g-LOCALLY CONFORMAL SYMPLECTIC STRUCTURES

JAN KUBARSKI

1. L.C.S STRUCTURES FROM THE POINT OF VIEW OF LIE ALGEBROIDS

We recall that l.c.s. structure on a manifold M is a pair (ω, Ω) of differentiable forms on M such that

- (1) ω is a real closed 1-form on M,
- (2) Ω is a real non-degenerated 2-form fulfilling the property

$$d\Omega = -\omega \wedge \Omega.$$

From the non-degeneration of Ω follows that M has even dimension.

To consider l.c.s. structures and next, their generalizations, \mathfrak{g} -l.c.s. structures, we use Lie algebroids with trivial adjoint Lie algebra bundle $\mathbf{g} = M \times \mathfrak{g}$.

From the general theorem concerning the form of any transitive Lie algebroids (Mackenzie [M], Kubarski [K1]) we have:

• Each transitive Lie algebroid on M with a trivial adjoint bundle $g \cong M \times \mathbb{R}$ is isomorphic to

$$A = TM \times \mathbb{R}$$

with $\gamma = \operatorname{pr}_1 : TM \times \mathbb{R} \to TM$ as the anchor and the bracket $\llbracket \cdot, \cdot \rrbracket$ in Sec A is defined via some **flat** covariant derivative ∇ in $M \times \mathbb{R}$ and a 2-form $\Omega \in \Omega^2(M)$ fulfilling the Bianchi identity $\nabla \Omega = 0$ in the following way

$$[(X, f), (Y, g)] = ([X, Y], \nabla_X g - \nabla_Y f - \Omega(X, Y)).$$

Each flat covariant derivative in $\boldsymbol{g} = M \times \mathbb{R}$ is of the form

$$\nabla_X f = \partial_X f + \omega \left(X \right) \cdot f$$

where ω is a closed 1-differentiable form on M.

The condition $\nabla \Omega = 0$ is equivalent to $d\Omega = -\omega \wedge \Omega$. Hence a transitive Lie algebroid with trivial adjoint bundle $\boldsymbol{g} = M \times \mathbb{R}$ is determined by the following data:

(*) a closed 1-form ω and a 2-form Ω such that $d\Omega = -\omega \wedge \Omega$.

The Lie algebroid obtained in this way will be denoted by $(TM \times \mathbb{R}, \omega, \Omega)$. A connection $\lambda : TM \to TM \times \mathbb{R}$ in the Lie algebroid $A = (TM \times \mathbb{R}, \omega, \Omega)$ is of the form $\lambda(X) = (X, \eta(X))$ for a 1-form $\eta \in \Omega^1(M)$. The curvature form $\Omega^{\lambda}(X, Y) = [\lambda X, \lambda Y] - \lambda[X, Y]$ of a connection λ is equal to

(1.1)
$$\Omega^{\lambda} = \nabla \eta - \Omega = d\eta + \omega \wedge \eta - \Omega.$$

According to (*) the pair (ω, Ω) determining the above Lie algebroid is precisely a locally conformal symplectic structure (l.c.s. structure, for short) on the manifold provided that the 2-form Ω is non-degenerate. Therefore our transitive Lie algebroids $TM \times \mathbb{R}$ determined by (ω, Ω) are natural generalizations of the locally conformal symplectic structures. If the 1-form ω is exact the l.c.s. structure is called **globally**

JAN KUBARSKI

conformal symplectic structure. The property that an l.c.s. structure is global can be equivalently expressed in the language of Lie algebroids: (Kadobianski, Kubarski, Kushnirevitch, Wolak [KKKW])

- Let (ω, Ω) be an l.c.s. structure. The following conditions are equivalent:
 - the l.c.s. structure (ω, Ω) is globally conformal symplectic structure,
 - the associated Lie algebroid $A = (TM \times \mathbb{R}, \omega, \Omega)$ is invariantly oriented,
 - $H_A^{m+1}(M) = \mathbb{R}, m = \dim M,$

- the cohomology algebra $H_A(M)$ of the Lie algebroid A satisfies the Poincaré duality.

We recall that a transitive Lie algebroid $(A, \llbracket, \cdot \rrbracket, \gamma)$ is called *inavriantly oriented* [K2] if there is specified a cross section ε of the bundle $\bigwedge^n \boldsymbol{g}, \boldsymbol{g} := \ker \gamma$ and n = $rank\boldsymbol{g}$, which is invariant with respect to the adjoint representation of A on $\bigwedge^n \boldsymbol{g}$. The structure Lie algebras $\boldsymbol{g}_{|x}$ are then unimodular.

A cross-section ε of the bundle $\bigwedge^n g$ is invariant if and only if, in any open subset $U \subset M$ on which ε is of the form $\varepsilon_{|U} = (h_1 \wedge \ldots \wedge h_n)_{|U}$, $h_i \in \text{Sec } \boldsymbol{g}$, we have, for all $\xi \in \operatorname{Sec} A$,

$$\sum_{i=1}^n (h_1 \wedge \ldots \wedge \llbracket \xi, h_i \rrbracket \wedge \ldots \wedge h_n)_{|U} = 0.$$

In the case $A = (TM \times \mathbb{R}, \omega, \Omega)$ we have n = 1 and $g = M \times \mathbb{R}$ and a positive function $\varepsilon \in C^{\infty}(M) = \text{Sec}(M \times \mathbb{R})$ is invariant if and only if ε is ∇ -constant, $\nabla \varepsilon = 0$. The condition $\nabla \varepsilon = 0$ is equivalent to $\omega = d(-\ln(\varepsilon))$.

Two l.c.s. structures (ω, Ω) and (ω', Ω') on a manifold M are called *conformally* equivalent if

$$\Omega' = \frac{1}{a}\Omega, \ \omega' = \omega + \frac{da}{a},$$

for a nonwhere vanishing function a on M (non-singular for short).

If two l.c.s. structures (ω', Ω') and (ω, Ω) on a manifold M are conformally equivalent then the associated Lie algebroids $A' = (TM \times \mathbb{R}, \omega', \Omega')$ and $(TM \times \mathbb{R}, \omega, \Omega)$ are isomorphic via the isomorphism

$$H: (TM \times \mathbb{R}, \omega', \Omega') \to (TM \times \mathbb{R}, \omega, \Omega)$$
$$H(X, f) = (X, a \cdot f)$$

where $a \in C^{\infty}(M)$ is a non-singular smooth function (i.e. $a(x) \neq 0$ for all $x \in C^{\infty}(M)$ M). The isomorphism $H: A' \to A$ of the above form will be called a *conformal* isomorphism.

We add that the general form of a homomorphism $H: TM \times \mathbb{R} \to TM \times \mathbb{R}$ of vector bundles commuting with anchors $\gamma = pr_1$ is as follows

(**)
$$H(X, f) = H_{\eta, a}(X, f) := (X, \eta(X) + a \cdot f),$$

for $\eta \in \Omega^1(M)$ and $a \in C^{\infty}(M)$.

Proposition 1. (A) The following conditions are equivalent:

- (1) H is a homomorphism of Lie algebroids,
- (2) (a) $\nabla \eta = \Omega a \cdot \Omega',$ (b) $\nabla_X (a \cdot f) = a \cdot \nabla'_X f,$
- (3) (a) $d\eta + \omega \wedge \eta = \Omega a \cdot \Omega'$

(b) $a \cdot (\omega' - \omega) = da$.

The homomorphism H is an isomorphism of Lie algebroids if and only if a is non-singular. Conditions (1), (2), (3) are then equivalent to

(4) (a) $\Omega' = \frac{1}{a} \cdot (\Omega - d\eta - \omega \wedge \eta)$, (b) $\omega' = \omega + \frac{da}{a}$.

(B) For arbitrary Lie algebroid $A' = (TM \times \mathbb{R}, \omega', \Omega')$ and a data η , a, a – nonsingular, the differential forms $\omega = \omega' - \frac{da}{a}$, $\Omega = a \cdot \Omega' + d\eta + \omega \wedge \eta$ fulfil the condition $d\Omega = -\omega \wedge \Omega$, i.e. the data (ω, Ω) determines a Lie algebroid $A = (TM \times \mathbb{R}, \omega, \Omega)$ and $H_{\eta,a} : A' \to A$ given by (**) is an isomorphism of Lie algebroids

Clearly

$$H_{\eta,a} = H_{\eta,1} \circ H_{0,a},$$

see the diagram

$$A' = (TM \times \mathbb{R}, \omega', \Omega') \xrightarrow{H_{\eta, a}} (TM \times \mathbb{R}, \omega, \Omega) = A$$
$$\downarrow H_{0, a} (TM \times \mathbb{R}, \omega, a \cdot \Omega')$$

it means that if A' is isomorphic to A then there exists a Lie algebroid $A'' = (TM \times \mathbb{R}, \omega, \Omega''), \ \Omega'' = a \cdot \Omega'$ conformally isomorphic to A, i.e. such that [A], $[A''] \in Opext(TM, \nabla, M \times \mathbb{R})$ = the set of isomorphic classes of Lie algebroids having the same representation ∇ (a flat covariant derivative ∇).

Let (ω', Ω') and (ω, Ω) be l.c.s. structures. We observe that the isomorphism $H_{\eta,a}: A' \to A$ given by (**) is equivalent to conformal equivalence of the associated l.c.s. structures if and only if $\eta = 0$.

How we can formulate the problem of existence of l.c.s. structures? We have the simple

Proposition 2. Any Lie algebroid $A' = (TM \times \mathbb{R}, \omega', \Omega')$ is isomorphic to $A = (TM \times \mathbb{R}, \omega, \Omega)$ with Ω non-degenerate (i.e. (ω, Ω) is an l.c.s. structure) if and only if there exists in A' a connection for which the curvature tensor is non-degenerate.

Proof. Let $H_{\eta,a}: A' \to A$ be an isomorphism of Lie algebroids

 $H_{\eta,a}^+(f) = a \cdot f$. For arbitrary connections λ' and λ in A' and A, respectively such that $H_{\eta,a} \circ \lambda' = \lambda$ we have the following equality for curvature tensors

$$\Omega^{\lambda} = H_{\eta,a}^{+} \circ \Omega^{\lambda'}$$

Therefore, if Ω is nondegenerate and λ' is a connection such that $H_{\eta,a} \circ \lambda' = \lambda$ where $\lambda(v) = (v, 0)$, then $\Omega^{\lambda} = -\Omega$ and, clearly, $\Omega^{\lambda'}$ is non-degenerate.

Conversely, if $\lambda'(X) = (X, \eta(X))$ is any connection in A' such that $\Omega^{\lambda'}$ is nondegenerate, then $H_{-\eta,1}$ is an isomorphism of A' on $A := (TM \times \mathbb{R}, \omega', -\Omega^{\lambda'})$ (see (1.1)) and $(\omega', -\Omega^{\lambda'})$ is an l.c.s. structure. \Box

JAN KUBARSKI

So, the problem of existing of l.c.s. structures can be precisely formulated as follows:

Existing problem: We introduce into the class of pairs (ω, Ω) fulfilling (*), i.e. $d\Omega = -\omega \wedge \Omega$, the equivalence relation

r) $(\omega', \Omega') \approx (\omega, \Omega) \equiv$ the Lie algebroids $A' = (TM \times \mathbb{R}, \omega', \Omega')$ and $A = (TM \times \mathbb{R}, \omega, \Omega)$ are isomorphic, i.e. there exists $\eta \in \Omega^1(M)$ and $a \in C^{\infty}(M)$, $a(x) \neq 0$ for all $x \in M$, such that (4a), (4b) hold: (4a) $\Omega' = \frac{1}{a} (\Omega - d\eta - \omega \wedge \eta)$, (4b) $\omega' = \omega + \frac{da}{a}$.

We can ask: does there in every (in given) equivalence class $[(\omega', \Omega')]$ exist (ω, Ω) being a l.c.s. structure; equivalently, does there in the Lie algebroid

$$A' = (TM \times \mathbb{R}, \omega', \Omega')$$

exist a connection with non-degenerate curvature tensor, i.e. equivalently, does exist a 1-form $\eta \in \Omega^1(M)$ such that $d\eta + \omega \wedge \eta - \Omega$ is a non-degenerate.

We add that for a fixed closed form ω , i.e. a flat covariant derivative $\nabla_X f = \partial_X f + \omega(X) \cdot f$ in the trivial bundle $M \times \mathbb{R}$, the classification of Lie algebroids of the form $(TM \times \mathbb{R}, \omega, \cdot)$ up to isomorphism is as follows: for the class of isomorphic Lie algebroids $Opext(TM, \nabla, M \times \mathbb{R})$ we have [Mackenzie give the full answer for the classification]

$$Opext\left(TM,\nabla,M\times\mathbb{R}\right)=H^{2}_{\nabla}\left(M;\mathbb{R}\right).$$

To sum up we see that important l.c.s's notions can be translated into the Lie algebroid's language. We have the following table:

<u>l.c.s.</u>	Lie algebroid
$(M, \omega, \Omega) \equiv$ $\omega \text{ is closed,}$ $d\Omega = -\omega \wedge \Omega.$	$\overline{A = TM \times \mathbb{R}}$ with anchor $\gamma = pr_1 : TM \times \mathbb{R} \to TM$, bracket $\llbracket (X, f), (Y, g) \rrbracket =$ $([X, Y], \nabla_X g - \nabla_Y f - \Omega (X, Y))$ where $\nabla_X g = \partial_X g + \omega (X) \cdot g$ ∇ is flat and $\nabla \Omega = 0$.
globally c.s. $\equiv \omega$ is exact	A is invariantly oriented
two l.c.s. structures (ω', Ω') and (ω, Ω) on M are conformally equivalent \equiv $\omega' = \omega + \frac{da}{a}, \ \Omega' = \frac{1}{a}\Omega$	the corresponding Lie algebroids are isomorphic via $H_{0,a}: TM \times \mathbb{R} \to TM \times \mathbb{R},$ $H(X, f) = (X, a \cdot f)$ $a \in C^{\infty}(M), a(x) \neq 0$ for all x .

2. GENERALIZATIONS: g-L.C.S. STRUCTURES AND LIE ALGEBROIDS

We generalize l.c.s. structures to \mathfrak{g} -l.c.s. structures in which we can consider an arbitrary finite dimensional Lie algebra \mathfrak{g} instead of the commutative Lie algebra \mathbb{R} [KK]. From the general theorem on the form of Lie algebroids, mentioned above, we have [M], [K1];

4

Theorem 1. Each transitive Lie algebroid with a trivial adjoint bundle of Lie algebras $M \times \mathfrak{g}$ is isomorphic to $TM \times \mathfrak{g}$ with $\gamma = \mathrm{pr}_1 : TM \times \mathfrak{g} \to TM$ as the anchor and the bracket

$$\llbracket (X,\sigma), (Y,\eta) \rrbracket = ([X,Y], \nabla_X \eta - \nabla_Y \sigma + [\sigma,\eta] - \Omega (X,Y))$$

in Sec A is defined via the following data (∇, Ω) : a covariant derivative ∇ in the trivial vector bundle $M \times \mathfrak{g}$ and a 2-form $\Omega \in \Omega^2(M; \mathfrak{g})$ fulfilling the conditions:

- (1) $R_{X,Y}^{\nabla}\sigma = -\left[\Omega\left(X,Y\right),\sigma\right], R^{\nabla}$ being the curvature tensor of ∇ , (2) $\nabla_{X}\left[\sigma,\eta\right] = \left[\nabla_{X}\sigma,\eta\right] + \left[\sigma,\nabla_{X}\eta\right], \sigma,\eta \in C^{\infty}\left(M;\mathfrak{g}\right),$ (3) $\nabla\Omega = 0.$

The Lie algebroid obtained in the above way via the data (∇, Ω) fulfilling $(1) \div (3)$ above will be denoted here by

$$(TM \times \mathfrak{g}, \nabla, \Omega)$$
.

The form $-\Omega$ is the curvature form of the connection $\lambda: TM \to TM \times \mathfrak{g}, \lambda(v) =$ (v, 0), in this Lie algebroid $(TM \times \mathfrak{g}, \nabla, \Omega)$.

$$0 \to M \times \mathfrak{g} \to TM \times \mathfrak{g} \underset{\stackrel{\leftarrow}{\lambda}}{\to} TM \to 0.$$

More generally, the curvature form of an arbitrary connection $\lambda(X) = (X, \eta(X))$, $\eta \in \Omega^1(M; \mathfrak{g})$, is given by

$$\Omega^{\lambda}(X,Y) = (\nabla \eta)(X,Y) + [\eta X,\eta Y] - \Omega(X,Y).$$

We write the covariant derivative ∇ in the trivial bundle $M \times \mathfrak{g}$ in the form

$$\nabla_X \sigma = \partial_X \sigma + \omega \left(X \right) \left(\sigma \right)$$

for a 1-form $\omega \in \Omega^1(M; \operatorname{End} \mathfrak{g})$. The curvature tensor R^{∇} of ∇ is equal to

$$R_{X,Y}^{\mathsf{V}}\sigma = d\omega\left(X,Y\right)\left(\sigma\right) + \left[\omega\left(X\right),\omega\left(Y\right)\right]\left(\sigma\right).$$

Proposition 3. The conditions (1)-(3) characterizing the data (∇, Ω) determining the Lie algebroid $(TM \times \mathfrak{g}, \nabla, \Omega)$ can be express as follows

• the condition (1) is equivalent to

$$d\omega(X,Y)(\sigma) + [\omega(X),\omega(Y)](\sigma) = -[\Omega(X,Y),\sigma],$$

- the condition (2) is equivalent to $\omega_x \in \text{Der}(\mathfrak{g})$, i.e. ω_x is a differentiation of the Lie algebra \mathfrak{g} ,
- the condition (3) is equivalent to

$$d\Omega = -\omega \wedge \Omega$$

(the values of forms ω and Ω are multiplied with respect to the 2-linear homomorphism End $\mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}, (a, \sigma) \mapsto a \circ \sigma, where (a \circ \sigma)_x = a_x(\sigma_x).$

Definition 1. The pair (∇, Ω) determining the above Lie algebroid

 $\mathbf{6}$

 $(TM \times \mathfrak{g}, \nabla, \Omega)$

will be called \mathfrak{g} -locally conformal symplectic structure (\mathfrak{g} -l.c.s. structure, for short) on our manifold provided that the 2-form Ω is non-degenerate in the following sense: for each point $x \in M$ the mapping $T_x M \to L(T_x M, \mathfrak{g}), v \mapsto \Omega_x(v, \cdot)$, is a monomorphism.

We notice that if dim $\mathfrak{g} \geq 2$ there is no dimensional obstructions to the existing of an non-degenerate tensors:

Lemma 1. For arbitrary vector spaces V and \mathfrak{g} such that dim $\mathfrak{g} \geq 2$ there exists a 2-linear skew-symmetric non-degenerate tensor $\Omega \in \Omega^2(V; \mathfrak{g})$.

Proof: Let $(e_1, ..., e_n)$ be a basis of \mathfrak{g} . If dim V is even, then there exists a real 2-linear skew-symmetric non-degenerate tensor, say Ω_0 . The form $\Omega := \Omega_0 \cdot e_1 \in \Omega^2(V; \mathfrak{g})$ is non-degenerate. If dim V = 2k + 1 and $(v_1, ..., v_{2k+1})$ is a basis of V and $u^1, ..., u^{2k+1}$ is a dual basis, then put

$$\Omega_0 = u^1 \wedge u^2 + \dots + u^{2k-1} \wedge u^{2k}, \Omega_1 = u^{2k} \wedge u^{2k+1}.$$

The form $\Omega := \Omega_0 \cdot e_1 + \Omega_1 \cdot e_2$ is non-degenerate. \Box

Definition 2. A g-l.c.s. structure is called **globally** conformal symplectic structure if the associated Lie algebroid $(TM \times \mathfrak{g}, \nabla, \Omega)$ is invariantly oriented.

Theorem 2. If the Lie algebra \mathfrak{g} is unimodular with no centre, then each \mathfrak{g} -l.c.s. structure is globally c.s. structure.

Proof. According to the classifying theorem [Mackenzie] if \mathfrak{g} is with no centre then for the trivial LAB $\mathfrak{g} = M \times \mathfrak{g}$ there exists exactly one, up to isomorphism, a transitive Lie algebroid A with the adjoint LAB $\mathfrak{g} = M \times \mathfrak{g}$. Therefore, A must be isomorphic to the trivial Lie algebroid $A = TM \times \mathfrak{g}$ with the data $(\partial, 0)$. If additionally \mathfrak{g} is unimodular then this Lie algebroid is invariantly oriented: $\varepsilon(x) \equiv$ $\varepsilon_o \in \bigwedge^n \mathfrak{g}$ is an invariant cros-section. \Box

Theorem 3. Write $\nabla_X \sigma = \partial_X \sigma + \omega(X)(\sigma)$ for $\omega \in \Omega^1(M; \operatorname{End} \mathfrak{g})$. The Lie algebroid $(TM \times \mathfrak{g}, \nabla, \Omega)$ is invariantly oriented (i.e. (∇, Ω) is a globally conformal symplectic structure) if and only if \mathfrak{g} is unimodular and tr ω is an exact form. Let e_1, \ldots, e_n be a basis of \mathfrak{g} . For a non-singular function $f \in C^{\infty}(M)$ the element $\varepsilon = f \cdot e_1 \wedge \ldots \wedge e_n$ is an invariant cross-section if and only if

$$\operatorname{tr} \omega = d\left(-\ln|f|\right).$$

Let $(e_1, ..., e_n)$ be a basis of \mathfrak{g} with the structure constants c_{ij}^k . The covariant derivative ∇ determines a matrix of 1-forms $\omega_i^j \in \Omega^1(M)$ by

$$\nabla_X e_i = \sum_j \omega_i^j \left(X \right) e_j.$$

Analogously we have a collection of 2-forms Ω^j by

$$\Omega_{X,Y} = \Omega^j_{X,Y} e_j.$$

We interpret the data (1)÷(3) concerning (∇, Ω) in the terms of the matrix ω_i^j and the collection Ω^j and the structure constants c_{ij}^k .

Proposition 4. The conditions (1)-(3) characterizing the data (∇, Ω) determining the Lie algebroid $(TM \times \mathfrak{g}, \nabla, \Omega)$ can be expressed as follows.

• The condition (1) is equivalent to

$$-\sum_{j}\Omega_{X,Y}^{j}\cdot c_{j,i}^{r} = d\omega_{i}^{r}\left(X,Y\right) - \left(\sum_{j}\omega_{i}^{j}\left(X\right)\omega_{j}^{r}\left(Y\right) - \omega_{i}^{j}\left(Y\right)\omega_{j}^{r}\left(X\right)\right),$$

• the condition (2) is equivalent to

$$\sum_{k} c_{ij}^{k} \cdot \omega_{k}^{r} \left(X \right) = \sum_{k} \left(\omega_{i}^{k} \left(X \right) c_{kj}^{r} - \omega_{j}^{k} \left(X \right) c_{ki}^{r} \right),$$

• the condition (3) is equivalent to

$$d\Omega^j = -\sum_i \Omega^i \wedge \omega_i^j.$$

Two g-l.c.s. structures (∇', Ω') , (∇, Ω) on a manifold M will be called g-conformally equivalent if the associated Lie algebroids are isomorphic via an isomorphism of the special form (called g-conformal) $H(X, \sigma) = (X, a(\sigma))$ for some mapping $a : M \to Aut(\mathfrak{g})$. Then the equivalent relations between the data (∇, Ω) and (∇', Ω') are as follows:

 $-\Omega' = a^{-1} \circ \Omega,$

$$-a \circ \nabla'_X(\sigma) = \nabla_X(a \circ \sigma)$$

We use the notation $a \circ \sigma$ for the cross-section defined by $(a \circ \sigma)_x = a_x (\sigma_x)$.

Writing ∇' and ∇ with using 1-forms $\omega', \omega \in \Omega^1(M; \operatorname{End} \mathfrak{g})$ (as above) the last condition can be equivalently written in the form

$$\omega\left(X\right)\circ a=-\partial_{X}a+a\circ\omega'\left(X\right).$$

In the terms of the matrices $\omega_i^{j'}$ and ω_i^j this condition is equivalent to

$$\omega_i^{\prime j}(X) \cdot a_j^k - a_i^j \cdot \omega_j^k(X) = \partial_X \left(a_i^k \right).$$

The general form of a homomorphism $H: TM \times \mathfrak{g} \to TM \times \mathfrak{g}$ commuting with anchors pr_1 is as follows

(2.1)
$$H(X,\sigma) = H_{\eta,a}(X,\sigma) = (X,\eta(X) + a \circ \sigma)$$

for $\eta \in \Omega^1(M; \mathfrak{g})$, $a \in C^{\infty}(M, \operatorname{End} \mathfrak{g})$. Consider two Lie algebroids $A' = (TM \times \mathfrak{g}, \nabla', \Omega')$ and $A = (TM \times \mathfrak{g}, \nabla, \Omega)$

Proposition 5. The following conditions are equivalent.

- (1) H is a homomorphism of of Lie algebroids $H: A' \to A$,
- (2) (a) a_x is a homomorphism of Lie algebras,
 - (a) $(X, Y) = [\eta(X), \eta(Y)] = (\Omega a\Omega')(X, Y),$ (b) $(\nabla \eta)(X, Y) + [\eta(X), \eta(Y)] = (\Omega - a\Omega')(X, Y),$ (c) $a \circ \nabla'_X \sigma = \nabla_X (a \circ \sigma) + [\eta(X), a \circ \sigma],$

JAN KUBARSKI

- (3) In the basis $e_1, ..., e_n$ and for the matrix a_i^j defined by $a(e_i) = \sum_j a_i^j(e_j)$ (a) a_x is a homomorphism of Lie algebras,
 - (a) a_x is a homomorphism of Lie algebras, (b) $d\eta^k (X, Y) - (\eta^i \wedge \omega_i^k) (X, Y) + \eta^i (X) \cdot \eta^j (Y) \cdot c_{ij}^k =$ $= (\Omega^k - \Omega'^i \cdot a_i^k) (X, Y),$ (c) $\sum_j \omega_i'^j (X) \cdot a_j^k = \sum_j a_i^j \cdot \omega_j^k (X) + \partial_X a_i^k + \eta^j (X) \cdot a_i^s \cdot c_{js}^k.$

The homomorphism $H_{\eta,a}$ is an isomorphism of Lie algebroids if and only if a_x is an isomorphism of Lie algebras.

If (∇', Ω') and (∇, Ω) are \mathfrak{g} -l.c.s structures and A' and A are corresponding Lie algebroids, then the isomorphism $H_{\eta,a}$ given by (2.1) is equivalent to conformal equivalence of the associated \mathfrak{g} -l.c.s structures (∇', Ω') and (∇, Ω) if and only if $\eta = 0$.

Analogously, we we can put the problem of existence of l.c.s. structures. We have firstly the simple

Proposition 6. Any Lie algebroid $A' = (TM \times \mathfrak{g}, \nabla', \Omega')$ is isomorphic to $A = (TM \times \mathfrak{g}, \nabla, \Omega)$ with Ω non-degenerate (i.e. (∇, Ω) is a \mathfrak{g} -l.c.s. structure) if and only if there exists in A' a connection for which the curvature tensor is non-degenerate.

Existing problem: We introduce into the class of pairs (∇, Ω) fulfilling (1)-(3) from Theorem 1, the equivalence relation

 $\mathrm{r}\mathfrak{g}) \ (\nabla', \Omega') \approx (\nabla, \Omega) \equiv$

 \equiv the Lie algebroids

$$A' = (TM \times \mathfrak{g}, \nabla', \Omega') \quad \text{and} \quad A = (TM \times \mathfrak{g}, \nabla, \Omega)$$

are isomorphic,

i.e. there exist $\eta \in \Omega^1(M; \mathfrak{g})$, $a \in C^{\infty}(M, \operatorname{Aut} \mathfrak{g})$ such that (2b-c) from Prop. 5 holds:

$$(\nabla \eta) (X, Y) + [\eta (X), \eta (Y)] = (\Omega - a\Omega') (X, Y)$$

and

$$a \circ \nabla'_X \sigma = \nabla_X \left(a \circ \sigma \right) + \left[\eta \left(X \right), a \circ \sigma \right]$$

We can ask does there in every (in given) equivalence class $[(\nabla', \Omega')]$ exist (∇, Ω) being a g-l.c.s. structure; equivalently, does there in the Lie algebroid

$$A' = (TM \times \mathfrak{g}, \nabla', \Omega')$$

exist a connection with non-degenerate curvature tensor, i.e. equivalently, does there exists a 1-form $\eta \in \Omega^1(M; \mathfrak{g})$ such that the 2-form $(\nabla \eta)(X, Y) + [\eta X, \eta Y] - \Omega(X, Y)$ is a non-degenerate.

It would be interesting to investigate the group of all compactly supported diffeomorphisms of M that preserve the g-l.c.s. structure up to g-conformal equivalence (analogously as was given for usual l.c.s. structures by Haller and Rybicki [HR]).

We add that two extreme cases: (1) \mathfrak{g} commutative (for example $\mathfrak{g} = \mathbb{R}$) and (2) \mathfrak{g} semisimple, are quite different. In the second case all Lie algebroids of the form $(TM \times \mathfrak{g}, \nabla, \Omega)$ (i.e. with the trivial adjoint Lie algebra $M \times \mathfrak{g}$) are isomorphic, clearly to the trivial one $TM \times \mathfrak{g}$ with the structure given by the data $(\partial, 0)$. We add that not each isomorphism is \mathfrak{g} -conformal. This Lie algebroid is invariantly oriented.

8

References

- [HR] S. Haller and T. Rybicki, On the group of diffeomorphisms preserving a locally conformal symplectic structure, Ann. Global Anal. Geom. 17, 475–502, 1999.
- [KKKW] R. Kadobianski, J. Kubarski, V. Kushnirevitch, and R. Wolak *Transitive Lie algebroids of rank 1 and locally conformal symplectic structures*, Journal of Geometry and Physics 46 (2003) 151-158.
- [KK] R. Kadobianski, J. Kubarski, *Locally conformal symplectic structures and their generalizations from the point of view of Lie algebroids*, Annales Academiae Paedagogicae Cracoviensis, Studia Mathematica IV, Vol. 23, 2004, (87-102).
- [K1] J.Kubarski, *Lie algebroid of a principal fibre bundle*, Publ. Dep. Math. University de Lyon 1, 1/A, 1989.
- [K2] J. Kubarski, *Fibre integral in regular Lie algebroids*, New Developments in Differential Geometry, Budapest 1996, 173-202. Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996; Kluwer Academic Publishers 1999.
- [M] K. Mackenzie, *Lie Groupoids and Lie Algebroids in Differential Geometry*, Cambridge University Press, 124, 1987.

Jan Kubarski: Institute of mathematics, Technical University of Łódź, PL-93-005 Łódź, ul. Wólczańska
215, POLAND