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(Received July 21, 2003)

Abstract. This paper is a continuation of [19], [21], [22]. We study flat connections
with isolated singularities in some transitive Lie algebroids for which either

�
or sl(2,

�
) or

so(3) are isotropy Lie algebras. Under the assumption that the dimension of the isotropy
Lie algebra is equal to n + 1, where n is the dimension of the base manifold, we assign to
any such isolated singularity a real number called an index. For

�
-Lie algebroids, this index

cannot be an integer. We prove the index theorem (the Euler-Poincaré-Hopf theorem for
flat connections) saying that the index sum is independent of the choice of a connection.
Multiplying this index sum by the orientation class of M , we get the Euler class of this Lie
algebroid. Some integral formulae for indices are given.
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1. Introduction

1.1. Motivations

1.1.1. Index theorem of Euler-Poincaré-Hopf for sphere bundles. The

index theorem of Euler-Poincaré-Hopf for sphere bundles is well-known (see, for

example, [8, Vol. I]):

Theorem 1.1. Let E be an n-sphere bundle with a connected compact oriented

base manifold M of dimension n + 1, such that E is given the local product ori-

entation. Let σ be a cross-section of E with finitely many singularities a1, . . . , ak.
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Then the index sum
k
∑

v=1
jav

(σ), where jav
(σ) is the index of σ at av , is indepen-

dent of the choice of the cross-section σ and the Euler class χE of E is given by

χE =
k
∑

v=1
jav

(σ) · ωM where ωM is the orientation class of M .

This theorem can be applied, in particular, to G-principal bundles P over mani-

folds M of dimension dimG+ 1 for Lie groups G diffeomorphic to a sphere:

(i) S1-principal bundles over M2,

(ii) Spin(3)-principal bundles over M 4.

A locally defined cross-section f : U → P |U of a principal bundle P determines

(in an evident manner) a flat connection Hf ⊂ T (P |U ) in P |U in such a way that

Hf (f(x)) = f∗[TxM ] ⊂ Tf(x)P , but not conversely: there are more (in general) flat

connections than cross-sections (see below).

The theory of Lie algebroids is a convenient theory which allows us to treat connec-

tions as linear homomorphisms. Each principal bundle P (M,G) possesses a transitive

Lie algebroid A(P ) = TP/G [1], [29], [14], and connections in P (M,G) correspond

to splittings of the Atiyah sequence of A(P )

0 // P ×Ad g // TP/G //

TMoo 0.oo

In this paper we present an index theory of flat connections with isolated singularities

for some class of transitive Lie algebroids including Lie algebroids of the principal

bundles (i) and (ii) mentioned above as well as ones coming from other sources (such

as some TC-foliations). The index theorem obtained (Theorem 4.3) in application

to principal bundles generalizes Theorem 1.1 from cross-sections to flat connections.

1.1.2. Analogy: sphere bundle—Lie algebroid. Roughly speaking, on the

ground of transitive Lie algebroids, we observe an interesting analogy of the the-

ory of sphere bundles, namely, it turns out that, in some sense, flat connections in

Lie algebroids correspond to cross-sections of sphere bundles. The common ideas

are the index at an anisolated singularity and the theorem of Euler-Poincaré-Hopf

type as well as some technical methods. This analogy was first noticed for reg-

ular Lie algebroids with 1-dimensional isotropy Lie algebras [20], [24]. The main

purpose of our paper is to study this phenomenon more generally in the domain

of transitive Lie algebroids without a restriction of the dimensions of isotropy Lie

algebras.

We point out that Lie algebroids arise in many subjects of differential geome-

try and play a role analogous to that of Lie algebras for Lie groups (i.e. compose

an infinitesimal invariant). For example, they arise in the theory of differential

groupoids and principal bundles [25], [26], [27], [28], [34], [35], [36], [14], [29], vector
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bundles [7], [25], [29], [35], [15], transversally complete and transversally paralleliz-

able foliations [31], [32], nonclosed Lie subgroups [16], Poisson manifolds [3], [4],

[6], [37], [38], [10], [11] and others (see the famous survey article by K. Macken-

zie [30]).

Most probably, the “transitive” and “isolated” theory of indexes of flat connec-

tions, presented below, should have its equivalence—at least in some cases—for

nontransitive algebroids over foliations with isotropy Lie algebras of the dimension

greater than one (as we observe for dimension one for � -Lie algebroids of Poisson
manifolds ([20], [24]).

1.1.3. Restriction to a spherical case. The index theory of flat connections

with isolated singularities (in the transitive case, or for the regular case but with

isolated singularities at each leaf) must be restricted to isotropy Lie algebras g such

that H∗(g) = H∗
dR(Sdim g), i.e. the following conditions are fulfilled:

(1.1) Hk(g) =

{

� for k = 0, dim g,

0 for 1 6 k 6 dim g − 1.

(such Lie algebras are called spherical). According to [21, Th. 2.1], the Lie alge-

bras � , so(3) (the Lie algebra of real 3 × 3 skew symmetric matrices) and sl(2, � )
(the Lie algebra of real 2 × 2-matrices with trace zero) are the only ones. In Re-

mark 4.10 below we briefly explain this limitation from the point of view of degree

argument.

1.2. Preliminaries

1.2.1. Lie algebroids, definition. This paper deals with Lie algebroids and

is based on papers [19], [23], [21]. By a Lie algebroid on a manifold M [36] we

mean a system A = (A, [[·, ·]], γ) consisting of a vector bundle A onM and mappings

[[·, ·]] : SecA × SecA → SecA, γ : A → TM , such that (1) (SecA, [[·, ·]]) is an � -Lie
algebra, (2) γ, called the anchor, is a homomorphism of vector bundles, (3) [[ξ, f ·η]] =

f · [[ξ, η]] + (γ ◦ ξ)(f) · η, f ∈ C∞(M). The anchor is bracket-preserving, [9], [2]. A

Lie algebroid A is said to be transitive if γ is an epimorphism of vector bundles,

and regular if γ is of constant rank. Next, we adopt the notions and the notation

from [36], [29], [15], among them, the adjoint bundle of Lie algebras g := Kerγ, the

Atiyah sequence 0 → g → A→ F → 0, the notion of a connection and a (strong and

non-strong) homomorphism of Lie algebroids. We recall that by an A -differential

form of degree p we mean a cross-section Φ ∈ Ωp
A(M) := Sec

p
∧

A∗. In the space

ΩA(M) = Sec
∧

A∗ the exterior derivative dA (first defined by L. Maxim-Raileanu
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in 1976, [33], see also [13], [29]) is defined by the formula

(dAΦ)(ξ1, . . . , ξp) =

p
∑

i=0

(−1)p(γ ◦ ξi)(Φ(ξ0, . . . ı̂ . . . ξp))

+
∑

i<j

(−1)i+jΦ([[ξi, ξj ]], ξ0, . . . ı̂ . . . ̂ . . . , ξp),

ξi ∈ SecA. In particular, for the Lie algebroidA = TM , the tangent bundle ofM , the

exterior derivative dTM is the usual exterior derivative of differential forms dTM =

dM , so HTM (M) = HdR(M).

1.2.2. Fibre integral. In [19] we introduced the notion of a vertically oriented

Lie algebroid as a pair (A, ε) consisting of a regular Lie algebroidA and a volume form

of g, it means, a non-singular cross-section ε of
n
∧

g, n = rankg. By a homomorphism

of vertically oriented Lie algebroids (T, t) : (A, ε) → (A′, ε′), rankg = rankg
′ = n,

we mean a non-strong, in general, homomorphism T : A → A′ inducing t : M →M ′

of Lie algebroids such that
(

n
∧

T+
)

(εx) = ε′tx, x ∈ M (where T+ : g → g
′ is the

restriction of T to adjoint bundles).

In [19] the operator of the fibre integral
∫

A
in a vertically oriented Lie alge-

broid (A, ε) is introduced. For a transitive Lie algebroid (the case considered in this

paper), the fibre integral
∫

A
: Ω∗

A(M) → Ω∗−n(M) is defined in the following way:
∫

A
Φ = 0 if deg Φ < n and

(
∫

A

Φ

)

x

(w1 ∧ . . . ∧ wk) = (−1)nkΦx(εx ∧ w̃1 ∧ . . . ∧ w̃k)

if Φ ∈ Ωn+k
A (M), k > 0, x ∈M , wi ∈ TxM , and w̃i ∈ A|x are arbitrary vectors satis-

fying γ(w̃i) = wi. Equivalently,
∫

A
Φ ∈ Ωk(M) is a uniquely determined differential

form such that γ∗(
∫

A
Φ) = (−1)nkιεΦ, where γ

∗ : Ω(M) → ΩA(M) is the pullback

of differential forms, γ∗(Φ)x(u1 ∧ . . . ∧ uk) = Φx(γ(u1) ∧ . . . ∧ γ(uk)).

The pullback of differential forms via a (non-strong in general) homomorphism of

Lie algebroids commutes with exterior derivatives [17]. The basic properties of
∫

A

are given in the following theorems:

Theorem 1.2.

(a) If (T, t) : (A, ε) → (A′, ε′) is a homomorphism of vertically oriented Lie alge-

broids, then t∗ ◦
∫

A′
=

∫

A
◦T ∗,

(b)
∫

A
◦γ∗ = 0,

(c)
∫

A
γ∗ψ ∧ Φ = ψ ∧

∫

A
Φ for arbitrary forms ψ ∈ Ω(M) and Φ ∈ ΩA(M),

(d)
∫

A
Φ ∧ γ∗ψ = (−1)nk(

∫

A
Φ) ∧ ψ for ψ ∈ Ωk(M), Φ ∈ Ω>n

A (M),

(e)
∫

A
is an epimorphism.
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Theorem 1.3. The operator
∫

A
commutes with the exterior derivatives dA and

dM if and only if

(a1) the isotropy Lie algebras g|x are unimodular, and

(a2) the cross-section ε is invariant with respect to the adjoint representation of A

on
n
∧

g.

1.2.3. TUIO-Lie algebroids. The transitive Lie algebroid A possessing prop-

erties (a1) and (a2) from Theorem 1.3 is called unimodular invariantly oriented

(TUIO-Lie algebroid for short). Clearly, the modular class mA of a TUIO-Lie alge-

broid A is zero (mA is equal to the characteristic class of the adjoint representation

of A on the top exterior power of g [5]).

In [19] and [23] the following sources of such Lie algebroids can be found:

• the Lie algebroids of G-principal bundles for a structure Lie group G not nec-

essarily compact or connected but satisfying det(AdG a) = +1, a ∈ G,

• the Lie algebroids of the TC-foliations of left cosets of nonclosed Lie subgroups

in Lie groups,

• the Lie algebroids of TP-foliations on compact and simply connected manifolds.

The fundamental properties of TUIO-Lie algebroids are:

– the fibre integral
∫

A
yields a homomorphism in cohomology

∫ #

A
: HA(M) →

H(M),

– the cohomology algebra HA(M) satisfies the Poincaré duality: H•
A(M) ∼=

(H n̄−•
A,c )∗, n̄ = rankA.

1.2.4. s-Lie algebroids and the Euler class. Cohomology theory of flat con-

nections is developed in this paper on the subcategory of TUIO-Lie algebroids for

which isotropy Lie algebras are spherical, i.e. satisfy condition (1.1). Such Lie al-

gebroids are called briefly s-Lie algebroids. This class contains, for example, the

following Lie algebroids:

• the Lie algebroids of G-principal bundles P such that

– det(AdG a) = +1, a ∈ G (G need not be compact or connected),

– H∗(gl(G)) = H∗
dR(SdimG).

For example, if n = 3, we can take G = Spin(3), SO(3), O(3) (the last is

disconnected), or G = SL(2) (noncompact case). The theory of foliations of

codimension 3 is a source of the principal bundles considered above;

• the Lie algebroids of some TC-foliations, among them, of the foliations of

left cosets of nonclosed Lie subgroups H in Lie groups G such that dimH −

dimH = 1.
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In [21], for an s-Lie algebroid (A, ε), a long exact sequence of cohomology (Gysin

sequence) is constructed:

(1.2) . . . −→ Hp(M)
Dp

−→ Hp+n+1(M)
γ#

−→ Hp+n+1
A (M)

∫
#

A−→ Hp+1(M)
Dp+1

−→ . . .

The class χ(A,ε) := D0(1) ∈ Hn+1(M) is called the Euler class of (A, ε). The

homomorphism D is given by D(α) = α ∧ χ(A,ε).

Each s-Lie algebroid of rank 1 (i.e. with g|x = � ) has the trivial adjoint Lie algebra
bundle g = M × � and is isomorphic to A = AΩ = TM × � [19] with the structure
[[·, ·]] defined via a closed real 2-form Ω ∈ Ω2(M), dΩ = 0, by the formula

[[(X, f), (Y, g)]] = ([X,Y ],−Ω(X,Y ) + ∂Xg − ∂Y f)

and ε(x) = 1. The Euler class χ(A,ε) of this s-Lie algebroid (A, ε) is equal to [−Ω] [21],

and can also be expressed via the Chern-Weil homomorphism hA of A [15]:

χ(A,ε) = h
(2)
A (−ε∗) = [〈−ε∗,Ω〉] ∈ Ω2(M)

where ε∗ ∈ Sec g
∗ is an invariant cross-section defined by ιεε

∗ = 1.

For an s-Lie algebroid (A, ε) of rank 3 (i.e. dim g|x = 3), ε is an invariant cross-

section of
3
∧

g and the Euler class of A is equal to

χ(A,ε) = h
(4)
A (−2Γ) =

1

2
[〈−2Γ,Ω ∨ Ω〉] ∈ H4(M)

[21] where Γ is an invariant cross-section of
2
∨

g
∗ such that Γx = %−1

x (ε∗x) for the

canonical isomorphism %x :
(

2
∨

g
∗|x

)

I

∼=
→

3
∧

g
∗|x, x ∈ M (〈%x(ψ), x ∧ y ∧ z〉 =

〈ψ, [x, y] ∨ z〉 [8, Vol. III], Ω ∈ Ω2(M ; g) is the curvature form of any connection.

1.3. Statements of the main results

Our paper is organized as follows: in Section 3 we define the cohomology class ωλ ∈

Hn
A(M) (n = rankg) of a flat connection λ : TM → A in an s-Lie algebroid (A, ε)

and next we introduce the notion of the difference class [λ, σ] ∈ Hn(M) for two flat

connections λ and σ. Among its fundamental properties, we establish a relationship

with the Euler class χ(A,ε) of (A, ε): for two locally defined flat connections λ and σ

on open subsets U and V respectively, given a covering of M , the Euler class χ(A,ε)

is equal to ∂([λ, σ]) where ∂ is the connecting homomorphism for the Mayer-Vietoris

sequence of the triad (M,U, V ) for the de Rham cohomology.
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Section 4 is devoted to flat connections in an s-Lie algebroid (A, ε) over an oriented

manifoldM such that dimM = n+1, n = dim g|x, i.e. according to our Theorem 2.1

from [21], only in

(1) � -Lie algebroids over M 2,

(2) so(3) and sl(2, � )-Lie algebroids over M 4.

We define in that section the fundamental notion of the index jaσ of a locally

defined flat connection σ with singularity at a. We prove that, for � -Lie algebroids,
each real number can be the index at a given point of some singular connection. For

g = so(3), the set of indexes at a point is equal to the set of multiples of some real

number. For g = sl(2, � ), the index jaσ = 0.

Section 4 contains the main results of the paper. We prove a version of the Euler-

Poincaré-Hopf theorem for flat connections: the sum of indexes
k
∑

v=1
jav

(σ) of a flat

connection σ with isolated singularities at a1, . . . , ak is independent of the choice of

the connection and
k
∑

v=1
jav

(σ) =
∫ #

M
χ(A,ε). In Section 5 we give some important

integral formulae for the index and, finally, some remarks concerning the existence

of flat connections with finitely many singularities.

2. Difference class

By a connection in a transitive Lie algebroid A we mean a splitting λ : TM → A

of the Atiyah sequence 0 → g ↪→ A
γ
→ TM → 0, i.e. a homomorphism of vector

bundles such that γ ◦ λ = id. If λ is a homomorphism of Lie algebroids λ ◦ [X,Y ] =

[[λ ◦X,λ ◦ Y ]], X,Y ∈ X(M), then λ is called flat. In this situation, the pullback of

differential forms λ∗ : ΩA(M) → Ω(M) commutes with differentials λ∗◦dA = dM ◦λ∗,

giving—on cohomology—a homomorphism of algebras λ# : HA(M) → H(M). Let

λ be a flat connection in an s-Lie algebroid (A, ε). By virtue of the exactness of

sequence (1.2), [19, Prop. 4.2.1 (b)] and [21, Cor. 3.4] we can easily show that

HA(M) = ker

∫ #

A

⊕ kerλ#,(2.1)

∫ #

A

∣

∣

∣ kerλ# : kerλ# ∼=
−→ H(M).(2.2)

By the above, there exists a uniquely determined cohomology class

ωλ ∈ kerλ#n ⊂ Hn
A(M)

such that
∫ #

A
ωλ = 1 ∈ H0(M). ωλ depends on the mapping λ

# : HA(M) → H(M)

only. The class ωλ is called the cohomology class of a flat connection λ.
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For two flat connections λ, σ : TM → A, their cohomology classes ωλ, ωσ ∈

Hn
A(M) satisfy the equality

∫ #

A
(ωλ − ωσ) = 0. The exactness of sequence (1.2)

implies that there exists a cohomology class [λ, σ] ∈ Hn(M) such that

ωλ − ωσ = γ#[λ, σ].

Definition 2.1. The class [λ, σ] is called the difference class of flat connections λ

and σ in the s-Lie algebroid (A, ε).

Proposition 2.2. For flat connections λ and σ in an s-Lie algebroid (A, ε), we

have λ#α− σ#α = −
( ∫ #

A
α
)

∧ [λ, σ], α ∈ HA(M).

�������	�
. Let us write, for α ∈ HA(M), α = α1 + α2, where α1 ∈ ker

∫ #

A
and

α2 ∈ kerλ#. By the exactness of sequence (1.2), α1 = γ#α̃ for α̃ ∈ H(M). It

is easy to see the equality α2 = γ#(
∫ #

A
α2) ∧ ωλ. Now, take β :=

∫ #

A
α2. Then

β =
∫ #

A
α2 +

∫ #

A
α1 =

∫ #

A
α and γ#β∧ωλ = α2, so α = α1 +α2 = γ#α̃+γ#β∧ωλ.

Since ωλ = ωσ + γ#[λ, σ], we have

λ#α− σ#α = λ#(γ#α̃+ γ#β ∧ ωλ) − σ#(γ#α̃+ γ#β ∧ (ωσ + γ#[λ, σ]))

= β ∧ λ#ωλ − β ∧ (σ#ωσ + σ#γ#[λ, σ])

= −

(
∫ #

A

α

)

∧ [λ, σ].

�

Since γ# is a monomorphism for a flat Lie algebroid A, we obtain

Corollary 2.3. Let λ and σ be two flat connections in an s-Lie algebroid A.

Then the following conditions are equivalent:

(a) λ# = σ#,

(b) ωλ = ωσ,

(c) [λ, σ] = 0.

If Hn(M) = 0, then clearly Hn(M) 3 [λ, σ] = 0, and therefore λ# = σ#.

Lemma 2.4. Let (A, ε) be an arbitrary s-Lie algebroid with rankg = n. For

a representative Ψ of the Euler class χ(A,ε) and an n-form Φ ∈ Ωn
A(M) such that

∫

A
Φ = −1 and dAΦ = γ∗Ψ, for any open subset U ⊂ M and two flat connections

λ, σ : TU → A|U , the following equalities hold:

(1) ωσ = [γ|∗Uσ
∗(Φ|U ) − Φ|U ],

(2) [λ, σ] = [λ∗Φ|U − σ∗Φ|U ].
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�������	�
. It is easy to see the closedness of the forms γ|∗Uσ

∗(Φ|U ) − Φ|U and

λ∗Φ|U − σ∗Φ|U . Since σ
∗(γ|∗U (σ∗Φ|U ) − Φ|U ) = 0 and

∫

A|U
(γ|∗U (σ∗Φ|U ) − Φ|U ) =

−
∫

A|U
Φ|U = 1, we get (1) by the definition of the cohomology class of σ.

Since γ|#U is a monomorphism the equalities

ωλ − ωσ = [γ|∗Uλ
∗Φ|U − γ|∗Uσ

∗Φ|U ] = γ|#U ([λ∗Φ|U − σ∗Φ|U ])

yield now (2). �

Theorem 2.5 (The naturality of the difference class). Let (T, t) : (A, ε) →

(A′, ε′) be a homomorphism of s-Lie algebroids such that Tx : A|x → A|′tx, x ∈ M ,

are isomorphisms.

(a) Assume that σ, σ′ are flat connections in A and A′, respectively, such that

T ◦ σ = σ′ ◦ t∗. Then T
#ωσ′ = ωσ.

(b) For any two pairs of such flat connections (λ, λ′), (σ, σ′), we have t#([λ′, σ′]) =

[λ, σ].
�������	�

. (a): To check (a), it is sufficient to notice that σ#(T#ωσ′) = (T ◦

σ)#ωσ′ = (σ′ ◦ t∗)
#ωσ′ = t#σ′#ωσ′ = 0 and (see [19])

∫ #

A
T#ωσ′ = t#

∫ #

A′
ωσ′ = 1.

(b): By virtue of the fact that γ# is a monomorphism, we only need to notice

γ#t#[λ′, σ′] = (t∗ ◦ γ)
#[λ′, σ′] = (γ′ ◦ T )#([λ′, σ′])

= T#(ωλ′ − ωσ′) = ωλ − ωσ = γ#[λ, σ].

�

The folowing theorem gives a relationship between the Euler class and the differ-

ence class (compare with the classical theorem for sphere bundles, for example [8]).

Theorem 2.6. Let {U, V } be an open cover of M and let λU : TU → A|U and

σV : TV → A|V be flat connections in (A, ε) over U and V , respectively (U , V need

not be connected). Consider the Mayer-Vietoris sequence of the triad {M,U, V } for

the usual real de Rham cohomology and let ∂ : H(U∩V ) → H(M) be the connecting

homomorphism. Then

χ(A,ε) = ∂[λ, σ]

where λ = λU |U∩V and σ = σV |U∩V .

�������	�
. For the inclusions j1 : U ∩ V ↪→ U and j2 : U ∩ V ↪→ V according

to Lemma 2.4, [λ, σ] = [λ∗Φ|U∩V − σ∗Φ|U∩V ] = [j∗1 (λ∗UΦ|U ) − j∗2 (σ∗
V Φ|V )]. Since

d(λ∗U Φ|U ) = λ∗UdA|U Φ|U = λ∗Uγ|
∗
UΨ|U = Ψ|U , analogously d(σ

∗
V Φ|V ) = Ψ|V , we

get—via the construction of ∂—∂[λ, σ] = [Ψ] = χ(A,ε). �
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3. The index of a flat connection at an isolated

singular point and the Euler number

By a local connection with singularity at a point a ∈ M in a Lie algebroid A we

mean the connection

σ : T U̇ → A|U̇ , a ∈ U ⊂M (U is open), U̇ = U \ {a}.

Let (A, ε) be an arbitrary s-Lie algebroid over an n+1-dimensional oriented mani-

foldM (n > 1) with n = rankg and let σ : T U̇ → A|U̇ be a local connection with sin-

gularity at a ∈ U ⊂ M . Take additionally a neighbourhood V 3 a such that V ⊂ U

and V ∼= � n+1 . A|V possesses ([29], [22]) a global flat connection λ : TV → A|V .

Denote λ|V̇ (V̇ = V \ {a}) by λ̇ and consider the difference class [λ̇, σ|V̇ ] ∈ Hn(V̇ ).

Let αV : Hn(V̇ )
∼=
−→ � be the canonical mapping [8, Vol. I] (V̇ has the orientation

induced from M). Using the same arguments as in the theory of sphere bundles [8,

Vol. I] and taking into account Corollary 2.3 we check that the number αV ([λ̇, σ|V̇ ])

is independent of the auxiliary flat connection λ and of the neighbourhood V . It

means that αV ([λ̇, σ|V̇ ]) depends only on the choice of σ.

Definition 3.1. The number αV ([λ̇, σ|V̇ ]) is called the index of σ at a and is

denoted by

ja(σ).

Proposition 3.2 (Naturality of the index). Let (Â, ε̂) be another s-Lie algebroid

over an oriented n + 1-dimensional manifold M̂ and let (T, t) : (Â, ε̂) → (A, ε) be a

homomorphism of s-Lie algebroids fulfilling the conditions

Tx : Â|x → A|tx, x ∈M, is an isomorphism,

t : M̂ →M is a diffeomorphism onto an open subset.

Let a ∈ M , â ∈ M̂ , t(â) = a. Take a local flat connection σ : T U̇ → A|U̇ with

singularity at a. Then the mapping T#σ : TẆ → Â|Ẇ , W = t−1[U ], Ẇ = W \ {â}

defined by (T#σ)(v) = T |−1
pv (σ(t∗v)) is a flat connection in Â with singularity at â,

and jâ(T#σ) = ja(σ).

�������	�
. The fact that T#σ is a flat connection follows trivially from the

assumption that T gives an isomorphism of Â onto A|
t[M̂ ]. Restricting the do-

main of σ, if necessary, we may assume that U ⊂ t[M̂ ]. Choose a neighbourhood

V 3 a small enough to be V ⊂ U , and both V and V̂ = t−1[V ] are diffeomor-

phic to � n+1 . Then Â|
V̂
and A|V are trivial. Take an arbitrary flat connection

λ : TV → A|V . Then T
#λ : T V̂ → A|

V̂
is flat and, plainly, jaσ = αV ([λ̇, σ|V̇ ])
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and jâ(T#σ) = α
V̂

([(T#λ)·, (T#σ)|
V̂ \{â}]). Since (T#λ)· = T#(λ|V̇ ) = T#(λ̇) and

(T#σ)|
V̂ \{â} = T#(σ|V̇ ), the naturality of the difference class yields

jâ(T#σ) = αV̇ ([T#λ̇, T#(σ|V̇ )]) = αV̇ t
#[λ̇, σ|V̇ ] = αV [λ̇, σ|V̇ ] = ja(σ).

�

The main goal of this article is a theorem joining the index sum
∑

jav
(σ) of any

flat connection with a finite number of singularities {a1, . . . , ak} to the Euler class

of a Lie algebroid.

Theorem 3.3 (The Euler-Poincaré-Hopf theorem for flat connections). Let

(A, ε) be an s-Lie algebroid of rank n over an oriented compact manifold M of

dimension n+ 1 and let σ : T (M \ {a1, . . . , ak}) → A be a flat connection with sin-

gularities at points a1, . . . , ak. Then the Euler class χ(A,ε) ∈ Hn+1(M) is given by

the formula

χ(A,ε) =

( k
∑

v=1

jav
(σ)

)

· ωM ,

where ωM is the orientation class of M ; equivalently,
∫ #

M
χ(A,ε) =

k
∑

v=1
jav

(σ). In

particular, the index sum
k
∑

v=1
jav

(σ) is independent of the choice of the connection.

�������	�
. For each v = 1, . . . , k, choose a neighbourhood Uv 3 av diffeomorphic

to � n+1 and such that the sets Uv are pairwise disjoint. Put U =
⋃

Uv , V = M \

{a, . . . , ak}. ThenM = U∪V and U∩V =
⋃

U̇v where U̇v = Uv\{av}. Take arbitrary

flat connections λ̃v : TUv → A|Uv
, v = 1, . . . , k. The family {λ̃v} determines one flat

connection λ̃ : TU → A|U such that λ̃|Uv
= λ̃v . Define λ̌ = λ̃|U∩V and σ̌ = σ|U∩V .

According to Theorem 2.6, χ(A,ε) = ∂[λ̌, σ̌]. Next, let λv = λ̃v |U̇v
and σv = σ|U̇v

.

Then [λ̌, σ̌] =
⊕

v

[λv , σv]. By [8, Prop. VII Chap. VI, Vol. I]
∫ #

M
◦∂ = α, where

α :
⊕

v

Hn(U̇v) → � is given by⊕

βv 7→
∑

αUv
(βv). Therefore we get

∫ #

M

χ(A,ε)A =

∫ #

M

∂[λ̌, σ̌] =

∫ #

M

∂
(

⊕

ν

[λv , σv ]
)

= α
(

⊕

ν

[λv , σv ]
)

=

k
∑

v=1

αUv
[λv , σv] =

k
∑

v=1

jav
(σ).

�
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The sum

j(A,ε) =

k
∑

v=1

jav
(σ)

is called the Euler number of the s-Lie algebroid (A, ε). According to Theorem 5.4

from [21], the Euler number j(A,ε) is not—in general—an invariant of the cohomology

algebra of A and has nothing in common with the Euler-Poincaré characteristic of A.

The last one, when considered for TUIO-Lie algebroids (dimM + rankg is odd), is

always 0 [23].

4. Integral formulae

Proposition 4.1. For a trivial s-Lie algebroid A = TM × g vertically oriented

by a tensor 0 6= ε0 ∈
n
∧

g (n = dim g) and equipped with a “standard” flat connection

τ0 : TM → TM × g, v 7→ (v, 0), we have:

(a) If σ : TM → A is a flat connection, then its cohomology class ωσ is given by

ωσ = −σ̂#[ϕ0] × 1 + 1 × [ϕ0] where σ̂ = pr2 ◦σ : TM → g and ϕ0 ∈
n
∧

g∗ is a

tensor such that ιε0
ϕ0 = 1. In particular ωτ0

= 1 × [ϕ0].

(b) The difference class [τ0, σ] is equal to [τ0, σ] = σ̂#[ϕ0].
�������	�

. Using the fact that the projection pr2 : TM → g is a nonstrong homo-

morphism of Lie algebroids [17], we can easily see that

σ#(−σ̂#[ϕ0] × 1 + 1 × [ϕ0]) = 0,
∫ #

A

(−σ̂#[ϕ0] × 1 + 1 × [ϕ0]) = 1.

Now (a) follows from the definition of the cohomology class ωσ whereas (b) may be

obtained from the definition of the difference class and the equality

ωτ0
− ωσ = 1 × [ϕ0] − (−σ̂#[ϕ0] × 1 + 1× [ϕ]) = γ#σ̂#[ϕ0].

�

Corollary 4.2. For arbitrary flat connections λ, σ : TM → TM × g we have

[λ, σ] = (σ̂# − λ̂#)[ϕ0].

Put
.

� n+1 = � n+1 \ {0} and let g be any n-dimensional unimodular Lie algebra g.

Take tensors 0 6= ε0 ∈
n
∧

g, ϕ0 ∈
n
∧

g∗ joined by the relation ιε0
(ϕ0) = 1. Fix a

flat connection σ : T
.

� n+1 → T
.

� n+1 × g in the trivial Lie algebroid A = T � n+1 × g

(oriented by the tensor ε0). Let i : S
n ↪→

.

� n+1 be the inclusion.
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Proposition 4.3. The index j0(σ) of σ is given by the formula

(4.1) j0(σ) =

∫

Sn

σ∗
S(ϕ0)

where σS is a nonstrong homomorphism of Lie algebroids defined as the composition

σS : TSn i∗
↪→ T

.

� n+1 σ̂
−→ g.

�������	�
. Let τ : T � n+1 → T � n+1 × g, v 7→ (v, 0), be the “standard” flat

connection. Then, according to [8, Vol. I] and Prop. 4.1 (b),

j0σ = α 
 n+1([τ̇ , σ]) = α 
 n+1σ̂#[ϕ0] =

∫

Sn

i#σ̂#[ϕ0]

=

∫

Sn

(σ̂ ◦ i∗)
#[ϕ0] =

∫

Sn

(σS)#[ϕ0].

�

Treat now σ̂ : T
.

� n+1 → g as a 1-form on
.

� n+1 with values in g and take the

exterior n-product σ̂∧. . .∧σ̂ ∈ Ωn(
.

� n+1;
n
∧

g). We have σ̂∗(ϕ0) = n!−1(ϕ0)∗(σ̂∧. . .∧

σ̂). Therefore

(4.2) j0(σ) =
1

n!
ϕ0

(
∫

Sn

i∗(σ̂ ∧ . . . ∧ σ̂)

)

.

Example 4.4. Each trivial Lie algebroid A = T � n+1 ×g is integrable: A = A(P )

for P = � n+1 × G where G is an arbitrary Lie group with the Lie algebra g. A

connection σ : T
.

� n+1 → A induces a connection H ⊂ T (
.

� n+1 ×G) in the principal

bundle
.

� n+1 ×G, and the flatness of σ means the integrability of H . Assume that a

leaf L of the foliation H is the graph of some function f :
.

� n+1 → G. (If n > 2, then

such a function always exists which follows from the simple connectedness of
.

� n+1

and the reduction theorem [12].) Therefore σ̂(v) = R−1
f(x)∗(f∗v), Rf(x) which is the

right translation on G by f(x), and f∗(∆R) =
〈

ϕ0, n!−1(σ̂ ∧ . . . ∧ σ̂)
〉

for the right-

invariant n-form ∆R ∈ Ωn
R(G) giving ϕ0 at the unity e of G.

(A) If G is compact, n-dimensional, oriented by ∆R and the Lie algebra of G is

spherical, then as a consequence of (4.1) and (4.2) we have

(4.3) j0(σ) =

∫

Sn

(f |Sn)∗∆R = deg(f |Sn) ·

∫

G

∆R.

As a corollary (taking any mapping f :
.

� n+1 → Sn such that f |Sn = idSn), we

obtain the existence of a local, flat singular connection having a nonzero index

at the singularity.
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Formula (4.3) yields that the set of real numbers which are the indexes at a given

point of singular local, flat connections coming from functions is discrete (more

exactly, is equal to the set of multiplicities of
∫

G
∆R). Such a situation takes

place, for example, for all flat connections in any so(3)-Lie algebroid over M 4

(since we can take G = SO(3)).

(B) If G is not compact, then ∆R = d(Θ) for some Θ and

j0(σ) =

∫

Sn

(f |Sn)∗∆R =

∫

Sn

d(f∗|SnΘ) = 0.

Such a situation takes place, for example, in any sl(2, � )-Lie algebroid overM 4

(since we can take G = SL(2, � )). Clearly, this fact can be noticed immediately
by using a base e, f , g of sl(2, � ) such that [e, f ] = g, [f, g] = 2f , [g, e] = 2e,

For an � -Lie algebroid there are singular flat connections which do not come from
functions even locally, see the example below.

Example 4.5. In any � -Lie algebroid overM 2 we can construct a local, flat and

singular connection whose index is a preassigned real number. Indeed, since � is
abelian, therefore the flatness of σ is equivalent to the closedness of the 1-form σ̂

onM2. In this case, the product k · σ̂, k ∈ � , also gives a flat connection. Therefore,
if σ : T

.

� 2 → T
.

� 2 × � , v 7→ (v, σ̂(v)), is a flat connection with a nonzero index at 0,

j0(σ) 6= 0, then, for an arbitrary real number k ∈ � , the mapping

τ : T
.

� 2 −→ T
.

� 2 × � , v 7−→

(

v,
k

j0(σ)
· σ̂(v)

)

,

is a flat connection with j0(τ) = k. Except for a discrete set of real numbers, this

connection does not come from a function. More explicitly, considering ε0 = 1 ∈ �
and taking τ̂ = k

2 � (x/(x2+y2) dy−y/(x2+y2) dx), k ∈ � , we have j0(τ) =
∫

S1 τ̂ = k.

Example 4.6. In the Hopf S1-bundle P = (S3 → S2), for two different points

p1, p2 ∈ S2 and for any real number k ∈ � there exists a global flat connection σk

with two singularities at {p1, p2}, such that the index jp1
(σk) is equal to k. Indeed,

since the Euler class of P is equal to the orientation class of S2, any flat connection λ

with a singularity at {p1} has the index at p1 equal to 1 (assuming
∫

G
∆R = 1). Take

p2 6= p1 and M = S2 \ {p2}. Since M is contractible, P |M is trivial, P |M ∼= M ×S1.

The connection λ determines a connection λ̄ : T (M\{p1}) → A((M\{p1}) × S1) =

T (M\{p1}) × � . Take σ̂ = pr2 ◦λ̄ : T (M\{p1}) → � . For an arbitrary real number
k ∈ � ,

σk : T (M\{p1}) −→ T (M\{p1}) × � , v 7−→ (v, k · σ̂(v)),

is a flat connection. σk determines a flat connection σk in P with a singularity at

{p1, p2}, such that jp1
(σk) = k.
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Finally, we give some remarks concerning the existence of a connection with a

finite number of singularities. We start with the case g = � .

Proposition 4.7. In each invariantly oriented � -Lie algebroid over an arbitrary
manifold M for which H2(M) = 0 there exists a flat connection, in particular, when

M is 2-dimensional non-compact.

�������	�
. Consider any invariantly oriented � -Lie algebroid A = AΩ = TM × �

overM , see Section 1.2.4. Each connection λ : TM → TM × � has the form λ(v) =

(λ̄(v), v) for a 1-differential form λ̄ ∈ Ω1(M). A simple calculation shows that λ is

flat if and only if d(λ̄) = Ω. If H2(M) = 0, such a 1-form exists. �

As a corollary we get

Corollary 4.8. In each s-Lie algebroid of rank 1 over a compact 2-manifold M

there exists a flat connection with a given finite non-empty set of isolated singulari-

ties.

If a so(3)-Lie algebroid over a compact 4-manifold comes from a Spin(3)-principal

bundle, then, of course, it possesses a flat connection with one singularity (since

such a cross-section of the sphere bundle exists [8, Vol. I]). In the general case, the

problem is open.

The problem for sl(2, � )-Lie algebroids looks differently. Namely, by the main
Theorem 3.3 and Example 4.4 (B) we have that χ(A,ε) = 0 for any invariantly ori-

ented sl(2, � )-Lie algebroid (A, ε) over a compact connected oriented manifold M 4

admitting a flat connection with a finite number of isolated singularities.

More precisely, we have the following proposition.

Proposition 4.9. Each invariantly oriented sl(2, � )-Lie algebroid (A, ε) over

a compact connected oriented 4-manifold admitting a flat connection with a finite

number of isolated singularities is flat, i.e. admits a global flat connection.

�������	�
. Let σ be a flat connection with finite number of singularities. We can

remove the singularities. It suffices to check this locally. If σ is a flat connection

in T
.

� 4 × sl(2, � ) then σ is given by a function f :
.

� 4 → SL(2, � ). Using the fact
that the third group of homotopy of SL(2, � ) is zero, π3(SL(2, � )) = 0, we can find

f : � 4 → SL(2, � ) such that f(x) = f(x) for ‖x‖ > ε for a given small ε. This

implies that we may remove the singularity at 0. �

Remark 4.10. We explain reasons for which the index theory of singular flat con-

nections is limited to the spherical case. For this purpose, take a flat connection λ in

a transitive Lie algebroid A, with a singularity at a point a ∈M , i.e. a flat connection

373



in A|M\{a}. Let a ∈ U ⊂M be a coordinate neighbourhood of a, U ∼= � n+1 . Clearly

[29], the restriction A|U is a trivial Lie algebroid, therefore A|U is the Lie algebroid

of a trivial principal bundle A|U = A(U × G) for some Lie group G. Assume here

that it is the case when we can choose a compact connected Lie group G, and that

dimG = n (the “dimensional” restriction is analogous to that in Theorem 1.1). The

connection λ restricted to U\{a} determines a flat connection H in the principal

bundle U ×G, with singularity at the point a. If n > 2, U\{a} is simply connected

and the holonomy of H is trivial, therefore the reduction theorem [12] yields that

H is determined by a cross-section f : U\{a} → U×G (i.e. H(x,e) = =f∗x). By (4.3),

the index jaλ of a flat connection λ is defined in such a way that jaλ = deg(f |Sn) · k

(for some fixed—for a given point a—real number k) where f =: pr2 ◦f . Then, by

degree theory [8, Vol. I, 6.5, Cor. I], we know that the relation deg(f |Sn) 6= 0 implies

the injectivity of (f |Sn)# : H(G) → H(Sn), which gives the relations Hp(G) = 0 for

1 6 p 6 n − 1 meaning the same for the Lie algebra gl(G) of G. This explains the

limitation to the spherical case.

It seems that it is possible to consider arbitrary compact Lie groups keeping in

mind what follows: the real cohomology of a compact connected Lie group is isomor-

phic to the cohomology algebra of the product of r spheres (r = rankG = dimT ,

T—the maximal torus of G) of odd dimension and the sum of this dimensions,
r
∑

ν=1
gν ,

is equal to n = dimG. Therefore we may consider the case of the base manifold M

of dimension n+1 and a flat connection with singularities lying inside the set diffeo-

morphic to the product N = Sg1 × . . .×Sgr of g1, . . . , gr-spheres (contained in some

coordinate neighbourhood).
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