g-LOCALLY CONFORMAL SYMPLECTIC STRUCTURES

JAN KUBARSKI

1. L.C.S STRUCTURES FROM THE POINT OF VIEW OF LIE ALGEBROIDS

We recall that l.c.s. structure on a manifold M is a pair (w,(2) of differentiable
forms on M such that
(1) w is a real closed 1-form on M,

(2) Q is a real non-degenerated 2-form fulfilling the property

dQ) = —w A Q.

From the non-degeneration of €2 follows that M has even dimension.
To consider l.c.s. structures and next, their generalizations, g-l.c.s. structures, we
use Lie algebroids with trivial adjoint Lie algebra bundle g = M x g.
From the general theorem concerning the form of any transitive Lie algebroids
(Mackenzie [ M|, Kubarski [ K1]) we have:
e Fach transitive Lie algebroid on M with a trivial adjoint bundle g = M x R
18 1somorphic to
A=TM xR
with v =pry : TM x R — TM as the anchor and the bracket [-,-] in Sec A

18 defined via some flat covariant derivative V in M x R and a 2-form
Q € Q* (M) fulfilling the Bianchi identity VS = 0 in the following way

[(X, /), (Y, 9)] = (X, Y], Vxg = Vy [ —Q(X,Y)).

Each flat covariant derivative in g = M x R is of the form

Vxf=0xf+w(X)-f
where w is a closed 1-differentable form on M.
The condition V) = 0 is equivalent to df2 = —w A 2. Hence a transitive Lie

algebroid with trivial adjoint bundle g = M x R is determined by the following
data:

(*) a closed 1-form w and a 2-form €2 such that d€2 = —w A Q.

The Lie algebroid obtained in this way will be denoted by (TM x R,w,Q). A
connection A : TM — TM x R in the Lie algebroid A = (T'M x R,w, ) is of the
form X (X) = (X,n (X)) for a 1-form € Q' (M) . The curvature form Q* (X,Y) =
[AX,AY] — A[X, Y] of a connection A is equal to

(1.1) P=Vn—-Q=dn+wnrn—Q.

According to (*) the pair (w, ) determinig the above Lie algebroid is precisely a
locally conformal symplectic structure (l.c.s. structure, for short) on the manifold
provided that the 2-form €2 is non-degenerate. Therefore our transitive Lie algebroids
TM x R determined by (w,(2) are natural generalizations of the locally conformal
symplectic structures. If the 1-form w is exact the l.c.s. structure is called globally
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conformal symplectic structure. The property that an l.c.s. structure is global can
be equivalently expressed in the language of Lie algebroids: (Kadobianski, Kubarski,
Kushnirevitch, Wolak [ KKKW])
o Let (w,R) be an l.c.s. structure. The following conditions are equivalent:
- the l.c.s. structure (w, ) is globally conformal symplectic structure,
- the associated Lie algebroid A = (TM x R,w, Q) is invariantly oriented,
- HPT (M) =R, m =dim M,
- the cohomology algebra H 4 (M) of the Lie algebroid A satisfies the Poincaré
duality.
We recall that a transitive Lie algebroid (A4, [, -], ) is called inavriantly oriented
[ K2] if there is specified a cross section € of the bundle A" g, g :== kery and n =
rankg, which is invariant with respect to the adjoint representation of A on A" g.
The structure Lie algebras g|, are then unimodular.
A cross-section ¢ of the bundle A" g is invariant if and only if, in any open subset
U C M on which ¢ is of the form ey = (b1 A ... A hn)‘U, h; € Secg, we have, for
all £ € Sec A,

S (A NSRBI A A B) = 0.
i=1
In the case A = (TM X R,w, ) we have n = 1 and g =M x R and a positive
function £ € C*® (M) = Sec(M x R) is invariant if and only if ¢ is V-constant,
Ve = 0. The condition Ve = 0 is equivalent to w = d (—In (¢g)).
Two l.c.s. structures (w,2) and («,€’) on a manifold M are called conformally
equivalent if
Q’le, W =w+—,
a a
for a nonwhere vanishing function @ on M (non-singular for short).
If two l.c.s. structures (v, ') and (w, ) on a manifold M are conformally equiv-
alent then the associated Lie algebroids A’ = (TM x R,w’, ) and (T'M x R,w, Q)
are isomorphic via the isomorphism

H:(TM x R,o, Q) — (TM x R,w,Q)
H(va):(Xvaf)

where a € C* (M) is a non-singular smooth function (i.e. a(z) # 0 for all z €
M). The isomorphism H : A" — A of the above form will be called a conformal
1somorphism.

We add that the general form of a homomorphism H : TM x R — TM x R of

vector bundles commuting with anchors v = pr; is as follows

(**) H (X, f) = Hyo (X, f) = (X,;n(X)+a-f),
forn € QY (M) and a € C® (M) .

Proposition 1. (A4) The following conditions are equivalent:

(1) H s a homomorphism of Lie algebroids,
2) (a) V=Q—a-,

(b) Vx (a-f)=a-Vi/,
B) @ dn+wAn=Q—a- -,
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(b) a- (W' —w) = da.

The homomorphism H is an isomorphism of Lie algebroids if and only if a is
non-singular. Conditions (1), (2), (3) are then equivalent to

(1) @) =3 (Q=dp—wnn),

(b) ' =w+ %

(B) For arbitrary Lie algebroid A" = (TM x R,w', Q') and a data n, a, a — non-
singular, the differential forms w = W' — %, Q=a-Q+dn+wAn fulfil the condition
dQ = —w A Q, i.e. the data (w,Y) determines a Lie algebroid A = (T M x R,w, Q)
and H, , : A — A given by (**) is an isomorphism of Lie algebroids

Clearly
Hy, o= Hy10 Hyg,
see the diagram
Hya

A= (TM x R, ', ) g (TM x R,w,Q) = A

\4 HO,a Hn,l /
(TM x R,w,a-)

it means that if A’ is isomorphic to A then there exists a Lie algebroid A” =
(TM x R,w,Q"), Q" = a-Q conformally isomorphic to A, i.e. such that [A],
[A"] € Opext (TM,V, M x R) =the set of isomorphic classes of Lie algebroids hav-
ing the same representation V (a flat covariant derivative V).

Let (', ) and (w,$2) be lLc.s. structures. We observe that the isomorphism
H,,: A" — A given by (**) is equivalent to conformal equivalence of the associated
l.c.s. structures if and only if n = 0.

How we can formulate the problem of existence of l.c.s. structures? We have the
simple
Proposition 2. Any Lie algebroid A = (TM x R,w', ) is isomorphic to A =
(TM x R,w, Q) with 2 non-degenerate (i.e. (w,Q) is an l.c.s. structure) if and only
if there exists in A" a connection for which the curvature tensor is non-degenerate.

Proof. Let H, , : A" — A be an isomorphism of Lie algebroids
0 - MxR — (TMxR,W, Q) - TM — 0

—
A

LHJ, L Hya |
0 - MxR — (TMxRwQ) — TM — 0

—
A

HY, (f) =a- f.. For arbitrary connections A" and A in A" and A, respectivelly such
that H, , o A’ = X\ we have the following equality for curvature tensors

0 = H;a o Q.
Therefore, if €2 is nondegenerate and )\’ is a connection such that H, ,o\ = A where
A(v) = (v,0), then Q* = —Q and, clearly, Q" is non-degenerate.
Conversely, if X' (X) = (X, (X)) is any connection in A’ such that Q" is non-
degenerate, then H_, ; is an isomorphism of A’ on A := (TM x R,w, —QX) (see
(1.1)) and (w’, —©") is an Le.s. structure. O
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So, the problem of existing of l.c.s. structures can be precisely formulated as
follows:

Existing problem: We introduce into the class of pairs (w, §2) fulfilling (*), i.e.
dQ) = —w A €2, the equivalence relation

r) (W,Q) ~ (w,) = the Lie algebroids A’ = (TM x R,0’,§Y) and A =
(TM x R,w, Q) are isomorphic, i.e. there existsn € Q! (M) and a € C* (M),
a(x) # Oforall z € M, such that (4a), (4b) hold: (4a) ' =1 (Q—dn—wAn),
(4b) ' = w + L.

We can ask: does there in every (in given) equivalence class [(w’, ©')] exist (w, Q)
being a l.c.s. structure; equivalently, does there in the Lie algebroid

A'=(TM x R, Q)
exist a connection with non-degenerate curvature tensor, i.e. equivalently, does exist
a 1-form n € Q' (M) such that dn + w A n — € is a non-degenerate.

We add that for a fixed closed form w, i.e. a flat covariant derivative Vx f =
Oxf+w(X) - f in the trivial bundle M x R, the classification of Lie algebroids of
the form (T'M x R, w, ) up to isomorphism is as follows: for the class of isomorphic
Lie algebroids Opext (T'M,V, M x R) we have [Mackenzie give the full answer for
the classification)]

Opext (TM,V, M x R) = HS (M;R).

To sum up we see that important l.c.s’s notions can be translated into the Lie
algebroid’s language. We have the following table:

l.c.s. Lie algebroid
A=TM xR
_ with anchor vy =pr; : TM xR — TM,
i o, bracc
o 15 closed, | [(X. £), (Y.9)] =

([X7Y] ,ng - VYf - Q(va))
where Vxg =0xg+w (X) g
V is flat and VQ = 0.

globally c.s. =

i A is invariantly oriented
w 18 exact

the corresponding Lie algebroids
are isomorphic via

Hyo :TM xR —TM xR,
H(Xaf) = (Xaaf)
acC®(M),a(zr)#0 for all z.

two l.c.s. structures

(W, ) and (w,Q2) on M

are conformally equivalent =
W=w+d =10

2. GENERALIZATIONS: g-L.C.S. STRUCTURES AND LIE ALGEBROIDS

We generalize l.c.s. structures to g-l.c.s. structures in which we can consider an
arbitrary finite dimensional Lie algebra g instead of the commutative Lie algebra R
[KK]. From the general theorem on the form of Lie algebroids, mentioned above,
we have [ M], [ K1J;
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Theorem 1. Fach transitive Lie algebroid with a trivial adjoint bundle of Lie algebras
M x g is isomorphic to TM x g with v = pry : TM x g — TM as the anchor and
the bracket

[[(Xa U) ) (Yvn)]] = ([Xv Y] 7VX77 - VYU + [0777] - Q(Xv Y))

in Sec A is defined via the following data (V,Q): a covariant derivative V in the
trivial vector bundle M x g and a 2-form Q € Q% (M;g) fulfilling the conditions:

(1) R;YU =—[Q(X,Y),a], RY being the curvature tensor of V,
(2) Vx lo,n] = [Vxo,n] + [0, Vxn], o,n € C* (M;g),
(3) VQ = 0.

The Lie algebroid obtained in the above way via the data (V, §2) fulfilling (1)+(3)
above will be denoted here by

(TM x g,V,Q).

The form —( is the curvature form of the connection A : TM — T'M x g, A\ (v) =
(v,0), in this Lie algebroid (T'M x g,V,Q).

0 —-Mxg—TMxg—TM — 0.

A

More generally, the curvature form of an arbitrary connection A (X) = (X, 7 (X)),
n € QY (M;g), is given by

QNX,Y) = (V) (X,Y) + [nX,nY] - Q(X,Y).

We write the covariant derivative V in the trivial bundle M x g in the form
Vxo=0xo+w(X) (o)
for a 1-form w € Q! (M;End g). The curvature tensor RV of V is equal to
RXyo = dw(X,Y)(0) + [w (X),w (Y)] (o).

Proposition 3. The conditions (1)-(3) characterizing the data (V,2) determining the
Lie algebroid (TM x g,V,Q) can be express as follows

e the condition (1) is equivalent to

dw (X,Y) (0) + [w (X),w (V)] (0) = = [2(X,Y), 0],

e the condition (2) is equivalent to w, € Der(g), i.e. w, is a differentiation of
the Lie algebra g,
e the condition (3) is equivalent to

dQl=—-wANQ

(the values of forms w and Q2 are multiplied with respect to the 2-linear ho-
momorphism End g x g — g, (a,0) — a oo, where (ao0), = a, (0y).
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Definition 1. The pair (V,)) determinig the above Lie algebroid
(TM x g,V,Q)

will be called g-locally conformal symplectic structure (g-l.c.s. structure, for
short) on our manifold provided that the 2-form Q) is non-degenerate in the following
sense: for each point x € M the mapping T,M — L(T,M,g), v — Q. (v,-), is a
monomorphism.

We notice that if dimg > 2 there is no dimensional obstructions to the existing
of an non-degenerate tensors:

Lemma 1. For arbitrary vector spaces V and g such that dimg > 2 there exists a
2-linear skew-symmetric non-degenerate tensor Q € Q* (V;g) .

Proof: Let (eq,...,e,) be a basis of g. If dim V' is even, then there exists a real
2-linear skew-symmetric non-degenerate tensor, say 5. The form Q := Qg -e; €

Q2 (V; g) is non-degenerate. If dim V' = 2k + 1 and (v, ..., vag41) is a basis of V and

ul, ..., u?**1 is a dual basis, then put

Qo =ur AN + ..+ uP AW,
Ql — u?k A U2k+1.
The form 2 := Qg - 1 + €2 - €5 is non-degenerate. [

Definition 2. A g-l.c.s. structure is called globally conformal symplectic structure if
the associated Lie algebroid (T M x g,V , ) is invariantly oriented.

Theorem 2. If the Lie algebra g is unimodular with no centre, then each g-l.c.s.
structure is globally c.s. structure.

Proof. According to the classifying theorem [Mackenzie| if g is with no centre
then for the trivial LAB g = M x g there exists exactly one, up to isomorphism,
a transitive Lie algebroid A with the adjoint LAB g = M x g. Therefore, A must
be isomorphic to the trivial Lie algebroid A = TM x g with the data (0,0). If
additionally g is unimodular then this Lie algebroid is invariantly oriented: ¢ (z) =
£, € \" g is an invariant cros-section. [J

Theorem 3. Write Vxo = dxo+w (X) (o) forw € Q' (M;Endg). The Lie algebroid
(TM x g,V,Q) is invariantly oriented (i.e. (V,Q) is a globally conformal symplectic
structure) if and only if g is unimodular and trw is an exact form. Let ey, ..., e, be a
basis of g. For a non-singular function f € C® (M) the element e = f-ex A ... Ne,
is an tnvariant cross-section if and only if

trw=d(—In|f]).

Let (eq,...,e,) be a basis of g with the structure constants cf] The covariant
derivative V determines a matrix of 1-forms w! € Q! (M) by

VXei = Zwlj (X) €.
J

Analogously we have a collection of 2-forms €/ by

— O )
QX’Y — QX’Yej.
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We interpret the data (1)--(3) concerning (V,2) in the tems of the matrix w! and
the collection ¥ and the structure constants cfj

Proposition 4. The conditions (1)-(3) characterizing the data (V,2) determining the
Lie algebroid (TM x g,V,Q) can be expressed as follows.

e The condition (1) is equivalent to
=D Dy =dwf (X)) — (wa (X)wj (V) = ] (V) w (X)> :
J J

e the condition (2) is equivalent to

Do Wi (X) =) (W (X)dy —wi (X)) s

k

o the condition (3) is equivalent to

a7 = - Q' AWl

Two g-l.c.s. structures (V', '), (V,2) on a manifold M will be called g-conformally
equivalent if the associated Lie algebroids are isomorphic via an isomorphism of
the special form (called g-conformal) H (X,0) = (X,a (o)) for some mapping
a : M — Aut(g). Then the equivalent relations between the data (V,Q) and
(V',€Y) are as follows:

- =a1toQ,

-ao Vi (0) = Vx(aoco).

We use the notation a o o for the cross-section defined by (a0 o), = a, (0,).

Writing V'’ and V with using 1-forms o’ ,w € Q' (M;Endg) (as above) the last
condition can be equivalently written in the form

w(X)oa=—-0xa+aow (X).

In the terms of the matrices w’’ and w! this condition is equivalent to

w? (X) - a;? —a ~wf (X) =0x (af) :
The general form of a homomorphism H : TM x g — T'M X g commuting with
anchors pry is as follows

(2.1) H(X,0)=H,,(X,0)=(X,n(X)+aoo)
forn € Q' (M;g), a € C*(M,Endg). Consider two Lie algebroids
A'=(TM x g,V', Q) and A= (TM x g,V,Q)

Proposition 5. The following conditions are equivalent.
(1) H is a homomorphism of of Lie algebroids H : A" — A,
(2) (a) ap is a homomorphism of Lie algebras,
(b) (V) (X,Y) + [n(X),n(Y)] = (2 - af)) (X,Y),
() ao Vo = Vx (aoa) +[1(X),a00],
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(3) In the basis ey, ..., e, and for the matriz a} defined by a(e;) = 3. al (¢;)
(a) ay is a homomorphism of Lie algebras,
(b) dn® (X,Y) = (" Awf) (X,Y) 47 (X) - ! (V) -l =
= (QF-Q".af) (X,Y),
() 25w (X) - aj =32, a5 - wj (X) + Oxai 17 (X) -0 - ¢}

js*
The homomorphism H, . is an isomorphism of Lie algebroids if and only if a, s
an isomorphism of Lie algebras.

If (V',Q) and (V, () are g-l.c.s structures and A’ and A are corresponding Lie
algebroids, then the isomorphism H, , given by (2.1) is equivalent to conformal
equivalence of the associated g-l.c.s structures (V’,€') and (V,) if and only if
n=0.

Analogously, we we can put the problem of existence of 1.c.s. structures. We have
firstly the simple

Proposition 6. Any Lie algebroid A" = (TM x g,V',Q') is isomorphic to A =
(TM x g,V,Q) with Q non-degenerate (i.e. (V,Q) is ag-l.c.s. structure) if and only
if there exists in A" a connection for which the curvature tensor is non-degenerate.

Existing problem: We introduce into the class of pairs (V, Q) fulfilling (1)-(3)
from Theorem 1, the equivalence relation
rg) (V, Q) =~ (V,Q) =
= the Lie algebroids

A'=(TM x g, V', Q) and A= (TM xg,V,Q)

are isomorphic,
i.e. there exist n € Q' (M;g), a € C* (M, Aut g) such that (2b-c) from
Prop. 5 holds:

(Vi) (X, Y) + [n(X),n (V)] = (2 — o)) (X, Y)

and
aoV'yo=Vx(aoo)+[n(X),ao0].

We can ask does there in every (in given) equivalence class [(V', )] exist (V, Q)
being a g-l.c.s. structure; equivalently, does there in the Lie algebroid

A= (TM x g, V', Q)

exist a connection with non-degenerate curvature tensor, i.e. equivalently, does there
exists a 1-form € Q' (M; g) such that the 2-form (V) (X, Y)+[nX,nY]—Q (X,Y)
is a non-degenerate.

It would be interesting to investigate the group of all compactly supported diffeo-
morphisms of M that preserve the g-l.c.s. structure up to g-conformal equivalence
(analogously as was given for usual l.c.s. structures by Haller and Rybicki | HR]).

We add that two extreme cases: (1) g commutative (for example g = R) and (2)
g semisimple, are quite different. In the second case all Lie algebroids of the form
(TM x g,V,Q) (i.e. with the trivial adjoint Lie algebra M x g ) are isomorphic,
clearly to the trivial one T'M x g with the structure given by the data (9,0). We
add that not each isomorphism is g-conformal. This Lie algebroid is invariantly
oriented.
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