 0 and
the cohomology HY (K; L) can be defined. In particular,
taking arbitrary Lie-Rinehart algebra K and

V=%#k:K— L:=Im#g C Der(4),

we have flatness of V because the anchor #x is a homo-
morphism of Lie algebras. In this way, we have the usual
algebra of cohomology H (K) of a Lie-Rinehart algebra
K.

Considering CO (M) instead of L for any A-module
M we have a notion of K-covariant derivative

V:K — CO(M)

assuming the axiom: the anchor of x € K is equal to
the anchor of V. (We recall that for a covariant opera-
tor D € CO (M) its anchor is not uniquely determined
unless the assumption that the natural representation
p:A— Endg (M) is faithfull.

If V is here a homomorphism of Lie algebras, V is
called a representation, and the differential and coho-
mology H (K; M) are defined.

An element m € M is called V-invariant if for each
re K
V.(m)=0

If K is projective then H (K; M) can be done via the
functor Fxt (G.Rinehart 1963).
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Example 3.4 Adjoint representation. Let g = ker #p,
then we have the adjoint representation

adg : K — CO (g)
by
(adk), = [=,-].
A given representation V : K — CO (M) determines
new one

Hom" V : K — CO (Hom'y (M, A))

in the associated module Hom" (M; A) by standard for-
mula

(Hom" V), (@) (my, ..., mp)

k
= (#x) (x) (¢ (M1, ....my)) — Z © (M, .oy Vamy, ..omy)

v € K, mi €M, o€ Homf (M, A).

Let Hom" (M, A); be the space of invariant tensors. Their
direct sum forms an algebra.

Now taking M := g = ker #x we consider symmetric
invariant tensors

I*(g) :== (Symfy (g; 4)), -
The direct sum
k
I(g)={]J I*(9)
forms an algebra.

Let V : K — L be any K-connection in L. We define
a homomorphism of algebras

xv 1 (g) — Alty (K A)
xv (@) = ¢ (QV, s Qv)
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where ¢ (QV, e QV) is the usual alternating multiplica-
tion of forms by using multilinear homomorphism ¢.

Theorem 3.5 (Witold Walas) The differential forms from
the image of xv are closed and the induced homomor-
phism in cohomology

hil(g)— H(K;A), ¢~ [p(QY,..,QY)]
1s independent on the chooice of the connection V.

The method of the independence on the connection
is analogous to the methods by Teleman but with some
strong modification. The cause is as follows: the K-
connection in L do not possees a connection form which
was uses by Teleman for the connection in extensions.
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3.1.3 Exotic characteristic classes (sketch only)

The exotic (or secondary) characteristic classes compare
two differential structures on a manifolds. For example:
a given flat or partially flat connection in a principal fi-
bre bundle and a given reduction i.e. some its subbundle.
Among applications there are characteristic classes of a
foliation. There are many different algebraic generaliza-
tions of these characteristic classes. Mainly in the lan-
guage of Lie algebroids (Kubarski, Fernandes, Crainic)
and lastly for Lie-Rinehart algebras (B.Balcerzak).

The "flat" classes for principal fibre bundles were con-
sidered extensively by Kamber and Tondeur in 1973-76.
They have defined the characteristic homomorphism

Aypp =2y H (g, H) — Hqr (M) (3.2)

for a G-principal fibre bundle P, a flat connection w in
P and an H-reduction P' C P (H C G is a closed Lie
subgroup of ). The domain H*(g, H) is the relative Lie

algebra cohomology.
The algebroids’ generalization was done firstly by Kubarski

a) for flat classes in:

— Algebroid nature of the characteristic classes of flat
bundles, in: Homotopy and Geometry, Banach Center
Publications, Volume 45, Institute of Mathematics, Pol-
ish Academy of Science, Warszawa 1998, pp. 199-224.

b) for partially flat in:

— The Weil algebra and the secondary characteristic
homomorphism of reqular Lie algebroids, in: Lie Alge-
broids and Related Topics in Differential Geometry, Ba-
nach Center Publications, Volume 54, Institute of Math-
ematics, Polish Academy of Science, Warszawa 2001, pp.

135-173.
Next, the generalization on Lie-Rinehart algebras was

given by B.Balcerzak (the paper is in preparation).
(A) In the context of "partially flat" characteristic
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classes a triple
(K,L,V)

is considered, where

— L C K are regular Lie algebroids over the same
foliated manifold, and

— V is a usual connection in K partially flat over

some subfoliation. .
The classical first example is as follows:

« for arbitrary regular foliation F' C M there exists the
Bott connection in the normal bundle Q@ = TM/F
which is flat over F.

« Now considering a Riemannian metric on M, we have
take the O (n) reduction of the frame bundle and

« post the question: Does this Bott connection is Rie-
mannian?, i.e. belongs to the geometry of this re-
duction?

« The exotic characteristic classes are measuring the
independence of these two differential structures and
called characteristic classes of a foliation.

In algebraic context of an algebraic foliation F' C Der (A)

we can also define a Bott flat partial connection V in
M := Der (A) /F by the formula

VxY =[X,Y], X€EF, Y &Der(A)

and Y € Der(A) /F is corresponding elements in the
quotient. The construction of charactersistic classes in
this context is open.

(B) In the context of "flat" characteristic classes there
is constructed the secondary charactersistic homomor-
phism

Ayrrv
of the triple
(K,L,V) ,
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where

o . C K are regular Lie algebroids over the same foli-
ated manifold and

eV : S5 — K is a flat S-connection in K, S is an
arbitrary irregular (in general) Lie algebroid.

Remark 3.6 The particular case S = K and V = idg gives
rise to secondary characteristic homomorphism Ay 1 of
Lie subalgebroid, L C K.

The characteristic homomorphism Ayg 1 v is factor-
ized by A#K,L7 i.e.

Ayrry =V?ToAurr,

i.e. Ay fulfils a fundamental universal role.
These exotic characteristic homomorphism is constructed
in the category of Lie-Rinehart algebras by Balcerzak.
This last can be used for a pair of Lie algebras (h,g), h C
g giving the well known Koszul homomorphism, as well
as for reductions of principal fibre bundles P’ C P giving
a new characteristic homomorphism.
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