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The plan of the talk

1. Linear direct connections � (called also linear quasi-connections) in
tangent bundles and in vector bundles. The Teleman�s theorem
2. Underlying a usual linear connection r� and a direct proof of this

theorem, the curvature of � versus connection of r� :
3. Groupoids point of view and groupoids generalizations.
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1 Linear direct connections in vector bundles
and Teleman�s theorem

Nicola Teleman in the papers
N.Teleman, Distance Function, Linear quasi-Connections and Chern

Character, June 2004, IHES/M/04/27
N.Teleman, Direct Connections and Chern Character, Proceedings of

the International Conference in Honor of Jean-Paul Brasselet, Luminy, May
2005,
shows how the Chern character of the tangent bundle of a smooth mani-

fold may be extracted from the geodesic distance function by means of cyclic
homology.
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The processing has the following steps:
1. Let M be a smooth Riemannian manifold and let

r :M �M ! [0;1)

be the induced geodesic distance function.
The function r2 is smooth on a neighbourhood of the diagonal.

2. Let � be a cut-o¤ smooth monotone decreasing real valued func-
tion, identically 1 on a neighbourhood of 0; having support on a su¢ ciently
small interval, so that ��r2 be well de�ned and smooth. For x; y 2M a linear
mapping

A (y; x) : TxM ! TyM

is given by the formula

A (y; x)

 X
i

�i
@

@xi

!
=
X
i;j;k

�i
@2 (� � r2) (x; y)

@xi@yj
gjk (y)

@

@yk

(A (y; x) is independent of the local coordinates).
For su¢ ciently close points x; y;
� A (y; x) is an isomorphism and
� A (x; x) is the identity.
Therefore A is a linear direct connection (=linear quasi-connection), with

respect to the de�nition below.
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3. With the object A there is associated the function �k : Uk+1 ! R,
where Uk+1 is a neighbourhood of the diagonal in Mk+1

�k (x0; x1; :::; xk) := Trace A (x0; x1) �A (x1; x2) � ::: �A (xk�1; xk) �A (xk; x0) :

4. Next, N.Teleman studies the function �k in the context of cyclic
homology:

� �rstly, he notices that �k; k =even, is a cyclic cycle over the
algebra A = C1 (M) ;

� secondly, he uses the Connes�isomorphism which associates with
�k a closed di¤erential form


 (�k) (x) =
1

k!

X
i1;i2;::;ik

@

@xi11

@

@xi22
:::

@

@xikk
�k (x0; x1; :::; xk)x0=x1=:::=xk=x dx

i1^:::^dxik ;

(we use the same local coordinate system on each factor).
� thirdly, he proves

Theorem 1 The top degree component of the cyclic homology class of �k is
equal to

[
 (�2k)] = c � Chk (M)
where c is a constant and Chk (M) is the k-component of the Chern character
of the tangent bundle of M:
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The object A is a particular case of the linear direct connection introduced
by N.Teleman.

De�nition 2 Let E be a real or complex smooth vector bundle over the man-
ifold M: A linear direct connection � in E consists of assigning to any two
points x; y 2M; su¢ ciently close one to each other, an isomorphism

� (y; x) : Ejx ! Ejy;

such that
� (x; x) = id;

and � (y; x) depends smoothly on the pair x; y:
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The parallel transport de�ned by a usual linear connection in
E along the small geodesics of an a¢ ne connection in M induces a linear
direct connection in E (see for example A.Connes and H.Moscovici, "Cyclic
cohomology, the Novikov conjecture and hyperbolic groups", Topology 29, n 3
345-388, 1990).

-i) As for A with � there is associated the function �k by the
formula

�k (x0; x1; :::; xk) := Trace � (x0; x1) � � (x1; x2) � ::: � � (xk�1; xk) � � (xk; x0) :

The function

�2 (x0; x1; x2) = Trace � (x0; x1) � � (x1; x2) � � (x2; x0)

plays a role of the curvature of � and the di¤erential form 
 (�2) - the curvature
form of � :

-ii) Any two smooth linear direct connections in a smooth vector
bundle are smoothly homotopic. The results above implay

Theorem 3 (N.Teleman) For any smooth linear direct connection � in the
smooth vector bundle E over the manifold M;

-i) �k; k =even, is a cyclic cycle over the algebra C1 (M) ;

-ii) the cohomology class of 
 (�2k) is (up to a multiplicative constant) is the
k-component of the Chern character of E:
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2 Underlying linear connection r� and a di-
rect proof of this theorem

In the paper
J.Kubarski, N.Teleman, Linear direct connections, Banach Center Pub-

lications, 2007, in print,
we study the geometry of direct connections � :

� we construct the "in�nitesimal part" r� and show that r� is a usual
linear connection. We next determine the curvature tensor R of r� and
show that the equality of di¤erential forms holds


 (�2k) = c � Tr Rk:
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We intend to extract from a direct connection its in�nitesimal part along
the diagonal.

De�nition 4 Let X be a smooth tangent �eld over M and � a smooth section
in E. Let x0 be an arbitrary point in M and let  : (�"; ") �! M be an
integral path of the �eld X with the initial condition (0) = x0.
We de�ne

r�
X(x0)

(�) =
d

dt
f�((0); (t)) (� ( (t)))gjt=0 2 Ejx0 :

Theorem 5 The right hand side of the above formula depends only on the
value of X at x0: The operator r�

X(x0)
(�) is a usual linear connection in E:

We intend to describe r�
X(x0)

(�) locally.
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Let (x1; x2; :::; xm) (dimM = m) be a local coordinate system on an open
neighborhood V of a point x0: Using the same local coordinate system on both
factors of the direct product M �M; any point (x; y) 2 V � V will be given
by local coordinates (x1; x2; ::; xmjy1; y2; :::; ym):

Theorem 6 Let fe1; e2; :::; eng be a local frame in E over V. Let �(xjy) be the
matrix describing locally the direct connection � :

�(xjy) = k� ji (xjy)k 2Mn;n(K);

�(x; y) (ei(y)) =
X
j

� ji (xjy) � ej(x); � ji (xjx) = �
j
i :

Then the coe¢ cients �ji;� of the connection r� are given locally by

r�
@

@x�
ei =

X
j

�ji;� ej;

where

�ji;�(x) =
@

@y�
� ji (x

1; x2; ::; xmjy1; y2; :::; ym)y=x:
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In conclusion, representing the tangent �eld X locally

X(x) =
X
�

X�(x) � @

@x�
;

one has the formula

r�
X(x0)

(
X
i

�i ei) =
mX
�=1

f
X
i;j

�ji;�(x0)�X�(x0)��i(x0) ej(x0) g+
X
i

(d�i)(X)(x0) ei(x0):

Remark 7 The above formula also show that r� is a linear connection in
the vector bundle E: The linear connection r� will be called associated, or
underlying, linear connection to the direct connection � :
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Proposition 8 Let R = (r� )2 be the curvature tensor of the connection r� .
The components of the curvature R are

Rji��(x) =
@

@x�
�ji�(x)�

@

@x�
�ji�(x) + �

j
k�(x) � �ki�(x)� �

j
k�(x) � �ki�(x)

=
@2

@x�@y�
� ji (xjy)y=x �

@2

@x�@y�
� ji (xjy)y=x+

+
@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x �

@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x:

Corollary 9 The curvature form R of the underlying linear connection r� ;
associated to the direct connection � ; is given by

R = (
@2

@x�@y�
� ji (xjy)y=x �

@2

@x�@y�
� ji (xjy)y=x+

+
@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x �

@

@y�
� jk(xjy)y=x �

@

@y�
� ki (xjy)y=x)dx� ^ dx�:
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Although, �(x; y) = (�(y; x))�1 is not true in general, it is true, however,
that it holds in�nitesimally. In fact, we have the

Proposition 10 For any direct connection � ; its matrix components satisfy
the identities
-i)

@

@x�
� ji (xjy)y=x +

@

@y�
� ji (xjy)y=x = 0:

-ii)

@

@x�
f�(xjy) � �(yjx)gy=x = 0 =

@

@y�
f�(xjy) � �(yjx)gy=x:

As �(xjx) = Id:, we get that the directional derivative ( @
@x�
+ @
@y�
) of � along

the diagonal vanishes. This proves -i). The second identity is a consequence
of the �rst.
The above properties of any direct connection are fundamental for compar-

ing the curvature tensor R to the di¤erential form 
 (��2k) :
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We obtain an important explicit link between 
 (�2k) and the classical
Chern-Weil forms, at the level of di¤erential forms rather than cohomology
classes.

Theorem 11 Let � be a direct connection and let r� be its underlying linear
connection. Then


(��2) =
1

4
� Tr R;

and more generally,


(��2k) =
1

(2k)!
� 1
2k
� Tr Rk;

where R = (r� )2 is the curvature of the underlying linear connection r� :

In consequence, the mentioned above Teleman�s theorem follows from this
directly.
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3 Groupoids point of view and groupoids gen-
eralizations

N.Teleman in yours papers said:
"The arguments discussed here may be extended to the language of groupoids".
My further talk is the �rst step in this direction.

3.1 Direct connections and the Lie groupoid GL (E)

Let E be a real or complex smooth vector bundle over the manifold M: Con-
sider the transitive Lie groupoid

� = GL (E)

of all linear �bre isomorphisms h : Ejx ! Ejy of the vector bundle E; with the
source �; � (h) = x; and the target �; � (h) = y; and the unit uy = idEjy : The
mappings

�; � : �!M; (�; �) : �!M �M
are submersions, the injection

u :M ! �; y ! uy;

is smooth, and the partial multiplication

� : ��(a;�) �! �; (g; h) 7�! gh;

is also smooth. and GL (E) be a Lie groupoid of linear �bre isomorphisms.
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Remark 12 A linear direct connection in a vector bundle E is equivalently a
smooth mapping

� : U ! GL (E)

where U �M�M is an open neighborhood of the diagonal� = f(x; x) ; x 2Mg ;
such that

� (x; y) : Ejy ! Ejx

i.e.
� � � (x; y) = y; � � � (y; x) = x;

and
� (x; x) = id : Ejx ! Ejx:
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3.2 Lie Groupoids and point of view of linear direct
connections and the using of the Lie algebroids

According to the Pradines de�nition, the Lie algebroid of an arbitrary tran-
sitive Lie groupoid � is equal to the vector bundle

A (�) = u� (T��)

where u : M ! �; y ! uy; and T�� = ker��; equipped with the suitable
structures: the bracket of cross-sections [[�; �]] ; �; � 2 SecA (�) is de�ned in the
following way. The cross-sections �; � can be extended to right invariant vector
�elds �0; �0 on �; their usual bracket [�0; �0] is invariant too, so it determines
a cross-section of u� (T��) denoting by [[�; �]] : The anchor is de�ned as the
restriction of ��:
We recall the de�nition of a Lie algebroid.
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De�nition 13 By a Lie algebroid on a manifold M we mean a system

A = (A; [[�; �]]; ) (1)

consisting of a vector bundle A (over M) and mappings

[[�; �]] : SecA� SecA �! SecA;  : A �! TM;

such that

(i) (SecA; [[�; �]]) is an R-Lie algebra,

(ii) , called an A nchor, is a homomorphism of vector bundles,

(iii) Sec  : Sec  �! X (M) ; � 7�!  ��; is a homomorphism of Lie algebras,

(iv) [[�; f � �]] = f � [[�; �]] + ( � �) (f) � � for f 2 C1 (M) ; �; � 2 SecA:

Lie algebroid (1) is calledtransitive if  is an epimorphism. ggg = ker  is a
vector bundle, called the adjoint of (1), and the short exact sequence

0 �! ggg ,!A �! E �! 0 (2)

is called the Atiyah sequence of (1).
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Example 14 The following are simple fundamental examples of transitive Lie
algebroids:

(10) Finitely dimensional Lie algebra.

(20) Tangent bundle TM to a manifold M with the bracket [�; �] of vector
�elds and idTM as an anchor.

(30) Trivial Lie algebroid TM � g (Ngo-Van-Que) where g is as in (1o). The
bracket is de�ned by the formula,

[[(X; �); (Y; �)]] = ([X; Y ];LX� � LY � + [�; �]);

X; Y 2 X (M), �; � :M ! g, and the anchor is the projection TM�g!
TM:

(40) Bundle of jets JkTM (P.Libermann).
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(50) General form (K.Mackenzie, J.Kubarski). Let a system (ggg;r;
b) be
given, consisting of a Lie algebra bundle ggg on a manifold M , a covariant
derivative r in ggg and a 2-form 
b 2 
2(M;ggg) on M with values in ggg,
ful�lling the conditions:

(i) r2� = �[
b; �], � 2 Secggg,
(ii) rX [�; �] = [rX�; �] + [�;rX�], X 2 X(M), �; � 2 Secggg,
(iii) r
b = 0.

Then TM � ggg forms a transitive Lie algebroid with the bracket de�ned
by

[[(X; �); (Y; �)]] = ([X; Y ];�
b(X;Y ) +rX� �rY � + [�; �]);

the anchor being the projection onto the �rst component.

Every transitive Lie algebroid is � up to an isomorphism � of this form.
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Example 15 The following are important examples of transitive Lie alge-
broids:

(60) The Lie algebroidA(P ) = TP=G of a G-principal bundle P (K.Mackenzie,
J.Kubarski).

(70) The Lie algebroid CDO(E) of covariant di¤erential operators on a vector
bundle E (K.Mackenzie). Another isomorphic construction of this object
is the Lie algebroidA(E) of a vector bundleE (J.Kubarski), here the �bre
A(E)jx is the space of linear homomorphisms l : SecE ! Ejx such that
there exists a vector u 2 TxM for which l(f ��) = f(x) � l(�)+u(f) ��(x),
f 2 C1(M), � 2 Sec(E).

(80) The Lie algebroid A (�) := i�T�� of a Lie groupoid � (J.Pradines). (Re-
mark: if � = GL (E) is the Lie algebroid of a all linear �bre isomorphisms
of �bres of E then A (E) = A (�) ).

(90) The Lie algebroid A(M;F) of a transversally complete foliation (M;F)
(P.Molino); in particular,

(100) the Lie algebroid A(G;H) of the foliation of left cosets of a Lie group
G by a nonclosed connected Lie subgroup H � G (for the construc-
tion independent of the theory of transversally complete foliations, see
J.Kubarski).
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There are many sources of nontransitive Lie algebroids: Lie equations,
Di¤erential groupoids, Poisson manifolds, etc.
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Let � = GL (E) be the Lie groupoid of all linear �bre isomorphisms of
�bres of E:
For y 2 M the submanifold �y = GL (E)y � GL (E) of all elements

u 2 GL (E) for which � (u) = y;

GL (E)y = �
�1 (y) ;

is a GL (Ey)-principal �bre bundle.

� Lie algebroid of the Lie groupoid is the in�nitesimal object and play
analogous role to that of Lie algebras for Lie groups.

� The space [Lie algebra] of global cross-sections Sec (A (�)) ; � = GL (E)
where E is a vector bundle, is naturally isomorphic to the Lie algebra
of all Covariant Derivative Operators, i.e. to the space of di¤erential
operators of the rank � 1

L : SecE ! SecE

such that L (f � �) = f � L (�) +X (f) � �; for a vector �eld X called the
anchor of L; f 2 C1 (M) ; � 2 SecE:
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Let � : (M �M)jU ! GL (E) (where U � M �M is an open neighbour-
hood of the diagonal � = f(x; x) ; x 2Mg ) be a linear quasi-connection,

� (x;y) : Ejy ! Ejx;

so �
�
� (x;y)

�
= y and �

�
� (x;y)

�
= x and let r� be the underlying linear

connection of � in E:
Now, we �x y and take

� (�; y) :M ! GL (E)y ; x 7�! � (x; y) :

It is a smooth mapping such that � � � (�; y) = id : Therefore the composition
of the di¤erential

� (�; y)�x : TxM ! T�(x;y)

�
GL (E)y

�
with the di¤erential of �jGL (E)y !M is identity

id : TxM
�(�;y)�x�! T�(x;y)

�
GL (E)y

�
���! TxM:

Taking x = y and using the fact � (y; y) = uy = idEy we see that

� (�; y)�y : TyM ! Tuy

�
GL (E)y

�
:
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Therefore � determines a usual connection

�r�
: TM ! u� (T��)

�r�
(vy) = � (�; y)�y (vy) :

in the Lie algebroid u� (T��) (� = GL (E)), i.e. a splitting of the Atiyah
sequence

0! ggg ! A (�)
���!
 �
r�

TM ! 0:

�r� is the "usual covariant derivative" since the anchor of the Covariant Deriv-
ative Operator �r�

(X) : SecE ! SecE is just equal to X; therefore noticing
�r�
(X) (�) in the form

�r�
X (�)

the usual axioms for covariant derivative are ful�lled.

Theorem 16 �r�
= r� , i.e. the connection �r� is equal to the underlying

linear connection of � in E:
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Proof. (a sketch) Since we need to prove it at any point y 2M so we can prove
it locally for E = M � Rn and M = Rm: Then GL (E) = M �GL (Rn)�M;
��1 (y) = GL (E)y = M �GL (Rn)� fyg : Let feigni=1 be a trivial local basis
of E, then the induced linear connection r� is determined by

r�
@

@xk jy
ei =

@� ji
@xm+k

(y; y) � ej:

We can obtain the same results for �r�
:
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3.3 Groupoids generalization

The above consideration has "groupoids sense" so we can it generalize to any
transitive Lie groupoids.
Let � be an arbitrary transitive Lie groupoid with the anchor � and the

target �. We denote by uy the unit of � at y:

De�nition 17 By a linear direct connection in � we mean a mapping

� : (M �M)jU ! �;

such that
� � � (x; y) = y; � � � (x; y) = x;

and
� (x; x) = ux:

For y the submanifold �y � � of all elements h 2 � for which � (h) = y
(�y = ��1 (y) ) is a �yy-principal �bre bundle where

�yy = fh 2 �; � (h) = � (h) = yg

is the isotropy Lie algebra of � at y: Now, we �x y and take

� (�; y) :M ! �y; x 7�! � (x; y) :
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It is a smooth mapping such that

� � � (�; y) = id :

Taking the di¤erential

� (�; y)�x : TxM ! T�(x;y) (�y)

such that the composition with the di¤erential of �j�y !M is identity

id : TxM
�(�;y)�x�! T�(x;y) (�y)

���! TxM

and taking x = y and using the fact � (y; y) = uy we see that

� (�; y)�y : TyM ! Tuy (�y) = A (�)jy ;

where A (�) is the Lie algebroid of the Lie groupoid �:
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Therefore � determines a splitting of the Atiyah sequence of �

0! g! A (�)
���!
 �
r�

TM ! 0;

i.e. a usual connection in the Lie algebroid A (�) = u� (T��) ;

r� : TM ! u� (T��) = A (�)

r� (vy) = � (�; y)�y (vy)

The connection r� will be called the underlying linear connection of the
linear direct connection � : .
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Now we can ask on a very important question:

� How can we reconstruct the curvature tensor of r from the linear direct
connection in the Lie groupoid �? And next how can we reconstruct the
Chern-Weil homomorphism of Lie groupoids � (i.e. equivalently of the
principal bundle �y) from arbitrary taken linear direct connection �?

3.4 Curvature tensor of the linear direct connection in
transitive Lie groupoids

Take any transitive Lie groupoid � and its Lie algebroid A (�) with the Atiyah
sequence

0! ggg ! A (�) �! TM ! 0:

The �bre of ggg at x
gggjx = Tux�

x
x

is the right Lie algebra of the structural Lie group �xx: For a linear direct
connection � in � denote by

r� : TM ! A (�)

the underlying linear connection in the Lie algebroid A (�) induced by � : Con-
sider the curvature tensor 
� 2 
2 (M ;ggg) of r�


� (X; Y ) = [[r�
X ;r�

Y ]]�r�
[X;Y ]:
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The linear direct connection � determines the mapping

	�k :

0@M � :::�M| {z }
k+1

1A
jU

! �;

	�k (x0; x1; :::; xk) = � (x0; x1) � � (x1; x2) � ::: � � (xk�1; xk) � � (xk; x0)

having the values in the associated Lie group bundle,

	�k (x0; x1; :::; xk) 2 �x0x0 :

For example, for k = 2; the function

	�2 : (M �M �M)jU ! �;

	�2 (x0; x1; x2) = � (x0; x1) � � (x1; x2) � � (x2; x0)

is called the curvature of � :
Analogously to the previous cases we can associate some di¤erential form

to the function 	k: Namely, �xing a point x0 we de�ne

	�k (x0) :

0@M � :::�M| {z }
k

1A
jU

! �x0x0 ;

(x1; :::; xk) 7�! 	�k (x0; x1; :::; xk) 2 �x0x0 :
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Next, we take a coordinate system (x1; :::; xm) (dimM = m) on an open neigh-
borhood V of the point x0: Using the same local coordinate system on each
factors of the direct product M � � � � �M we take for (x1; :::; xk) 2 V � :::�V

@

@xjk
	�k (x0) 2 T	k(x0;x1;:::;xk)�x0x0 :

This vector we can translate via right translation to the unit. Let rh : �x0x0 !
�x0x0 denote the right translation on the element h; rh (z) = z � h:

@

@~xjk
	�k (x0) :=

�
r(	k(x0;x1;:::;xk))�1

�
�	k(x0;x1;:::;xk)

 
@

@xjk
	�k (x0)

!
2 Tux0

�
�x0x0
�
= gggjx0 :

The function obtained

(x1; :::; xk�1; xk) 7�!
@

@~xjk
	�k (x0) 2 gggjx0

can be di¤erentiated usually as a vector valued function.

(x1; :::; xk�1; xk) 7�!
@

@xi11

@

@xi22
:::

@

@x
ik�1
k�1

@

@~xikk
	�k (x0; x1; :::; xk) 2 gggjx0 :

We put


 (	�k) (x) =
1
k!

P
i1;i2;::;ik

@

@x
i1
1

@

@x
i2
2

@

@~x
ik
k

	�k (x0; x1; :::; xk)x0=x1=:::=xk=x dx
i1 ^ ::: ^ dxik :
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It is a k-form on M with values in the vector bundle ggg


 (	�k) 2 
k (M ;ggg)

Considering k = 2 we obtain a 2-form with values in ggg,


 (	�2) 2 
2 (M ;ggg) ;

called the curvature form of � :
The fundamental role is playing by the following

Theorem 18 For an arbitrary linear direct connection � : (M �M)jU ! � in
the Lie groupoid � the curvature form of � and the curvature form of the
underlying connection in A (�) are di¤ers on a constant


 (	�2) =
1

4
� 
� :

Proof. (a sketch) three steps of the proof:
-1) Of course, we need to prove the equality point by point, so we can

look at this locally. Assume that � is a trivial Lie groupoid � =M �G�M
with the source pr3 and the target pr1 and the partial multiplication

(z; a; y) � (y; b; x) = (z; ab; x) :

Then A (�)jx = TxM � g where g is the right ! Lie algebra of G;

A (�) = TM � g:
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The bracket in g will be denoted by [v; w]R : The linear direct connection
� is given by

� : (M �M)jU !M �G�M
� (x; y) = (x; �̂ (x; y) ; y) ;

�̂ : (M �M)jU ! G; �̂ (x; x) = e:

Therefore
@�̂

@xi j(x;x)
+

@�̂

@xm+i j(x;x)
= 0

and
	�2 (x0; x1; x2) = (x0; �̂ (x0; x1) � �̂ (x1; x2) � �̂ (x2; x0) ; x0) :

The induced linear connection r� : TM ! TM � g is equal to

r�
jy (v) = r�

v = � (�; y)�y (v) =
�
v; �̂ (�; y)�y (v)

�
:

We calculate the curvature tensor 
� of r� .


�jx0 = 2
X
i<j

 
@2�̂

@xj@xm+i
� @2�̂

@xi@xm+j
+

�
@�̂

@xi
;
@�̂

@xj

�R!
j(x0;x0)

dxi ^ dxj:
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-ii) Now we calculate the form 
 (	2) :


 (	2) (x0) =
1

2!

X
i;j

@2	2 (x0; x1; x2)

@xi1@~x
j
2 jx0=x1=x2

dxi ^ dxj

for 	2 (x0; x1; x2) = �̂ (x0; x1) � �̂ (x1; x2) � �̂ (x2; x0) :
-a) Firstly we calculate it for the Lie group G of matrices,

G � GL (V ) � R(dimV )
2

for some �nitely dimensional vector space V; using the fact that the di¤erential
of the left and the right translations, lg and rg, are exactly respectively the left
and the right multiplication by matrices,

(lg)�h = gh; (rg)�h = hg:

After calculations we obtain the equality


 (	2) =
1

4
� 
� :
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-b) For an arbitrary Lie group G we use the following "IMPORTANT
LOCAL TRICK":
We need to consider only local Lie group structure near the unit. But

every Lie algebra is isomorphic to a Lie algebra of matrices (because there
exists a faithful representation in some �nitely dimensional vector space V )
and a Lie algebra of matrices is a Lie algebra of a Lie subgroup of the Lie
group GL (V ) : Therefore the above result concerning G � GL (V ) is valid for
arbitrary Lie group G !
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3.5 Characteristic classes

The last theorem gives that we can extract the Chern-Weil homomorphism
of � via any local direct connection � on the level of di¤erential forms. The
Chern-Weil homomorphism of � is really the Chern-Weil homomorphism of
the Lie algebroid A (�) of �:
We recall the construction of the Chern-Weil homomorphism for Lie alge-

broids

� Jan Kubarski, The Chern-Weil homomorphism of regular Lie algebroids,
UNIVERSITE CLAUDE BERNARD �LYON 1, Publications du Dé-
partment de Mathématiques, nouvelle série, 1991, 1-70.
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Consider a transitive Lie algebroid A with the Atiyah sequence

0! ggg ! A! TM ! 0

with the adjoint bundle of Lie algebras ggg.
The Chern-Weil homomorphism for transitive Lie algebroid A is de�ned as

follows:

hA :

k�0M 
Sec

k_
ggg�

!
I0

�! HdR (M)

� 7�!
�
1

k!
h�;
 _ :::: _ 
i

�
where 
 2 
2E (M ;ggg) is the curvature tensor of any connection in A, whereas�
Sec
Wk ggg�

�
I0
is the space of invariant cross-sections of

Wk ggg� with respect to

the adjoint representation of A on
Wk ggg�, i.e. � 2

�
Sec
Wk ggg�

�
I0
if and only if

8�2SecA8�1;:::;�k2Secggg

 
( � �) h�; �1 _ ::: _ �ki =

kX
i=1

h�; �1 _ ::: _ [[�; �i]] _ :::: _ �ki
!

The nontriviality of hA means, of course, that in A there is no �at connection.
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We explain also that 
_:::_
 is the usual skewmultiplication of di¤erential
forms with values multiplying symmetrically


_:::_
 (x; v1; :::; v2k) =
X
�2�2k

sgn ��
 (x; v�1 ; v�2)_:::_

�
x; v�2k�1 ; vgs2k

�
2
_k

gggx:

For example: for the Lie algebroid A (P ) of a principal �bre bundle P (P is
assumed to be connected) and equivalently for Lie algebroid of the Ehresmann
Lie groupoid � = PP�1; there is a natural isomorphism of algebras � such
that the diagram commutesLk�0

�
Sec
Wk ggg�

�
I0

&hA(P )

�=" � HdR (M)
%hP

(
W
g�)I

which means that the Chern-Weil homomorphism of a Lie algebroid is some
generalization of this notion known on the ground of principal bundles. On the
other hand, this also means that the Chern-Weil homomorphism of a principal
bundle is a characteristic feature of its Lie algebroid (for connected principal
bundles).
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In addition, we must point out two things:

1) A Lie algebroid is - in some sense - a simpler structure than a principal
bundle. Namely, nonisomorphic principal bundles can possess isomorphic
Lie algebroids. For example, there exists a nontrivial principal bundle
for which the Lie algebroid is trivial (the nontrivial Spin (3)-structure of
the trivial principal bundle RP (5)� SO (3)).

2) There exist other sources of Lie algebroids than principal bundles, for ex-
ample, transversally complete foliations, nonclosed Lie subgroups, Pois-
son manifolds and other.
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Example 19 Let � = GL (E) be a Lie groupoid of all linear �bre isomor-
phisms. Then the Atiyah sequence of A (�) is

0! End (E)! A (�)! TM ! 0:

Consider the Chern-Weil homomorphism

h :

k�0M 
Sec

k_
End (E)�

!
I0

! HdR (M) ;� 7�!
�
1

k!
h�;
 _ :::: _ 
i

�
where 
 2 
2 (M ;End (E)) is the curvature tensor af any connection in �:
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Pontryagin classes. Take the invariant cross section Ck 2 �
�
Sec
Wk End (E)�

�
by

Ckjx = tr ('1�:::�'k)
where for 'i 2 End

�
Ejx
�
the linear mapping '1�:::�'k :

Vk Ejx !
Vk Ejx is

de�ned [Greub-Halperin-Vanstone] by

'1�:::�'k (v1 ^ ::: ^ vk) =
X
�2�k

sgn� � '1 (v�1) ^ ::: ^ 'k (v�k) :

Then the Ponryagin class is equal to

pk (E) = pk (�) = h (C2k) =
1

(2k)!

"
hC2k;
 _ :::: _ 
| {z }

2k times

i
#
dR

:

The class pk (E) is represented by the di¤erential form

c � tr (
�:::�
) :
According to the notation of Greub-Halperin-Vanstone, the forms 
_::::_
 and

�:::�
 are the usual skew multiplication of di¤erential forms for which the
values are multiplicated by the suitable mappings

_ : End (E)� :::� End (E)!
_2k

End (E) :

� : End (E)� :::� End (E)! End
�^2k

E
�
:
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Trace classes. Take the invariant cross section Trk 2 �
�
Sec
Wk End (E)�

�
by

Trk ('1; :::; 'k) =
X
�2�k

tr
�
'�1 � ::: � '�k

�
:

Then the trace class is equal to

trk (E) = trk (�) = h (Tr2k) =
1

(2k)!

"
hTr2k;
 _ :::: _ 
| {z }

2k times

i
#
dR

:

The class trk (E) is represented by the di¤erential form

c � tr (
 � ::: � 
)

(the values of the skew multiplication of 
�:::�
 are multilied by the composing
of the linear mapping.
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P¤a�an class for oriented 2k-dimensional vector bundle E: Take
the invariant cross-section pf 2 �

�
Sec
Wk Sk (E)�

�
pfF ('1; :::; 'k) = he; ��1 ('1) ^ ::: ^ ��1 ('k)i

where � :
^2

(F )
�=�! SkF ; � (x ^ y) (z) = hx; zi y� hy; zix and e 2

Vk F de-
termine the orientation and jhe; eij = 1: Then the Atiyah sequence of A (IsoE)
is

0! Sk (E)! A (IsoE)! TM ! 0:

and the Pfa¢ an class is equal to ik � h (pf) and it is represented by

c � h�;
�
��1


�
^ ::: ^

�
��1


�
i:
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Take a local direct connection � in � and consider once again the curvature
form 
 (	�2) 2 
2 (M ;ggg) ;


�jx0 = 2
X
i<j

 
@2�̂

@xj@xm+i
� @2�̂

@xi@xm+j
+

�
@�̂

@xi
;
@�̂

@xj

�R!
j(x0;x0)

dxi ^ dxj:

We known that � induces a usual connection r� in A (�) and that the
curvature of it is a constant time the form 
 (	�2) ;


� = 4 � 
 (	�2) :

In conclusion, the Chern-Weil homomorphism of � (i.e. of the A (�) ) can be
extracted via � on the level of di¤erential forms by

h�;
 _ ::: _ 
i = 4kh�;
 (	�2) _ ::: _ 
 (	�2)i:

Problem 20 How can we express the form


 (	�2) _ ::: _ 
 (	�2) 2 
2k
�
M ;
_
ggg
�

with the help of 
 (	�2k)? and the form h�;
 (	�2) _ ::: _ 
 (	�2)i for an
invariant cross-section � 2

�
Sec
Wk ggg�

�
I0
with the help � and 
 (	�2k) ?
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We know that for � = GL (E) we have the adjoint Lie algebra bundle ggg is
equal to the vector bundle of linear homomorphisms Aut (E) : Therefore the
Atiyah sequence of A (�) equals

0! Aut (E)! A (�)! TM ! 0:

Using the composition of linear homomorphisms

� : Aut (E)� :::� Aut (E)! Aut (E)

we can obtain the following theorem.

Theorem 21 The equality holds


 (	�2k) = c � 
 (	�2) � ::: � 
 (	�2) ( k times)

or equivalently

 (	�2k) = c1 � 
� � :::: � 
� ( k times).

THE END
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*******************
Remark concerning the above Problem (20): For an arbitrary Lie

groupoid � we consider

	�2k (x0; x1; :::; x2k) = � (x0; x1) � � (x1; x2) � ::: � � (x2k�1; x2k) � � (x2k; x0) 2 �x0x0 :

We de�ne additionally

~	�2k (x0; x1; :::; x2k)

= � (x0; x1) � � (x1; x2) � [� (x2; x0) � � (x0; x3)] � � (x3; x4) � [� (x4; x0) � � (x0; x5)] � :::
::: � [� (x2k�2; x2k) � � (x0; x2k�1)] � � (x2k�1; x2k) � � (x2k; x0)

= [� (x0; x1) � � (x1; x2) � � (x2; x0)] � [� (x0; x3) � � (x3; x4) � � (x4; x0)] � :::
::: � [� (x0; x2k�1) � � (x2k�1; x2k) � � (x2k; x0)]

i.e.

~	�2k (x0; x1; :::; x2k) = 	
�
2 (x0; x1; x2) �	�2 (x0; x3; x4) � ::: �	�2 (x0; x2k�1; x2k)

Clearly 	�2k 6= ~	�2k in general, but (I think) the equality holds in�nitesimally


 (	�2k) (x) = 

�
~	�2k

�
(x) : (3)

Next, using (3), we can try to calculate 
 (	�2k) (x) via 
 (	
�
2) (x) :
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