GEOMETRY AND TOPOLOGY OF MANIFOLDS
BANACH CENTER PUBLICATIONS, VOLUME 76
INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES
WARSZAWA 2007

LINEAR DIRECT CONNECTIONS

JAN KUBARSKI

Institute of Mathematics, Technical University of £.6dz
Wélczariska 215, 93-005 LddZ, Poland, and
Mathematical Institute of Polish Academy of Sciences
Sniadeckich 8, 00-950 Warszawa, Poland
E-mail: kubarski@p.lodz.pl

NICOLAE TELEMAN

Dipartimento di Scienze Matematiche, Universita Politecnica delle Marche
60161 Ancona, Italy
E-mail: teleman@dipmat.univpm.it

Abstract. In this paper we study the geometry of direct connections in smooth vector bundles
(see N. Teleman [Tn.3]); we show that the infinitesimal part, V7, of a direct connection 7 is a
linear connection. We determine the curvature tensor of the associated linear connection V7.

As an application of these results, we present a direct proof of N. Teleman’s Theorem 6.2
[Tn.3], which shows that it is possible to represent the Chern character of smooth vector bundles
as the periodic cyclic homology class of a specific periodic cyclic cycle &7, manufactured from a
direct connection 7, rather than from a smooth linear connection as the Chern-Weil construction
does. In addition, we show that the image of the cyclic cycle @] into the de Rham cohomology
(through the A. Connes’ isomorphism) coincides with the cycle provided by the Chern-Weil
construction applied to the underlying linear connection V7.

For more details about these constructions, the reader is referred to [M], N. Teleman
[Tn.1], [Tn.2], [Tn.3], C. Teleman [Tc|, A. Connes [C.1], [C.2] and A. Connes and H. Mos-
covici [C.M].

1. Introduction. In this paper we address two problems: (i) to better understand the
geometry of direct connections and (ii) to provide a direct proof of N. Teleman’s theorem
[Tn.3], which shows how to modify the Chern-Weil theory from the case of linear connec-
tions to the case of direct connections to extract the Chern character of smooth vector
bundles.
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Before going into more details, we recall that a direct connection (see N. Teleman
[Tn.2], [Tn.3]) in a vector bundle is a law which provides a direct isomorphic transport
of fibres, from point to point, rather than along paths. Direct connections were originally
called quasi-connections, see [Tn.2].

Concerning the first problem, we show that any direct connection 7 has an underlying
linear connection V7, which represents its infinitesimal part. We determine the connection
coefficients I'" of the underlying linear connection and its curvature tensor.

With regard to the second problem, we mention that N. Teleman [Tn.3, Th. 6.2] had
shown that the Chern character Ch,(£), of an arbitrary smooth vector bundle ¢ : B — M
may be obtained as the cyclic homology, (resp. periodic cyclic homology), classes, (resp.
class) of cyclic cycles, (resp. a periodic cyclic cycle), of the algebra of smooth functions
on M, whose chain components are the functions

Oy : Upy1 — R,
Oy (xo, 21, ..., 2k) :=Tr7 (zg,21) 07 (1, 22) 0 - - 0 T (Tp—1,2) © T (X, X0) ,

where 7 is an arbitrary direct connection in £ and U1 is a neighborhood of the diagonal
in MFHL

Recall that the periodic cyclic homology of the algebra of smooth functions is iso-
morphic to the bi-graded de Rham cohomology of the manifold M. This result, due to
A. Connes, constitutes the bridge between the classical differential geometry and the
noncommutative geometry. The Connes’ isomorphism associates with any periodic cyclic
cycle f an even/odd non-homogeneous closed differential form Q(f) on M.

The proof of Theorem 6.2. [Tn.3] uses the homotopy invariance of the cyclic homology,
as well as the non commutative definition of the Chern character derived from the Levi-
Civita connection in a vector bundle, results due to A. Connes [C.1], [C.2]; it states the
result at the level of homology classes.

In this paper we present a direct proof of this theorem, showing in addition that the
image of the periodic cyclic cocycle {®}, through the Connes’ isomorphism

sz(‘b%) =

1 o 0 0 i i
w Z (9-’1?111 (937;2 o axlzzkk k (J)o, T1s - ’x2k)300:I1:"':$2k:I dz™ A--- A drt

11,225,212k
coincides with the differential form provided by the classical Chern-Weil theory applied
upon the underlying linear connection V7.

We recall that within the theory of linear connections the closeness of the form 7' R*
in the de Rham complex is a consequence of the Bianchi identity. It is relevant to mention
that the same result follows trivially in the context of direct connections as a consequence
of the symmetry of mixed partial derivatives (Schwarz lemma)—see Remark 3.

For other applications of direct connections, we refer to A. Mishchenko and N. Teleman
[M.T]. For related topics, providing geometric interpretations of the Chern character, we
refer to N. Teleman [Tn.1], [Tn.2], [Tn.3], and C. Teleman [Tc].

In the sequel we freely use the Einstein summation convention on repeated indices.
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2. Direct connections vs. linear connections. Let F be a real or complex smooth
vector bundle over the manifold M.

DEFINITION 1 (see N. Teleman [Tn.2], [Tn.3]). By a linear direct connection in a vector
bundle E we mean a smooth mapping

7:U— GL(E)

where U C M x M is an open neighborhood of the diagonal A = {(z,z); x € M}, such
that

7(z,y): By — Ey

and

T(z,2) =id : E|y — E,.

Direct connections, used also in the paper by A. Mishchenko and N. Teleman [M.T],
were called quasi connections.

We intend to extract from a direct connection its infinitesimal part along the diagonal.

DEFINITION 2. Let X be a smooth tangent field over M and ¢ a smooth section in E.
Let xo be an arbitrary point in M and let 7y : (—&,6) — M be an integral path of the
field X with the initial condition v(0) = xq, (¥(0) = X (x0) ).

We define

X(zo) () = %{T(W(O)ﬁ(t)) (@ (v ()} =0 € Blao-

REMARK 1. As the parameter t varies, the function under the derivative sign describes a

smooth path in the fibre £}, and hence VTX(IQ)(¢) is well defined; it depends only on X,

¢ and xg. Notice that the condition 7 (x,z) = idg, is necessary in order to insure that
the outcome of the derivation is a vector of the fibre over the point zq.

We intend to describe V%, 1(¢) locally. For, let (xt,22,...,2™) (dimM = m) be a
local coordinate system on an open neighborhood V of a point x(. Using the same local

coordinate system on both factors of the direct product M x M, any point (z,y) € V XV

will be given by local coordinates (z',z2, .., 2™|y*, y2, ..., y™).

Let n be the K-rank (K = R, or C) of the bundle E and let {ej1,e2,...,e,} be alocal
frame in the bundle E over V.

The direct connection 7 is given locally by a matrix
7(zly) = |I7 (z|y)|| € M,n(K),
T(zly) (ei(y)) = Y7 (ly) - ¢ (),
J
7 (alz) = 6.

The field ¢ may be represented over V by ¢(z) = Y, ¢*(z)e;(x). Then
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Vi (ao) (9) = %{7(7(0),76)) (@(v(0))} =0

dt

= XA o)

d .
= Z E{Tf (oly(t)) -
0.
Describing the path v by v(t) =

d .
Vi (20) (@) = Z E{Tf (zoly" (t), ¥ (t

- i{rww),w))(;ww»emw)}|t_o
&' (7(8))e; (o) }

[t=0

&' (7(t)) He=o - €5(0).

= Z Z {3—’3”1 (zoly", %, -, Y™ Diy=ao - 5% (0) - &' (x0)

a=1 1i,j

k) e 0 sy 570) s o)
Defining 5
I/ (o) = o 7 (olyt 2, Y"™) ly=zo
we get
VTX(IO (¢)
= 3 ST lo0) - 70) 6 an) 8 0Py, 570 e )
a=1 14,j
= Y { Sl 300 ¢ anles(ao
a=1 .7

=Y { St x
a=1 7

=2 X

(z0) - ¢"(z0)e;(zo)

D

8:60‘ ’

Y yman - X (@0)ei(0) }

= > { X rat@o) - X (w0) - 6 (@)e (w0) | + D (d6)(X)(wo0) ex(ao):

i
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Both this formula and Remark 1 above show that V7 is a linear connection in the
vector bundle E. The linear connection V7 will be called associated, or underlying, linear
connection to the direct connection 7. To summarize, we have proved

THEOREM 3. (i) For any direct connection T, let

() = 50,7 mo (6 (4 () € Brey 7(0) =, 4() = X3 (1)

be its infinitesimal part along the diagonal. Then V7 is a linear connection.

(ii) Let (x*,22,..., 2™y, y2,...,y™) be a local system of coordinates on a neighbor-
hood V x V of a point (x,x) € M x M and let {e1,ea,...,e,} be a local frame in E
over V. Let 7(z|y) be the matriz describing locally the direct connection T:

T(x\y) = |7 ()l € M0 (K),
7(z,y) Z’T (z]y) - e;(x), Tf(x\x)zéf

Then the coefficients FZ,Q of the connection V™ are given locally by
Vit = Z Tl

where

I ()= wrf(xl,xa B (TR TR VL) P

In the above formulas it is assumed that on each of the two factors V of V x V the same
coordinate functions are considered.

Let R = (V7)? be the curvature tensor of the connection V7. The components of the
curvature R are

Rl (2) = 20Ty () = 20T, (a) 4+ T (2) - Thy(e) — T(e) - Thy(a)

82 ; 82
= Greayi (@lY)y=s — 5 auiaya 7! (w]y)y=
9 9 o 9
t o T (z]y)y= Nk Fly)y= a—zﬁTk(ﬂy)y:x oy T (2]y)y=

COROLLARY 4. The curvature form R of the underlying linear connection V', associated
to the direct connection T, is given by

H? j H? j
R = <WT¢ (I|y)y=x - W% (I|y)y=x

9 ) B B .
+ oerllalilys 5ol s = o s el ) o A

For further computations it is convenient to introduce the matrices I', whose compo-
nents are given by
J._T1J
[Tallf =175,
and matrices R, whose entries are the components of the curvature tensor

|Rasll] == R
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REMARK 2. It is clear that if the base manifold M is endowed with an affine connection,
then the parallel transport along small geodesics—defined for a given linear connection
in the vector bundle F over M—produces a direct connection 7 in E. Such examples of
direct connections have already been used in various papers, as computational tools, see
e.g. C. Teleman [Tc]|, A. Connes and H. Moscovici [C.M]. We might ask whether any direct
connection can be obtained by this procedure. The answer to this question is negative.
Indeed, notice that any direct connection 7 produced by parallel transport along geodesics
has to satisfy the condition 7(x,y) o 7(y, x) = Id, a property which might not be satisfied
by an arbitrary direct connection. Moreover, if a direct connection 7 derives from the
parallel transport along geodesics, then the affine connection on the base manifold might
not be uniquely defined by it. For example, if the linear connection in E is flat, then
the corresponding direct connection 7 satisfies the condition 7(z,y) o 7(y,z) = 7(z,x),
locally, and it does not depend on the affine connection on the base manifold.

It is interesting to point out that the fulfillment of the condition 7(z,y) o7 (y, ) = Id
is not sufficient to insure that the direct connection 7 derives from the parallel transport
along geodesics, either. For, we provide the following

EXAMPLE 5. Let M = R and let E be the product bundle M x R of rank 1. Let e; be
the constant frame ej(x) = (x,1) in E. With respect to this frame, consider the direct
connection 7 defined by the matrix

T(ylz) = eV~ € My (R).

As the exponent is an odd function, 7 satisfies 7(x,y) o 7(y, ) = Id. On the other hand,
the corresponding linear connection V7 is given by

d
Vi (er(x) = - (/"0 ey (2)y=0 = en (),
dax y
and the parallel transport of the vector & along the line R from the point z to the point
y is the solution of the differential equation

LW e e -6

or,
g(y) = eyfmgo’

which differs from eV (v=2)’"¢,.

Although 7(x,y) = (7(y,2))~! is not true in general, it is true, however, that it holds
infinitesimally. In fact, we have

PROPOSITION 6. For any direct connection T, its matriz components satisfy the identities
(1)
st (el + ! (aly) s =0
(i)
0 9]
Hpa \T@lY) oT(yl2) }y—0 = 0 = @{T(x\y) o 7(ylz) by=e-
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Proof. As 7(x|x) = Id, we get that the directional derivative (8% + 3%) of 7 along the
diagonal vanishes. This proves (i). The second identity is a consequence of the first.

3. Direct connections and Chern character

3.1. Recall of periodic cyclic homology. For the benefit of the reader and for setting
notation, we recall in this section some basic notions and results, due to A. Connes [C.1],
[C.2], which lay at the foundations of noncommutative geometry.

Given a locally convex associative algebra A, the space of k-chains Cj(A) over the
algebra A, C.(A) is, by definition, a topological completion (usually, projective com-
pletion) of the algebraic tensor product ®***A. Two boundary operators, v’ and b are
introduced by the formulas

r=k—1
V(fo®@ i®...fi1® fr) = (D) fo® i@ (fr fre1) ® -+ @ fr—1 @ fr
r=0
and
r=k—1
bfo@ i@ fra®fi)= D>, (D) fo®h® @ (fr fri1) @ @ fr1® fi
r=0

+(-D*fofr@ @ fr1.

The boundary operator b’ defines the bar complex; if the algebra 4 is unitary then
the bar complex is acyclic.

The complex based on the boundary operator b is the Hochschild complex of the
algebra A; its homology is the Hochschild homology of the algebra.

The graded cyclic permutation T : Ci(A) — Ci(A) is defined on generators by

T(fo®R 1@ @ fr1®fr)= (1) 1@ @ fii1® fi ® fo.
The operator N : Cj(A) — C(A) is given by
N=1+T+T?+...+TF

The periodic cyclic homology is defined as the homology of the total complex asso-
ciated to a first and second quadrant direct product bicomplex {Cj 4}pez,q>0 defined
by:

(i) Cp,q = Cq(A); the boundary operators are considered of degree —1,

(ii) the columns consist of alternating bar and Hochschild complexes: the Hochschild
complex on each even order column and the bar complex (with b’ replaced by —b" ) on
each odd order column,

(iii) the boundary homomorphisms of the horizontal complexes are given by the al-
ternating homomorphisms N and 1 — T

o, Ao, o, &

This complex is called the periodic bicomplex of the algebra A .

Given the periodicity of the periodic cyclic bicomplex, there are essentially only two

L. . : A,
periodic cyclic homologies: HA2S"(A), and H ;L5 (A).
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THEOREM 7 (A. Connes [C.1], [C.2]).
(1)

k=even
HYET(C*(M) = €D Hip(M
(i)
k=odd
Hol" (C(M @ Hijp(M
(i) Given the periodic cyclic cycle f = p=0 fs,pﬁp € Hiigo Cepp(C®(M))

(e =0,1), its (€ + 2p)-degree component is the de Rham cohomology class of the (closed)
differential form
1 oter

(e+2p)! 92y ... 0alsr

i1 Tet2
f€+2p(m07x17-"aw6+2p)|Ad‘T1 -Ndx 5-‘,—257

where A is the diagonal.
DEFINITION 8. For any cyclic cycle f = [[720° fe—pp, let
1 gtap

(€+2p)! 9t ... Oxlstr

Qe+2p(f) =

i Tet+2
fe+2p(w07 L1y 7xe+2p)\Adx11 A d.%'6+2;

3.2. Direct connections and Chern character forms. Let T be a direct connection in the
complex vector bundle £ : E — M and let V™ be its associated linear connection.

Consider the function ®y : M**! 5 Uy ; — C (where U411 C MF*+1 is a neighbor-
hood of the diagonal in M**! ) defined by the formula

Du(zo, 21, ... xk) :=Tr7(zo, z1)7(x1,22) - . . T(Th—1, Tk )T (Tk, T0)-

THEOREM 9 (N. Teleman, [Tn.2] Theorem 6.2). Let & be a complex vector bundle over
the paracompact manifold M and let T be a smooth linear direct connection in £. Then

(i) the infinite chain ®T with components

f-2p2p = (=1)" (2;) Doy € C_gp2p(CF(M))

2
f*(2p71),2p71 = (=1 1(;:) Pop1 € C (2p—1),2p— 1(C™(M))

is an even periodic cyclic cycle over the algebra C*°(M);

(#) its homology class is (up to a multiplicative constants) the total Chern character
of €.

The reader should notice that, in view of Connes’ result, Theorem 7, a modification
of the direct connection away from a small neighborhood of the diagonal does not change
the periodic cyclic homology class of the chain ®7 as its periodic cyclic homology class
depends only on its 1-jet along the diagonal. For more information about the Hochschild
homology of the algebra of smooth functions, the reader might refer to N. Teleman [Tn.4]

As explained in the section 1, we intend to present here a direct proof of this theorem
providing, in addition, an explicite link between the differential forms Qg4 (®7) and the
classical Chern-Weil forms, at the level of differential forms rather than cohomology
classes.
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More precisely, we prove

THEOREM 10. Let T be a direct connection and let V™ be its underlying linear connection.

Then
1 1

k
@) 2r TR

Qo (P3x) =
where R = (V7)? is the curvature of the underlying linear connection V7.

Proof. We have to evaluate

QQk(égk) =
Z 1 92k Tr7(zo,z1)...7(x Zoi)T(ak, T0) At A A dai2E
A~ (2k)! 92t L Ox 05%1) - T(T2k—1, T2k 2k, Z0)|adT L2k
215--+502k
We intend to evaluate the differential form Qg (®7,) at the point (xo, zo, ..., Zo).

LEMMA 11.

82 7 7
> W( (0, 21)7 (21, 22)T (T2, ¥3)) (2o =21 =22)dT0" N d?
i1 o Il T

=5 Z Riyiy (20) 7 (z0|23)dalt A dai?
1,02

Proof. We work in local coordinates. Let us define

82 i i
A(zo, x3) = Z W( (20, x1)T (21, 22)7 (T2, T3)) | (20 =21 =) dT(' A d
i1 0o Ty 0T

An elementary computation gives

A('T07 1'3)

- {(%T((onl)) : (%T(mk@)) -7 (w2|z3)

+<aj§17(x0|5”1)> 7(1|z2) (68 ($2|:173)>

0
—1—7(1‘0‘1‘1)' (a i1 O zz

M(%xl)'(af’ (“'”)) '<ax? (mx?’))}<x0=x1:x2)dx61Ad%2

{(aa (xox1)>.<aa (x1|w2)>-7(x0|x3)+<aflll ("Wl))'(af;z (@m))
( 7(z1|72) ) 7(xo|x3)

(5

7(z1|T0) ) . (8 = (ngg))} dzlt A dal?
{E2 [(zo=21=22)

1‘1‘1‘2 ) Z‘2|$3
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Using Proposition 6 and the notation for the matrices I'y, R, we have further

A(zg, z3) = {Fil(a?o) Ty, (xo) - T(xo|zs) + (%T(ﬂ:oml)) : ( 0 T(ac2|a:3)>

i
Oxs,

(3 aagioen) ooy

0 o ‘ A
T ( 7 T(xlxo)) ' ( 7 7'(1‘2|333)>} drg A dug?
81‘1 8.232 |(zo=21=2)

- {(Fil(xo) Ty, (w0) + 0 T(x1|x2)> - 7(o|as)

11 12
Ox7' Ox

0 0 0 ; ;
+ (ﬁT(SL'O{El) + —hT(x1x0)> - — T(ZL’Q.’EQ,))} dzg Adzg.
1

(91'1 &Té’“ [(zo=z1=1x2)
From Corollary 4 and Proposition 6, we get
A(S(Jo, .Tg,)
0 0 i1 i2
= Z Ly (2o) - Tiy (w0) + - 5 T(@1]22)) - 7023 dait A dxg
11,19 axl 8552 ‘(250:%1:%2)
1 a a i io
=3 Ly (zo0) - Tiy(w0) + — =, 7(@1]22) | - 7(@o|xs) dat A dxg
11,02 81’1 8.’E2 |(xo=21=122)
— 5 Fil (1’0) . Fiz (SC()) + —il—izT(x1|x2) . T(ZL'0|(E3) d(EOZ A di[,’o1
11,12 (91'1 81’2 [(xo=z1=22)
1 a i1 io
=3 Ly (z0) - Tiy(w0) + — =, 7(@1]22) | - 7(wo|xs) dxt A dxg
it Oz Oy (zo=z1=22)
1 o 0 i ia
3. Li, (o) - Ty (o) + 907 02 T(w1|w2) | - 7(20|73) } (2o =2y =a0)dTo A dgg

1 . .

3 Z Riy iy - T(20]73)| (2o =21 =20) Aot A dxg.
i1,i2

This completes the proof of the Lemma.

LEMMA 12.

a?k

r WT(JL‘O, 1) ... T(Tok—1, Tok) T(T2k, To)|a - (dzh Ad2Z)®- @ (dg* ™ Ada*)
1Oy

T

= 5k Z Tr Ry, (xO)Risu (SU()) co Rig gy, (‘TO)
11,82,..05028— 1,02k
(dzP NdzP) @@ (dxé”“_l A dzi?).
Proof. We apply Lemma 11, in succession, to each of the pairs of arguments and cor-

responding partial derivations, beginning with the first pair (z1,22). This procedure,
followed by applying the trace operator, leads to the desired relation.
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We return to the proof of the theorem. Denoting by Alt the skew-symmetrization of
tensor products

1
Alt(v @2 ®@ - Q@ vy) ::FZSign(L)-v“@sz@---@vLT =V Ava A Ay,

T eSS,
we have
(2k)! - Q21 (23,)
62k ) .
= ——————Tr7r(xo,x1) ... T(Tor_1, o )T (Tor, To)|adzgt A -+ A dxZ*
TR (w0, 21) (Tor—1, T2r )T (T2, T0) | adTg 0
a2k . .
= WTT T(,To, .%'1) PN T(.”L'Q;cfl, ,Tgk)T(.’I?Qk, $0)|AAlt(d.T61 Q& dl'a%)
] ... 0wy
82k . . i )
= ————Tr7(z0,21) ... T(¥2k, T0) | a Alt[(dzg’ A dxg) @ -+ ® (dag™ ™" A dzg™))]
Ozt ...0x5
a2k . . , .
= Alt | —————Tr7(x0, 1) ... T(T2p, T0)|a(dagt Adai?) @ -+ @ (dog ™" Adait))

dxit ... Ox2k
1 . ) ) A
- Q_k ' Alt[TT Ri1i2 (xO)Rigu (‘TO) s Ri'zk—lizk (‘TO) ’ (d.’lﬁél A d.%'ff) ®-® (d:ﬂb“*l N d.’l?%”)]
1 . ) ) ,
- Q_k Tr Riliz (xO)Riglé (1‘0) s Ri2k—1i2k (.230) ’ Alt[(dxél A dxff) ®--® (dx62k71 N dxlOQk)]
1 ) A . )
- Q_k Tr Riliz (xO)Riglé (1‘0) s Ri2k—1i2k (.230) ’ Alt[(d%l ® dxf)Q) ®-® (dx2)2k71 ® d$62k)]
1 A , . ‘
= 2_k -Tr Ry, ($0)Ri3i4 (1‘0) Ry ik (.230) . da:f)l A d.%‘62 VANERRIVAN d.%‘82k71 A dl‘z)%
1 k
This completes the proof of Theorem 10.
REMARK 3. We recall that, within the theory of linear connections, the closedness of
the form Tr R* in the de Rham complex is a consequence of the Bianchi identity. It
is interesting to mention that the same result follows trivially in the context of direct
connections as a consequence of three facts: (i) the expression of the curvature of a direct
connection depends polynomially only on the functions 7(x,y) differentiated once or two
times, (ii) to each differentiation % there corresponds an exterior derivative factor dz?,
and (iii) the symmetry of mixed partial derivatives (Schwarz lemma).
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