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1 Introduction

The index theorem of Euler-Poincaré-Hopf for sphere bundles is
well-known (see, for example):

Theorem 1 Let E be an n-sphere bundle with a connected com-
pact oriented base manifold M of dimension n+ 1, such that E
is given the local product orientation. Let � be a cross-section
of E with �nitely many singularities a1; : : : ; ak. Then the index
sum

kX
v=1

jav (�) ;

where jav (�) is the index of � at av; is independent of the choice
of the cross-section � and the Euler class �E of E is given by
�E =

Pk
v=1 jav (�) �!M where !M is the orientation class of M .
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Example 2 Assume M is 2-dimensional compact oriented mani-
fold equipped with the structure

(f;
) ; f 2 C1 (M) ; 
 2 
2 (M) :

Let �̂ 2 
1 (Mn fa1; :::; akg) be a 1 form such that

d�̂ = 
� df ^ �̂;

i.e.

 = d�̂ + df ^ �̂ = ddf (�̂) ::

(d! is the Guedira-Lichnerowicz operator, for the short ele-
mentary proof of its properties see: Rybicki-Haller).
REMARK. From the triviality of H2

dR (Mn fa1; :::; akg) = 0
follows that the form �̂ exist. Namely if

ef � 
 = d' on Mn fa1; :::; akg

then
�̂ = e�f � '

ddf (�̂) = ddf
�
e�f � '

�
= d

�
e�f � '

�
+ df ^ e�f � '

= �e�f � df ^ '+ e�f � d'+ df ^ e�f � '
= e�f � d' = e�f � ef � 

= 
:

By the index of �̂ at a� we de�ne a number

ja� �̂ :=

Z
S1�

�
ef � �̂ + ��

�
where S1� is here any small Jordan curve near a point a� and ��
is arbitrary 1 form around a� such that

d�� = �ef � 
:
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The form ef � �̂ + �� is closed

d
�
ef � �̂ + ��

�
= d

�
ef � �̂

�
+ d��

= efdf ^ �̂ + efd�̂ � ef � 

= efdf ^ �̂ + ef � (
� df ^ �̂)� ef � 

= 0

therefore the index ja� �̂ is correctly de�ned (it is independent
on the choice of S1� and ��: As well as we have

d
�
ef � �̂

�
= �d�� = ef � 


Let S1� = @ (B�) ; using the Stokes theorem we can easily to
check following formulaX

�

ja� �̂ =
X
�

Z
S1�

�
ef � �̂ + ��

�
=
X
�

Z
S1�

ef � �̂ +
X
�

Z
S1�

��

=

Z
�@(Mn[B�)

ef � �̂ +
X
�

Z
@B�

��

= �
Z
Mn[B�

d
�
ef � �̂

�
+
X
�

Z
@B�

��

= �
Z
Mn[B�

ef � 
 +
X
�

Z
B�

d��

= �
Z
Mn[B�

ef � 
�
X
�

Z
B�

ef � 


= �
Z
M

ef � 
 =
Z #

M

�
�ef � 


�
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The above prove that the index sum
P

� ja� �̂ is independent on
the choice of the form �̂: The cohomology class

�
�ef � 


�
play a

role of the Euler class and the forms �̂ play a role cross-sections
of the sphere bundle.
Is there any common relation with that two Euler classes?
This Euler-Poincaré-Hopf theorem for sphere bundles can be

applied, in particular, to G-principal bundles P over manifolds
M of dimension dimM = dimG+1 for Lie groups G di¤eomor-
phic to a sphere G �= Sn; i.e. for n = 1 and n = 3:

(i) S1-principal bundles over M 2;

(ii) Spin (3)-principal bundles over M 4:

A locally de�ned cross-section f : U ! PjU of a principal
bundle P determines (in an evident manner) a �at connection
Hf � T

�
PjU
�
in PjU in such a way thatHf (f (x)) = f� [TxM ] �

Tf(x)P; but not conversely: there are more (in general) �at con-
nections than cross-sections.
We will try to join these observations is on the ground of Lie

algebroids.
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The notion of a Lie algebroid comes from J.Pradines and was
invented for the study of di¤erential groupoids. Let F be a
C1 constant dimensional and involutive distribution on a C1

Hausdor¤paracompact connected manifoldM . By a regular Lie
algebroid over (M;F ) we mean a system

(A; [[�; �]];#A)

consisting of a vector bundle A over M and mappings

[[�; �]] : SecA� SecA! SecA; #A : A! TM;

such that
�(i) (SecA; [[�; �]]) is a real Lie algebra,
� (ii) #A, called an anchor, is a homomorphism of vector

bundles, and Im#A = F ,
�(iii) Sec#A : SecA ! X(M); � 7! #A � �, is a homomor-

phism of Lie algebras,
�(iv) [[�; f � �]] = f � [[�; �]] + (#A � �)(f) � �, �, � 2 SecA,

f 2 C1(M).
In the case when F = TM , i.e. when #A : A ! TM is

a surjective homomorphism, the algebroid is called a transitive
Lie algebroid. Let A and A0 be two regular Lie algebroids on a
manifold M . A homomorphism H : A �! A0 of vector bundles
is said to be a homomorphism of Lie algebroids if #0A �H = #A
and SecH : SecA! SecA0 is a homomorphism of Lie algebras.
The short exact sequence

0 �! ggg ,! A
#A�! F �! 0 (1)

is called the Atiyah sequence of A. Each �bre gggjx, x 2 M ,
possesses some natural structure of a Lie algebra de�ned by
[v; w] := [[�; �]](x) where �; � 2 SecA are arbitrarily taken cross-
sections of A such that �(x) = v, �(x) = w. For transitive Lie
algebroid A, ggg is a LAB.
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The following are simple examples of transitive Lie algebroids:

Finitely dimensional real Lie algebra g.
Tangent bundle TM to a manifold M .
Trivial Lie algebroid TM � g where g is a �nitely dimen-

sional Lie algebra.
Bundle of jets JkTM .
The following are important examples of transitive Lie alge-

broids:
The Lie algebroid A(P ) of a G-principal bundle

P = P (M;G).
The Lie algebroid CDO(f) of covariant di¤erential

operators on a vector bundle f (equivalently, the Lie
algebroid of the of the frame bundle of f )

The Lie algebroid A(M;F ) of a transversally com-
plete foliation (M;F) of a connected Hausdor¤paracom-
pact manifold M .

The Lie algebroid A(G;H) of a nonclosed Lie sub-
group H of G.

� The structure (f;
) onM 2 determine a Lie algebroid
structure in A = TM � R with the anchor #A : TM � R! R;
(v; t) 7�! t; the Lie algebra structure [[�; �]] in � (A) de�ned by

[[(X; f) ; (Y; g)]] = ([X;Y ] ;rXg �rY f � 
 (X; Y ))

where r is the �at covariant derivative in the trivial vector
bundle M � R de�ned

rXg = @Xg + ! (X) � g; ! = df:
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My talk is a �rst step to Lie algebroids nature of the index
of singular connections (in some cases only). The next steps
should be concern
(a) nontransitive Lie algebroids and nonisolated singularities,
(b) bigger class of Lie algebroids, than considered here.
The obtained above Lie algebroids A have the property
�

Htop (A) = R:

�the cohomology of the Lie algebras R or so (3) are equal to
H (Sn) :n = 1; 3:

Let A be a transitive Lie algebroid on a manifoldM with the
Atiyah sequence

0! ggg ! A
#A! TM ! 0:

By a connection in A we mean a splitting � : TM ! A; i.e.
#A � � = idA:
By a local connection with singularity at a point a 2M in A

we mean a connection

� : T
�
MjUnfag

�
! AjUnfag; U �M; a 2 U;

de�ned is some neighbourhood of a point a:
If � is a homomorphism of Lie algebroids, i.e.

� [X; Y ] = [[�X; �Y ]]

then � is called a �at connection and the pullback

�� : 
 (A)! 
 (M)

commutes with di¤erentials giving a homomorphism on coho-
mology

�# : H (A)! HdR (M) :
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� In the sequel we are interested in �at connections

� : T (Mn fa1; :::; akg)! AMnfa1;:::;akg

in A with singularities at �nite number of points a1; :::; ak:

2 Final assumptions

Let dimM = m and dimgggx = n:
Finally we will assume the following conditions:

1) M is compact and oriented.

2) Htop (A) = Hm+nA 6= 0;
3) H� (g) �= H�

dR (S
n), g �= gggx is the isotropy Lie algebra,

4) m = n+ 1:

Under these rather strong conditions we can observe an inter-
esting analogy of the theory of sphere bundles. Flat connections
correspond to cross-sections of sphere bundles.

Theorem 3 A n-dimensional Lie algebra g for which H� (g) �=
H�
dR (S

n) ; i.e. such that

Hk (g) =

�
R; k = 0; n
0; 1 < k < n� 1

is isomorphic to R or sk (3) or sl (2;R) :

REMARKS: Below, a transitive Lie algebroid A with isotropy
Lie algebras isomorphic to a given Lie algebra g will be shortly
denoted as g-Lie algebroid.
A) Not every R-Lie algebroid is integrable,
B) Lie algebras sk (3) and sl (2;R) are semisimple, therefore

any transitive Lie algebroid with such a isotropy Lie algebra
is integrable. a form �̂: However, the obtained principal �bre
bundle may not has connected structural Lie group.
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Theorem 4 (Kubarski-Mishchenko) The conditionHm+nA 6= 0 is
equivalent to this: the isotropy Lie algebra bundle ggg is orientable
and there exists a volume " 2 � (

Vn ggg) (i.e. "x 6= 0 for all
x 2M ) which is invariant under adjoint representation. [This
also imply that the cohomology algebra H (A) ful�ls the Poincaré
duality.]

Example 5 (1) lcs structures.
Consider on the manifold M the following data

(!;
)

where

� ! 2 
1 (M) is a closed 1-form,

� 
 2 
2 (M) is a 2-form such that

d
 = �! ^ 
:

(REMARK: if (!;
) is an lcs structure then the above con-
ditions are ful�lled [and also that 
 is nondegenerated])
Take the trivial vector bundle ggg =M �R and equip it with

the �at covariant derivative

rXf = @Xf + ! (X) � f:

Clearly, the condition d
 = �!^
 is equivalent to r
 = 0:
Theorem. The vector bundle A = TM�R forms a transitive

Lie algebroid with

� the anchor #A : TM � R! R; (v; t) 7�! t;

� the Lie algebra structure [[�; �]] in � (A) de�ned by

[[(X; f) ; (Y; g)]] = ([X; Y ] ;rXg �rY f � 
 (X; Y )) :
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REMARK: Each transitive Lie algebroid with the associated
Lie algebra bundle ggg =M � R is of the above form.
Theorem 6 The above Lie algebroid A = TM � R de�ned by
the data (!;
) on the compact oriented manifold M ful�ls the
condition H3 (A) 6= 0 if and only if ! is exact. It means, if
A comes from an lcs structure than the condition H3 (A) 6= 0
is equivalent to that: lcs structure (!;
) is globally conformal
symplectic structure.
If ! is exact, ! = df , then a positive function " 2 C1 (M) =

� (M � R) is invariant under adjoint representation if and only
if

" = c � e�f ; c 2 R:

3 Fibre integral

Theorem 7 Assume Hm+nA 6= 0 and let " 2 � (
Vn ggg) be an in-

variant volume. Then there exists an operator of the �bre inte-
gral

6
Z
A

: 
? (A) �! 
?�n (M)

de�ned by the formula�
6
Z
A

�

�
x

(w1; :::; wk) = (�1)nk �x ("x; ~w1; :::; ~wk)

where ~wi 2 Ax and #A ( ~wi) = wi: The operator 6
R
A has the fol-

lowing properties

� 6
R
A �#A = 0; i.e. Im#A � ker 6

R
A;

� 6
R
A is an epimorphism and commutes with di¤erentials giv-
ing a homomorphism on cohomology

6
Z #

A

: H� (A)! H� (M) :
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� ker 6
R
A is dA-stable subspace of 
 (A) :

4 Euler class and di¤erence class of two �at connec-
tions

Now we examine the short sequence of graded di¤erential spaces

0! ker 6
Z
A

�! 
 (A)
6
R
A! 
 (M)! 0

and corresponding canonical long exact sequence in cohomology

::::! H�+n (A)
6
R #
A! H� (M)

@! H�+n+1
�
ker 6
Z
A

�
�#! H�+n+1 (A)! :::

with the connecting homomorphism of the degree n+ 1:

Theorem 8 If additionally the condition H� (g) �= H�
dR (S

n) , g �=
gggx holds, then

(#A)
# : HdR (M)

�=! H

�
ker 6
Z
A

�
is an isomorphism.

De�nition 9 We de�ne Gysin homomorphism (degree n+ 1)

D : H (M)
(�1)deg+1! H (M)

@! H

�
ker 6
Z
A

�
((#A)#)

�1

! H (M)

and the Euler class

�A := D (1) =
�
(#A)

#
��1

(@ (�1)) 2 Hn+1 (M) :
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D is a homomorphism of degree n + 1, giving the exactness of
the triangle

H (M)

&#

D " HA (M) :

. /R#
A

H (M)

We modify the long exact sequence in cohomology

! H� (M)
D! H�+n+1 (M)

(#A)
#

! H�+n+1 (A)
6
R #
A! H�+1 (M)

D! H�+n+2 (M) :::

to obtain the so called Gysin sequence of A:

Remark 10 1) The Euler class can be calculate via the Chern-
Weil homomorphism hA of A:
a) the case n = 1; i.e. g =R: Assume that " 2 � (ggg) is

invariant. Take "� 2 �ggg� such that

i""
� = 1:

Then "� is invariant, therefore it is in the domain of the Chern-
Weil homomorphism hA of A:
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Theorem 11 Under the above assumptions

�A = hA ("
�) :

More detailed: the considered Lie algebroid is de�ned via the
data (!;
) ; with exact form ! = df: and let " = e�f . Therefore
"� = ef and

�A =
�
hef ;
�i

�
where 
� is the curvature form of any connection in A: Taking
the connection � : TM ! A = TM�R de�ned by � (v) = (v; 0)
we have: 
� = �
 which implies

�A =
�
�ef � 


�
:

b) n = 3
2) There exists nonintegrable Lie algebroid with isotropy Lie

algebras R such that �A 6= 0:

Example 12 Let G be an arbitrary compact connected semisim-
ple Lie group and H � G a nonclosed Lie subgroup such that
dim �H � dimH = 1: Then the Lie algebroid of the TC-foliation
of left coset of G by H is nonintegrable and has nonzero Euler
class.

Theorem 13 (a) D (�) = � ^ �A:
(b) If A is �at then �A = 0; so D = 0: Therefore the Gysin

sequence reduce to exact sequences

0! H� (M)
(#A)

#

! H� (A)
6
R #
A! H��n (M)! 0

and if � : TM ! A is a �at connection then

H� (A) = ker 6
Z #

A

� ker�#
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so

6
Z #
A

: ker�#
�=! H (M)

is an isomorphism.

De�nition 14 The unique cohomology class !� 2 Hn (A) such
that

6
Z #

A

(!�) = 1 2 H0 (M)

is called the cohomology class of the �at connection �:
For arbitrary two �at connections �; � in A there exists ex-

actly one cohomology class [�; �] 2 Hn (M) such that

!� � �� = (#A)# ([�; �])

called the di¤erence class of two �at connections � and �:

5 Index of a �at connection at an singularity

Consider an open coordinate neighbourhood U � M of a point
a 2 U and a �at local connection with singularity at

� : T (Un fag)! AjUnfag:

Taking arbitrary �at connection � : TU ! AjU (always exists
since U is difeomorphic to Euclidean space) we can use the dif-
ference class �

�jUnfag; �
�
2 Hn (Un fag) :

Assume now m = n+ 1; i.e. dimM = n+ 1 . Then we have
the canonical map (isomorphism)

�U : H
n (Un fag)

�=! R
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(on U we have orientation induced by M ). The mapping �U
is de�ned by the formula: choose a smooth function f on U so
that f = 0 in a neighbourhood of a and f = 1 outside a compact
set. Then

�U : H
n (Un fag)

�=! R

[�] 7�!
Z
U

df ^ �:

De�nition 15 The number

�U
��
�jUnfag; �

��
2 R

is called the index of � at a point a and is denoted by

ja (�) :

(The number ja (�) is independent of the auxiliary �at connec-
tion � and a coordinate neighbourhood U ).

The main purpose of my talk is to introduce the theorem
joining the index sum X

�

ja��

of any �at connection on A with a �nite number of singularities
fa1; :::; akg to the so called Euler class of A:

15



Theorem 16 (The Euler-Poincaré-Hopf theorem for �at connections)
Let A be a Lie algebroid ful�lling the conditions

� Hm+nA 6= 0 with an invariant volume " 2 � (
Vn ggg),

� H� (g) �= H�
dR (S

n) , g �= gggx; dim g = n:

� M is compact oriented, m = dim M = n+ 1:

If � : T (M n fa1; : : : ; akg) ! A is a �at connection with
singularities at points a1; : : : ; ak; :then the Euler class �A 2
Hn+1 (M) is given by the formula

�A =

 
kX
v=1

jav (�)

!
� !M

where !M is the orientation class of M ; equivalently,Z #

M

�A =

kX
v=1

jav (�) :

In particular, the index sum

jA :=

kX
v=1

jav (�)

is independent of the choice of the connection. jA is called
Euler number of A:

16



The crucial role in the proof ful�ls the following fact:

Theorem 17 Let fU; V g be an open covering of M and let �U :
TU ! AjU and �V : TV ! AjV be �at connections in A over
U and V; respectively (U; V need not be connected). Consider
the Mayer-Vietoris sequence of the triad fM;U; V g for the usual
real de Rham cohomology and let @ : H (U \ V )! H (M) be the
connecting homomorphism. Then

�A = @ [�; �]

where � = �U jU\V and � = �V jU\V :

Example 18 For a Lie algebroid A = TM�R on two-dimensional
compact oriented manifold M de�ned by (f;
) [ see the �rst
example] the Euler number jA is egual to

jA =

Z #

M

�
�ef � 


�
Remark 19 The Euler number jA is not �in general �an invari-
ant of the cohomology algebra of A: Indeed, we have:
Let A and A0 be two Lie algebroids on M ful�lling assump-

tions of the above E-P-H theorem with non zero Euler classes
�A 6= 0; �A0 6= 0: Then there exists an isomorphism of cohomol-
ogy algebras H (A) �= H (A0) :
Remark 20 The Euler number jA has nothing in common with
the usual de�ned Euler-Poincaré characteristic of A equal toP
(�1)� dimH� (A) : The last sum when n+m is odd is 0 (i.e.

for the cases when n = 1; m = 2 and when n = 3 and m = 4 ).

6 Local formula for the index

Each Lie algebroid A is locally isomorphic to a trivial one AU �=
TU � g: If Htop (A) 6= 0 and " 2 � (

Vn ggg) is invariant then the
coresponding - via the isomorphism AU �= TU � g - the cross
section "0 of the bundle M �

Vn g is invariant too.
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Lemma 21 Let TU �g be a trivial Lie algebroid. A cross-section
"0 of the isotropy Lie algebras bundle M �

Vn g is invariant if
and only if "0 is a constant one.

Therefore to local formula of the index we can take consider

� the trivial Lie algebroid A = TRn+1 � g where dim g = n
and H� (g) �= H�

dR (S
n) ,

� a constant volume "x = " 2
Vn g:

Let ' 2
Vn g� be the tensor such that h"; 'i = 1:

Theorem 22 For the �at singular connection

� : T
�
Rn+1n f0g

�
! AjRn+1nf0g = T

�
Rn+1n f0g

�
� g;

� (v) = (v; �� (v))

where
�� 2 
1

�
Rn+1n f0g ; g

�
is a 1-form with values in g; the index of � is equal to

j0� =
1

n!
h
Z
Sn
(�� ^ :::: ^ ��) ; 'i

=

Z
Sn
��S (')

where �S is a nonstrong homomorphism of Lie algebroids

�S : TS
n ,! T

�
Rn+1n f0g

� ��! g:

In particular, for n = 1 and " = 1 we have

j0� =

Z
S1
��:
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The trivial Lie algebroid A is integrable,

A = A (P )

for the principal �bre bundle P = Rn+1 � G where G is an
arbitrary connected Lie group with the Lie algebra g:
Take a singular �at connection

� : T
�
Rn+1n f0g

�
! AjRn+1nf0g:

� induces a usual connection H � T
��
Rn+1n f0g

�
�G

�
in the

principal bundle _P =
�
Rn+1n f0g

�
�G: Flatness of � means the

integrability of H:

6.1 Assumption n � 2:

ThenRn+1n f0g is simple connected. Therefore via the reduction
theorem each leaf L of H is the graph of some function f :
Rn+1n f0g ! G:

Theorem 23 Local formula for the index

j0� =

Z
Sn

�
fjSn
��
�R

where�R is the right invariant n form on G such that (�R)e = '
and h'; "i = 1:

Problem 24 Can we use the above formula for a generalization
of the notion of index for other Lie algebras?
(A) G is noncompact. Then �R = d (�) for some � thereforeZ

Sn
(f jSn)��R =

Z
Sn
d
�
f �jSn�

�
= 0

(the case is noniteresting),
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(B) G is compact. ThenZ
Sn

�
fjSn
��
�R = deg

�
fjSn
�
�
Z
G

�R:

When the number
R
Sn

�
fjSn
��
�R can be nonzero? Namely, if

deg
�
fjSn
�
6= 0: But, by the degree theorem, the relation deg

�
fjSn
�
6=

0 implies the injectivity�
fjSn
�#
: H (G)! H (Sn) ;

so G is spherical (H (G) �= H (Sn)), i.e. n = 3 and g is equal to
so (3) (the case sl (2;R) gives noncompact case G = SL (2;R) ).
Therefore for other compact Lie groups we have noninterested
case

R
Sn

�
fjSn
��
�R = 0:

Conclusion 25 In conclusion, the unique interesting case (assum-
ing the de�nition of the degree j0� =

R
Sn (f jSn)

��R ) for n � 2
it is obtained for g = so (3) :

Problem 26 We also notice that in the case g = so (3) (m = 4 )
the set of real numbers which are the indexes at a given point of
singular local �at connections is discrete.

Theorem 27 For sl (2;R) Lie algebroid A on M 4: if there exists
a �at connection with �nite number of isolated singularities then
there exist a �at connection without any singularities (i.e. A is
�at).

Indeed, we can remove each isolated singularities: the prob-
lem is local. We can consider a �at connection

�;T
�
R4n f0g

�
! sl (2;R) :

It is given by a function f : R4n f0g ! SL (2;R) : The fact that
�3 (SL (2;R)) = 0 implies: we can �nd a function �f : R4 !
SL (2;R) such that f (x) = �f (x) for kxk � 1: This implies that
we may remove the singularity at 0:
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6.2 Assumption n = 1:

It means we consider g =R, m = 2: Let A = TR2 � R be a Lie
algebroid and take the constant volume "x = " = 1 2

V1R.
Theorem 28 Each real number can be the index of a local �at
singular connection.

Proof. If � 2 
1
�
R2n f0g

�
be a closed 1 form. Then

�̂ : T
�
R2n f0g

�
! AR2nf0g;

v 7�! (v; � (v))

is a �at singular connection. Taking

� =
k

2�

�
x

x2 + y2
dy � y

x2 + y2
dx

�
we obtain a �at connection �̂ for which j0 (�̂) = k:

Theorem 29 If H2 (M) = 0 then there exists a global �at con-
nection in A (assuming g = R and H3 (A) 6= 0 ). In particular
for compact manifold M (H2 (Mn fag) = 0 ) there exists a �at
connection with one singularity.

Example 30 Consider Hopf S1-bundle S3 ! S2: For arbitrary
k 2 R and two points p; q 2 S2 there exists a �at connection �
with singularities at fp; qg such that jp� = p and jq� = 1 � k
(assuming the "normalization"

R
S1�R = 1 ).

Example 31 We come back to the example (M; f;
) ; dimM =

2 and M is compact oriented manifold. For the Lie algebroid
A = TR2 � R we have H3 (A) 6= 0 and the Euler class of A is
equal to

�A =
�
�ef � 


�
:
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Let � : T (Mn fa1; :::; akg)! AjMnfa1;:::;akg be a �at connection.

� (v) = (v; �̂ (v))

for 1-form �̂ 2 
1 (Mn fa1; :::; akg) : The �atness of � is equiv-
alent to

d�̂ = 
� df ^ �̂:
For a neighbourhood U � M di¤eomorphic to R2 we take a
1-form � such that d� = �ef �
: Then AjU is isomorphic to the
trivial Lie algebroid TU � R via the isomorphism

H : AjU ! TU � R

H (X; g) =
�
X; � (X) + ef � g

�
::

Therefore according to the naturality of the index we obtain

jai� =

Z
S1

�
ef � �̂ + �

�
where S1 is here any small Jordan curve near a point ai: So it
agree with the de�nition at the beginning.
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