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The plan of the talk

1. Linear direct connections 7 (called also linear quasi-connections) in
tangent bundles and in vector bundles. The Teleman’s theorem
2. Underlying a usual linear connection V™ and a direct proof of this
theorem, the curvature of 7 versus connection of V.
3. Groupoids point of view and groupoids generalizations.



1 Linear direct connections in vector bundles
and Teleman’s theorem

Nicola Teleman in the papers

N.Teleman, Distance Function, Linear quasi-Connections and Chern
Character, June 2004, THES/M/04/27

N.Teleman, Direct Connections and Chern Character, Proceedings of
the International Conference in Honor of Jean-Paul Brasselet, Luminy, May
2005,

shows how the Chern character of the tangent bundle of a smooth mani-

fold may be extracted from the geodesic distance function by means of cyclic
homology.



The processing has the following steps:
1. Let M be a smooth Riemannian manifold and let

r: M x M —|0,00)

be the induced geodesic distance function.
The function r? is smooth on a neighbourhood of the diagonal.

2. Let x be a cut-off smooth monotone decreasing real valued func-
tion, identically 1 on a neighbourhood of 0, having support on a sufficiently
small interval, so that y or? be well defined and smooth. For x,y € M a linear
mapping

Ay, z) : T,M — T,M

is given by the formula

9 0 (xor?) (z,9) 4 . O
) <Z§0wi> d ¢ X@xjayﬂ yg’“(y>a—yk

7]7

(A (y,x) is independent of the local coordinates).

For sufficiently close points x, v,

— A(y, ) is an isomorphism and

— A(z, ) is the identity.

Therefore A is a linear direct connection (=linear quasi-connection), with
respect to the definition below.



3. With the object A there is associated the function @y : Uy 1 — R,
where Uy, is a neighbourhood of the diagonal in M**!

®, (zo, 21, ..., vx) := Trace A (xg,x1)0 A(x1,22)0...0 A (xp_1,71) 0 A (Tk, 7o) -

4. Next, N.Teleman studies the function ®; in the context of cyclic
homology:

— firstly, he notices that ®,, k£ =even, is a cyclic cycle over the
algebra A = C> (M),

— secondly, he uses the Connes’ isomorphism which associates with
®,. a closed differential form

1 o 0 0 , ,
Q(®) () = — . — . —®, (o, 21,y xp) o drALAdx'
( k)( ) k! ih;“’ik 813211 awz; ax? k( 0,41 k)zo—:rl—...—zk—x
(we use the same local coordinate system on each factor).

— thirdly, he proves

Theorem 1 The top degree component of the cyclic homology class of @y is
equal to

[Q(Poy)] = c- Chy (M)

where ¢ is a constant and Chy, (M) is the k-component of the Chern character
of the tangent bundle of M.



The object A is a particular case of the linear direct connection introduced
by N.Teleman.

Definition 2 Let E be a real or complex smooth vector bundle over the man-
ifold M. A linear direct connection T in E consists of assigning to any two
points x,y € M, sufficiently close one to each other, an isomorphism

T (yax) : E\m - E|y7

such that
T (x, ) = id,

and 7 (y, ) depends smoothly on the pair z,y.



The parallel transport defined by a usual linear connection in
E along the small geodesics of an affine connection in M induces a linear
direct connection in E (see for example A.Connes and H.Moscovici, " Cyclic
cohomology, the Novikov conjecture and hyperbolic groups", Topology 29, n 3
345-388, 1990).

-i) As for A with 7 there is associated the function ®; by the
formula

Oy (20, 1, .oy xx) == Trace T (xg, 1) 0 T (1, 22) © ... 0 T (Tp—1,Zk) © T (T, To) -
The function
Dy (g, 1, 22) = Trace 7 (xg,x1) o T (1, %2) o T (T2, Tq)

plays a role of the curvature of T and the differential form Q (®5) - the curvature
form of T.

-ii) Any two smooth linear direct connections in a smooth vector
bundle are smoothly homotopic. The results above implay

Theorem 3 (N.Teleman) For any smooth linear direct connection T in the
smooth vector bundle E over the manifold M,

-i) ®y, k =even, is a cyclic cycle over the algebra C* (M),

-i1) the cohomology class of Q (Pay) is (up to a multiplicative constant) is the
k-component of the Chern character of E.



2 Underlying linear connection V' and a di-
rect proof of this theorem

In the paper
J.Kubarski, N.Teleman, Linear direct connections, Banach Center Pub-
lications, 2007, in print,
we study the geometry of direct connections 7:

e we construct the "infinitesimal part" V™ and show that V™ is a usual
linear connection. We next determine the curvature tensor R of V7 and
show that the equality of differential forms holds

Q(®g) = c-Tr R".



We intend to extract from a direct connection its infinitesimal part along
the diagonal.

Definition 4 Let X be a smooth tangent field over M and ¢ a smooth section
in E. Let xy be an arbitrary point in M and let v : (—e,e) — M be an
integral path of the field X with the initial condition v(0) = xo.

We define

Vian(6) = {7 (1(0).4(0) (6 (1 (D)} € B

Theorem 5 The right hand side of the above formula depends only on the
value of X at xo. The operator Vi, \(¢) is a usual linear connection in E.

We intend to describe Vi, 1(¢) locally.



Let (2, 2%, ...,2™) (dimM = m) be a local coordinate system on an open
neighborhood V of a point zy. Using the same local coordinate system on both
factors of the direct product M x M, any point (z,y) € V x V will be given
by local coordinates (x!, 22, ... 2™|yt, v%, ..., y™).

Theorem 6 Let {ey, e, ...,e,} be a local frame in E over V. Let T(x|y) be the
matrix describing locally the direct connection T :

7(zly) = |7} (z]y)|| € Mun(K),

T(x,y) (ei(y)) = Y mi(zly) - ej(x),  7i(alw) =6,
J
Then the coefficients Fia of the connection V" are given locally by
V;a’% €; = Zl“ia ej,
J

where

10



In conclusion, representing the tangent field X locally
X(x) = ZXQ(@ L9
- Ox®’

one has the formula

VTX(:EO)<Z ¢ e)=> { Z I o (20)- X (w0)-¢' (w0) €;(x0) }+ Z(d¢i)(X)($o) ei(zo)-

Remark 7 The above formula also show that V' is a linear connection in
the vector bundle E. The linear connection V' will be called associated, or
underlying, linear connection to the direct connection 7.
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Proposition 8 Let R = (V7)? be the curvature tensor of the connection V.
The components of the curvature R are

Rl () = 2T (a) = 20T, (2) + Do (1) - D) — Ty() - T (0)

0? o?
= axa—ay[ﬂf(ﬂy)y:x = Gviag 73 (@) y=at

d 0 0 0
+aya%(fc!y)y v 5y T (ly)y= ~ " T1(2]Y) =z By T (2|y)y=

Corollary 9 The curvature form R of the underlying linear connection V',
associated to the direct connection T, is given by
0? o?
T
(61,048(!//3 z( |y) axﬁaya z( ‘y)y

0 0 9 0
+ ayaTi(l"y)y €z a ﬂ z( |y)y =T 8_yﬁ7-?§(x|y)y T a a z(x|y)y l‘)dx /\d‘T '

12



Although, 7(z,y) = (7(y,x))"! is not true in general, it is true, however,
that it holds infinitesimally. In fact, we have the

Proposition 10 For any direct connection T, its matrixz components satisfy
the identities

i)
0

- 0
%T? (z|y)y=2 + 8_ng (z[y)y=2 = 0.

ii)
0 aly) o T(yl) s = 0 = oo fr(aly) o m(yla)}
—{r T —=0=—{7 T -
Oz Y YIT) yy= oy Yy Y|T) 5y
As 7(z|x) = Id., we get that the directional derivative (a%—’—%) of 7 along
the diagonal vanishes. This proves -i). The second identity is a consequence
of the first.

The above properties of any direct connection are fundamental for compar-
ing the curvature tensor R to the differential form € (97, ).

13



We obtain an important explicit link between € (®9) and the classical
Chern-Weil forms, at the level of differential forms rather than cohomology
classes.

Theorem 11 Let 7 be a direct connection and let V" be its underlying linear
connection. Then

1
0(@3) = ;- Tr R,

and more generally,
1 1

N CTSTRET

where R = (V7)? is the curvature of the underlying linear connection V.

Q(®7, -Tr R*,

In consequence, the mentioned above Teleman’s theorem follows from this
directly.
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3 Groupoids point of view and groupoids gen-
eralizations

N.Teleman in yours papers said:
"The arqguments discussed here may be extended to the language of groupoids”.
My further talk is the first step in this direction.

3.1 Direct connections and the Lie groupoid GL (F)

Let E be a real or complex smooth vector bundle over the manifold M. Con-
sider the transitive Lie groupoid

® = GL(E)

of all linear fibre isomorphisms h : £, — E}, of the vector bundle £, with the
source o, a (h) =, and the target 3, § (k) = y, and the unit u, =idg, . The
mappings

a,B:P— M, (a,f8):P— MxDM

are submersions, the injection
u:M— @, y— u,,
is smooth, and the partial multiplication
O X ®— P, (9,h) — gh,

is also smooth. and GL (E) be a Lie groupoid of linear fibre isomorphisms.

15



Remark 12 A linear direct connection in a vector bundle E is equivalently a
smooth mapping

7:U— GL(FE)

where U C M x M is an open neighborhood of the diagonal A = {(x,z); x € M},
such that

7(2,y) : By — Ep,
1.e.
aot(z,y) =y, PoT(yx)=ur,
and
T (:L’,l') =id: E|m — E‘x.

16



3.2 Lie Groupoids and point of view of linear direct
connections and the using of the Lie algebroids

According to the Pradines definition, the Lie algebroid of an arbitrary tran-
sitive Lie groupoid ® is equal to the vector bundle

A(D) = u* (T°D)

where v : M — ®, y — u,, and T*® = ker a,, equipped with the suitable
structures: the bracket of cross-sections [, 7], £, € SecA (®) is defined in the
following way. The cross-sections £, n can be extended to right invariant vector
fields &', 1’ on ®, their usual bracket [¢',7/] is invariant too, so it determines
a cross-section of u* (T*®) denoting by [£,n]. The anchor is defined as the
restriction of j3,.

We recall the definition of a Lie algebroid.

17



Definition 13 By a Lie algebroid on a manifold M we mean a system
A=A 1) (1)
consisting of a vector bundle A (over M ) and mappings
[-,-] : SecAx SecA — SecA, ~:A— TM,

such that

(1) (Sec A, [-,-]) is an R-Lie algebra,

(ii) =y, called an A nchor, is a homomorphism of vector bundles,

(iii) Secy : Secy — X (M), & — o0&, is a homomorphism of Lie algebras,
() [& f -0l =f-1&nl+ (v o &) (f) - for f € C= (M), §n € Sec A.

Lie algebroid (1) is calledtransitive if v is an epimorphism. g = ker+y is a
vector bundle, called the adjoint of (1), and the short exact sequence

0—g—A—"FE-—0 (2)

is called the Atiyah sequence of (1).

18



Example 14 The following are simple fundamental examples of transitive Lie
algebroids:

(1°) Finitely dimensional Lie algebra.

(2 ) Tangent bundle TM to a manifold M with the bracket [,-] of vector
fields and ¢dr; as an anchor.

(3°) Trivial Lie algebroid TM x g (Ngo-Van-Que) where g is as in (1°). The
bracket is defined by the formula,

[[(Xv 0-)’ (}/7 77)]] = ([X7Y]7£X77 — Lyo + [077]])7

X, Y e X(M), o,n: M — g, and the anchor is the projection TM x g —
TM.

(4°) Bundle of jets J*T'M (P.Libermann).

19



(5°) General form (K.Mackenzie, J.Kubarski). Let a system (g,V, () be
given, consisting of a Lie algebra bundle g on a manifold M, a covariant
derivative V in g and a 2-form Q, € Q*(M,g) on M with values in g,
fulfilling the conditions:

(i) Vio = =[O, 0], o € Secg,
(”) VX[Uan] = [VXU,U] + [vaXn]a X e X(M>7 o,n € Sng,
(iii) YV = 0.

Then TM & g forms a transitive Lie algebroid with the bracket defined
by

[(X,0), (Yin)] = (X, Y], = (X, Y) + Vxn = Vyo + [o,7]),

the anchor being the projection onto the first component.

Every transitive Lie algebroid is — up to an isomorphism — of this form.

20



Example 15 The following are important examples of transitive Lie alge-
broids:

(6°) The Lie algebroid A(P) = TP/G of a G-principal bundle P (K.Mackenzie,
J.Kubarski).

() The Lie algebroid CDO(FE) of covariant differential operators on a vector
bundle £ (K.Mackenzie). Another isomorphic construction of this object
is the Lie algebroid A(FE) of a vector bundle F (J.Kubarski), here the fibre
A(E)); is the space of linear homomorphisms [ : Sec £ — E|, such that
there exists a vector u € T, M for which [(f-v) = f(z)-l(v)+u(f) v(z),
feC>®(M), v e Sec(E).

(8°) The Lie algebroid A (®) := i*T*® of a Lie groupoid ® (J.Pradines). (Re-
mark: if ® = GL (F) is the Lie algebroid of a all linear fibre isomorphisms
of fibres of £ then A (E) = A(®) ).

() The Lie algebroid A(M,F) of a transversally complete foliation (M, F)
(P.Molino); in particular,

(1(P) the Lie algebroid A(G; H) of the foliation of left cosets of a Lie group
G by a nonclosed connected Lie subgroup H C G (for the construc-
tion independent of the theory of transversally complete foliations, see

J.Kubarski).

21



There are many sources of nontransitive Lie algebroids: Lie equations,
Differential groupoids, Poisson manifolds, etc.

22



Let ® = GL(F) be the Lie groupoid of all linear fibre isomorphisms of
fibres of E.

For y € M the submanifold ®, = GL(E), C GL(E) of all elements
u € GL (FE) for which a (u) = v,

GL(E),=a""(y),
is a GL (E,)-principal fibre bundle.

e Lie algebroid of the Lie groupoid is the infinitesimal object and play
analogous role to that of Lie algebras for Lie groups.

e The space [Lie algebra] of global cross-sections Sec (A (®)), ® = GL (FE)
where E' is a vector bundle, is naturally isomorphic to the Lie algebra
of all Covariant Derivative Operators, i.e. to the space of differential
operators of the rank <1

£:S5ecE — SeckE

such that £(f-&) = f-£(&) + X (f) - &, for a vector field X called the
anchor of £ f € C* (M), £ € SecE.

23



Let 7: (M x M), — GL(E) (where U C M x M is an open neighbour-
hood of the diagonal A = {(z,z); x € M} ) be a linear quasi-connection,

(o) * Ely = Ela,
SO « (T(I’y)) =y and f (T(I7y)) =z and let V" be the underlying linear

connection of 7 in FE.
Now, we fix y and take

T7(hy): M —GL(E),, v—71(z,y).

It is a smooth mapping such that o7 (-,y) = id. Therefore the composition
of the differential

T Y TeM — Tray) (GL (E)y)
with the differential of 8|GL (E), — M is identity
id: LM T Ty (GL(E),) 25 T,
Taking » = y and using the fact 7 (y,y) = v, = idg, we see that

™ (). s TM = T, (GL(E),).

24



Therefore 7 determines a usual connection

V' TM —u* (T*®)
A (vy) = 7(, 3/>*y (vy) -

in the Lie algebroid u* (7T°®) (& = GL(F)), i.e. a splitting of the Atiyah
sequence
0—g— A®) 25 TM — 0.
VT

V' is the "usual_covariant derivative" since the anchor of the Covariant Deriv-
ative Operator V™ (X) : SecE — SecE is just equal to X, therefore noticing
V™ (X) (€) in the form

Vi (€)

the usual axioms for covariant derivative are fulfilled.

Theorem 16 V' = V7, i.e. the connection V' is equal to the underlying
linear connection of T in E.

25



Proof. (asketch) Since we need to prove it at any point y € M so we can prove
it locally for £ = M x R™ and M = R™. Then GL (F) =M x GL(R") x M,
a'(y) = GL(E), = M x GL(R") x {y} . Let {e;};_; be a trivial local basis
of E, then the induced linear connection V7 is determined by

j
VTB e, = 87'2-
2ak|, | Oxmtk

(Y, y) - ¢

We can obtain the same results for V'. =

26



3.3 Groupoids generalization

The above consideration has "groupoids sense" so we can it generalize to any
transitive Lie groupoids.

Let @ be an arbitrary transitive Lie groupoid with the anchor o and the
target 5. We denote by u, the unit of ® at y.

Definition 17 By a linear direct connection in ® we mean a mapping
T (M x M), — 2,

such that
aot(z,y) =y, Por(xy) =ur,
and
T(2,2) = Uy.

For y the submanifold ®, C ® of all elements h € ® for which a (h) =y
(®, = a~'(y) ) is a ®Y-principal fibre bundle where

) ={h e ®; a(h)=05(h) =y}
is the isotropy Lie algebra of ® at y. Now, we fix y and take

Ty M—, x+—1(2,9).

27



It is a smooth mapping such that
fort(,y)=id.
Taking the differential
T3 Yt TeM = Triay) (B)
such that the composition with the differential of 3|®, — M is identity
id: T,M " T (8,) 2 T
and taking = y and using the fact 7 (y,y) = u, we see that

T ('ay)*y :TyM — T, (2) = A(P)

ly

where A (®) is the Lie algebroid of the Lie groupoid ®.

28



Therefore 7 determines a splitting of the Atiyah sequence of ®

0—g— A(®) 25 TM -0,

VT
i.e. a usual connection in the Lie algebroid A (®) = u* (T*®),
V' :TM — u* (T°®) = A(D)
NT (vy) =7, y)*y (%)‘

The connection V7 will be called the underlying linear connection of the
linear direct connection 7. .

29



Now we can ask on a very important question:

e How can we reconstruct the curvature tensor of V from the linear direct
connection in the Lie groupoid ®? And next how can we reconstruct the
Chern-Weil homomorphism of Lie groupoids ® (i.e. equivalently of the
principal bundle ®,) from arbitrary taken linear direct connection 77

3.4 Curvature tensor of the linear direct connection in
transitive Lie groupoids

Take any transitive Lie groupoid ® and its Lie algebroid A (®) with the Atiyah

sequence
0—-g— A(®) — TM — 0.

The fibre of g at x

is the right Lie algebra of the structural Lie group ®7. For a linear direct
connection 7 in ® denote by

V™ TM — A(D)

the underlying linear connection in the Lie algebroid A (®) induced by 7. Con-
sider the curvature tensor Q7 € Q2 (M;g) of V™

Qr (Xa Y) = [[ TXav;]] - ﬁ[rX,Y}'

30



The linear direct connection 7 determines the mapping

Vo[ Mx...xM — P,
—_——
k+1 ‘U

U7 (20, 1, ..oy ) = T (20, 21) - 7 (21, 22) + oo - T (Tp—1, ) - T (21, Tp)
having the values in the associated Lie group bundle,
Uy (w0, 21, ...y 1) € .
For example, for k£ = 2, the function
U5 o (M x M x M), — @,
Ul (29, x1,22) = T (xo, 1) « T (21, 22) - T (X2, Tp)

is called the curvature of 7.
Analogously to the previous cases we can associate some differential form
to the function ¥,. Namely, fixing a point xy we define

To?

U (zg): [ M x...x M o
—_—
(21, .0y wp) > UL (w0, 71, ..., 71) € PO,

31



Next, we take a coordinate system (z?, ..., 2™) (dimM = m) on an open neigh-
borhood V of the point zy. Using the same local coordinate system on each
factors of the direct product M x --- x M we take for (z1,...,2x) € VX ... x V

o v
@\Pk (&30) S T\Ifk(:cg,xl,..-,%)q)wg'
k

This vector we can translate via right translation to the unit. Let 7 : &30 —
70 denote the right translation on the element h, 73, (2) = z - h.

0

0
W (w0) = ( ) 2 €T, (97) =gy,
8@% k (IO) r(‘Ilk(xo,zl,...,mk)) 1 *\Ifk(wo,iﬂl,...,xk) (axé k (x0)> () ( xo) g|;r:0

The function obtained

(1, ey T, Tp) — 8?\112 (20) € 91,
k
can be differentiated usually as a vector valued function.

0o 0 o 0

1 2 k—1 Sk
Oxy' Ory Qx| 0T}

(xl,...,xk,l,xk) \DZ (wo,ZCl,...,ZEk) €g|$0.

We put

Q) (z) =% 999 W7 (20,71, ..., Tk) pomar=.. —2p—a dz™ A ... N\ da'.

— K Laiyig,..i 0 5 02 ool
1,225,k axl 8$2 axk
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It is a k-form on M with values in the vector bundle g
Q(T7) € Q" (M; g)
Considering k£ = 2 we obtain a 2-form with values in g,
Q(03) € Q* (M),

called the curvature form of 7.
The fundamental role is playing by the following

Theorem 18 For an arbitrary linear direct connection T : (M x M )|U — & in
the Lie groupoid ® the curvature form of T and the curvature form of the
underlying connection in A (®) are differs on a constant

T 1 T

Proof. (a sketch) three steps of the proof:

-1) Of course, we need to prove the equality point by point, so we can
look at this locally. Assume that ® is a trivial Lie groupoid ® = M x G x M
with the source prs and the target pr; and the partial multiplication

(z,a,9) - (y,b,z) = (z,ab,z) .
Then A(®), =T, M x g where g is the right ! Lie algebra of G,
A(®) =TM x g.

33



The bracket in g will be denoted by [v,w]" . The linear direct connection
T is given by
(M x M)y —MxGxM

7 (z,y) = (z, 7 (2,9),y),
(M xM)y—G, 7(zz)=e

Therefore
or or

=
aml |(x7x) 8$m+z |(I,I)

and
‘1’5 ($0,$17$2) = ($0, 7 ($07$1) - T ($17$2) T (@;xo), fo)-

The induced linear connection V' : T'M — T'M X g is equal to

L (0) = Vi =7 (), 0) = (0.7 (y), ().

ly
We calculate the curvature tensor 2™ of V.

0*+ 0*% or ot 1" o
o= 2 - P - ; = o~ d ! VAN d j.
o ; (6m18xm+z OziQxm+i * {8x1’ Ehﬂ] )( : v
v z0,T0
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-ii) Now we calculate the form Q (U,) :

8 1112 'TOJ Ty, .732) i i
Q E dz* N da?
(2) (@0) T2 Ozt 0

|zo=z1=22

for \112 (l’o, Ty, ZEQ) =7 (ZE07 .Tl) - T (1’1, ZEQ) - T (1]2, IO) .
-a) Firstly we calculate it for the Lie group G of matrices,

G C GL(V) c R@mY)
for some finitely dimensional vector space V, using the fact that the differential

of the left and the right translations, [, and r,, are exactly respectively the left
and the right multiplication by matrices,

(lg)*h = gh, (Tg)*h = hg.

After calculations we obtain the equality

1
Q(\Ijg) == Z_l ’QT.
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-b) For an arbitrary Lie group G we use the following "IMPORTANT
LOCAL TRICK":

We need to consider only local Lie group structure near the unit. But
every Lie algebra is isomorphic to a Lie algebra of matrices (because there
exists a faithful representation in some finitely dimensional vector space V)
and a Lie algebra of matrices is a Lie algebra of a Lie subgroup of the Lie
group GL (V). Therefore the above result concerning G C GL (V) is valid for
arbitrary Lie group G ! =

36



3.5 Characteristic classes

The last theorem gives that we can extract the Chern-Weil homomorphism
of ® via any local direct connection 7 on the level of differential forms. The
Chern-Weil homomorphism of @ is really the Chern-Weil homomorphism of
the Lie algebroid A (®) of ®.

We recall the construction of the Chern-Weil homomorphism for Lie alge-
broids

e Jan Kubarski, The Chern- Weil homomorphism of regular Lie algebroids,

UNIVERSITE CLAUDE BERNARD — LYON 1, Publications du Dé-
partment de Mathématiques, nouvelle série, 1991, 1-70.
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Consider a transitive Lie algebroid A with the Atiyah sequence
0—-9g—A—-TM —0

with the adjoint bundle of Lie algebras g.
The Chern-Weil homomorphism for transitive Lie algebroid A is defined as
follows:

k>0

k
hA : @ <S€C g*> — HdR (M)
10

I'— [%(P,Q V...V Q>]

where Q € Q% (M;g) is the curvature tensor of any connection in A, whereas
<Sec \/* g*) , Is the space of invariant cross-sections of \/* g* with respect to
I

the adjoint representation of A on \/k gt ie I'e <Sec \/k g*) . if and only if
I

k
v&ESecAval ..... orESecg ((’y o 5) <F7 01 V..V Ok> = Z<F7 01 V..V [[57 Ui]] V...V 0k>

=1

The nontriviality of h4 means, of course, that in A there is no flat connection.
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We explain also that V...V is the usual skew multiplication of differential
forms with values multiplying symmetrically

k
QV..VQ (501, ..y vog) = Z Sgn - (T; Vo, , Uy )V ..V (T3 Vg1, Vgsyy) € \/ 9,

oex2k

For example: for the Lie algebroid A (P) of a principal fibre bundle P (P is
assumed to be connected) and equivalently for Lie algebroid of the Ehresmann
Lie groupoid ® = PP~!, there is a natural isomorphism of algebras v such
that the diagram commutes

& (sec\'s)

\hA(P)
gT 1% HdR (M)

/hp
Vo),

which means that the Chern-Weil homomorphism of a Lie algebroid is some
generalization of this notion known on the ground of principal bundles. On the
other hand, this also means that the Chern-Weil homomorphism of a principal
bundle is a characteristic feature of its Lie algebroid (for connected principal
bundles).
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In addition, we must point out two things:

1)

A Lie algebroid is - in some sense - a simpler structure than a principal
bundle. Namely, nonisomorphic principal bundles can possess isomorphic
Lie algebroids. For example, there exists a nontrivial principal bundle
for which the Lie algebroid is trivial (the nontrivial Spin (3)-structure of
the trivial principal bundle RP (5) x SO (3)).

There exist other sources of Lie algebroids than principal bundles, for ex-
ample, transversally complete foliations, nonclosed Lie subgroups, Pois-
son manifolds and other.
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Example 19 Let ® = GL(FE) be a Lie groupoid of all linear fibre isomor-
phisms. Then the Atiyah sequence of A (®) is

0— End(E) - A(®) - TM — 0.

Consider the Chern-Weil homomorphism

k>0

k
) 1
h:@(Sec End(E)> — Hup (M), T — | {[,Q V...V Q)
IO

where Q € Q2 (M; End (E)) is the curvature tensor af any connection in ®.
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Pontryagin classes. Tuake the invariant cross section Cy, € I' (Sec \/* End (E)*>

by
Cije = tr (p;0...0¢p,)

where for ; € End (E),) the linear mapping ¢,0..0¢p : A B, — A E, is
defined [Greub-Halperin-Vanstone] by
0.0, (v1 A oo Avg) = Z sgno - o1 (Vgy) A oo Ay (Ug,) -
oexk

Then the Ponryagin class is equal to

1
pi (E) = pr ((I)):h(C%):W (Cop, QV ...V Q)
' 2k times dR

The class pi (E) is represented by the differential form
c-tr (Q0..00Q).

According to the notation of Greub-Halperin-Vanstone, the forms QV....VQ and
QO...0Q are the usual skew multiplication of differential forms for which the
values are multiplicated by the suitable mappings

Vo End(E) % .. x End(E) — \/" End(E).

O : End(E)x ... x End(E) — End (/\% B).
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Trace classes. Tuke the invariant cross section Tr, € I’ <Sec \/* End (E)*>
by
TTk (9017 sy SOk) - Z tr (300'1 ©..0 900',9) :

oexk

Then the trace class is equal to

b (B) = try (@) = h (Trog) = ——

(2/{)' <TT2k,Q V..V Q)

2k times

dR

The class try, (E) is represented by the differential form
c-tr(Qo...oQ)

(the values of the skew multiplication of Qo...0Q2 are multilied by the composing
of the linear mapping.
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Pffafian class for oriented 2k-dimensional vector bundle E. Toke
the tnvariant cross-section pf € T (Sec \/" Sk (E)*>

pfE (1, 0) = (6,87 (1) A A BT (i04))

2 o
where [3 : /\ (F) — Skp, Bz Ay)(2) = (z,2)y— (y,2)x and e € N\* F de-
termine the orientation and |(e,e)| = 1. Then the Atiyah sequence of A (IsoF)

is
0— Sk(E) — A(IsoE) — TM — 0.

and the Pfaffian class is equal to i* - h (pf) and it is represented by

c (A, (BT A LA (B7Q)).
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Take a local direct connection 7 in ® and consider once again the curvature
form Q (¥7) € Q* (M;g),

0*% 0*% or ot 1" o
oo = 2 : - — . — dx' N dax’.
o ; (fhﬂ(%mﬂ oz {8x“ 8m3] )( : v
v 20,20

We known that 7 induces a usual connection V7 in A (®) and that the
curvature of it is a constant time the form Q (¥7),

O = 4-Q(13).

In conclusion, the Chern-Weil homomorphism of ¢ (i.e. of the A (®) ) can be
extracted via 7 on the level of differential forms by

T, QV...vQ) =451 Q(T]) V..V Q(¥])).
Problem 20 How can we express the form
QU5 V...V Q(F]) € Q* (M;\/y)

with the help of 2 (V7,)? and the form (I';Q (V) Vv ... vV Q(VU7])) for an
invariant cross-section I' € (Sec \/* g*)lo with the help I' and Q (V7)) ¢
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We know that for ® = GL (E) we have the adjoint Lie algebra bundle g is
equal to the vector bundle of linear homomorphisms Aut (£). Therefore the
Atiyah sequence of A (®) equals

0— Aut (E) — A(®) - TM — 0.
Using the composition of linear homomorphisms
o:Aut(E) X ... x Aut (E) — Aut (E)
we can obtain the following theorem.
Theorem 21 The equality holds
QL) =c-Q(V])o...oQ(V]) (k times)
or equivalently

QUL )=c-Q 0...0Q" (k times).

THE END
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SRokoskoskokook skokoko sk koskok skokokskokok

Remark concerning the above Problem (20): For an arbitrary Lie
groupoid ® we consider

Ui (20, 21, ooy Dok) = T (w0, 1) - 7 (21, 22) - .. - T (Top—1, Tor) - T (Tax, To) € P2

We define additionally

UL, (20, 1, ..., Top)
= 7T (xo, 1) 7 (21, 22) - [T (T2, 0) -
: [7' ($2k—2, $2k) : ($0, Tok— 1)] (Izk—h fE2k) - T ($2k, 930)
= [7 (%o, 21) - 7 (21, 22) - 7 (22, 20)] - [T (0, 3) - T (23, 24) - T (24, T0)] -
)

'[T ($0,$2k71) (~T2k 1, T2k T<5U2k7330)]

T (20, 23)] - 7 (23, 24) - [T (24, T0) - T (m0, x5)] -

1.e.

\ng (270,1‘1, ...,Jfgk) = \I/; (ﬁo, Xy, ZL'Q) . \1172— (l'o,I‘g, 1'4) et \I/; (I‘o, l’gk_l,ﬁgk)

Clearly W7, # \TJgk in general, but (I think) the equality holds infinitesimally

(93, () = @ (93,) (). (3)

Next, using (3), we can try to calculate Q (¥],) (x) via Q (V7]) (x).
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