On characteristic classes in the theory of Lie algebroids

Jan Kubarski

Dec. 2004

1 Primary characteristic classes

1.1 Classical theory for principal bundles

The classical theory of primary characteristic classes for principal fibre bundles is well known. Let (P, π, M, G) be a G-pfb on M with projection $\pi: P \rightarrow M$ and structural Lie group G acting on the right on $P . P / G=M$. The domain of the Chern-Weil homomorphism for P is the space

$$
I(G):=\left(\bigvee \mathfrak{g}^{*}\right)_{I}=\left(\bigvee \mathfrak{g}^{*}\right)_{I\left(A d_{G}\right)}
$$

of symmetric multilinear functions (equivalently polynomials) on $\mathfrak{g}=\mathfrak{g l}(G)$ invariant with respect to the adjoint representation $A d_{G}: G \rightarrow G L(\mathfrak{g})$ of G. The Chern-Weil homomorphism for P

$$
h_{p}:\left(\bigvee \mathfrak{g}^{*}\right)_{I} \rightarrow H_{d R}(M)
$$

can be defined by

$$
h_{P}(\Gamma)=\left[\chi_{P}(\Gamma)\right]
$$

where for invariant k-polynomial $\Gamma \in \bigvee^{k} \mathfrak{g}^{*}$ the differential form $\chi_{P}(\Gamma) \in$ $\Omega^{2 k}(M)$ is such that

$$
\pi^{*}\left(\chi_{P}(\Gamma)\right)=\frac{1}{k!} \Gamma\left(\Omega^{k}\right)
$$

$\Omega \in \Omega^{2}(P, \mathfrak{g})$ is the curvature form of any connection ω in $P, \Gamma\left(\Omega^{k}\right)=$ $\langle\Gamma, \underbrace{\Omega \vee \ldots \vee \Omega}_{k}\rangle$ the pairing is defined through the permanent. The image $\operatorname{Im}\left(h_{P}\right) \subset$ $H_{d R}(M)$ is called the Pontryagin algebra of P. Below we can see that:

If (P, π, M, G) and $\left(P^{\prime}, \pi^{\prime}, M, G^{\prime}\right)$ are connected principal fibre bundles on M such that their Lie algebroids $A(P)$ and $A\left(P^{\prime}\right)$ are isomorphic (G and G^{\prime} can be nonconnected), then $h_{P}=h_{P^{\prime}}$.

There are non-isomorphic pfb's having isomorphic Lie algebroids (for example P equal to the trivial $S O(3) \mathrm{pfb}$ on $\mathbb{R P}^{5}$ and P^{\prime} equal to the nontrivial $\operatorname{Spin}(3)$ structure on $\mathbb{R} \mathbb{P}^{5}$).

The algebra $I(G)$ is well known for standard Lie groups, for example
$I(G L(n, \mathbb{R}))$ is generated by Pontryagin polynomials p_{i} defined for matrices $A \in \mathfrak{g l}(n, \mathbb{R})$ by

$$
\operatorname{det}\left(\lambda \cdot \mathbf{1}_{n}-\frac{1}{2 \pi} A\right)=\sum_{i=0}^{n} p_{i}(A) \cdot \lambda^{n-i}
$$

$I(O(n))$ as above by $p_{2 i}$.
$I(S O(2 m-1))$ as above by $p_{2 i}$.
$I(S O(2 m))$ as above by $p_{2 i}$ and by the so-called Pfaffian $\operatorname{Pf} \in\left(\bigvee_{\mathfrak{s o}}^{2 m}(2 m)^{*}\right)_{I}$
defined for $A=\left[A_{i j}\right] \in \mathfrak{s o}(2 m)$ by

$$
P f(A)=\frac{1}{2^{2 m} \pi^{m}} \sum_{\sigma} \operatorname{sgn} \sigma \cdot A_{\sigma_{1}, \sigma_{2}} \cdot \ldots \cdot A_{\sigma_{2 m-1}, \sigma_{2 m}}
$$

For example $\operatorname{Pf}\left(\begin{array}{rr}0 & a \\ -a & 0\end{array}\right)=a$.

1.2 The Lie algebroid of a pfb (P, π, M, G).

Take the Atiyah short exact sequence (\mathfrak{g} is the right! Lie algebra of G)

$$
0 \rightarrow P \times_{G} \mathfrak{g} \rightarrow T P / G \rightarrow T M \rightarrow 0
$$

$P \times{ }_{G} \mathfrak{g}$ is a Lie Algebra Bundle, for any $z \in P_{x}$

$$
\hat{z}: \mathfrak{g} \cong\left(P \times_{G} \mathfrak{g}\right)_{x}, v \longmapsto[(z, v)]
$$

is an isomorphism of Lie algebras. Splittings of this sequence are in a 1-1 corrspondence to connections in $P . T P / G$ is a vector bundle over M such that

$$
\operatorname{Sec}(T P / G) \cong \mathfrak{X}^{r}(P),
$$

$\mathfrak{X}^{r}(P)$ is the Lie algebra of G-right invariant vector fields on P. Therefore we can introduce the structure of Lie algebra $\llbracket \cdot, \cdot \rrbracket$ in the space of global sections of the vector bundle $T P / G$. The projection (called the anchor) $\left[\pi_{*}\right]: T P / G \rightarrow$ $T M$ passing to the sections is a Lie algebra homomorphism $\left[\pi_{*}\right](\llbracket \xi, \eta \rrbracket)=$ $\llbracket\left[\pi_{*}\right] \xi,\left[\pi_{*}\right] \eta \rrbracket$. The Leibniz condition

$$
\llbracket \xi, f \cdot \eta \rrbracket=f \cdot \llbracket \xi, \eta \rrbracket+\left[\pi_{*}\right](\xi)(f) \cdot \eta
$$

holds. Therefore

$$
\left(T P / G, \llbracket \cdot, \cdot \rrbracket,\left[\pi_{*}\right]\right)
$$

is a Lie algebroid on M denoted by $A(P)$ for which the linear homomorphism $\left[\pi_{*}\right]: T P / G \rightarrow T M$ is an epimorphism.

Definition 1 By a Lie algebroid on a manifold M we mean the triple $\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)$ where A is a vector bundle on $M, \llbracket \cdot, \cdot \rrbracket$ is a real Lie algebra structure in the space of global sections $\operatorname{Sec} A$ and $\#_{A}: A \rightarrow T M$ is a linear homomorphism fulfilling the Leibniz condition

$$
\llbracket \xi, f \cdot \eta \rrbracket=f \cdot \llbracket \xi, \eta \rrbracket+\#_{A}(\xi)(f) \cdot \eta
$$

$\operatorname{Sec} \#_{A}: \operatorname{Sec} A \rightarrow \mathfrak{X}(M)$ is a homomorphism of Lie algebras. The vector field $X=\#_{A} \circ \xi$ is the anchor of the section $\xi \in \operatorname{Sec} A$. Homomorphisms of Lie algebroids preserve by definition the anchors and Lie algebra structures. In the space $\Omega(A)=\operatorname{Sec}\left(\bigwedge A^{*}\right)$ the differential d_{A} is defined by the analogous formula as for usual differential forms

$$
\begin{aligned}
\left(d_{A} \Phi\right)\left(\xi_{0}, \ldots, \xi_{p}\right) & =\sum_{i=0}^{p}(-1)^{i}\left(\#_{A} \circ \xi_{i}\right)\left(\Phi\left(\xi_{0}, \ldots \hat{\xi}_{i} \ldots, \xi_{p}\right)\right) \\
& +\sum_{i<j}(-1)^{i+j} \Phi\left(\llbracket \xi_{i}, \xi_{j} \rrbracket, \xi_{0}, \ldots \hat{\xi}_{i} \ldots \hat{\xi}_{j} \ldots, \xi_{p}\right)
\end{aligned}
$$

and defines the algebra of cohomology $H(A)$.
A is called transitive if $\#_{A}$ is an epimorphism. A is called regular if the anchor is of constant rank. The image $\operatorname{Im} \#_{A}$ is then a regular foliation. (In arbitrary case, the image $\operatorname{Im} \#_{A}$ of the anchor is a Stefan foliation).

Denote for shortness

$$
A(P):=T P / G
$$

We notice that having only the Lie algebroid $A(P)$ we can not reconstruct the structural Lie group, but only its Lie algebra!

The Lie algebroid $A(P)$ acts on the Lie algebra bundle $P \times_{G} \mathfrak{g}$ by

$$
a d_{A(P)}(\xi)(\nu)=\llbracket \xi, \nu \rrbracket .
$$

This actions can be extended to the actions $a d_{A(P)}^{\vee}$ of $A(P)$ on the symmetric power of the dual of $P \times_{G} \mathfrak{g}, \bigvee^{k}\left(P \times_{G} \mathfrak{g}\right)^{*}$ - i.e. on the vector bundle of polynomials. We take the space [algebra] of invariant sections

$$
I(A(P)):=\bigoplus^{k} \operatorname{Sec}\left(\bigvee^{k}\left(P \times_{G} \mathfrak{g}\right)^{*}\right)_{I}
$$

of vector bundles $\bigvee^{k}\left(P \times_{G} \mathfrak{g}\right)^{*}$. We have $\Gamma \in \operatorname{Sec}\left(\bigvee^{k}\left(P \times_{G} \mathfrak{g}\right)^{*}\right)_{I}$ if and only if for every $\xi \in \operatorname{Sec}(A(P))$ and $\nu_{1}, \ldots, \nu_{k} \in \operatorname{Sec}\left(P \times_{G} \mathfrak{g}\right)$

$$
\left[\pi_{*}\right](\xi)\left\langle\Gamma, \nu_{1} \vee \ldots \vee \nu_{k}\right\rangle=\sum_{i=1}^{k}\left\langle\Gamma, \nu_{1} \vee \ldots \vee \llbracket \xi, \nu_{i} \rrbracket \vee \ldots \vee \nu_{k}\right\rangle
$$

Theorem 2 If P is a connected pfb (G can be non-connected) then there exists an isomorphism of algebras

$$
\rho: I(G) \rightarrow I(A(P)) .
$$

(In general, we have always a monomorphism).
To understand this fact we need to explain the definition of the Lie algebroid of a vector bundle.

By a Lie algebroid of a vector bundle \mathfrak{f} we mean the Lie algebroid $A(\mathfrak{f}):=$ $A(L \mathfrak{f})$ of the $G L(n, \mathbb{R})$-pfb $L \mathfrak{f}$ of all frames of $\mathfrak{f}\left(n=\operatorname{rank} \mathfrak{f}=\operatorname{dim} \mathfrak{f}_{x}\right)$. The fibre $A(L \mathfrak{f})_{x}$ over x is canonically isomorphic to the space of \mathbb{R}-linear homomorphisms

$$
\left\{l: \operatorname{Sec} \mathfrak{f} \rightarrow \mathfrak{f}_{x} ; \exists_{v \in T_{x} M} \forall_{\xi \in \operatorname{Sec} \mathfrak{f}} \forall_{f \in C^{\infty}(M)}(l(f \cdot \xi)=f \cdot l(\xi)+v(f) \cdot \xi)\right\} .
$$

In other words, a global section $\mathfrak{L} \in A(\mathfrak{f})$ determines a covariant derivative operator

$$
\begin{gathered}
\mathfrak{L}: \operatorname{Sec} \mathfrak{f} \rightarrow \operatorname{Sec} \mathfrak{f} \\
\mathfrak{L}(f \cdot \xi)=f \cdot \mathfrak{L}(\xi)+X(f) \cdot \xi
\end{gathered}
$$

The vector field X is here the anchor of $\mathfrak{L}, X=\#_{A(f)}(\mathfrak{L})$. We see that the space of global sections of $A(\mathfrak{f})$ is canonically isomorphic to the space of covariant derivative operators. This isomorphism is an isomorphism of Lie algebras. There are many other geometric categories from which we can define a Lie Functor to the category of Lie algebroids: principal fibre bundles, vector bundles, Lie or differential groupoids, transversely complete foliations, nonclosed Lie subgroups, Poisson manifolds etc.

Proof of the Theorem.
Take the Lie algebroid $A(\mathbf{g})$ of the Lie Algebra Bundle $\mathbf{g}:=P \times_{G} \mathfrak{g}$ and the adjoint representation $A d_{G}: G \rightarrow G L(\mathfrak{g}), A d_{G}(g)=\left(\tau_{g}\right)_{* e}$, where $\tau_{g}: G \rightarrow G$, $h \longmapsto g h g^{-1}$. Consider the $A d_{G}$-homomorphism

$$
\begin{gathered}
A d_{P}: P \rightarrow L \mathbf{g} \\
A d_{P}(z)=[(z, \cdot)]
\end{gathered}
$$

$\left([(z, \cdot)]: \mathfrak{g} \stackrel{\cong}{\rightrightarrows} \mathbf{g}_{x}\right.$ is a frame of \mathbf{g} at $\left.x\right)$ of the principal fibre bundles which is called the adjoint representation of a principal fibre bundle and consider its differential

$$
a d_{A(P)}=\left(A d_{P}\right)^{\prime}: A(P) \rightarrow A(\mathbf{g})
$$

which is equal to the adjoint representation of the Lie algebroid $A(P), a d_{A(P)}(\xi)(\nu)=$ $\llbracket \xi, \nu \rrbracket$. The representation $A d_{P}$ can be lifted standardly to the homomorphism $A d_{P}^{\vee}: P \rightarrow L\left(\bigvee^{k} \mathbf{g}^{*}\right)$ of pfb 's with respect to the induced homomorphism $A d_{G}^{\vee}: G \rightarrow G L\left(\bigvee^{k} \mathfrak{g}^{*}\right)$, as well as $a d_{A(P)}$ can be lifted to the homomorphism
of Lie algebroids $a d_{A(P)}^{\vee}: A(P) \rightarrow A\left(\bigvee^{k} \mathbf{g}^{*}\right)$. The analogous property

$$
\left(A d_{P}^{\vee}\right)^{\prime}=a d_{A(P)}^{\vee}
$$

holds. To prove our theorem we need the following definitions and Lemmas:
Definition 3 Let $\mu: G \rightarrow G L(V)$ be a representation of a Lie group G in a finite dimensional vector space V and \mathfrak{f} a vector bundle with the typical fibre V. Let $F: P \rightarrow L \mathfrak{f}$ be a μ-homomorphism of principal fibre bundles. A section $\xi \in \operatorname{Sec} \mathfrak{f}$ is called F-invariant if there exists a vector $v \in V$ such that

$$
F(z)(v)=\xi_{\pi z} \quad \text { for all } z \in P
$$

Denote by $(\operatorname{Sec} \mathfrak{f})_{I(F)}$ the space of all F-invariant sections of \mathfrak{f}.
Lemma 4 Denote by $V_{I(\mu)}$ the subspace of V of μ-invariant vectors. Then, for $v \in V_{I(\mu)}$, the function

$$
\xi_{v}: M \rightarrow \mathfrak{f}, \quad x \longmapsto F(z)(v)
$$

where $z \in P_{x}$, is a correctly defined smooth section of \mathfrak{f} and

$$
V_{I(\mu)} \stackrel{\cong}{\rightrightarrows}(\operatorname{Sec} f)_{I(F)}, \quad v \longmapsto \xi_{v}
$$

is an isomorphism.
Therefore applying Lemma 4 to the representation $A d_{P}^{\vee}: P \rightarrow L\left(\bigvee^{k} \mathbf{g}^{*}\right)$ we have

$$
I^{k}(G)=\left(\bigvee^{k} \mathfrak{g}^{*}\right)_{I\left(A d_{G}\right)} \cong\left(\operatorname{Sec} \bigvee^{k} \mathbf{g}^{*}\right)_{I\left(A d_{P}^{\vee}\right)}
$$

Definition 5 Let $T: A \rightarrow A(\mathfrak{f})$ be a homomorphism of Lie algebroids (T is called a representation of A in a vector bundle \mathfrak{f}). A section $\xi \in \operatorname{Sec} \mathfrak{f}$ is called T-invariant (or T-parallel) if $T(v)(\xi)=0$ for all $v \in A$. Denote by $(\operatorname{Sec} \mathfrak{f})_{I^{\circ}(T)}$ the space of all T-invariant sections of \mathfrak{f}.

Lemma 6 Let $F: P \rightarrow L \mathfrak{f}$ be a μ-homomorphism of principal fibre bundles and $F^{\prime}: A(P) \rightarrow A(\mathfrak{f})$ its differential. The spaces of invariant sections $(\operatorname{Sec} \mathfrak{f})_{I(F)}$ and $(\operatorname{Sec} \mathfrak{f})_{I^{\circ}\left(F^{\prime}\right)}$ under F and its differential F^{\prime} are related by
(a) $(\operatorname{Sec} \mathfrak{f})_{I(F)} \subset(\operatorname{Sec} \mathfrak{f})_{I^{o}\left(F^{\prime}\right)}$,
(b) if P is connected (nothing is assumed about the connectedness of G), then

$$
(\operatorname{Sec} \mathfrak{f})_{I(F)}=(\operatorname{Sec} \mathfrak{f})_{I^{o}\left(F^{\prime}\right)}
$$

In consequence, applying to the representation $a d_{A(P)}^{\vee}: A(P) \rightarrow A\left(\bigvee^{k} \mathbf{g}^{*}\right)$ we have

$$
I^{k}(G) \cong\left(\operatorname{Sec} \bigvee^{k} \mathbf{g}^{*}\right)_{I\left(A d_{P}^{\vee}\right)} \subset\left(\operatorname{Sec} \bigvee^{k} \mathbf{g}^{*}\right)_{I^{o}\left(a d_{A(P)}^{\vee}\right)}=I^{k}(A(P))
$$

If P is connected we have $I^{k}(G) \cong\left(I^{o}\right)^{k}(A(P))$.

1.3 Chern-Weil homomorphism for Lie algebroids.

Now we pass to the construction of the Chern-Weil homomorphism for Lie algebroids.

First, take a single transitive Lie algebroid A with the Atiyah sequence $0 \rightarrow \mathbf{g} \rightarrow A \xrightarrow{\#_{A}} T M \rightarrow 0$. The Lie algebroid A acts on the Lie Algebra Bundle \mathbf{g} by $a d_{A}: A \rightarrow A(\mathbf{g}), a d_{A}(\xi)(\nu)=\llbracket \xi, \nu \rrbracket, \xi \in \operatorname{Sec} A, \nu \in \operatorname{Sec} \mathbf{g}$. This action can be extended on the bundle $\bigvee^{k} \mathbf{g}^{*}$ to the action $a d_{A}: A \rightarrow$ $A\left(\bigvee^{k} \mathbf{g}^{*}\right)$. Let $\left(I^{o}\right)^{k}(A)$ denotes the space of invariant sections of $\bigvee^{k} \mathbf{g}^{*}$. $I^{o}(A):=\bigoplus\left(I^{o}\right)^{k}(A)$ is an algebra. The value $\Gamma_{x} \in \bigvee^{k} \mathbf{g}_{x}^{*}$ at x of any invariant section is a vector invariant with respect to the adjoint representation $a d_{\mathbf{g}_{x}}$ of the isotropy Lie algebra \mathbf{g}_{x}, Each invariant vector $v \in \bigvee^{k} \mathbf{g}_{x}^{*}$ can be extended uniquely to some invariant section of the bundle $\bigvee^{k} \mathbf{g}^{*}$ over some open subset containing x (for example if this neighbourhood is contractible). Sometimes v can be extended on the whole M. Namely, to see this consider an arbitrary general representation $T: A \rightarrow A(\mathfrak{f})$ of A on a vector bundle \mathfrak{f}.

$T_{x}^{+}: \mathbf{g}_{x} \rightarrow \operatorname{End}\left(\mathfrak{f}_{x}\right)$ is a representation of the Lie algebra \mathbf{g}_{x} on the vector bundle \mathfrak{f}_{x}. Denote by $\left(\mathfrak{f}_{x}\right)_{I^{o}}$ the subspace of T_{x}^{+}-invariant vector and take the subbundle $\mathfrak{f}_{I}:=\bigcup_{x \in M}\left(\mathfrak{f}_{x}\right)_{I^{o}} \subset \mathfrak{f}$. The representation T gives a usual flat covariant derivative ∇ in $\mathfrak{f}_{I^{o}}$ and section ξ of this bundle is parallel under ∇ iff ξ is T-invariant. ∇ is defined by: for $v \in T_{x} M$ and arbitrary lifted vector $\tilde{v} \in A_{x}$, $\#_{A}(\tilde{v})=v$ we put $\nabla_{v} \xi=T(\tilde{v})(\xi)$. Taking the holonomy homomorphism
$\pi_{1}(M) \rightarrow\left(\mathfrak{f}_{x}\right)_{I^{o}}$ for ∇ we see that ξ is T-invariant iff $\xi_{x} \in\left(\mathfrak{f}_{x}\right)_{I^{o}}$ for any point $x \in M$ and at any arbitrary fixed point x_{o} the vector $\xi_{x_{o}}$ is invariant under the holonomy homomorphism, $\xi_{x_{o}} \in\left(\mathfrak{f}_{x_{o}}\right)_{I^{o}}^{\pi_{1}(M)}$.

Take a connection $\omega: T M \rightarrow A$ (i.e. $\#_{A} \circ \omega=\mathrm{id}_{T M}$) and its curvature form $\Omega \in \Omega^{2}(M ; \mathbf{g})$

$$
\Omega(X, Y)=\llbracket \omega(X), \omega(Y) \rrbracket-\omega([X, Y]) .
$$

The Chern-Weil homomorphism of A is defined by

$$
\begin{gather*}
h_{A}: I^{o}(A) \rightarrow H(M) \tag{1}\\
\left(I^{o}\right)^{k}(A) \ni \Gamma \longmapsto \frac{1}{k!}[\langle\Gamma, \Omega \vee \ldots \vee \Omega\rangle] .
\end{gather*}
$$

If there exists a flat connection then $h_{A}^{+}=0$. The analogous construction can be made analogously for regular Lie algebroid over a foliated manifold (M, F), we must use the algebra of tangential differential forms $\Omega(F)$ and its cohomology $H(F)$ instead of $\Omega(M)$ and $H(M)$.

Theorem 7 If $A(P)$ is a Lie algebroid of a principal fibre bundle (P, π, M, G), then the diagram commutes

If P is connected, then under the identification $I(G)=I^{\circ}(A(P))$ we have $h_{P}=h_{A(P)}$.

1.4 The Chern-Weil homomorphism for pairs of Lie algebroids

Take a pair of Lie algebroids (A, L) on a manifold M and assume that A is transitive (we may assume only that A is regular). let $0 \rightarrow \mathbf{g} \rightarrow A \xrightarrow{\# A_{A}} T M \rightarrow 0$ be the Atiyah sequence of $A, \mathbf{g}=\operatorname{ker} \#_{A}$.

Definition 8 By a L-connection in A we mean a linear homomorphism

$$
\nabla: L \rightarrow A
$$

compatible with the anchors $\#_{A} \circ \nabla=\#_{L}$. By a curvature form of ∇ we shall mean the 2 -form $\Omega_{\nabla} \in \Omega^{2}(L ; \mathbf{g})$ defined by

$$
\Omega_{\nabla}(\xi, \eta)=\llbracket \nabla \circ \xi, \nabla \circ \eta \rrbracket .
$$

If $L=T M$ then ∇ is a splitting of the Atiyah sequence $0 \rightarrow \mathbf{g} \rightarrow A \rightarrow$ $T M \rightarrow 0$, i.e. a usual connection in A. If $L=T^{*} M$ is the Lie algebroid of a Poisson manifold $(M,\{\cdot, \cdot\})$ and $A=A(P)$ we have the so-called contravariant connection in a principal fibre bundle P, if $A=A(\mathfrak{f})$ we have the so-called contravariant connection in a vector bundle \mathfrak{f} (see Fernandes). If $0 \rightarrow L^{\prime} \rightarrow L \rightarrow$ $L^{\prime \prime} \rightarrow 0$ is a extension of Lie algebroids, then any splitting $\nabla: L^{\prime \prime} \rightarrow L$ is a $L^{\prime \prime}-$ connection in L (Huebschmann). We add that a flat L-connection in $A(\mathfrak{f})$ is the same as L-covariant derivative $\nabla_{\xi} \nu$ in a vector bundle $\mathfrak{f}, \xi \in \operatorname{Sec} L, \nu \in \operatorname{Sec} \mathfrak{f}$, i.e. an operator $\nabla_{\xi} \nu$ fulfilling the usual Koszul axioms with the following difference:

$$
\nabla_{\xi}(f \nu)=f \nabla_{\xi} \nu+\#_{L}(\xi)(f) \nu
$$

The following superposition

$$
L \xrightarrow{\#_{L}} T M \xrightarrow{\omega} A
$$

(where $\omega: T M \rightarrow A$ is a connection in A) is an example of a L-connection in A.

By the Chern-Weil homomorphism of the pair (A, L) we mean

$$
h_{L, A}: I^{o}(A) \rightarrow H(L)
$$

defined by the formula identical to (1). The image of $h_{L, A}$ is the Pontryagin algebra of the pair (L, A),

$$
\operatorname{Pont}(L, A):=\operatorname{Im} h_{L, A}
$$

Theorem 9

$$
\begin{array}{rlr}
I^{o}(A) \xrightarrow{h_{A}} & H(M) \\
& h_{L, A} \searrow & \downarrow(\#)_{L}^{*} \\
& H(L)
\end{array}
$$

In particular $\left(\#_{L}\right)^{*}[$ Pont $A]=\operatorname{Pont}(L, A)$.
Consider $L=A, \nabla=\operatorname{id}_{A}: A \rightarrow A$ is a flat A-connection in A, so $h_{A, A}^{+}=0$. Therefore

$$
\begin{array}{lll}
I(A) & \xrightarrow{h_{A}} & H(M) \\
h_{A, A}^{+}=0 \searrow & \downarrow\left(\#_{L}\right)^{*} \\
& H(A)
\end{array}
$$

Pont* $A \subset \operatorname{ker}\left(\#_{L}\right)^{*}$. In this way we have simply proof of the well known fact concerning principal fibre bundle $\pi: P \rightarrow M$, Pont $(P) \subset \operatorname{ker} \pi^{*}$.

1.5 Problem

Let $\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)$ and \mathfrak{f} be a transitive Lie algebroid and a vector bundle on a manifold M, respectively. Assume that $F \subset T M$ is a C^{∞} constant dimensional involutive distribution and \mathcal{F} - the foliation determined by F. We recall that
A and F give rise to the regular Lie algebroid over (M, F) where we put $A^{F}:=$ $\left(\#_{A}\right)^{-1}[F] \subset A$; see. Its Atiyah sequence is

$$
0 \longrightarrow \boldsymbol{g} \hookrightarrow A^{F} \xrightarrow{\#_{A}^{F}} F \longrightarrow 0
$$

where \boldsymbol{g} is the Lie algebra bundle adjoint of A, and $\#_{A}^{F}:=\#_{A} \mid A^{F}$. Any representation $T: A \rightarrow A(\mathfrak{f})$ of A on \mathfrak{f} restricts to the representation

$$
T^{F}=T \mid A^{F}: A^{F} \longrightarrow A(\mathfrak{f})
$$

of A^{F} on \mathfrak{f}.
Lemma 10 For \mathcal{F}-basic functions $f^{i} \in \Omega_{b}^{\circ}(M, \mathcal{F})$ and T-invariant cross-sections $\nu_{i} \in \operatorname{Sec} \mathfrak{f}, \sum_{i} f^{i} \cdot \nu_{i}$ is a T^{F}-invariant cross-section, in other words,

$$
\Omega_{b}^{\circ}(M, \mathcal{F}) \cdot(\operatorname{Sec} \mathfrak{f})_{I^{\circ}(T)} \subset(\operatorname{Sec} \mathfrak{f})_{I^{\circ}\left(T^{F}\right)}
$$

In general, the above inclusion can not be replaced by the equality, which means that not every T^{F}-invariant cross-section is of the form $\sum_{i} f^{i} \cdot \nu_{i}$ for \mathcal{F}-basic functions f^{i} and T-invariant cross-sections ν_{i}. As an example we can consider the Möbius band with the foliation F by meridians. Equip M with a flat Riemannian structure for which the fields $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$ are orthonormal base. Let P be $O(2, \mathbb{R})$-principal bundle of orthonormal frames of $T M$ and $A(P)$ let be the Lie algebroid of P with the Atiyah sequence $0 \rightarrow S k(T M, T M) \rightarrow$ $A(P) \rightarrow T M \rightarrow 0$.

The Pfaffian $\operatorname{Pf} \in S k(2, \mathbb{R})$ is not $O(2, \mathbb{R})$ invariant but there exists an invariant section of $S k(T M, T M)^{*}$ of the form $P f \cdot g$ where g is some basic function equaling zero at one leaf of F.

Definition 11 Each T^{F}-invariant cross-section $\nu \in(\operatorname{Sec} \mathfrak{f})_{I^{\circ}\left(T^{F}\right)}$ not belonging to $\Omega_{b}^{\circ}(M, \mathcal{F}) \cdot(\operatorname{Sec} \mathfrak{f})_{I^{\circ}(T)}$ will be called singular. The characteristic class corresponding to any singular cross-section will be also called singular.

Problem 12 Find an example of nontrivial singular characteristic class.
Let P be a G-principal bundle on M, whereas $F \subset T M$ and \mathcal{F} are as above.
Definition 13 By the tangential Chern-Weil homomorphism of P over (M, F) we mean the Chern-Weil homomorphism $h_{A(P)^{F}}$ of the regular Lie algebroid $A(P)^{F}$.

Let \mathfrak{g} be the right Lie algebra of G and $\left(\bigvee \mathfrak{g}^{\star}\right)_{I(G)}$ - the algebra of G invariant elements.

Theorem 14 Let G_{\circ} be the connected component containing the unit of G. If each G_{\circ}-invariant element of $\bigvee \mathfrak{g}^{\star}$ is G-invariant, then the domain of the homomorphism $h_{A(P)^{F}}$ is equal to $\Omega_{b}^{\circ}(M, \mathcal{F}) \cdot I^{\circ}(A(P))\left(\cong \Omega_{b}^{\circ}(M, \mathcal{F}) \cdot\left(\bigvee \mathfrak{g}^{\star}\right)_{I(G)}\right.$ when P is connected).

Consider a nonorientable Riemannian vector bundle \mathfrak{f} of rank $2 m$ and a connected $O(2 m ; \mathbb{R})$-principal bundle P of orthonormal frames of \mathfrak{f}, and the transitive Lie algebroid $A=A(P)$. We have $\operatorname{Pont}^{2 m}(P)=\operatorname{Pont}^{2 m}(A)=0$ (and, of course, Pont $^{k}(P)=0$ for $k>2 m$).

Problem 15 Using singular characteristic classes find an example of a nonorientable Riemannian vector bundle f and an involutive distribution F with orientable leaves for which

$$
\operatorname{Pont}^{2 m}\left(A^{F}\right) \neq 0
$$

2 Secondary flat characteristic classes for Lie algebroids

2.1 Classical theory for principal bundles

Consider the triple $\left(P, P^{\prime}, \omega\right)$ where $P=(P, \pi, M, G)$ is a G-principal fibre bundle, P^{\prime} is his H-reduction ($H \subset G$ is a closed Lie subgroup of G), and ω is a flat connection in P. Equivalently (according to Lehmann approach) we can consider two ideals J_{1} and J_{2} in the algebra of invariant polynomials $I(G)$

$$
\begin{aligned}
& J_{1}=I^{+}(G) \\
& J_{2}=\operatorname{ker}(I(G) \rightarrow I(H))
\end{aligned}
$$

The characteristic homomorphism

$$
\Delta_{\# P, P^{\prime}, \omega}=\Delta_{\#}: H^{*}(\mathfrak{g}, H) \longrightarrow H_{d R}(M)
$$

is one of the most important notion in differential geometry of principal bundles. The cohomology classes from the image of the homomorphism $\Delta_{\# P, P^{\prime}, \omega}$ are called the secondary flat characteristic classes of $\left(P, P^{\prime}, \omega\right)$.

Since this homomorphism is an invariant of the class of homotopic H reductions and measures the incompatibility of the flat structure ω with a given H-reduction, the nontriviality of $\Delta_{\# P, P^{\prime}, \omega}$ implies that there is no homotopic changing of P^{\prime} containing the connection ω.

We recall that $H^{*}(\mathfrak{g}, H)$, called the relative Lie algebra cohomology, is the cohomology space of the complex

$$
\left(\left(\bigwedge(\mathfrak{g} / \mathfrak{h})^{*}\right)_{I}, d^{H}\right)
$$

where $\left(\bigwedge(\mathfrak{g} / \mathfrak{h})^{*}\right)_{I}$ is the space of invariant elements with respect to the adjoint representation of the Lie group H and the differential d^{H} is defined via the formula

$$
\left\langle d^{H}(\psi),\left[w_{1}\right] \wedge \ldots \wedge\left[w_{k}\right]\right\rangle=\sum_{i<j}(-1)^{i+j}\left\langle\psi,\left[\left[w_{i}, w_{j}\right]\right] \wedge\left[w_{1}\right] \wedge \ldots \hat{\imath} \ldots \hat{\jmath} \ldots \wedge\left[w_{k}\right]\right\rangle
$$

for $\psi \in \bigwedge^{k}(\mathfrak{g} / \mathfrak{h})_{I}^{*}$ and $w_{i} \in \mathfrak{g}$. The homomorphism $\Delta_{\# P, P^{\prime}, \omega}$ on the level of forms is given by the following direct formula

$$
(\Delta \psi)\left(x ; w_{1} \wedge \ldots \wedge w_{k}\right)=\left\langle\psi,\left[\omega\left(z ; \tilde{w}_{1}\right)\right] \wedge \ldots \wedge\left[\omega\left(z ; \tilde{w}_{k}\right)\right]\right\rangle
$$

where $x \in M, z \in P^{\prime}, \pi z=x, w_{i} \in T_{x} M, \tilde{w}_{i} \in T_{z} P^{\prime}, \pi_{*}^{\prime} \tilde{w}_{i}=w_{i}(\omega: P \rightarrow \mathfrak{g}$ is the connection form of a given flat connection).

The relative Lie algebra cohomology $H(\mathfrak{g}, H)$ is well known (Kamber-Tondeur, Godbillon). For example

$$
H(g l(n, \mathbb{R}), O(n)) \cong \bigwedge\left(y_{1}, y_{3}, \ldots, y_{2 n^{\prime}-1}\right)
$$

where n^{\prime} is the largest odd integer $\leq n$, and we have by definition $y_{2 k-1} \in$ $H^{4 k-3}(g l(n, \mathbb{R}), O(n))$ are represented by the multilinear trace form $\tilde{y}_{k} \in$ $\bigwedge(g l(n, \mathbb{R}) / S k(n, \mathbb{R}))^{*}$

$$
\begin{equation*}
\tilde{y}_{2 k-1}\left(\left[A_{1}\right], \ldots,\left[A_{4 k-3}\right]\right)=\sum_{\sigma \in S_{4 k-3}} \operatorname{sgn} \sigma \operatorname{tr}\left(\tilde{A}_{\sigma(1)} \circ \ldots \circ \tilde{A}_{\sigma(4 k-3)}\right) \tag{2}
\end{equation*}
$$

where $\tilde{A}_{i}=\frac{1}{2}\left(A_{i}+A_{i}^{T}\right)$ - the symmetrization of A_{i}.

$$
\begin{aligned}
H(g l(2 m-1, \mathbb{R}), S O(2 m-1)) & =H(g l(2 m-1, \mathbb{R}), O(2 m-1)) \\
& =\bigwedge\left(y_{1}, y_{3}, \ldots, y_{2 n^{\prime}-1}\right) \\
H(g l(2 m, \mathbb{R}), S O(2 m))= & \bigwedge\left(y_{1}, y_{3}, \ldots, y_{2 n^{\prime}-1},(S f)_{2 m}\right)
\end{aligned}
$$

where $(S f)_{2 m}$ is the called skew symmetric Pfaffian.

2.2 Algebroid's generalization

Consider a triple

$$
(A, B, \nabla)
$$

consisting of transitive Lie algebroid A and its transitive Lie subalgebroid B and (nonregular, in general) Lie algebroid L on M and a flat L-connection $\nabla: L \rightarrow A$. In the diagram below $\lambda_{B}: T M \rightarrow B$ means an arbitrary auxiliary connection in B. Then $j \circ \lambda_{B}: T M \rightarrow A$ is a connection in A. Let $\omega^{j \circ \lambda_{B}}: A \rightarrow \boldsymbol{g}$ be its connection form.

Clearly, A and B can be regular Lie algebroids over the same foliated manifold (M, F). The constructed characteristic homomorphism for the triple (A, B, ∇) is measuring the incompatibility of the flat structure with a given subalgebroid and has homotopic properties in analogy to to the classical case of principal bundles.

Example 16 1. For $L=T M$ we obtain the case in which the connection ∇ is a connection in A,
2. For $L=T M$ and $A=T P / G$ and $B=T P^{\prime} / H$ (P^{\prime} is an H-reduction of P) we obtain the classical case equivalent to the standard case of principal bundles.
3. For $L=A$ and $\nabla=\operatorname{id}_{A}$ we consider only the Lie algebroid A and its Lie subalgebroid B. This case produces a characteristic homomorfism for the inclusion $B \subset A$, in particular for the inclusion of Lie algebras $\mathfrak{h} \subset \mathfrak{g}$, and in particular for inclusion of principal bundles $P^{\prime} \subset P$ which finally produces a new theorem for principal bundles.
It is the main goal of my talk.
4. Let \mathfrak{f} be a vector bundle equipped with a Riemannian metric g. If $A=A(\mathfrak{f})$ (i.e. A is the Lie algebroid of the principal bundle of frames $L \mathfrak{f}$) and $B \subset A$ is a Riemannian reduction $B=A(\mathfrak{f},\{g\})$ (more precisely B is the Lie algebroid of the principal bundle of orthogonal frames). We obtain the case equivalent to the one considered by M. Crainic of the characteristic exotic characteristic classes for a representation of any Lie algebroid L in a vector bundle.

To construct the characteristic homomorphism for (A, B, ∇) we notice that for a general connection $\nabla: L \rightarrow A$ does not exist a suitable notion of a connection form. The connection form was used in the direct formula for the classical case. We must do a characteristic homomorphism without any "connection form". In the classical case $\left(P, P^{\prime}, \omega\right)$ take auxiliarily a connection λ in P^{\prime} and extend it to a connection in P. Let $\omega^{\lambda}: P \rightarrow \mathfrak{g}$ be the connection form. Then it appears that the characteristic homomorphism for $\left(P, P^{\prime}, \omega\right)$ can be defined on the lewel of differential forms via

$$
\left(\Delta_{*} \Psi\right)_{x}\left(w_{1} \wedge \ldots \wedge w_{k}\right)=\left\langle\Psi_{x},\left[-\omega^{\lambda} \circ \hat{w}_{1}\right] \wedge \ldots \wedge\left[-\omega^{\lambda} \circ \hat{w}_{k}\right]\right\rangle
$$

for $\Psi \in \operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})^{*}, x \in M, w_{i} \in T_{x} M$ and \hat{w}_{i} being the horizontal lifting of w_{i} with respect to the flat connection ω taken at the beginning.

In the general case (A, B, ∇) we define the homomorphism

$$
\omega_{B, \nabla}: L \longrightarrow \boldsymbol{g} / \boldsymbol{h}
$$

given by

$$
\omega_{B, \nabla}(w)=\left[-\left(\omega^{j \circ \lambda_{B}} \circ \nabla\right)(w)\right]
$$

Remark 17 (1) It is important observation that $\omega_{B, \nabla}$ does not depend on the choice of an auxiliary connection $\lambda_{B}\left(\lambda_{B}-\lambda_{B}^{\prime}\right.$ takes values in $\left.\boldsymbol{h}\right)$
(2) $\omega_{B, \nabla}=0$ if ∇ takes values in B.

Definition 18 Define the homomorphism of algebras

$$
\begin{equation*}
\Delta: \operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*} \longrightarrow \Omega(L) \tag{3}
\end{equation*}
$$

by

$$
(\Delta \Psi)\left(x ; w_{1} \wedge \ldots \wedge w_{k}\right)=\left\langle\Psi_{x}, \omega_{B, \nabla}\left(w_{1}\right) \wedge \ldots \wedge \omega_{B, \nabla}\left(w_{k}\right)\right\rangle
$$

$\Psi \in \operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})^{*}, x \in M, w_{i} \in L_{\mid x}$.
Observe that Δ can be written as superposition $\Delta=\nabla^{*} \circ \Delta_{o}$,

$$
\Delta: \operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*} \xrightarrow{\Delta_{o}} \Omega(A) \xrightarrow{\nabla^{*}} \Omega(L)
$$

where ∇^{*} is the pullback of forms and Δ_{o} is the homomorphism given for particular case of flat connection $\nabla=\mathrm{id}_{A}$, so that

$$
\begin{aligned}
\left(\Delta_{o} \Psi\right)\left(x ; v_{1} \wedge \ldots \wedge v_{k}\right) & =\left\langle\Psi_{x}, \omega_{B, i d_{A}}\left(v_{1}\right) \wedge \ldots \wedge \omega_{B, i d_{A}}\left(v_{k}\right)\right\rangle \\
& =\left\langle\Psi_{x},\left[-\omega^{j \circ \lambda_{B}}\left(v_{1}\right)\right] \wedge \ldots \wedge\left[-\omega^{j \circ \lambda_{B}}\left(v_{1}\right)\right]\right\rangle
\end{aligned}
$$

for $\Psi \in \operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})^{*}, x \in M, v_{i} \in A_{\mid x}$.
In the algebra $\operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*}$ we distinguish the subalgebra $\left(\operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*}\right)_{I^{o}(B)}$ of invariant sections with respect to an adjoint representation of B in $\Lambda(\boldsymbol{g} / \boldsymbol{h})^{*}$. $\Psi \in\left(\operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})^{*}\right)_{I^{\circ}(B)}$ if and only if

$$
\left(\gamma_{B} \circ \xi\right)\left\langle\Psi,\left[\nu_{1}\right] \wedge \ldots \wedge\left[\nu_{k}\right]\right\rangle=\sum_{j=1}^{k}(-1)^{j-1}\left\langle\Psi,\left[\left[j \circ \xi, \nu_{j}\right]\right] \wedge\left[\nu_{1}\right] \wedge \ldots \hat{\jmath} \ldots \wedge\left[\nu_{k}\right]\right\rangle
$$

for all $\xi \in \operatorname{Sec} B$ and $\nu_{j} \in \operatorname{Sec} \boldsymbol{g}$. In particular, if $\Psi \in\left(\operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})^{*}\right)_{I^{o}(B)}$ then for $X \in \mathfrak{X}(F)$ and $\xi=\lambda_{B} \circ X$ we have

$$
\begin{equation*}
X\left\langle\Psi,\left[\nu_{1}\right] \wedge \ldots \wedge\left[\nu_{k}\right]\right\rangle=\sum_{j=1}^{k}(-1)^{j-1}\left\langle\Psi,\left[\left[j \circ \lambda_{B} \circ X, \nu_{j}\right]\right] \wedge\left[\nu_{1}\right] \wedge \ldots \hat{\jmath} \ldots \wedge\left[\nu_{k}\right]\right\rangle \tag{4}
\end{equation*}
$$

In the space $\left(\operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*}\right)_{I^{o}(B)}$ of invariant cross-sections we have a differential $\bar{\delta}$ defined by

$$
\left\langle\bar{\delta} \Psi,\left[\nu_{1}\right] \wedge \ldots \wedge\left[\nu_{k}\right]\right\rangle=-\sum_{i<j}(-1)^{i+j}\left\langle\Psi,\left[\left[\nu_{i}, \nu_{j}\right]\right] \wedge\left[\nu_{1}\right] \wedge \ldots \hat{\imath} \ldots \hat{\jmath} \ldots \wedge\left[\nu_{k}\right]\right\rangle,
$$

$\Psi \in \operatorname{Sec} \bigwedge^{k}(\boldsymbol{g} / \boldsymbol{h})_{I^{o}(B)}^{*}, \nu_{i} \in \operatorname{Sec} \boldsymbol{g}$.
$H(\boldsymbol{g}, B)$ is the cohomology algebra of $\left(\left(\operatorname{Sec} \bigwedge(\boldsymbol{g} / \boldsymbol{h})^{*}\right)_{I^{o}(B)}, \bar{\delta}\right)$.

Theorem 19 The homomorphism Δ commutes with the differentials $\bar{\delta}$ and d_{L}.
Corollary 20Δ and Δ_{o} induce the homomorphisms in cohomology

$$
\begin{equation*}
\Delta_{\#(A, B, \nabla)}: H(\boldsymbol{g}, B) \xrightarrow{\Delta_{o \#}} H(A) \xrightarrow{\nabla^{\#}} H(L) . \tag{5}
\end{equation*}
$$

The map $\Delta_{\#}$ is called the characteristic homomorphism of the triple (A, B, ∇). Of course, Δ_{o} is the characteristic homomorphism of the pair $(A, B), B \subset A$.

Remark 21 We see that for a pair of transitive Lie algebroids $(A, B), B \subset A$, [they can be both regular over the same foliation] and for an arbitrary element $\kappa \in H(\boldsymbol{g}, B)$ there exists a "universal" cohomology class $\Delta_{o \#}(\kappa) \in H(A)$ such that for any (nonregular in general) Lie algebroid L on M and a flat L-connection $\nabla: L \rightarrow A$ the equality holds

$$
\Delta_{\#}(\kappa)=\nabla^{\#}\left(\Delta_{o \#}(\kappa)\right) .
$$

Problem 22 Is the characteristic homomorphism $\Delta_{o \#}: H(\boldsymbol{g}, B) \longrightarrow H(A) a$ monomorphism for a given $B \subset A$?

The characteristic homomorphism $\Delta_{\#(A, B, \nabla)}: H(\boldsymbol{g}, B) \longrightarrow H(L)$ has functoriality property and is invariant under homotopic subalgebroids.

Definition 23 Two Lie subalgebroids $B_{0}, B_{1} \subset A$ (both over (M, F)) are said to be homotopic if there exists a Lie subalgebroid $B \subset T \mathbb{R} \times A$ over $(\mathbb{R} \times M, T \mathbb{R} \times F)$ such that for $t \in\{0,1\}$

$$
\begin{equation*}
v_{x} \in B_{t \mid x} \Longleftrightarrow\left(\theta_{t}, v_{x}\right) \in B_{\mid(t, x)} . \tag{6}
\end{equation*}
$$

B is called a subalgebroid joining B_{0} with B_{1}.
This relation is closely related to the relation of homotopic subbundles of a principal bundle.

Theorem 24 (The first homotopy independence) If $B_{0}, B_{1} \subset A$ are homotopic subalgebroids of A and $\nabla: L \rightarrow A$ is a flat L-connection in A, characteristic homomorphisms $\Delta_{\#}: H\left(\boldsymbol{g}, B_{0}\right) \rightarrow H(L)$ and $\Delta_{\#}: H\left(\boldsymbol{g}, B_{1}\right) \rightarrow H(L)$ are equivalent in this sense that there exists an isomorphism $\alpha: H\left(\boldsymbol{g}, B_{0}\right) \xrightarrow{\simeq}$ $H\left(\boldsymbol{g}, B_{1}\right)$ of algebras such that the diagram

commutes.
Definition 25 Let $H_{0}, H_{1}: L^{\prime} \rightarrow L$ be homomorphisms of Lie algebroids. By a homotopy joining H_{0} to H_{1} we mean a homomorphism of Lie algebroids

$$
H: T \mathbb{R} \times L^{\prime} \longrightarrow L
$$

such that $H\left(\theta_{0}, \cdot\right)=H_{0}$ and $H\left(\theta_{1}, \cdot\right)=H_{1}$ where θ_{0} and θ_{1} are null vector tangent bundle of R at 0 and 1, respectively. We say that H_{0} and H_{1} are homotopic and write $H_{0} \sim H_{1}$.

The homotopy $H: T \mathbb{R} \times L^{\prime} \longrightarrow L$ determines a chain homotopy operator [?] which implies that $H_{0}^{\#}=H_{1}^{\#}: H_{L}(M) \rightarrow H_{L^{\prime}}\left(M^{\prime}\right)$.

Theorem 26 (The second homotopy independence) If $\nabla_{0}, \nabla_{1}: L \rightarrow A$ are homotopic flat L-connections of A then characteristic homomorphisms are equal $\Delta_{\#\left(A, B, \nabla_{0}\right)}=\Delta_{\#\left(A, B, \nabla_{1}\right)}$.

2.3 Application to principal bundles

Taking a connected principal bundle $P=P(M, G)$ with a structure Lie group G and a connected H-reduction $P^{\prime} \subset P$ and using the isomorphism of algebras ρ we have the commutative diagram

as well as we obtain
Theorem 27 If G is a compact connected group and P^{\prime} is a connected H reduction in an G-principal bundle P, then there exists a "universal" homomorphism $\Delta_{o}^{\#}$ acting from the algebra $H(\mathfrak{g}, H)$ to the total cohomology $H_{d R}(P)$,

$$
\Delta_{o}^{\#}: H(\mathfrak{g}, H) \longrightarrow H_{d R}(P) .
$$

In the case of flat principal bundle P for every flat connection ω in the bundle P the characteristic homomorphism $\Delta^{\#}: H(\mathfrak{g}, H) \longrightarrow H_{d R}(M)$ is factorized by $\Delta_{o}^{\#}$, i.e. the diagram below commutes

where $\omega^{\#}$ on the level of right-invariant forms Ω^{r} is given as the pullback of forms,

$$
\begin{aligned}
\omega^{*}: \Omega^{r}(P) & \longrightarrow \Omega(M), \\
\omega^{*}(\phi)\left(x ; u_{1} \wedge \ldots \wedge u_{k}\right) & =\phi\left(z ; \tilde{u}_{1} \wedge \ldots \wedge \tilde{u}_{k}\right)
\end{aligned}
$$

where $z \in P_{\mid x}, \tilde{u}_{i}$ is the horizontal lift of $u_{i} .\left[\right.$ Recall that $H_{d R}^{r}(P):=H\left(\Omega^{r}(P)\right) \simeq$ $H_{d R}(P)$.] In the general case (noncompact or nonconnected Lie group G) there exists a homomorphism $\Delta_{o}^{\#}: H(\mathfrak{g}, H) \longrightarrow H_{d R}^{r}(P)$ of algebras which factorizes the characteristic homomorphism for every flat connection. The homomorphism $\Delta_{o}^{\#}$ on the level of forms is given by the following direct formula:

$$
\left(\Delta_{o} \psi\right)\left(z ; w_{1} \wedge \ldots \wedge w_{k}\right)=\left\langle\psi,\left[-\omega\left(z ; w_{1}\right)\right] \wedge \ldots \wedge\left[-\omega\left(z ; w_{k}\right)\right]\right\rangle
$$

where ω is the form of a connection on P extending an arbitrary connection on P^{\prime} 。

It seems to be interesting the following question:

- Is the homomorphism $\Delta_{o}^{\#}: H(\mathfrak{g}, H) \longrightarrow H(P)$ a monomorphism?

2.4 Application to finitely dimensional Lie algebras

A pair $(\mathfrak{h}, \mathfrak{g}), \mathfrak{h} \subset \mathfrak{g}$, of finite dimensional Lie algebras, we have a characteristic homomorphism

$$
\begin{gathered}
\Delta_{o}: H(\mathfrak{g}, \mathfrak{h})=\left(\bigwedge(\mathfrak{g} / \mathfrak{h})^{*}\right)_{I^{o}} \rightarrow H(\mathfrak{g}) \\
\left(\Delta_{o} \psi\right)\left(w_{1} \wedge \ldots \wedge w_{k}\right)=(-1)^{k}\left\langle\psi,\left[w_{1}\right] \wedge \ldots \wedge\left[w_{k}\right]\right\rangle
\end{gathered}
$$

$(H(\mathfrak{g}, \mathfrak{h})=H(\mathfrak{g}, H)$ for aritrary connected Lie group having \mathfrak{h} as its Lie algebra). The homomorphism Δ_{o} can be nontrivial. For example for $\mathfrak{g}=g l(n, \mathbb{R})$ and $\mathfrak{h}=\mathfrak{s o}(n)(=(S k(n, \mathbb{R}))$ the trace formula $\operatorname{tr}: \mathfrak{g} / \mathfrak{h} \rightarrow \mathbb{R}$ is invariant and gives nontrivial element in the cohomology.

If Δ_{o} is not trivial than the identical homomorphism id $: \mathfrak{g} \rightarrow \mathfrak{g}$ is not homotopic to any homomorphism from \mathfrak{g} to \mathfrak{g}.

Let \mathfrak{h}_{1} be the next Lie algebra and $\phi: \mathfrak{h}_{1} \rightarrow \mathfrak{g}$ be any homomorphism of Lie algebras. If $\Delta_{(\mathfrak{g}, \mathfrak{h}, \phi)}=\phi^{\#} \circ \Delta_{o}$ is not trivial then ϕ can not be homotopic to any homomorphism of Lie algebras $\mathfrak{h}_{1} \rightarrow \mathfrak{h}$.

2.5 Crainic characteristic classes

Take a vector bundle \mathfrak{f} and its Lie algebroid $A(\mathfrak{f})$ as well as a Riemannian metric h in \mathfrak{f}. The metric h yields the Lie subalgebroid $B=A(\mathfrak{f},\{h\})$. We recall that $\mathcal{L} \in \operatorname{Sec}(A(\mathfrak{f},\{h\})) \Longleftrightarrow \mathcal{L} \in \operatorname{Sec}(A(\mathfrak{f}))$ and for each sections $\xi, \eta \in \operatorname{Sec}(\mathfrak{f})$ the formula holds

$$
h(\mathcal{L}(\xi), \eta)=h(\xi, \eta)-h(\xi, \mathcal{L}(\eta))
$$

Two Lie subalgebroids $B_{i}=A\left(\mathfrak{f},\left\{h_{i}\right\}\right), i=1,2$, corresponding to Riemannian metrics h_{i} are homotopic Lie subalgebroids. The Atiyah sequences for $A(\mathfrak{f})$ and $A(\mathfrak{f},\{h\})$ are

$$
\begin{aligned}
& 0 \longrightarrow \operatorname{End}(\mathfrak{f}) \longrightarrow A(\mathfrak{f}) \longrightarrow T M \longrightarrow 0 \\
& 0 \longrightarrow S k(\mathfrak{f}) \longrightarrow A(\mathfrak{f},\{h\}) \longrightarrow T M \longrightarrow 0
\end{aligned}
$$

If the vector bundle \mathfrak{f} is nonorientable (nonoriented), then the characteristic homomorphism $\Delta_{\#}: H($ End $\mathfrak{f}, A(\mathfrak{f},\{h\})) \rightarrow H(L)$ corresponding to $(A(\mathfrak{f}), A(\mathfrak{f},\{h\}), \nabla)$ produces the Crainic characteristic classes. Indeed, using the isomorphism κ from Theorem ?? and the classical relation (Kamber-Tondeur, Godbillon) we have

$$
H(\text { End } \mathfrak{f}, A(\mathfrak{f},\{h\})) \cong H(g l(n, \mathbb{R}), O(n)) \cong \bigwedge\left(y_{1}, y_{3}, \ldots, y_{2 n^{\prime}-1}\right)
$$

where n^{\prime} is the largest odd integer $\leq n$, and we have by definition $y_{2 k-1} \in$ $H^{4 k-3}(\operatorname{End} \mathfrak{f}, A(\mathfrak{f},\{h\}))$ are represented by the multilinear trace form $\tilde{y}_{k} \in$ $\Gamma\left(\bigwedge(\operatorname{End}(\mathfrak{f}) / S k(\mathfrak{f}))^{*}\right)$

$$
\begin{equation*}
\tilde{y}_{2 k-1}\left(\left[A_{1}\right], \ldots,\left[A_{4 k-3}\right]\right)=\sum_{\sigma \in S_{4 k-3}} \operatorname{sgn} \sigma \operatorname{tr}\left(\tilde{A}_{\sigma(1)} \circ \ldots \circ \tilde{A}_{\sigma(4 k-3)}\right) \tag{7}
\end{equation*}
$$

where $\tilde{A}_{i}=\frac{1}{2}\left(A_{i}+A_{i}^{*}\right)$ is the symmetrization of A_{i} with respect to the inner scalar product induced by the metric h.

In the case of oriented vector bundle with a metric volume v , the matric h and vinduce an $S O(n, \mathbb{R})$-reduction $L(\mathfrak{f},\{h, \mathrm{v}\})$ of the frames bundle $L \mathfrak{f}$ of \mathfrak{f}. The Atiyah sequences for $A(\mathfrak{f},\{h, \mathrm{v}\})$ is

$$
0 \longrightarrow S k(\mathfrak{f}) \longrightarrow A(\mathfrak{f},\{h, \mathrm{v}\}) \longrightarrow T M \longrightarrow 0
$$

Consider the characteristic homomorphism $\Delta_{\#}: H($ End $\mathfrak{f}, A(\mathfrak{f},\{h, \mathrm{v}\})) \rightarrow H(L)$ corresponding to $(A(\mathfrak{f}), A(\mathfrak{f},\{h, \mathrm{v}\}), \nabla)$. Therefore

- if $n=2 m-1$ is odd, then
$H(\operatorname{End} \mathfrak{f}, A(\mathfrak{f},\{h, \mathrm{v}\})) \cong H(g l(2 m-1, \mathbb{R}), S O(2 m-1)) \cong H(g l(2 m-1, \mathbb{R}), O(2 m-1))$,
- if $n=2 m$ is even, then
$H(\operatorname{End} \mathfrak{f}, A(\mathfrak{f},\{h, \mathrm{v}\})) \cong H(g l(2 m, \mathbb{R}), S O(2 m)) \cong \bigwedge\left(y_{1}, y_{3}, \ldots, y_{2 n^{\prime}-1},[\overline{\mathrm{Sf}}]_{2 m}\right)$
where where n^{\prime} is the largest odd integer $<2 m, y_{2 k-1} \in H^{4 k-3}($ End $\mathfrak{f}, A(\mathfrak{f},\{h, \mathrm{v}\}))$
are represented by the multilinear trace form $\tilde{y}_{k} \in \Gamma\left(\bigwedge(\operatorname{End}(\mathfrak{f}) / S k(\mathfrak{f}))^{*}\right)$ defined by (7), and $[\overline{\mathrm{Sf}}]_{2 m} \in H^{2 m}($ End $\mathfrak{f}, A(\mathfrak{f},\{h, \mathrm{v}\}))$ is represented by skew Pffafian $\overline{\mathrm{Sf}}_{2 m} \in \Gamma\left(\bigwedge^{2 m}(\operatorname{End}(\mathfrak{f}) / S k(\mathfrak{f}))^{*}\right)$,

$$
\begin{aligned}
\overline{\mathrm{Sf}}_{2 m}\left(\left[f_{1}\right], \ldots,\left[f_{2 m}\right]\right) & =d(\overline{\mathrm{Sf}})\left(\widetilde{f}_{1}, \ldots, \tilde{f}_{2 m}\right) \\
& =\sum_{\substack{\sigma \in S_{2 m} \\
\sigma(1)<\sigma(2) \\
\sigma(3)<\ldots<\sigma(2 m)}} \operatorname{sgn} \sigma \operatorname{Sf}\left(\left[\widetilde{f}_{\sigma(1)}, \widetilde{f}_{\sigma(2)}\right], \widetilde{f}_{\sigma(3)}, \ldots, \widetilde{f}_{\sigma(2 m)}\right)
\end{aligned}
$$

where $f_{1}, \ldots, f_{2 m} \in \operatorname{End}(\Gamma(\mathfrak{f})), d$ is the differential on the algebra $\bigwedge(\operatorname{End}(\mathfrak{f}))^{*}$,

$$
\begin{aligned}
d(\phi)\left(f_{1}, \ldots, f_{n}\right) & =\sum_{p<q}(-1)^{p+q} \phi\left(\left[f_{p}, f_{q}\right], f_{1}, \ldots \hat{p} \ldots \hat{q} \ldots, f_{n}\right) \\
& =\sum_{\substack{\sigma \in S_{n} \\
\sigma(1)<\sigma(2) \\
\sigma(3)<\ldots<\sigma(n)}} \operatorname{sgn}(\sigma) \phi\left(\left[f_{\sigma(1)}, f_{\sigma(2)}\right], f_{\sigma(3)}, \ldots, f_{\sigma(n)}\right)
\end{aligned}
$$

and $\overline{\mathrm{Sf}} \in \Gamma\left(\bigwedge^{2 m-1}(\operatorname{End}(\mathfrak{f}) / S k(\mathfrak{f}))^{*}\right)$ is described by the formula

$$
\begin{aligned}
\overline{\mathrm{Sf}}\left(f_{1}, \ldots, f_{2 m-1}\right) & =\sum_{\sigma \in S_{2 m-1}} \operatorname{sgn} \sigma \overline{\mathrm{Pf}}\left(f_{\sigma(1)},\left[f_{\sigma(2)}, f_{\sigma(3)}\right], \ldots,\left[f_{\sigma(2 m-2)}, f_{\sigma(2 m-1)}\right]\right) \\
& =\sum_{\sigma \in S_{2 m-1}} \operatorname{sgn} \sigma\left(e, \alpha\left(f_{\sigma(1)}\right) \wedge \alpha\left[f_{\sigma(2)}, f_{\sigma(3)}\right] \wedge \ldots \wedge \alpha\left[f_{\sigma(2 m-2)}, f_{\sigma(2 m-1)}\right]\right)
\end{aligned}
$$

$\overline{\mathrm{Pf}} \in \operatorname{Sym}^{m}\left(\operatorname{End}(\mathfrak{f}) ; C^{\infty}(M)\right), \overline{\operatorname{Pf}}\left(f_{1}, \ldots, f_{m}\right)=\left(e, \alpha\left(f_{1}\right) \wedge \ldots \wedge \alpha\left(f_{m}\right)\right)$, e is a non-zerro cross-section of $\Gamma\left(\bigwedge^{\text {top }} \mathfrak{f}\right), \alpha: \Gamma($ End $\mathfrak{f}) \rightarrow \Gamma\left(\Lambda^{2} \mathfrak{f}\right)$ is given by $(\alpha(\varphi), X \wedge Y)=(\varphi X, Y), \varphi \in \Gamma($ End $\mathfrak{f}), X, Y \in \Gamma(\mathfrak{f})$.

Theorem 28

$$
\Delta_{\#}\left(\tilde{y}_{2 k-1}\right)=(-1)^{\frac{(k+1)(k+2)}{2}} \cdot \frac{(2 k-1)!}{2^{2 k-1} \cdot k!\cdot(k-1)!}\left[u_{2 k-1}(\mathfrak{f}, \nabla)\right]
$$

where $u_{2 k-1}(\mathfrak{f}, \nabla)$ represent the Crainic characteristic classes.
Explicit formula use any metric h in \mathfrak{f} and the symmetric-values form $\theta=$ $\nabla-\nabla^{h}$ where ∇ is any flat L-connection in \mathfrak{f} and ∇^{h} is the adjoint L-connection induced by the metric h.
∇^{h} is defined by

$$
\#_{L}(a)(h(\xi, \eta))=h\left(\nabla_{a} \xi, \eta\right)+h\left(\xi, \nabla_{a}^{h} \eta\right)
$$

dla dowolnych $a \in \operatorname{Sec}(A), \xi, \eta \in \Gamma(\mathfrak{f})$.

$$
u_{2 k-1}(\mathfrak{f}, \nabla)=(-1)^{\frac{k(k+1)}{2}} c s_{k}\left(\nabla, \nabla^{h}\right),
$$

k - odd (we add that only odd k gives nontrivial classes for real \mathfrak{f}) and
$c s_{k}\left(\nabla, \nabla^{h}\right)=\int_{0}^{1} c h_{k}\left(\nabla^{a f f}\right)=(-1)^{k-1} \frac{k!\cdot(k-1)!}{(2 k-1)!} \cdot \operatorname{tr}(\underbrace{\theta \wedge \ldots \wedge \theta}_{2 k-1}) \in \Omega^{2 k-1}(L)$
for the affine combination $\nabla^{a f f}=t \cdot \nabla+(1-t) \cdot \nabla^{h}$ and $c h_{k}\left(\nabla^{a f f}\right)=$ $\operatorname{tr}\left(R^{\nabla^{a f f}}\right)^{k}$.

We add that Crainic have lost the skew Pfaffian $[\overline{\mathrm{Sf}}]_{2 m}$ in oriented vector bundle of even rank.

