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1 Primary characteristic classes

1.1 Classical theory for principal bundles

The classical theory of primary characteristic classes for principal fibre bundles
is well known. Let (P,7, M,G) be a G-pfb on M with projection 7 : P — M
and structural Lie group G acting on the right on P. P/G = M. The domain of
the Chern-Weil homomorphism for P is the space

I1(G):= (\/g*)I = (\/g*)I(Adc;)

of symmetric multilinear functions (equivalently polynomials) on g = gl (G) in-
variant with respect to the adjoint representation Adg : G — GL (g) of G. The
Chern-Weil homomorphism for P

hy - (\/g*)l — Hap (M)

can be defined by
he (L) = [xp (1)
k
where for invariant k-polynomial T' € \/g* the differential form xp (I') €

Q2F (M) is such that

. 1 ,
= (xp (1) = 11T (2)
Q € Q*(P,g) is the curvature form of any connection w in P, T'(Q*) =
(T, V...V Q) the pairing is defined through the permanent. The image Im (hp) C
k
Hir (M) is called the Pontryagin algebra of P. Below we can see that:
If (P,m,M,G) and (P',«',M,G’") are connected principal fibre bundles
on M such that their Lie algebroids A (P) and A (P') are isomorphic ( G and
G’ can be nonconnected), then hp = hp.



There are non-isomorphic pfb’s having isomorphic Lie algebroids (for exam-
ple P equal to the trivial SO (3) pfb on RP° and P’ equal to the nontrivial
Spin (3) structure on RP?).

The algebra I (G) is well known for standard Lie groups, for example

I(GL (n,R)) is generated by Pontryagin polynomials p; defined for ma-
trices A € gl (n,R) by

1 _ n . n—i
det ()\ 1, — QWA) = Zizopl (A) - X%,

I1(0 (n)) as above by poy;.
I(SO (2m —1)) as above by pa;.

2m
I (SO (2m)) as above by po; and by the so-called Pfaffian Pf € (\/50 (Qm)*>
I

defined for A = [A;;] € so0 (2m) by

1
Pf (A) = 22mm ngna : AU1,02 Tt A02m7170’2m'

For example Pf< _2 8 ) = a.

1.2 The Lie algebroid of a pfb (P, 7, M,G).
Take the Atiyah short exact sequence (g is the right! Lie algebra of G )
0—-Pxgg—TP/G—TM — 0.
P xg g is a Lie Algebra Bundle, for any z € P,
2192 (Pxag), v [(20)],

is an isomorphism of Lie algebras. Splittings of this sequence are in a 1-1
corrspondence to connections in P. TP/G is a vector bundle over M such that

Sec (TP/G) = X" (P),

X" (P) is the Lie algebra of G-right invariant vector fields on P. Therefore we
can introduce the structure of Lie algebra [-,-] in the space of global sections
of the vector bundle TP/G. The projection (called the anchor) |7, : TP/G —
TM passing to the sections is a Lie algebra homomorphism [r.]([¢,7]) =
[[7«] &, [7<] n]. The Leibniz condition

[§, /-l =1 -[&n] + [r] (€) (F) - m

holds. Therefore
(TP/Ga [['7 ']]v [W*])

is a Lie algebroid on M denoted by A (P) for which the linear homomorphism
[7«] : TP/G — TM is an epimorphism.



Definition 1 By a Lie algebroid on a manifold M we mean the triple (A, [-, ], #a)
where A is a vector bundle on M, [-,-] is a real Lie algebra structure in the space
of global sections Sec A and #4 : A — TM is a linear homomorphism fulfilling
the Leibniz condition

[§, /-l =1 -1&n] + #a (&) (f) - n.

Sec#4 : SecA — X (M) is a homomorphism of Lie algebras. The vector
field X = #4 o ¢ is the anchor of the section £ € Sec A. Homomorphisms of
Lie algebroids preserve by definition the anchors and Lie algebra structures. In

the space Q(A) = Sec (/\A*) the differential d4 is defined by the analogous
formula as for usual differential forms

p

(da®) (Gos---:&p) = D (=)' (Fa 0 &) (B, &1 &)
i=0
+ Z (_]-)i+j ¢(|I£i7£j]]’£07 oo gz .. ‘éj o 7£p)a

i<j

and defines the algebra of cohomology H (A).

A is called transitive if # 4 is an epimorphism. A is called reqular if the
anchor is of constant rank. The image Im # 4 is then a regular foliation. (In
arbitrary case, the image Im # 4 of the anchor is a Stefan foliation).

Denote for shortness

A(P):=TP/G.
We notice that having only the Lie algebroid A (P) we can not reconstruct

the structural Lie group, but only its Lie algebra !
The Lie algebroid A (P) acts on the Lie algebra bundle P X g by

adapy (§) (v) = [€,v].

This actions can be extended to the actions adx( pyof A (P) on the symmetric

E
power of the dual of P x¢g g, \/ (P xgg)" -ie on the vector bundle of
polynomials. We take the space [algebra] of invariant sections

1(A(P)) = @D Sec <\/’“ (P x¢ g)*>

k * k *
of vector bundles \/ (P xgg) . We have T' € Sec (\/ (P xgg) > if and
1

I

only if for every £ € Sec (A (P)) and vy, ..., v € Sec (P X¢g g)

k
(@ Vo Vi) =3 TV VIEU]V .V ).

i=1



Theorem 2 If P is a connected pfb (G can be non-connected) then there exists
an isomorphism of algebras

p:I1(G)—I(A(P)).
(In general, we have always a monomorphism,).

To understand this fact we need to explain the definition of the Lie algebroid
of a vector bundle.

By a Lie algebroid of a vector bundle f we mean the Lie algebroid A (f) :=
A (Lf) of the GL (n,R)-ptb Lf of all frames of f ( n = rank f = dim f, ). The fibre
A (Lf),, over z is canonically isomorphic to the space of R-linear homomorphisms

{l:Sect — f,; Jver,mVeeseeiVrec=mn) (L(f-&) =F-1(E)+v(f)-O}.

In other words, a global section £ € A (f) determines a covariant derivative
operator

£:Secf — Secf,
L(f-8=r-2@+X()-¢

The vector field X is here the anchor of £, X = # 4(j) (£). We see that the
space of global sections of A (f) is canonically isomorphic to the space of co-
variant derivative operators. This isomorphism is an isomorphism of Lie
algebras. There are many other geometric categories from which we can de-
fine a Lie Functor to the category of Lie algebroids: principal fibre bundles,
vector bundles, Lie or differential groupoids, transversely complete foliations,
nonclosed Lie subgroups, Poisson manifolds etc.

Proof of the Theorem.

Take the Lie algebroid A (g) of the Lie Algebra Bundle g :=P x¢ g and the
adjoint representation Adg : G — GL (g), Adg (9) = (1), , where 7, : G — G,
h — ghg~'. Consider the Adg-homomorphism

*e ?

Adp : P — Lg
Adp (2) = [(z, )

([(z,)] : o = g, is a frame of g at z ) of the principal fibre bundles which
is called the adjoint representation of a principal fibre bundle and consider its
differential

adapy = (Adp)' : A(P) — A(g)

which is equal to the adjoint representation of the Lie algebroid A (P), ada(p) (§) (v) =

[€,v]. The representation Adp can be lifted standardly to the homomorphism
k
AdY, : P — L <\/ g*> of pfb’s with respect to the induced homomorphism

E
Adl,: G — GL (\/ g*) , as well as ad 5(p) can be lifted to the homomorphism



k
of Lie algebroids ad}f‘(},) A(P)— A (\/ g*) . The analogous property

(Ad}) = ad}(p)
holds. To prove our theorem we need the following definitions and Lemmas:

Definition 3 Let p : G — GL (V) be a representation of a Lie group G in a
finite dimensional vector space V and § a vector bundle with the typical fibre
V. Let F': P — Lf be a p-homomorphism of principal fibre bundles. A section
& € Sect is called F-invariant if there exists a vector v € V' such that

F(2)(v) =&, forallze P.
Denote by (Sec f)I(F) the space of all F-invariant sections of f.

Lemma 4 Denote by V() the subspace of V' of p-invariant vectors. Then, for
v € Vi(u), the function

§o: M —f, xr— F(2)(v)
where z € Py, is a correctly defined smooth section of | and
Vl(u) — (Sec f)I(F) , v &y,

s an isomorphism.

k
Therefore applying Lemma 4 to the representation AdY, : P — L <\/ g*>

(i), )

Definition 5 Let T : A — A(f) be a homomorphism of Lie algebroids (T is
called a representation of A in a vector bundle f ). A section & € Secf is called
T-invariant (or T-parallel) if T (v) (§) =0 for allv € A. Denote by (Sec f),o(T)
the space of all T-invariant sections of f.

we have

I(Adg) 1(Ady)

Lemma 6 Let F': P — Lf be a u-homomorphism of principal fibre bundles and
F': A(P) — A(f) its differential. The spaces of invariant sections (Sec f)I(F)
and (Sec f)IO(F,) under F and its differential F' are related by

((]/) (SGCT)I(F) C (Sec f)["(F’)’

(b) if P is connected (nothing is assumed about the connectedness of G ),
then

(Sec f)](F) = (Sec f)[o(F') :



k
In consequence, applying to the representation adX(P) :A(P)— A (\/ g*)

we have
k
I"(G) = (Sec\/ g*)

If P is connected we have I* (G) = (I°)* (A (P)).

< (Sec\/kg*> — I*(A(P)).

I(Ady 1°(ady )

1.3 Chern-Weil homomorphism for Lie algebroids.

Now we pass to the construction of the Chern-Weil homomorphism for
Lie algebroids.

First, take a single transitive Lie algebroid A with the Atiyah sequence

0 —-g— A %4 TM — 0. The Lie algebroid A acts on the Lie Algebra

Bundle g by ads : A — A(g), ada (§) (v) = [§,v], & € SecA, v € Secg.
k

This action can be extended on the bundle \/ g* to the action ady : A —

k * o\k : : : k *
A \/ g* ). Let (I°)" (A) denotes the space of invariant sections of \/ g*.

k : k . .
I°(A) = @ (I°)" (A) is an algebra. The value I';, € \/ gr at  of any invari-
ant section is a vector invariant with respect to the adjoint representation adg,

k
of the isotropy Lie algebra g, Each invariant vector v € \/ g can be extended

uniquely to some invariant section of the bundle \/kg* over some open subset
containing z (for example if this neighbourhood is contractible). Sometimes
v can be extended on the whole M. Namely, to see this consider an arbitrary
general representation T : A — A (f) of A on a vector bundle f.

0 0
! !
g — Endf
! !
A L A®p
! !
TM = TM
! !
0 0

T : g — End(f;) is a representation of the Lie algebra g, on the vector

bundle f,. Denote by (f;);. the subspace of T, -invariant vector and take the

subbundle f; := U s (fz);o C f. The representation T' gives a usual flat
xr

covariant derivative V in fro and section £ of this bundle is parallel under V iff £

is T-invariant. V is defined by: for v € T,, M and arbitrary lifted vector v € A,,

#4(0) = v we put V,& = T(0) (). Taking the holonomy homomorphism



T (M) — (f2) ;. for V we see that £ is T-invariant iff &, € (f;),. for any point
x € M and at any arbitrary fixed point x, the vector £, is invariant under the
holonomy homomorphism, &, € (f%)}ri(M) .

Take a connection w : TM — A (i.e. #4 0w = idry ) and its curvature

form Q € Q2 (M;g)
QX,Y) = [w(X),w)] - w(X,Y]).
The Chern-Weil homomorphism of A is defined by
ha:1°(A)— H(M) (1)

, 1
(I°)" (A) 3T — FUT.Qv..vay.
If there exists a flat connection then hj = 0. The analogous construction can be
made analogously for regular Lie algebroid over a foliated manifold (M, F'), we

must use the algebra of tangential differential forms 2 (F') and its cohomology
H (F) instead of Q (M) and H (M).

Theorem 7 If A(P) is a Lie algebroid of a principal fibre bundle (P, 7, M, G),
then the diagram commutes

1°(A(P))
N\ hap)
pl H (M)
/" hp
1(G)

If P is connected, then under the identification I (G) = I°(A(P)) we have
hp = hap).

1.4 The Chern-Weil homomorphism for pairs of Lie alge-
broids

Take a pair of Lie algebroids (A, L) on a manifold M and assume that A is

transitive (we may assume only that A is regular). let 0 - g — A PATM -0
be the Atiyah sequence of A, g = ker # 4.

Definition 8 By a L-connection in A we mean a linear homomorphism
V:L—- A

compatible with the anchors #4 0oV = #1. By a curvature form of V we shall
mean the 2-form Qg € Q*(L;g) defined by

QV (5777) = [[VO£7VO77]]



If L = TM then V is a splitting of the Atiyah sequence 0 - g — A —
TM — 0, i.e. a usual connection in A. If L = T*M is the Lie algebroid of a
Poisson manifold (M, {-,-}) and A = A (P) we have the so-called contravariant
connection in a principal fibre bundle P, if A = A(f) we have the so-called
contravariant connection in a vector bundle f (see Fernandes). If 0 - L' — L —
L"” — 0 is a extension of Lie algebroids, then any splitting V : L” — L is a L"-
connection in L (Huebschmann). We add that a flat L-connection in A (f) is the
same as L-covariant derivative V¢v in a vector bundle §, £ € Sec L, v € Secf, i.e.
an operator Vv fulfilling the usual Koszul axioms with the following difference:

Ve (fv) = fVer+#L (€ (f)v.
The following superposition
LT TM 2 A

(where w : TM — A is a connection in A) is an example of a L-connection in
A.
By the Chern-Weil homomorphism of the pair (A, L) we mean

hpa:1°(A) — H (L)

defined by the formula identical to (1). The image of h 4 is the Pontryagin
algebra of the pair (L, A),

Pont (L, A) :=Imhy, 4.
Theorem 9

i) M B

hpoaN L (#L)
H (L)

R

In particular (#1)" [Pont A] = Pont (L, A).

Consider L = A, V =1idy : A — A is a flat A-connection in A, so hX,A =0.
Therefore

I(A) A H (M)
ISWEON ! (#L)*
’ H (A)

Pont* A C ker (#1)" . In this way we have simply proof of the well known fact
concerning principal fibre bundle 7 : P — M, Pont (P) C ker 7*.

1.5 Problem

Let (A,[,-],#4) and f be a transitive Lie algebroid and a vector bundle on a
manifold M, respectively. Assume that F' C T M is a C* constant dimensional
involutive distribution and F — the foliation determined by F'. We recall that



A and F give rise to the regular Lie algebroid over (M, F') where we put Af" :=
(#4) ' [F] C A; see. Its Atiyah sequence is

F
0—g AF A 0,

where g is the Lie algebra bundle adjoint of A, and #% = #4|AF. Any
representation T': A — A(f) of A on f restricts to the representation

TF =T|AF : AF — A(f)
of A" on f.

Lemma 10 For F-basic functions f? € Qf (M, F) and T-invariant cross-sections
vi € Secf, >, f"-viisa TF-invariant cross-section, in other words,

O (M, F) - (Secf)re(ry C (Sect) o (rry -

In general, the above inclusion can not be replaced by the equality, which
means that not every T'-invariant cross-section is of the form Y, f* - v; for
F-basic functions f* and T-invariant cross-sections v;. As an example we can
consider the Mobius band with the foliation F' by meridians. Equip M with a
flat Riemannian structure for which the fields % and 3% are orthonormal base.
Let P be O (2,R)-principal bundle of orthonormal frames of TM and A (P)
let be the Lie algebroid of P with the Atiyah sequence 0 — Sk (T'M,TM) —
A(P)—TM — 0.

The Pfaffian Pf € Sk(2,R) is not O (2,R) invariant but there exists an
invariant section of Sk (TM,TM)" of the form Pf - g where g is some basic
function equaling zero at one leaf of F.

Definition 11 FEach T* -invariant cross-section v € (Sec f)ro(rry not belong-
ing to Qp (M, F) - (Secf)ro(ry will be called singular. The characteristic class
corresponding to any singular cross-section will be also called singular.

Problem 12 Find an example of nontrivial singular characteristic class.
Let P be a G-principal bundle on M, whereas F' C T'M and F are as above.

Definition 13 By the tangential Chern-Weil homomorphism of P over (M, F)
we mean the Chern-Weil homomorphism h4(pyr of the regular Lie algebroid
A(P)E.

Let g be the right Lie algebra of G and (\/ g*)I(G) — the algebra of G-
invariant elements.

Theorem 14 Let G, be the connected component containing the unit of G.
If each Go-invariant element of \/ g* is G-invariant, then the domain of the
homomorphism ha(pyr is equal to Qp (M, F)-1°(A(P)) (= Qp(M,F)-(V ¢")1c)
when P is connected).



Consider a nonorientable Riemannian vector bundle f of rank 2m and a
connected O(2m;R)-principal bundle P of orthonormal frames of f, and the
transitive Lie algebroid A = A(P). We have Pont*™(P) = Pont*"(A4) = 0
(and, of course, Pont*(P) = 0 for k > 2m).

Problem 15 Using singular characteristic classes find an example of a nonori-
entable Riemannian vector bundle f and an involutive distribution F with ori-
entable leaves for which

Pont?™ (AT # 0.

2 Secondary flat characteristic classes for Lie al-
gebroids

2.1 Classical theory for principal bundles

Consider the triple (P, P’ ,w) where P = (P,m,M,G) is a G-principal fibre
bundle, P’ is his H-reduction (H C G is a closed Lie subgroup of G ), and w is
a flat connection in P. Equivalently (according to Lehmann approach) we can
consider two ideals J; and Jo in the algebra of invariant polynomials I (G)

Ji=1"(G),
Jo =ker (I (G) — I(H)).

The characteristic homomorphism
A#P,P',w = A# cH* (g,H) — HdR (M)

is one of the most important notion in differential geometry of principal bundles.
The cohomology classes from the image of the homomorphism Ay p pr,, are
called the secondary flat characteristic classes of (P, P, w).

Since this homomorphism is an invariant of the class of homotopic H-
reductions and measures the incompatibility of the flat structure w with a given
H-reduction, the nontriviality of Ay p p/, implies that there is no homotopic
changing of P’ containing the connection w.

We recall that H*(g, H), called the relative Lie algebra cohomology, is the
cohomology space of the complex

((At/m)),.a")

where (/\ (g/h)*)I is the space of invariant elements with respect to the adjoint
representation of the Lie group H and the differential df is defined via the
formula

(@ (W), fun] A A wi]) =3 (=D (@, [fws, wi]] Afwn] Ao A fwgl)

i<j

10



for € A\F (g/h); and w; € g. The homomorphism Ay p ps, on the level of
forms is given by the following direct formula

(AY) (z;w1 Ao Awg) = (P, [w (2;W01)] A oo Aw (25 1))

where x € M, z € P,z =z, w; € T,M, w; € T.P', nlw; =w; (w: P — gis
the connection form of a given flat connection ).

The relative Lie algebra cohomology H (g,H) is well known (Kamber-Tondeur,
Godbillon). For example

H (g1 (n,R) ,0 () = \ (1.3, - Yo 1)

where n' is the largest odd integer < n, and we have by definition yor_1 €
H*=3 (gl (n,R),0 (n)) are represented by the multilinear trace form 7 €

A (gl (n,R) /Sk (n,R))"

Jok—1 ([A1], ..., [Aap—3]) = Z sgno tr (Aa(l) 0...0 Aa(4k—3)> (2)

o€ESak—3

where 4; = % (Ai + AZT) - the symmetrization of A;.

H (gl (2m —1,R),SO (2m — 1)) = H (gl (2m — 1,R),0 (2m — 1))
= /\(yl,ya,---,yznul)

H (gl (2m,R), S0 (2m)) = /\ (Y1, Y35 - Y2n'—15 (Sf)am)

where (Sf),,, is the called skew symmetric Pfaffian.

2.2 Algebroid’s generalization

Consider a triple
(A,B,V)

consisting of transitive Lie algebroid A and its transitive Lie subalgebroid B
and (nonregular, in general) Lie algebroid L on M and a flat L-connection
V :L — A. In the diagram below A : TM — B means an arbitrary auxiliary
connection in B. Then joAp : TM — Ais a connection in A. Let w/°*2 : A — g
be its connection form.

0 e e f Y L
wjo)\B
J #HA #r
0 ~hC s BB Ao F
A5 (D)

11



Clearly, A and B can be regular Lie algebroids over the same foliated
manifold (M, F). The constructed characteristic homomorphism for the triple
(A, B,V) is measuring the incompatibility of the flat structure with a given
subalgebroid and has homotopic properties in analogy to to the classical case of
principal bundles.

Example 16 1. For L = TM we obtain the case in which the connection V
is a connection in A,

2. For L=TM and A =TP/G and B =TP'/H (P’ is an H-reduction of
P) we obtain the classical case equivalent to the standard case of principal
bundles.

3. For L = A and V = id4 we consider only the Lie algebroid A and its Lie
subalgebroid B. This case produces a characteristic homomorfism for the
inclusion B C A | in particular for the inclusion of Lie algebras h C g,
and in particular for inclusion of principal bundles P’ C P which finally
produces a new theorem for principal bundles.

It is the main goal of my talk.

4. Let f be a vector bundle equipped with a Riemannian metric g. If A = A ()
(i.e. A is the Lie algebroid of the principal bundle of frames Lf ) and
B C A is a Riemannian reduction B = A (f,{g}) (more precisely B is the
Lie algebroid of the principal bundle of orthogonal frames). We obtain the
case equivalent to the one considered by M. Crainic of the characteristic
exotic characteristic classes for a representation of any Lie algebroid L in
a vector bundle.

To construct the characteristic homomorphism for (A, B, V) we notice that
for a general connection V : L — A does not exist a suitable notion of a connec-
tion form. The connection form was used in the direct formula for the classical
case. We must do a characteristic homomorphism without any "connection
form". In the classical case (P, P’,w) take auxiliarily a connection A in P’ and
extend it to a connection in P. Let w* : P — g be the connection form. Then it
appears that the characteristic homomorphism for (P, P’,w) can be defined on
the lewel of differential forms via

(A*\I/)I (w1 VANAN wk) = <\I/m7 [—o.))‘ o ’12)1] VANSAN [—w)‘ o Qf)k]>

for U € Sec /\lc (g/h)*, x € M, w; € T, M and ; being the horizontal lifting of
w; with respect to the flat connection w taken at the beginning.
In the general case (A, B, V) we define the homomorphism

WB,V - L — g/h
given by ‘
wpv (w) = [f (wJOAB o V) (w)} .

12



Remark 17 (1) It is important observation that wp v does not depend on the
choice of an auziliary connection A\g (Ap — Ny takes values in h)
(2) wpv =0 if V takes values in B.

Definition 18 Define the homomorphism of algebras

A Sec/\ (g/h)" — Q(L) (3)
by
(AT) (z5wy A oo ANwg) = (Y, wp v (W) Ao Awp v (wg))
U eSec N\ (g/h)", z € M, w; € L.
Observe that A can be written as superposition A = V*o A,,

A:Sec A\ (g/h)" 2% 0(4) T Q(L)

where V* is the pullback of forms and A, is the homomorphism given for par-
ticular case of flat connection V = id 4, so that

(AO\I/) (:C; v AN ’Uk) = <\Ijzwa,idA (’Ul) N .. ANWBid 4 (’Uk)>
= (V,, [—ijAB (V)] A A [—ijAB (v1)])
for W € Sec \" (g/h)*, z € M, v; € Al
In the algebra Sec A (g/h)" we distinguish the subalgebra (Sec A (g/h)") 1o(B)

of invariant sections with respect to an adjoint representation of B in A (g/h)" .
U e (Sec A (g/h)*) ) if and only if
I°(B

k
(B o ) (L, ] A Ay = D0 ()W [0 & v ) A D] A A )

Jj=1

for all £ € Sec B and v; € Secg. In particular, if ¥ € (Sec /\k (g/h)*)l ) then
for X € X(F) and £ = Ap o X we have

k
XU ] A Awe]) = D> (=177 (8, [[jo Ap o X, )] A [va] A A [wi]) -

j=1
(4)
In the space (Sec A (g/ h)*) 10(B) of invariant cross—sections we have a differ-
ential ¢ defined by

(U, ] A Ay = = (=D (U, [, ] A ] Ao A )

i<j
¥ € Sec \F (g/h)?o(B), v; € Secg.
H (g, B) is the cohomology algebra of ((Sec A (g/h)*)IG(B) ,5) .

13



Theorem 19 The homomorphism A commutes with the differentials 6 and dy,.

Corollary 20 A and A, induce the homomorphisms in cohomology

Aoy v#*
Apanv)H(gB)— H(A) — H(L). (5)

The map Ay is called the characteristic homomorphism of the triple (A, B, V).
Of course, A, is the characteristic homomorphism of the pair (A, B), B C A.

Remark 21 We see that for a pair of transitive Lie algebroids (A, B), B C A,
[they can be both regular over the same foliation] and for an arbitrary element
k € H(g,B) there exists a "universal” cohomology class A, (k) € H (A)
such that for any (nonregular in general ) Lie algebroid L on M and a flat
L-connection V : L — A the equality holds

Ay (k) = V¥ (Do () -

Problem 22 Is the characteristic homomorphism A,y : H (9,B) — H (A) a
monomorphism for a given B C A ¢

The characteristic homomorphism Ay 4 p vy : H (g, B) — H (L) has func-
toriality property and is invariant under homotopic subalgebroids.

Definition 23 Two Lie subalgebroids By, By C A (both over (M, F)) are said
to be homotopic if there exists a Lie subalgebroid B C TRx A over (R x M, TR x F)
such that fort € {0,1}

Uy € Bt|z — (ﬁt,vx) S Bl(t@) (6)
B is called a subalgebroid joining By with Bj.

This relation is closely related to the relation of homotopic subbundles of a
principal bundle.

Theorem 24 (The first homotopy independence ) If By, By C A are homotopic
subalgebroids of A and V : L — A is a flat L-connection in A, characteristic
homomorphisms Ay : H(g9,B,) — H(L) and Ay : H(g9,B,) — H(L) are
equivalent in this sense that there exists an isomorphism « : H (g, B,) =
H (g, B,) of algebras such that the diagram

H(ngO)
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commutes.

Definition 25 Let Hy, Hy : L' — L be homomorphisms of Lie algebroids. By
a homotopy joining Hy to Hy we mean a homomorphism of Lie algebroids

H:TRxL — L

such that H (0y,-) = Hy and H (01,-) = Hy where 0y and 01 are null vector
tangent bundle of R at 0 and 1, respectively. We say that Hy and Hy are
homotopic and write Hy ~ Hj.

The homotopy H : TR x L' — L determines a chain homotopy operator
[?] which implies that HY = HY : H, (M) — Hy, (M").

Theorem 26 (The second homotopy independence ) If Vo, Vi : L — A are
homotopic flat L-connections of A then characteristic homomorphisms are equal

Ay(a,B,vo) = Dpa,Bv)-

2.3 Application to principal bundles

Taking a connected principal bundle P = P (M, G) with a structure Lie group
G and a connected H-reduction P’ C P and using the isomorphism of algebras
p we have the commutative diagram

H(g,H) 2% Hg]ﬁ(P) — Hyp (P)

=lp
H(g,A(P)) 2% Hyp) (M)

as well as we obtain

Theorem 27 If G is a compact connected group and P’ is a connected H-
reduction in an G-principal bundle P, then there exists a "universal” homomor-
phism A¥ acting from the algebra H (g, H) to the total cohomology Hyr (P),

A¥ : H(g,H) — Hyg (P).

In the case of flat principal bundle P for every flat connection w in the bundle
P the characteristic homomorphism A% : H (g, H) — Hgygr (M) is factorized
by A# i.e. the diagram below commutes

H(P)
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where w# on the level of right-invariant forms Q" is given as the pullback of

forms,
w Q" (P)— Q(M),

W (P) (Tyur Ao Aug) = @ (2501 A e A lig)

where z € Py, U; is the horizontal lift of u;. [Recall that H}p (P) := H (2" (P)) ~
Hgg (P).] In the general case (noncompact or nonconnected Lie group G) there
exists a homomorphism A¥ : H (g, H) — H}, (P) of algebras which factorizes
the characteristic homomorphism for every flat connection. The homomorphism
A¥ on the level of forms is given by the following direct formula:

(Aot (z5w1 Ao ANwg) = (P, [—w (z;w1)] A oo A [—w (z5w5)])

where w is the form of a connection on P extending an arbitrary connection on
P.

It seems to be interesting the following question:
— Is the homomorphism A% : H (g, H) — H (P) a monomorphism?

2.4 Application to finitely dimensional Lie algebras

A pair (h,g), b C g, of finite dimensional Lie algebras, we have a characteristic
homomorphism

A, H(g.h) = (\(9/0)7)  —H()

(Aot)) (w1 A oo Awg) = (=1)F (@, [wi] A oo A [wi])

(H (g,b) = H (g, H) for aritrary connected Lie group having h as its Lie alge-
bra). The homomorphism A, can be nontrivial. For example for g =gl (n,R)
and h =s0(n) (= (Sk(n,R) ) the trace formula tr : g/h —R is invariant and
gives nontrivial element in the cohomology.

If A, is not trivial than the identical homomorphism id : g — g is not ho-
motopic to any homomorphism from g to g.

Let by be the next Lie algebra and ¢ : h; — g be any homomorphism of Lie
algebras. If Ay 4) = ¢# o A, is not trivial then ¢ can not be homotopic to
any homomorphism of Lie algebras h; — b.

2.5 Crainic characteristic classes

Take a vector bundle f and its Lie algebroid A (f) as well as a Riemannian metric
h in §. The metric h yields the Lie subalgebroid B = A (f,{h}). We recall that
L € Sec (A (f,{h})) <= L € Sec(A(f)) and for each sections &,n € Sec (f) the
formula holds

h(L(&),n) =h(&n)—h(&L(n).
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Two Lie subalgebroids B; = A (f,{h;}), i = 1,2, corresponding to Riemannian
metrics h; are homotopic Lie subalgebroids.The Atiyah sequences for A (f) and
A(f, {h}) are

0— End(f) — A(f) —TM — 0,

0— Sk(f) — A(f,{h}) — TM — 0.
If the vector bundle f is nonorientable (nonoriented), then the characteristic ho-
momorphism Ay : H (Endf, A (f,{h})) — H (L) corresponding to (A (f) , A (f,{h}), V)
produces the Crainic characteristic classes. Indeed, using the isomorphism &

from Theorem ?? and the classical relation (Kamber-Tondeur, Godbillon) we
have

H (Endf, A(f,{h})) 2 H (gl (n,R),0 (n)) = /\ (Y1, Y3, ey Y2r/—1)

where n' is the largest odd integer < m, and we have by definition yor_1 €
H* =3 (Endf, A (f,{h})) are represented by the multilinear trace form g €

I (A (End(§) /Sk()")
gzkfl ([Al] g eney [A4k,3]) = Z sgn o tr (Ao(l) O...0 'A~U(4k'—3)> (7)
0€S4k_3

where A; = 3 (A; + A;) is the symmetrization of A; with respect to the inner
scalar product induced by the metric h.

In the case of oriented vector bundle with a metric volume v, the matric h
and v induce an SO (n,R)-reduction L (f,{h,v}) of the frames bundle Lf of f.
The Atiyah sequences for A (f, {h,v}) is

0— Sk(f) — A(f,{h,v}) — TM — 0.

Consider the characteristic homomorphism Ay : H (End f, A (f,{h,v})) — H (L)
corresponding to (A (f), A (f, {h,v}), V). Therefore

e if n =2m — 1 is odd, then
e if n = 2m is even, then

H (Endf, A(f, {h,v})) = H (g1 (2m,R) , SO (2m)) = A (y1,y3, .-, y2w—1, [SF],,)

where where n’ is the largest odd integer < 2m, yor,_1 € H* =3 (Endf, A (§, {h,v}))
are represented by the multilinear trace form gy, € I' (A (End (f) /Sk (§))")
defined by (7), and [Sf], € H*™ (Endf, A(f,{h,v})) is represented by

skew Pffafian Sf,,, € T (/\2m (End (f) /Sk (f))*)7

Stam (1] s foml) = A (50) (T T
= Z sgno Sf ({fg(l),fg(g)} ,fg(z),), ....,:Izo—(2m)>

oESam
o(1)<o(2)
0(3)<...<o(2m)
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where f1, ..., fam € End (T (f)), d is the differential on the algebra A\ (End (f))",

A(D) (frson f) =D (=D G ([fps fol s 1 oorsenns f)

p<q

= Z sgn (0) ¢ ([fo1)s fo@)] s fo(3)s oor fon)
a(if)ef;(z)
o(3)<...<a(n)

and Sf € T (/\27”_1 (End (f) /Sk (f))*> is described by the formula

g(fl, ""7f2m71) = Z Sgnaﬁ(fa(l), [fo(Q)vfa’(S)] yeeeey [fa(Zm—?)vfo(QnL—l)])

oES2m—1

= Z sgno (e, (fo) A [fo@)s fo@)] A A [ foem—2)s foem—1)]) »
0ESam_1
Pf € Sym™ (End (f) ; C> (M)), ﬁ(fl,.. ofm) = (e,a(fi) A Aa( fm)),
e is a non-zerro cross-section of I (/\ pf), a:T'(Endf) - T (/\ f)
given by (a(p), X AY) = (0X,Y), p € ['(Endf), X, Y € T'(f).

Theorem 28

k1) (kt2 2k —1)!
A (o) = (1) 221671(.14:! ~ (k): 1)! 21 (1 V)

where uak—1 (f, V) represent the Crainic characteristic classes.

Explicit formula use any metric A in f and the symmetric-values form 6 =
V — V" where V is any flat L-connection in f and V" is the adjoint L-connection
induced by the metric h.
V" is defined by
#r (a) (h (&) = h(Va€,m) + b (&, Van)
dla dowolnych a € Sec (A), £, n € T'(f).

k(k+1)
ugg—1 (F, V) = (=1)" 2 csg (V,Vh) ,

k - odd (we add that only odd k gives nontrivial classes for real f) and

es (V, V") = /Olchk (veif) = (—-p*! w-tr (0/\ /\0) e Q%1 (L)
2k—1

for the affine combination V¢// = ¢.V + (1—¢t)- V" and chy (V) =

tr (Rvaff> *
We add that Crainic have lost the skew Pfaffian [§] o in oriented vector
bundle of even rank.
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