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Primary and flat secondary characteristic classes

for Lie algebroids, review and problems

by Jan Kubarski

Characteristic homomorphisms of principal fibre bundles (primary and sec-
ondary) are invariants of Lie algebroids of principal fibre bundles and can be
constructed for all regular Lie algebroids.

In this short note we give a survey of the problems for primary characteristic
classes of Lie algebroids and a part of problems for secondary characteristic classes
which concern ”flat” classes. The paper stresses the fact the right approach to
the theory of algebroid characteristic classes is not an adaptation of the classical
theory of invariant polynomials of a given Lie group and of their representations
and then enumeration of the primary and secondary characteristic classes but
the study of bundles of polynomials and their invariant cross-sections. We also
present some open problems.

The results of Section 2 were presented at International Conferences (Satellite
Conference on Differential Geometry and Global Analysis, Nankai Institute of
Mathematics, Tianjin, China, August 16-18, 2002; 4th Conference on Poisson
Geometry and related fields, University of Luxembourg, June 7 - 11, 2004) and a
research paper is being prepared.

1 Primary characteristic classes

1.1 Classical theory of primary characteristic classes for
principal fibre bundles

The classical theory of primary characteristic classes for principal fibre bundles is
well known. Let (P, π,M,G) be a G-pfb on M with projection π : P → M and
structural Lie group G acting on P from the right. The domain of the Chern-Weil
homomorphism for P is the space I (G) := (Vg∗)I = (Vg∗)I(AdG)of symmetric mul-
tilinear functions (equivalently polynomials) on g = gl (G) invariant with respect
to the adjoint representation AdG : G→ GL (g) of G. The Chern-Weil homomor-
phism for P, see [G-H-V, Vol. II, Ch.VI], hp : (Vg∗)I → HdR (M) can be defined
by hP (Γ) = [χP (Γ)] where for invariant k-polynomial Γ ∈ Vkg∗ the differential
form χP (Γ) ∈ Ω2k (M) is such that π∗ (χP (Γ)) = 1

k!
Γ(Ωk) where Ω ∈ Ω2 (P, g) is

the curvature form of any connection ω in P and Γ(Ωk) = 〈Γ,Ω∨...∨Ω〉 is the pair-
ing defined via the permanent (Ω∨...∨Ω is the usual multiplication of differential
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forms and values of which are multiplied under the symmetric multilinear map-
ping g× ...× g →Vkg). The image Im (hP ) ⊂ HdR (M) is called the Pontryagin
algebra of P. The algebra I (G) is well known for standard Lie groups.

1.2 Algebroid nature of primary characteristic classes

Theorem 1.1 If (P, π,M,G) and (P ′, π′,M,G′) are principal fibre bundles on
the same manifold M with connected total spaces P and P ′ such that their Lie
algebroids A (P ) and A (P ′) are isomorphic (G and G′ can be nonconnected), then
hP = hP ′ , i.e. the Pontryagin algebra of P depends only on the Lie algebroid of
P.

We recall that by a Lie algebroid on a manifold M [P] we mean a triple
(A, [[·, ·]],#A) where A is a vector bundle on M, [[·, ·]] is a real Lie algebra struc-
ture in the space of global cross-sections SecA and #A : A → TM is a linear
homomorphism fulfilling the Leibniz condition [[ξ, f ·η]] = f · [[ξ, η]]+#A (ξ) (f) ·η.
Sec #A : SecA → X (M) is a homomorphism of Lie algebras [He], [B-K-W].
There are many geometric sources of Lie algebroids: differential groupoids, prin-
cipal fibre bundles, vector bundles, transversely complete foliations, nonclosed
Lie subgroups, Poisson manifolds, Jacobi manifolds, locally conformal symplectic
structures etc.

There are non-isomorphic principal fibre fibre bundles having isomorphic Lie
algebroids (for example P equal to the trivial Spin (3) pfb on RP5 and P ′ equal
to the nontrivial Spin (3) structure on RP5 [K3]).

The Lie algebroid A (P ) of a principal fibre bundle P can be constructed in
three different but equivalent ways [P], [K3]

— the Lie algebroid of the Ehresmann Lie groupoid PP−1,
— the Atiyah vector bundle TP/G according to the observation Sec (TP/G) ∼=

Xr (P ) , Xr (P ) is the Lie algebra of G-right invariant vector fields on P,
— as an associated bundle W 1 (P ) ×G1

n
(Rn × g) with the first-order prolon-

gation of P.
Take the Atiyah short exact sequence [A] (g is the right Lie algebra of G)

0 → P ×G g → TP/G
[π∗]→ TM → 0.

P ×G g is a Lie algebra bundle, for any z ∈ Px, ẑ : g ∼= (P ×G g)x , v 7−→
[(z, v)] , is an isomorphism of Lie algebras. We notice that having only the Lie
algebroid A (P ) we can not reconstruct the structural Lie group, but only its
Lie algebra! The Lie algebroid A (P ) acts on the Lie algebra bundle P ×G g

by ad A(P ) (ξ) (ν) = [[ξ, ν]]. This actions can be extended to the actions ad∨A(P )

of A (P ) on the symmetric power of the dual of P ×G g, Vk (P ×G g)∗ - i.e. on
the vector bundle of polynomials. We take the algebra of invariant cross-sections
I (A (P )) :=

⊕k Sec(Vk (P ×G g)∗)I(ad) of vector bundles Vk (P ×G g)∗ . We have
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Γ ∈ Sec(Vk (P ×G g)∗)I(ad) if and only if for every ξ ∈ Sec (A (P )) and ν1, ..., νk ∈
Sec (P ×G g)

[π∗] (ξ) 〈Γ, ν1 ∨ ... ∨ νk〉 =
k∑

i=1

〈Γ, ν1 ∨ ... ∨ [[ξ, νi]] ∨ ... ∨ νk〉.

Theorem 1.2 If P is a connected pfb (G can be non-connected) then there exists
an isomorphism of algebras ρ : I (G) → I (A (P )) . (In general, we have always a
monomorphism).

To understand this fact we take the AdG-homomorphism of principal fibre
bundles AdP : P → Lggg, z 7→ [(z, ·)] , (Lggg is the GL (g)-principal fibre bundle of
frames of ggg:=P ×G g) which is called the adjoint representation of a principal fibre
bundle and consider its differential (AdP )′ : A (P ) → A(ggg) which is equal to the
adjoint representation adA(P ) of the Lie algebroid A (P ) , adA(P ) = (AdP )′.

Remark 1.3 We recall [M1], [K8] that for every vector bundle f the Lie algebroid
A (f) := A (Lf) of the principal fibre bundle Lf of all frames can be constructed
directly as the Lie algebroid whose global cross-sections are covariant derivative
operators, L ∈ Sec (A (f)) ⇔ L is an first order operator L : Sec f → Sec f with the
anchor, i.e. for which there exists a vector field X (denoted by # (L)) such that
L (f · ν) = f · L (ν) +X (f) · ν, f ∈ C∞ (M) , ν ∈ Sec f. For the Lie algebroid of a
vector bundle with given transition functions see [K5].

The representation AdP and adA(P ) of P in the vector bundle ggg can be lifted
standardly to the representations of P in Vkggg∗, Ad∨P : P → L(Vkggg∗) and ad∨A(P ) :

A (P ) → A(Vkggg∗). The analogous property (Ad∨P )′ = ad∨A(P ) holds.

For invariant cross-sections of the vector bundle Vkggg∗ with respect to the rep-
resentations Ad∨P and ad∨A(P ) [K4] we have a canonical monomorphism

(1.1) ρ : Ik (G) ∼= (Sec Vkggg∗)I(Ad∨P ) ⊂ (Sec Vkggg∗)I(ad∨A(P ))
= Ik (A (P ))

which is an isomorphism when P is connected, Ik (G) ∼= Ik (A (P )) . This fact
generalize standard results concerning spaces of invariant vectors for a represen-
tation of a Lie group in a finite-dimensional vector space and its differential to
representations of principal fibre bundles and Lie algebroids [K4, s.5.5]:

— Let µ : G → GL (V ) be a representation of a Lie group G in a finite-
dimensional vector space V and f a vector bundle with the typical fibre V. Let
T : P → Lf be a µ-homomorphism of principal fibre bundles. A cross-section
ξ ∈ Sec f is called T -invariant if there exists a vector v ∈ V such that T (z) (v) =
ξπz for all z ∈ P. Denote by (Sec f)I(T ) the space of all T -invariant cross-sections
of f.
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— Denote by VI(µ) the subspace of V of µ-invariant vectors. Then, for v ∈ VI(µ),
the function ξv : M → f, x 7−→ T (z) (v) where z ∈ Px, is a correctly defined
smooth cross-section of f and

(1.2) VI(µ)

∼=→ (Sec f)I(T ) , v 7−→ ξv,

is an isomorphism. Therefore applying to the representation Ad∨P : P → L(Vkggg∗)
we have

Ik (G) = (Vkg∗)I(AdG)
∼= (Sec Vkggg∗)I(Ad∨P ).

— Let S : A → A (f) be a homomorphism of Lie algebroids (S is called a
representation of A in a vector bundle f). A cross-section ξ ∈ Sec f is called S-
invariant (or S-parallel) if S (v) (ξ) = 0 for all v ∈ A. Denote by (Sec f)I(S) the
space of all S-invariant cross-sections of f.

Theorem 1.4 [K4] Let T : P → Lf be a µ-homomorphism of principal fibre
bundles and T ′ : A (P ) → A (f) its differential. The spaces of invariant cross-
sections (Sec f)I(T ) and (Sec f)I(T ′) under T and its differential T ′ are related by

(Sec f)I(T ) ⊂ (Sec f)I(T ′) .

If P is connected (nothing is assumed about the connectedness of G), then

(1.3) (Sec f)I(T ) = (Sec f)I(T ′) .

In consequence, applying to the representation ad ∨
A(P ) : A (P ) → A(Vkggg∗) we

have a monomorphism (1.1) which is an isomorphism where P is connected.

1.3 Chern-Weil homomorphism for Lie algebroids.

Let A be a transitive Lie algebroid A with the Atiyah sequence

(1.4) 0 → ggg → A
#A→ TM → 0,

ggg = ker #A is a Lie algebra bundle. The Lie algebroid A acts on ggg by adA : A→
A(ggg), adA (ξ) (ν) = [[ξ, ν]], ξ ∈ SecA, ν ∈ Secggg. This action can be extended on
the bundle Vkggg∗ to the action adA : A → A(Vkggg∗). Let Ik (A) denotes the space
of invariant cross-sections of Vkggg∗. I (A) :=

⊕
Ik (A) is an algebra. The value

Γx ∈ Vkggg∗x at x of any invariant cross-section is a vector invariant with respect
to the adjoint representation adgggx

of the isotropy Lie algebra gggx. Each invariant
vector v ∈ Vkggg∗x can be extended uniquely to some invariant cross-section of the
bundle Vkggg∗ over an open subset containing x (for example if this neighbourhood
is contractible). The vectors v ∈ Vkggg∗x which can be extended onto the whole
manifold M are described by formula [M1, Th. IV, 1.19].
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Take a connection ω : TM → A (i.e. a linear homomorphism ω such that
#A◦ω = idTM) and its curvature form Ω ∈ Ω2(M ;ggg), Ω (X, Y ) = [[ω (X) , ω (Y )]]−
ω ([X, Y ]) . The Chern-Weil homomorphism of A is defined by [K4]

(1.5) hA : I (A) → HdR (M) , Ik (A) 3 Γ 7−→ 1

k!
[〈Γ,Ω ∨ ... ∨ Ω〉] .

If there exists a flat connection in A then h+
A = 0. The analogous construction

can be made analogously for regular Lie algebroid over a regular foliated manifold
(M,F ), we must use the algebra of tangential differential forms Ω (F ) and its
cohomology H (F ) instead of Ω (M) and HdR (M) [K4].

Theorem 1.5 If A (P ) is a Lie algebroid of a principal fibre bundle (P, π,M,G) ,
then

hP = hA(P ) ◦ ρ : I (G) → I (A (P )) → HdR (M) .

If P is connected, then under the identification I (G) = I (A (P )) we have hP =
hA(P ).

This gives Th. 1.1.
There exists Lie algebroids which are not integrable, i.e. which do not come

from principal bundles, but have nontrivial Chern-Weil homomorphisms.

Theorem 1.6 [K4] (1) Let H ⊂ G be any connected Lie subgroup of G and let
h, h̄ and g be the Lie algebras of H, of its closure H̄ and of G, respectively. Let
A (G;H) be the Lie algebroid of the foliation of left cosets of G by H. Denote
by hP : (Vh̄∗)I → HdR(G/H̄) the Chern-Weil homomorphism of the H̄-principal
bundle P =

(
G→ G/H̄

)
. Then there exists an isomorphism of algebras κ such

that the following diagram commutes:

I (A (G;H))
hA(G;H)−→ HdR(G/H̄)

∼=↓ κ ↑ hP

(V(h̄/h)∗) � (Vh̄∗)I

(2) If G is a connected, compact and semisimple Lie group and H ⊂ G is a
nonclosed Lie subgroup than hA(G;H) is nontrivial. Adding the simple connected-
ness to the assumption about G, we get, according to the Almeida-Molino theorem
[A-M], some nonintegrable transitive Lie algebroid having the nontrivial Chern-
Weil homomorphism.

Concerning the primary Chern-Weil homomorphism, the following papers seems
to be first on this subject: Teleman (1972) [T1], [T2], Kubarski (1986) [K1],
[K2], Mackenzie (1988) [M2], Moore, Schochet (1988) [M-S], Kubarski (1991)
[K4], Belko (1994) [B], Kubarski (1994) [K5], [K6], Vaisman (1994) [V2], Itskov,
Karasev, Vorobjev (1998) [I-K-U], Huebschmann (1999) [Hu2], Fernandes (2000)
[F1], [F2].
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1.4 The Chern-Weil homomorphism for pairs of Lie alge-
broids

Take a pair of Lie algebroids (A,L) on a manifold M and assume that A is
transitive (we may assume less, that A is regular). Let (1.4) be the Atiyah
sequence of A. By an L-connection in A we mean a linear homomorphism ∇ :
L→ A compatible with the anchors #A ◦ ∇ = #L. By a curvature form of ∇ we
shall mean the 2-form Ω∇ ∈ Ω2(L;ggg) defined by Ω∇ (ξ, η) = [[∇◦ξ,∇◦η]]−∇◦[[ξ, η]].
If L = TM then ∇ is a usual connection in A. If L = T ∗M is the Lie algebroid of
a Poisson manifold (M, {·, ·}) and A = A (P ) we have the so-called contravariant
connection in a principal fibre bundle P [V1], if A = A (f) is the Lie algebroid
of a vector bundle f we have the so-called contravariant connection in a vector
bundle f [F1]. If 0 → L′ → L → L′′ → 0 is an extension of Lie algebroids, then
any splitting ∇ : L′′ → L is a L′′-connection in L [Hu1]. Let us remark that an
L-connection in A (f) is the same as L-covariant derivative ∇ξν in a vector bundle
f, ξ ∈ SecL, ν ∈ Sec f, i.e. an operator ∇ξν fulfilling the usual Koszul axioms
with the following difference: ∇ξ (fν) = f · ∇ξν + #L (ξ) (f) · ν.

By the Chern-Weil homomorphism of the pair (A,L) we mean hL,A : I (A) →
H (L) defined by the formula analogous to (1.5), see [B-K-W]. The image of
hL,A is the Pontryagin algebra of the pair (L,A) , Pont (L,A) := ImhL,A. The
comparison with hA is given thanks to the commutativity of the diagram

I(A) H(L)-
hL,A

HdR(M)

hA

�
�

�
���

(#L)#

@
@

@
@@R

It follows from the fact that the superposition L
#L→ TM

ω→ A (where ω : TM →
A is a connection in A) is an example of an L-connection in A. In particular
(#L)# [PontA] = Pont (L,A) .

Consider L = A, ∇ = idA : A → A is a flat A-connection in A, so h+
A,A = 0.

Therefore Pont+A ⊂ ker (#A)∗ . In this way we have a simply proof of the well-
known fact concerning principal fibre bundle π : P →M, Pont+ (P ) ⊂ kerπ#.

1.5 Problem

Let (A, [[·, ·]],#A) and f be a transitive Lie algebroid and a vector bundle on a
manifold M , respectively. Assume that F ⊂ TM is a C∞ regular involutive dis-
tribution and F – the foliation determined by F . We recall that A and F give rise
to the regular Lie algebroid AF over (M,F ) , where we put AF := (#A)−1 [F ] ⊂ A.

Its Atiyah sequence is 0 −→ ggg ↪→ AF
#F

A−→ F −→ 0, where ggg is the Lie algebra
bundle adjoint of A, and #F

A := #A|AF . Any representation T : A→ A(f) of A on
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f restricts to the representation T F = T |AF : AF −→ A(f) of AF on f. For F -basic
functions f i ∈ Ω◦

b(M,F ) and T -invariant cross-sections νi ∈ Sec f,
∑

i f
i · νi is a

T F -invariant cross-section, in other words,

Ω◦
b(M,F) · (Sec f)I(T ) ⊂ (Sec f)I(T F ) .

In general, the above inclusion cannot be replaced by the equality, which means
that not every T F -invariant cross-section is of the form

∑
i f

i ·νi for F -basic func-
tions f i and T -invariant cross-sections νi [K5]. Each T F -invariant cross-section
ν ∈ (Sec f)I(T F ) not belonging to Ω◦

b(M,F) · (Sec f)I(T ) will be called singular. By
the tangential Chern-Weil homomorphism of a transitive Lie algebroid A over
(M,F ) we mean the Chern-Weil homomorphism hAF of the regular Lie algebroid
AF . Applying it to the Lie algebroid A (P ) of a G-pfb P on M , and a folia-
tion F ⊂ TM, we obtain the tangential Chern-Weil homomorphism of P over
(M,F ). Let G◦ be the connected component containing the unit of G. If each
G◦-invariant element of Vg? is G-invariant, then the domain of the homomor-
phism hA(P )F is equal to Ω◦

b(M,F) · I(A(P )) (∼= Ω◦
b(M,F) · (Vg?)I(AdG) when P is

connected). The case (Vg?)I(AdG) ( (Vg?)I(AdGo ) can be the source of the strong

inclusion Ω◦
b(M,F) · I (A (P )) ( I(A (P )F ) and then the nontriviality of singular

primary characteristic classes corresponding to singular invariant sections from
I(A (P )F )\(Ω◦

b(M,F) · I (A (P ))). Examples can be constructed in the following
way. We can consider a connected G-pfb P with a nonconnected Lie group G and
a foliation F on M such that the restriction of P to each leaf L of F possesses a
Go-reduction P

o

|L. Invariants cross-sections from I(A(P
o

|L)) corresponding to vec-

tors from (Vg?)I(AdGo ) \ (Vg?)I(AdG) after gluing them via a suitable basic function
gives an invariant singular cross-section.

Problem 1.7 Find a nontrivial singular characteristic class. Does there ex-
ist a transitive Lie algebroid A and a foliation F such that Pont+A = 0 and
Pont+AF 6= 0 ?

For other open problems concerning comparison of Chern-Weil homomor-
phisms for single Lie algebroids, for pairs and for extensions see [B-K-W].

2 Secondary flat characteristic classes for Lie al-

gebroids

2.1 Classical theory for principal fibre bundles

Consider the triple (P, P ′, ω) where P = (P, π,M,G) is a G-pfb, P ′ is its G′-
reduction (G′ ⊂ G is a closed Lie subgroup of G), and ω ⊂ TP is a flat con-
nection in P with the connection form ω̆ : TP → g (g is the Lie algebra of
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G). Equivalently (according to Lehmann’s approach [L]) we can consider two
ideals J1 and J2 in the algebra of invariant polynomials I (G) , J1 = I+ (G) ,
J2 = ker (I (G) → I (G′)) . The characteristic homomorphism

∆#(P,P ′,ω) : H (g, G′) −→ HdR (M)

is one of the most important notion in the differential geometry of principal fi-
bre bundles [K-T]. The cohomology classes from the image of the homomor-
phism ∆#(P,P ′,ω) are called the secondary [or exotic] flat characteristic classes of
(P, P ′, ω). The homomorphism ∆#(P,P ′,ω) has functoriality property and ∆#(P,P ′,ω)

is an invariant of the class of homotopic G′-reductions. The nontriviality of
∆#(P,P ′,ω) implies that there is no homotopic change of P ′ containing the con-
nection ω.

We recall that H(g, G′), called the relative Lie algebra cohomology, is the
cohomology space of the complex ((

∧
(g/g′)∗)IG′

, dG′
) where g′ is the Lie algebra

of G′ and (
∧

(g/g′)∗)IG′
is the space of invariant elements with respect to the

adjoint representation of the Lie group G′ and the differential dG′
is defined via

the formula〈
dG′

(ψ) , [w1] ∧ ... ∧ [wk]
〉

=
∑
i<j

(−1)i+j 〈ψ, [[wi, wj]] ∧ [w1] ∧ ...̂ı...̂... ∧ [wk]〉

for ψ ∈
∧k (g/g′)∗IG′

and wi ∈ g. The homomorphism ∆#(P,P ′,ω) on the level of
forms is given by the following direct formula

(2.1) (∆ψ)x (w1 ∧ ... ∧ wk) = 〈ψ, [ω̆z (w̃1)] ∧ ... ∧ [ω̆z (w̃k)]〉

where x ∈M, z ∈ P ′, πz = x, wi ∈ TxM, w̃i ∈ TzP
′, π′∗w̃i = wi.

The relative Lie algebra cohomology H (g,G′) is well known for many pairs
(g, G′) ([K-T], [G], [G-H-V, Vol III]).

2.2 Algebroid’s generalization

For details concerning this section see [B-K], [K7], [K9]. Consider a triple

(A,B,∇)

consisting of transitive Lie algebroid A and its transitive Lie subalgebroid B and
an arbitrary Lie algebroid L on M (irregular, in general) and a flat L-connection
∇ : L → A (without any trouble we can assume less: A and B are regular Lie
algebroids over the same foliated manifold). In the diagram below λB : TM → B
means an arbitrary auxiliary connection in B. Then j ◦ λB : TM → A is a
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connection in A. Let ωj◦λB : A→ ggg be its connection form.

(2.2)

0 ggg- A- �

�
λB

L

?

0 hhh-
∪

B- TM-#B
F

⊂

⊃

#L

6

⊂ ∪

6
j
@

@
@

@
@R

#A

∇
�
ωj◦λB

The constructed characteristic homomorphism for the triple (A,B,∇) is mea-
suring the incompatibility of the flat structure with a given subalgebroid and has
homotopic properties in analogy to the classical case of principal fibre bundles.

Example 2.1 1. For L = TM we obtain the case in which the connection ∇
is a usual connection in A [K7],

2. For L = TM and A = TP/G and B = TP ′/G′ (P ′ is an G′-reduction of
P ) we obtain the classical case equivalent to the standard case of principal
fibre bundles [K-T].

3. For L = A and ∇ = idA we consider only the Lie algebroid A and its Lie
subalgebroid B. This case produces a characteristic homomorphism for the
inclusion B ⊂ A , in particular for the inclusion of Lie algebras h ⊂ g, and in
particular for inclusion of principal bundles P ′ ⊂ P which finally produces
a new theorem for principal bundles probably not mentioned earlier in the
literature.

4. Let f be a vector bundle equipped with a Riemannian metric h. If A = A (f)
and B := A (f, {h}) ⊂ A is a Riemannian reduction [K5], (more precisely
B is the Lie algebroid of the principal bundle of orthogonal frames) we
obtain the case equivalent to the one considered by M. Crainic [C] of the
characteristic exotic characteristic classes for a representation of any Lie
algebroid L in a vector bundle f. However we must add that Crainic have
lost one of the characteristic classes for oriented vector bundle of even rank.

To construct the characteristic homomorphism for (A,B,∇) we notice that for
a general connection ∇ : L → A does not exist a suitable notion of a connection
form. The connection form was used in the direct formula (2.1) for the classical
case. We must produce a characteristic homomorphism for (P, P ′, ω) without the
connection form ω̆. Take auxiliarily a connection λ′ in P ′ and extend it to a
connection λ in P. Let λ̆ : TP → g be the connection form of λ. Then it appears
that the characteristic homomorphism for (P, P ′, ω) can be equivalently defined
on the level of differential forms via

(2.3) (∆ψ)x (w1 ∧ ... ∧ wk) =
〈
ψ, [−λ̆ (ŵ1)] ∧ ... ∧ [−λ̆ (ŵk)]

〉
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ŵi ∈ TzP being the ω-horizontal lifting of wi, z ∈ P|x.
In the general case (A,B,∇) we define the homomorphism

ωB,∇ : L −→ ggg/hhh, w 7−→ [−ωj◦λB(∇w)],

see diagram (2.2). It is an important observation that ωB,∇ does not depend on
the choice of an auxiliary connection λB and ωB,∇ = 0 if ∇ takes values in B.

Define the homomorphism of algebras

∆ : Sec
∧

(ggg/hhh)∗ −→ Ω (L)

(∆Ψ) (x;w1 ∧ ... ∧ wk) = 〈Ψx, ωB,∇ (w1) ∧ ... ∧ ωB,∇ (wk)〉 ,
Ψ ∈ Sec

∧k(ggg/hhh)∗, x ∈ M , wi ∈ L|x. Observe that ∆ can be written as the
superposition ∆ = ∇∗ ◦∆o,

∆ : Sec
∧

(ggg/hhh)∗
∆o−→ Ω (A)

∇∗
−→ Ω (L)

where∇∗ is the pullback of forms and ∆o is the homomorphism given for particular
case of flat connection ∇ = idA, so that

(∆oΨ)x (υ1 ∧ ... ∧ υk) =
〈
Ψx, [−ωj◦λB (υ1)] ∧ ... ∧ [−ωj◦λB (υ1)]

〉
.

In the algebra Sec
∧

(ggg/hhh)∗ we distinguish a subalgebra (Sec
∧

(ggg/hhh)∗)IB
of in-

variant cross-sections with respect to the adjoint representation of B in
∧

(ggg/hhh)∗ .
Ψ ∈ Sec

∧k(ggg/hhh)∗ is invariant if and only if

(#B ◦ ξ) 〈Ψ, [ν1] ∧ ... ∧ [νk]〉 =
k∑

j=1

(−1)j−1 〈Ψ, [[j ◦ ξ, νj]] ∧ [ν1] ∧ ...̂... ∧ [νk]〉 .

for all ξ ∈ SecB and νj ∈ Secggg. In the space (Sec
∧

(ggg/hhh)∗)IB
of invariant cross–

sections we have a differential δ̄ defined by〈
δ̄Ψ, [ν1] ∧ ... ∧ [νk]

〉
= −

∑
i<j

(−1)i+j 〈Ψ, [[νi, νj]] ∧ [ν1] ∧ ...̂ı...̂... ∧ [νk]〉 .

Let H(ggg,B) denote the cohomology algebra of the complex obtained. (Remark:
The difference here, in comparison with the classical formula for principal fibre
bundles — the sign ”−” — has its roots in the fact that the Lie algebra of the
structure Lie group in the principal fibre bundle considered there is taken left,
not right.) The homomorphism ∆ commutes with the differentials δ̄ and dL. In
consequence, ∆ and ∆o induce the homomorphisms in cohomology

∆#(A,B,∇) : H(ggg,B)
∆o #−→ H (A)

∇#

−→ H (L) .

The map ∆#(A,B,∇) is called the characteristic homomorphism of the triple
(A,B,∇) and the characteristic classes from the image are called the secondary
[exotic] characteristic classes of the triple (A,B,∇). Of course, ∆o# is the char-
acteristic homomorphism of the pair (A,B) , B ⊂ A.
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Remark 2.2 We see that for a pair of transitive Lie algebroids (A,B), B ⊂ A,
[analogously for both regular over the same foliation] and for an arbitrary element
ζ ∈ H(ggg,B) there exists a ”universal” cohomology class ∆o # (ζ) ∈ H (A) such
that for any (irregular in general) Lie algebroid L on M and a flat L-connection
∇ : L→ A it holds the equality

∆#(A,B,∇) (ζ) = ∇# (∆o# (ζ)) .

Problem 2.3 Is the characteristic homomorphism ∆o# : H(ggg,B) −→ H (A) a
monomorphism for a given B ⊂ A ? (The answer ”YES” holds in many important
cases [B-K]).

The characteristic homomorphism ∆#(A,B,∇) : H(ggg,B) −→ H (L) has functori-
ality property and is invariant under homotopic subalgebroids and homotopic con-
nections [B-K]. We recall that [K6] two transitive Lie subalgebroids B0, B1 ⊂ A
are said to be homotopic if there exists a transitive Lie subalgebroid B ⊂ TR×A
such that υx ∈ Bt|x ⇐⇒ (θt, υx) ∈ B|(t,x) for t ∈ {0, 1} , θt ∈ TtR are null vectors.
B is called a subalgebroid joining B0 with B1. This relation is closely related to
the relation of homotopic subbundles of a principal fibre bundle [K7] and can be
used to Lie algebras, i.e. to Lie algebroids over a point.

Theorem 2.4 (The first homotopy independence) If B0, B1 ⊂ A are homotopic
subalgebroids of A and ∇ : L→ A is a flat L-connection in A, then the character-
istic homomorphisms ∆#(A,Bt,∇) : H(ggg,Bt) → H (L) , t = 0, 1, are equivalent in

the sense that there exists an isomorphism α : H(ggg,B0)
'−→ H(ggg,B1) of algebras

such that ∆#(A,B1,∇) ◦ α = ∆#(A,B0,∇).

Let H0, H1 : L′ → L be homomorphisms of Lie algebroids. By a homotopy
joining H0 to H1 we mean [K6] a (nonstrong) homomorphism of Lie algebroids
H : TR × L′ −→ L such that H (θ0, ·) = H0 and H (θ1, ·) = H1. We say that H0

and H1 are homotopic if there exists a homotopy joining H0 to H1. The homotopy
H : TR × L′ −→ L determines a chain homotopy operator [K6] which implies
that H#

0 = H#
1 : H (L) → H (L′). The relation can be used to homomorphisms

of Lie algebras.

Theorem 2.5 (The second homotopy independence) If ∇0, ∇1 : L → A are
homotopic flat L-connections in A, then the characteristic homomorphisms are
equal ∆#(A,B,∇0) = ∆#(A,B,∇1).

A finite-dimensional Lie algebra is a Lie algebroid over a point. For a pair
(g, h) , h ⊂ g, of finite-dimensional Lie algebras, we have a characteristic homo-
morphism

∆o# : H (g, h) = H((
∧

(g/h)∗)I , δ̄) → H (g)
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(∆oψ) (w1 ∧ ... ∧ wk) = (−1)k 〈ψ, [w1] ∧ ... ∧ [wk]〉

(H (g, h) = H (g, G′) for arbitrary connected Lie group G′ having h as its Lie
algebra). The homomorphism ∆o# can be nontrivial in general. For example for
g = gl (n,R) and h = so (n) (= Sk (n,R)) just ”the trace” tr : g/h → R is invari-
ant and gives a nontrivial element in the cohomology and ∆o# ([tr]) 6= 0. If h is
reductive in g and h is noncohomologous to zero in g the homomorphism ∆o# is
a monomorphism, see [G-H-V, Vol. III, Th. IX, X]. Tables I-III in [G-H-V, Vol.
III, Sec.XI] contain many n.c.z. pairs, for example (gl (2m+ 1,R) , so (2m+ 1)) ,
(so (n,C) , so (k,C)) for k < n, (so (2m+ 1) , so (2k + 1)) and (so (2m) , so (2k + 1))
for k < m. If h = 0 then ∆o# = − idH(g) .

The ”partially flat” characteristic homomorphism for the triple (A,B, λ′),
where B ⊂ A are transitive Lie algebroids and λ′ : TM → A is a connection
in A, partially flat over a regular foliation F were (in particular) considered
in [K9]. The triple (A,B, λ′) determines an object investigated in our paper,
(AF , BF , λ′|F ), in which AF = #−1

A [F ] , BF = #−1
B [F ] are regular Lie algebroids

over (M,F ) and λ′|F : F → AF is a flat connection in AF . With the objects
(A,B, λ′) and (AF , BF , λ′|F ) we have associated two (secondary) characteristic
homomorphisms: ∆q′# : H(W(ggg,hhh)q′,IB

) → HdR (M) , q′ ≥ codimF, [K9, s.4.7]
and ∆# : H(ggg,B′) → H (F ) (see also [K7, Prop.3.3]). On the level of forms
we have a simple relations between them, see [K9], described by the following
diagram:

(Sec
∧

(ggg/hhh)∗)IB
W(ggg,hhh)q′,IB

- Ω(M)-
∆q′∗

(Sec
∧

(ggg/hhh)∗)IB′ ΩF (M ′).-
∆∗

? ?

⊂

Problem 2.6 What does the relation above look like on the level of cohomology?

The above can be applied to the partially flat Bott connection ω for any
regular foliation F which is of course globally flat if we consider it in the regular
Lie algebroid A (TM/F )F over (M,F ) .

2.3 Application to principal fibre bundles

Taking a connected principal fibre bundle P = (P, π,M,G) with a structure Lie
group G and a connected G′-reduction P ′ ⊂ P and using the isomorphism of
algebras κ (i.e. the superposition of (1.2) and (1.3) for suitable representations)
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we define the homomorphism ∆#(P,P ′) by the commutative diagram

(2.4)
H (g, G′)

∆#(P,P ′)−→ Hr
dR (P ) −→ HdR (P )

∼=↓ κ ‖
H (ggg, A (P ′))

∆o#−→ H (A (P ))

and we obtain

Theorem 2.7 If G is a compact connected group and P ′ is a connected G′-
reduction in an G-pfb P , then there exists a ”universal” characteristic homo-
morphism ∆#(P,P ′) : H (g, G′) −→ HdR (P ) acting from the algebra H (g, G′) to
the total cohomology HdR (P ). In the case of a flat principal fibre bundle P the
characteristic homomorphism ∆#(P,P ′,ω) : H (g, G′) −→ HdR (M) for every flat
connection ω in P is factorized by ∆#(P,P ′), i.e. the diagram below commutes

H(g, G′) HdR(M)-
∆#(P,P ′,ω)

HdR(P )

∆#(P,P ′)

�
�

�
���

ω#

@
@

@
@@R

where ω# on the level of right-invariant forms Ωr is given as the pullback of forms,
ω∗ : Ωr (P ) −→ Ω (M) , ω∗ (φ) (x;u1 ∧ ... ∧ uk) = φ (z; ũ1 ∧ ... ∧ ũk) where z ∈ P|x,
ũi is the horizontal lift of ui [recall that Hr

dR (P ) := H (Ωr (P )) ' HdR (P )]. In the
general case (noncompact or nonconnected Lie group G) there exists a homomor-
phism ∆o# : H (g, G′) −→ Hr

dR (P ) of algebras which factorizes the characteristic
homomorphism for every flat connection. The homomorphism ∆o# on the level
of forms is given by the following direct formula

(∆oψ)z (w1 ∧ ... ∧ wk) =
〈
ψ, [−λ̆z (w1)] ∧ ... ∧ [−λ̆z (wk)]

〉
,

where λ̆ is the connection form of a connection λ on P extending an arbitrary
connection on P ′.

The following questions seems to be interesting:
— Is the homomorphism ∆o#(P,P ′) : H (g, G′) −→ Hr

dR (P ) a monomorphism?

2.4 Crainic characteristic classes

Take a vector bundle f and its Lie algebroid A (f) as well as a Riemannian metric
h in f. The metric h yields the Lie subalgebroid B = A (f, {h}). We recall that
L ∈ Sec (A (f, {h})) ⇐⇒L ∈ Sec (A (f)) and for each cross-sections ξ, η ∈ Sec f the
formula holds h (L (ξ) , η) = (#L) (h (ξ, η))− h (ξ,L (η)) . Two Lie subalgebroids



250 J. Kubarski

Bi = A (f, {hi}) , i = 1, 2, corresponding to Riemannian metrics hi are homotopic
Lie subalgebroids. The Atiyah sequences for A (f) and A (f, {h}) are

0 −→ End (f) −→ A (f) −→ TM −→ 0,

0 −→ Sk (f) −→ A (f, {h}) −→ TM −→ 0.

Sk (f) denotes the vector bundle of skew symmetric endomorphisms with respect
to the metric h.

(A) If the vector bundle f is nonorientable, then the characteristic homo-
morphism ∆# : H (End f, A (f, {h})) → H (L) for the triple (A (f) , A (f, {h}) ,∇)
produces the Crainic characteristic classes [C]. Indeed, using the isomorphism κ,
see (2.4), and the classical relations ([K-T], [G]) we have

H (End f, A (f, {h}))
κ∼= H (gl (n,R) , O (n)) ∼=

∧
(y1, y3, ..., yn′)

where n′ is the largest odd integer ≤ n = rank f, and by definition

y2k−1 ∈ H4k−3 (End f, A (f, {h}))

are represented by the multilinear trace form ỹk ∈ Sec (
∧

(End f/ Sk f)∗)

(2.5) ỹ2k−1 ([A1] , ..., [A4k−3]) =
∑

σ∈S4k−3

sgnσ · tr(Ãσ(1) ◦ ... ◦ Ãσ(4k−3))

where Ãi = 1
2

(Ai + A∗i ) is the symmetrization of Ai with respect to the inner
scalar product induced by the metric h.

(B) In the case of oriented vector bundle with a metric volume v, the metric
h and v induce an SO (n,R)-reduction L (f, {h, v}) of the frames bundle Lf of f.
Consider the characteristic homomorphism ∆# : H (End f, A (f, {h, v})) → H (L)
corresponding to (A (f) , A (f, {h, v}) ,∇). Therefore

— if n is odd, then

H (End f, A (f, {h, v})) ∼= H (gl (n,R) , SO (n)) = H (gl (n,R) , O (n)) ,

— if n is even, n = 2m, then

H (End f, A (f, {h, v})) ∼= H (gl (2m,R) , SO (2m)) ∼=
∧

(y1, y3, ..., yn′ , χ2m)

where n′ = 2m − 1, y2k−1 ∈ H4k−3 (End f, A (f, {h, v})) are represented by the
multilinear trace form ỹk ∈ Sec (

∧
(End f/ Sk f)∗) defined by (2.5), and χ2m ∈

H2m (End f, A (f, {h, v})) is represented by the form ỹ2m ∈ Sec(
∧2m (End f/ Sk f)∗)

ỹ2m ([A1] , ...., [A2m]) = d (z2m−1) (Ã 1, ...., Ã 2m).
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d is the differential on the algebra
∧

(End f)∗,

d (φ) (A1, ..., An) =
∑

1≤p<q≤n

(−1)p+q φ ([Ap, Aq] , A1, ...p̂...q̂..., An)

and z2m−1 ∈ Sec(
∧2m−1 (End f)∗) is described by the formula

z2m−1 (A1, ...., A2m−1)

=
∑

σ∈S2m−1

sgnσ · (e, α(Aσ(1)) ∧ α[Aσ(2), Aσ(3)] ∧ ... ∧ α[Aσ(2m−2), Aσ(2m−1)]),

e is a non-zero cross-section of
∧2m

f, α : End f →
∧2

f is given by

(α (A) , X ∧ Y ) =
1

2
((AX, Y )− (X,AY )) ,

A ∈ End f, X, Y ∈ Sec f; observe that α| Sym f = 0 and α| Sk f : Sk f
∼=→

∧2
f

((α (A) , X ∧ Y ) = (AX, Y )) is an isomorphism; see [G-H-V, Vol.III, p.257 and
Appendix A].

Theorem 2.8

∆# (ỹ2k−1) = (−1)k · (4k − 3)!

24k−3 · (2k − 1)! · (2k − 2)!
· [u4k−3 (f,∇)]

where u4k−3 (f,∇) represent the Crainic characteristic classes.

An explicit formula uses any metric h in f and the symmetric-values form
θ = ∇h − ∇ where ∇ is any flat L-connection in f and ∇h is the adjoint L-

connection induced by the metric h, u2p−1 (f,∇) = (−1)
p+1
2 csp(∇,∇h), p is odd

(let us remark that only odd p gives nontrivial classes for real f) and

csp(∇,∇h) =

∫ 1

0

chp(∇aff) = (−1)p−1 p! · (p− 1)!

(2p− 1)!
· tr(θ ∧ ... ∧ θ︸ ︷︷ ︸

2p−1

) ∈ Ω2p−1 (L)

for the affine combination ∇aff = (1− t) ·∇+ t ·∇h and chp(∇aff) = tr(R∇aff
)p. We

must add that M.Crainic [C] has lost the class χ2m for oriented vector bundles of
even rank 2m.
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PL-00950, Warsaw, Śniadeckich 8, Poland
Institute of Mathematics, Technical University of Lodz
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