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1 Primary characteristic classes

1.1 Classical theory for principal bundles

The classical theory of primary characteristic classes for principal �bre bundles
is well known. Let (P; �;M;G) be a G-pfb on M with projection � : P ! M
and structural Lie group G acting on the right on P: P=G =M: The domain of
the Chern-Weil homomorphism for P is the space

I (G) :=
�_

g�
�
I
=
�_

g�
�
I(AdG)

of symmetric multilinear functions (equivalently polynomials) on g = gl (G) in-
variant with respect to the adjoint representation AdG : G! GL (g) of G: The
Chern-Weil homomorphism for P

hp :
�_

g�
�
I
! HdR (M)

can be de�ned by
hP (�) = [�P (�)]

where for invariant k-polynomial � 2
k_
g� the di¤erential form �P (�) 2


2k (M) is such that

�� (�P (�)) =
1

k!
�
�

k
�


 2 
2 (P; g) is the curvature form of any connection ! in P; �
�

k
�
=

h�;
 _ ::: _ 
| {z }
k

i the pairing is de�ned through the permanent. The image Im (hP ) �

HdR (M) is called the Pontryagin algebra of P: Below we can see that:
If (P; �;M;G) and (P 0; �0;M;G0) are connected principal �bre bundles

on M such that their Lie algebroids A (P ) and A (P 0) are isomorphic ( G and
G0 can be nonconnected), then hP = hP 0 :
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There are non-isomorphic pfb�s having isomorphic Lie algebroids (for exam-
ple P equal to the trivial SO (3) pfb on RP5 and P 0 equal to the nontrivial
Spin (3) structure on RP5).
The algebra I (G) is well known for standard Lie groups, for example

I (GL (n;R)) is generated by Pontryagin polynomials pi de�ned for ma-
trices A 2 gl (n;R) by

det

�
� � 1n �

1

2�
A

�
=
Xn

i=0
pi (A) � �n�i:

I (O (n)) as above by p2i:
I (SO (2m� 1)) as above by p2i:

I (SO (2m)) as above by p2i and by the so-called Pfa¢ an Pf 2
 
2m_
so (2m)

�
!
I

de�ned for A = [Aij ] 2 so (2m) by

Pf (A) =
1

22m�m

X
�

sgn� �A�1;�2 � ::: �A�2m�1;�2m :

For example Pf
�

0 a
�a 0

�
= a:

1.2 The Lie algebroid of a pfb (P; �;M;G) :

Take the Atiyah short exact sequence (g is the right! Lie algebra of G )

0! P �G g! TP=G! TM ! 0:

P �G g is a Lie Algebra Bundle, for any z 2 Px

ẑ : g �= (P �G g)x ; v 7�! [(z; v)] ;

is an isomorphism of Lie algebras. Splittings of this sequence are in a 1-1
corrspondence to connections in P: TP=G is a vector bundle over M such that

Sec (TP=G) �= Xr (P ) ;

Xr (P ) is the Lie algebra of G-right invariant vector �elds on P: Therefore we
can introduce the structure of Lie algebra [[�; �]] in the space of global sections
of the vector bundle TP=G. The projection (called the anchor) [��] : TP=G!
TM passing to the sections is a Lie algebra homomorphism [��] ([[�; �]]) =
[[[��] �; [��] �]]: The Leibniz condition

[[�; f � �]] = f � [[�; �]] + [��] (�) (f) � �

holds. Therefore
(TP=G; [[�; �]]; [��])

is a Lie algebroid on M denoted by A (P ) for which the linear homomorphism
[��] : TP=G! TM is an epimorphism.
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De�nition 1 By a Lie algebroid on a manifoldM we mean the triple (A; [[�; �]];#A)
where A is a vector bundle on M; [[�; �]] is a real Lie algebra structure in the space
of global sections SecA and #A : A! TM is a linear homomorphism ful�lling
the Leibniz condition

[[�; f � �]] = f � [[�; �]] + #A (�) (f) � �:

Sec#A : SecA ! X (M) is a homomorphism of Lie algebras. The vector
�eld X = #A � � is the anchor of the section � 2 SecA: Homomorphisms of
Lie algebroids preserve by de�nition the anchors and Lie algebra structures. In

the space 
 (A) = Sec
�^

A�
�
the di¤erential dA is de�ned by the analogous

formula as for usual di¤erential forms

(dA�) (�0; : : : ; �p) =

pX
i=0

(�1)i (#A � �i) (�(�0; : : : �̂i : : : ; �p))

+
X
i<j

(�1)i+j �([[�i; �j ]]; �0; : : : �̂i : : : �̂j : : : ; �p);

and de�nes the algebra of cohomology H (A).
A is called transitive if #A is an epimorphism. A is called regular if the

anchor is of constant rank. The image Im#A is then a regular foliation. (In
arbitrary case, the image Im#A of the anchor is a Stefan foliation).
Denote for shortness

A (P ) := TP=G:

We notice that having only the Lie algebroid A (P ) we can not reconstruct
the structural Lie group, but only its Lie algebra !
The Lie algebroid A (P ) acts on the Lie algebra bundle P �G g by

adA(P ) (�) (�) = [[�; �]]:

This actions can be extended to the actions ad_A(P ) of A (P ) on the symmetric

power of the dual of P �G g;
_k

(P �G g)� - i.e. on the vector bundle of
polynomials. We take the space [algebra] of invariant sections

I (A (P )) :=
Mk

Sec

�_k
(P �G g)�

�
I

of vector bundles
_k

(P �G g)� : We have � 2 Sec

�_k
(P �G g)�

�
I

if and

only if for every � 2 Sec (A (P )) and �1; :::; �k 2 Sec (P �G g)

[��] (�) h�; �1 _ ::: _ �ki =
kX
i=1

h�; �1 _ ::: _ [[�; �i]] _ ::: _ �ki:
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Theorem 2 If P is a connected pfb (G can be non-connected) then there exists
an isomorphism of algebras

� : I (G)! I (A (P )) :

(In general, we have always a monomorphism).

To understand this fact we need to explain the de�nition of the Lie algebroid
of a vector bundle.
By a Lie algebroid of a vector bundle f we mean the Lie algebroid A (f) :=

A (Lf) of the GL (n;R)-pfb Lf of all frames of f ( n = rank f = dim fx ). The �bre
A (Lf)x over x is canonically isomorphic to the space of R-linear homomorphisms�

l : Sec f! fx; 9v2TxM8�2Sec f8f2C1(M) (l (f � �) = f � l (�) + v (f) � �)
	
:

In other words, a global section L 2 A (f) determines a covariant derivative
operator

L : Sec f!Sec f;

L (f � �) = f � L (�) +X (f) � �

The vector �eld X is here the anchor of L; X = #A(f) (L) : We see that the
space of global sections of A (f) is canonically isomorphic to the space of co-
variant derivative operators. This isomorphism is an isomorphism of Lie
algebras. There are many other geometric categories from which we can de-
�ne a Lie Functor to the category of Lie algebroids: principal �bre bundles,
vector bundles, Lie or di¤erential groupoids, transversely complete foliations,
nonclosed Lie subgroups, Poisson manifolds etc.
Proof of the Theorem.
Take the Lie algebroid A (g) of the Lie Algebra Bundle g :=P �G g and the

adjoint representation AdG : G! GL (g) ; AdG (g) = (�g)�e ; where �g : G! G;
h 7�! ghg�1: Consider the AdG-homomorphism

AdP : P ! Lg

AdP (z) = [(z; �)]

([(z; �)] : g
�=! gx is a frame of g at x ) of the principal �bre bundles which

is called the adjoint representation of a principal �bre bundle and consider its
di¤erential

adA(P ) = (AdP )
0
: A (P )! A (g)

which is equal to the adjoint representation of the Lie algebroidA (P ), adA(P ) (�) (�) =
[[�; �]]: The representation AdP can be lifted standardly to the homomorphism

Ad_P : P ! L

�_k
g�
�
of pfb�s with respect to the induced homomorphism

Ad_G : G! GL

�_k
g�
�
; as well as adA(P ) can be lifted to the homomorphism
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of Lie algebroids ad_A(P ) : A (P )! A

�_k
g�
�
: The analogous property

(Ad_P )
0
= ad_A(P )

holds. To prove our theorem we need the following de�nitions and Lemmas:

De�nition 3 Let � : G ! GL (V ) be a representation of a Lie group G in a
�nite dimensional vector space V and f a vector bundle with the typical �bre
V: Let F : P ! Lf be a �-homomorphism of principal �bre bundles. A section
� 2 Sec f is called F -invariant if there exists a vector v 2 V such that

F (z) (v) = ��z for all z 2 P:

Denote by (Sec f)I(F ) the space of all F -invariant sections of f:

Lemma 4 Denote by VI(�) the subspace of V of �-invariant vectors. Then, for
v 2 VI(�), the function

�v :M ! f; x 7�! F (z) (v)

where z 2 Px; is a correctly de�ned smooth section of f and

VI(�)
�=! (Sec f)I(F ) ; v 7�! �v;

is an isomorphism.

Therefore applying Lemma 4 to the representation Ad_P : P ! L

�_k
g�
�

we have

Ik (G) =

 
k_
g�

!
I(AdG)

�=
�
Sec

_k
g�
�
I(Ad_P )

:

De�nition 5 Let T : A ! A (f) be a homomorphism of Lie algebroids ( T is
called a representation of A in a vector bundle f ). A section � 2 Sec f is called
T -invariant (or T -parallel) if T (v) (�) = 0 for all v 2 A. Denote by (Sec f)Io(T )
the space of all T -invariant sections of f:

Lemma 6 Let F : P ! Lf be a �-homomorphism of principal �bre bundles and
F 0 : A (P ) ! A (f) its di¤erential. The spaces of invariant sections (Sec f)I(F )
and (Sec f)Io(F 0) under F and its di¤erential F 0 are related by
(a) (Sec f)I(F ) � (Sec f)Io(F 0) ;

(b) if P is connected (nothing is assumed about the connectedness of G ),
then

(Sec f)I(F ) = (Sec f)Io(F 0) :
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In consequence, applying to the representation ad_A(P ) : A (P )! A

�_k
g�
�

we have

Ik (G) �=
�
Sec

_k
g�
�
I(Ad_P )

�
�
Sec

_k
g�
�
Io
�
ad_

A(P )

� = Ik (A (P )) :

If P is connected we have Ik (G) �= (Io)k (A (P )) :

1.3 Chern-Weil homomorphism for Lie algebroids.

Now we pass to the construction of the Chern-Weil homomorphism for
Lie algebroids.
First, take a single transitive Lie algebroid A with the Atiyah sequence

0 ! g ! A
#A! TM ! 0: The Lie algebroid A acts on the Lie Algebra

Bundle g by adA : A ! A (g) ; adA (�) (�) = [[�; �]]; � 2 SecA; � 2 Secg:

This action can be extended on the bundle
_k

g� to the action adA : A !

A

�_k
g�
�
: Let (Io)k (A) denotes the space of invariant sections of

_k
g�:

Io (A) :=
M

(Io)
k
(A) is an algebra. The value �x 2

_k
g�x at x of any invari-

ant section is a vector invariant with respect to the adjoint representation adgx
of the isotropy Lie algebra gx; Each invariant vector v 2

_k
g�x can be extended

uniquely to some invariant section of the bundle
_k

g� over some open subset
containing x (for example if this neighbourhood is contractible). Sometimes
v can be extended on the whole M: Namely, to see this consider an arbitrary
general representation T : A! A (f) of A on a vector bundle f:

0 0
# #
g

T+�! End f
# #
A

T�! A (f)
# #

TM = TM
# #
0 0

T+x : gx ! End (fx) is a representation of the Lie algebra gx on the vector
bundle fx: Denote by (fx)Io the subspace of T

+
x -invariant vector and take the

subbundle fI :=
[

x2M
(fx)Io � f: The representation T gives a usual �at

covariant derivative r in fIo and section � of this bundle is parallel under r i¤ �
is T -invariant. r is de�ned by: for v 2 TxM and arbitrary lifted vector ~v 2 Ax;
#A (~v) = v we put rv� = T (~v) (�) : Taking the holonomy homomorphism
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�1 (M)! (fx)Io for r we see that � is T -invariant i¤ �x 2 (fx)Io for any point
x 2M and at any arbitrary �xed point xo the vector �xo is invariant under the
holonomy homomorphism, �xo 2 (fxo)

�1(M)
Io :

Take a connection ! : TM ! A (i.e. #A � ! = idTM ) and its curvature
form 
 2 
2 (M ;g)


 (X;Y ) = [[! (X) ; ! (Y )]]� ! ([X;Y ]) :

The Chern-Weil homomorphism of A is de�ned by

hA : I
o (A)! H (M) (1)

(Io)
k
(A) 3 � 7�! 1

k!
[h�;
 _ ::: _ 
i] :

If there exists a �at connection then h+A = 0: The analogous construction can be
made analogously for regular Lie algebroid over a foliated manifold (M;F ), we
must use the algebra of tangential di¤erential forms 
 (F ) and its cohomology
H (F ) instead of 
 (M) and H (M) :

Theorem 7 If A (P ) is a Lie algebroid of a principal �bre bundle (P; �;M;G) ;
then the diagram commutes

Io (A (P ))
& hA(P )

� " H (M)
% hP

I (G)

If P is connected, then under the identi�cation I (G) = Io (A (P )) we have
hP = hA(P ):

1.4 The Chern-Weil homomorphism for pairs of Lie alge-
broids

Take a pair of Lie algebroids (A;L) on a manifold M and assume that A is

transitive (we may assume only that A is regular). let 0! g! A
#A! TM ! 0

be the Atiyah sequence of A; g = ker#A:

De�nition 8 By a L-connection in A we mean a linear homomorphism

r : L! A

compatible with the anchors #A � r = #L: By a curvature form of r we shall
mean the 2-form 
r 2 
2(L;g) de�ned by


r (�; �) = [[r � �;r � �]]:
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If L = TM then r is a splitting of the Atiyah sequence 0 ! g ! A !
TM ! 0; i.e. a usual connection in A: If L = T �M is the Lie algebroid of a
Poisson manifold (M; f�; �g) and A = A (P ) we have the so-called contravariant
connection in a principal �bre bundle P; if A = A (f) we have the so-called
contravariant connection in a vector bundle f (see Fernandes). If 0! L0 ! L!
L00 ! 0 is a extension of Lie algebroids, then any splitting r : L00 ! L is a L00-
connection in L (Huebschmann). We add that a �at L-connection in A (f) is the
same as L-covariant derivative r�� in a vector bundle f; � 2 SecL, � 2 Sec f; i.e.
an operator r�� ful�lling the usual Koszul axioms with the following di¤erence:

r� (f�) = fr�� +#L (�) (f) �:

The following superposition

L
#L! TM

!! A

(where ! : TM ! A is a connection in A) is an example of a L-connection in
A.
By the Chern-Weil homomorphism of the pair (A;L) we mean

hL;A : I
o (A)! H (L)

de�ned by the formula identical to (1). The image of hL;A is the Pontryagin
algebra of the pair (L;A) ;

Pont (L;A) := ImhL;A:

Theorem 9
Io (A)

hA�! H (M)

hL;A& # (#L)�
H (L)

In particular (#L)
�
[PontA] = Pont (L;A) :

Consider L = A; r = idA : A! A is a �at A-connection in A; so h+A;A = 0:
Therefore

I (A)
hA�! H (M)

h+A;A=0&
# (#L)�

H (A)

Pont�A � ker (#L)� : In this way we have simply proof of the well known fact
concerning principal �bre bundle � : P !M; Pont (P ) � ker��:

1.5 Problem

Let (A; [[�; �]];#A) and f be a transitive Lie algebroid and a vector bundle on a
manifold M , respectively. Assume that F � TM is a C1 constant dimensional
involutive distribution and F �the foliation determined by F . We recall that
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A and F give rise to the regular Lie algebroid over (M;F ) where we put AF :=
(#A)

�1
[F ] � A; see. Its Atiyah sequence is

0 �! ggg ,! AF
#F
A�! F �! 0 ;

where ggg is the Lie algebra bundle adjoint of A, and #FA := #AjAF . Any
representation T : A! A(f) of A on f restricts to the representation

TF = T jAF : AF �! A(f)

of AF on f.

Lemma 10 For F-basic functions f i 2 
�b(M;F) and T -invariant cross-sections
�i 2 Sec f;

P
i f

i � �i is a TF -invariant cross-section, in other words,


�b(M;F) � (Sec f)I�(T ) � (Sec f)I�(TF ) :

In general, the above inclusion can not be replaced by the equality, which
means that not every TF -invariant cross-section is of the form

P
i f

i � �i for
F-basic functions f i and T -invariant cross-sections �i. As an example we can
consider the Möbius band with the foliation F by meridians. Equip M with a
�at Riemannian structure for which the �elds @

@x and
@
@y are orthonormal base.

Let P be O (2;R)-principal bundle of orthonormal frames of TM and A (P )
let be the Lie algebroid of P with the Atiyah sequence 0 ! Sk (TM;TM) !
A (P )! TM ! 0:
The Pfa¢ an Pf 2 Sk (2;R) is not O (2;R) invariant but there exists an

invariant section of Sk (TM;TM)
� of the form Pf � g where g is some basic

function equaling zero at one leaf of F:

De�nition 11 Each TF -invariant cross-section � 2 (Sec f)I�(TF ) not belong-
ing to 
�b(M;F) � (Sec f)I�(T ) will be called singular. The characteristic class
corresponding to any singular cross-section will be also called singular.

Problem 12 Find an example of nontrivial singular characteristic class.

Let P be a G-principal bundle on M , whereas F � TM and F are as above.

De�nition 13 By the tangential Chern-Weil homomorphism of P over (M;F )
we mean the Chern-Weil homomorphism hA(P )F of the regular Lie algebroid
A(P )F .

Let g be the right Lie algebra of G and (
W
g?)I(G) � the algebra of G-

invariant elements.

Theorem 14 Let G� be the connected component containing the unit of G.
If each G�-invariant element of

W
g? is G-invariant, then the domain of the

homomorphism hA(P )F is equal to 
�b(M;F)�I�(A(P )) (�= 
�b(M;F)�(
W
g?)I(G)

when P is connected).
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Consider a nonorientable Riemannian vector bundle f of rank 2m and a
connected O(2m;R)-principal bundle P of orthonormal frames of f, and the
transitive Lie algebroid A = A(P ). We have Pont2m(P ) = Pont2m(A) = 0
(and, of course, Pontk(P ) = 0 for k > 2m).

Problem 15 Using singular characteristic classes �nd an example of a nonori-
entable Riemannian vector bundle f and an involutive distribution F with ori-
entable leaves for which

Pont2m(AF ) 6= 0:

2 Secondary �at characteristic classes for Lie al-
gebroids

2.1 Classical theory for principal bundles

Consider the triple (P; P 0; !) where P = (P; �;M;G) is a G-principal �bre
bundle, P 0 is his H-reduction (H � G is a closed Lie subgroup of G ), and ! is
a �at connection in P: Equivalently (according to Lehmann approach) we can
consider two ideals J1 and J2 in the algebra of invariant polynomials I (G)

J1 = I+ (G) ;

J2 = ker (I (G)! I (H)) :

The characteristic homomorphism

�#P;P 0;! = �# : H
� (g;H) �! HdR (M)

is one of the most important notion in di¤erential geometry of principal bundles.
The cohomology classes from the image of the homomorphism �#P;P 0;! are
called the secondary �at characteristic classes of (P; P 0; !).
Since this homomorphism is an invariant of the class of homotopic H-

reductions and measures the incompatibility of the �at structure ! with a given
H-reduction, the nontriviality of �#P;P 0;! implies that there is no homotopic
changing of P 0 containing the connection !.
We recall that H�(g;H), called the relative Lie algebra cohomology, is the

cohomology space of the complex��^
(g=h)

�
�
I
; dH

�
where

�V
(g=h)

��
I
is the space of invariant elements with respect to the adjoint

representation of the Lie group H and the di¤erential dH is de�ned via the
formula

dH ( ) ; [w1] ^ ::: ^ [wk]

�
=
X
i<j

(�1)i+j h ; [[wi; wj ]] ^ [w1] ^ :::̂{:::|̂::: ^ [wk]i
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for  2
Vk
(g=h)

�
I and wi 2 g. The homomorphism �#P;P 0;! on the level of

forms is given by the following direct formula

(� ) (x;w1 ^ ::: ^ wk) = h ; [! (z; ~w1)] ^ ::: ^ [! (z; ~wk)]i

where x 2 M; z 2 P 0, �z = x, wi 2 TxM; ~wi 2 TzP 0, �0� ~wi = wi (! : P ! g is
the connection form of a given �at connection ).
The relative Lie algebra cohomologyH (g;H) is well known (Kamber-Tondeur,

Godbillon). For example

H (gl (n;R) ; O (n)) �=
^
(y1; y3; :::; y2n0�1)

where n0 is the largest odd integer � n; and we have by de�nition y2k�1 2
H4k�3 (gl (n;R) ; O (n)) are represented by the multilinear trace form ~yk 2V
(gl (n;R) =Sk (n;R))�

~y2k�1 ([A1] ; :::; [A4k�3]) =
X

�2S4k�3

sgn� tr
�
~A�(1) � ::: � ~A�(4k�3)

�
(2)

where ~Ai = 1
2

�
Ai +A

T
i

�
- the symmetrization of Ai:

H (gl (2m� 1;R) ; SO (2m� 1)) = H (gl (2m� 1;R) ; O (2m� 1))

=
^
(y1; y3; :::; y2n0�1)

H (gl (2m;R) ; SO (2m)) =
^
(y1; y3; :::; y2n0�1; (Sf)2m)

where (Sf)2m is the called skew symmetric Pfa¢ an.

2.2 Algebroid�s generalization

Consider a triple
(A;B;r)

consisting of transitive Lie algebroid A and its transitive Lie subalgebroid B
and (nonregular, in general) Lie algebroid L on M and a �at L-connection
r : L! A. In the diagram below �B : TM ! B means an arbitrary auxiliary
connection in B. Then j��B : TM ! A is a connection in A. Let !j��B : A! ggg
be its connection form.

0 ggg- A- �

�
�B

L

?
0 hhh-

[
B- TM-#B

F

�

�

#L
6

� [

6
j
@
@
@
@R

#A

r
�
!j��B

(D)
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Clearly, A and B can be regular Lie algebroids over the same foliated
manifold (M;F ) : The constructed characteristic homomorphism for the triple
(A;B;r) is measuring the incompatibility of the �at structure with a given
subalgebroid and has homotopic properties in analogy to to the classical case of
principal bundles.

Example 16 1. For L = TM we obtain the case in which the connection r
is a connection in A,

2. For L = TM and A = TP=G and B = TP 0=H (P 0 is an H-reduction of
P ) we obtain the classical case equivalent to the standard case of principal
bundles.

3. For L = A and r = idA we consider only the Lie algebroid A and its Lie
subalgebroid B. This case produces a characteristic homomor�sm for the
inclusion B � A , in particular for the inclusion of Lie algebras h � g;
and in particular for inclusion of principal bundles P 0 � P which �nally
produces a new theorem for principal bundles.

It is the main goal of my talk.

4. Let f be a vector bundle equipped with a Riemannian metric g: If A = A (f)
(i.e. A is the Lie algebroid of the principal bundle of frames Lf ) and
B � A is a Riemannian reduction B = A (f; fgg) (more precisely B is the
Lie algebroid of the principal bundle of orthogonal frames). We obtain the
case equivalent to the one considered by M. Crainic of the characteristic
exotic characteristic classes for a representation of any Lie algebroid L in
a vector bundle.

To construct the characteristic homomorphism for (A;B;r) we notice that
for a general connection r : L! A does not exist a suitable notion of a connec-
tion form. The connection form was used in the direct formula for the classical
case. We must do a characteristic homomorphism without any "connection
form". In the classical case (P; P 0; !) take auxiliarily a connection � in P 0 and
extend it to a connection in P: Let !� : P ! g be the connection form. Then it
appears that the characteristic homomorphism for (P; P 0; !) can be de�ned on
the lewel of di¤erential forms via

(��	)x (w1 ^ ::: ^ wk) =


	x;

�
�!� � ŵ1

�
^ ::: ^

�
�!� � ŵk

��
for 	 2 Sec

Vk
(ggg=hhh)

�, x 2M , wi 2 TxM and ŵi being the horizontal lifting of
wi with respect to the �at connection ! taken at the beginning.
In the general case (A;B;r) we de�ne the homomorphism

!B;r : L �! ggg=hhh

given by
!B;r (w) =

�
�
�
!j��B � r

�
(w)
�
:

12



Remark 17 (1) It is important observation that !B;r does not depend on the
choice of an auxiliary connection �B (�B � �0B takes values in hhh)
(2) !B;r = 0 if r takes values in B:

De�nition 18 De�ne the homomorphism of algebras

� : Sec
^
(ggg=hhh)

� �! 
 (L) (3)

by
(�	) (x;w1 ^ ::: ^ wk) = h	x; !B;r (w1) ^ ::: ^ !B;r (wk)i ;

	 2 Sec
Vk
(ggg=hhh)

�, x 2M , wi 2 Ljx.

Observe that � can be written as superposition � = r� ��o;

� : Sec
^
(ggg=hhh)

� �o�! 
 (A)
r�
�! 
 (L)

where r� is the pullback of forms and �o is the homomorphism given for par-
ticular case of �at connection r = idA, so that

(�o	) (x; �1 ^ ::: ^ �k) = h	x; !B;idA (�1) ^ ::: ^ !B;idA (�k)i
=


	x;

�
�!j��B (�1)

�
^ ::: ^

�
�!j��B (�1)

��
for 	 2 Sec

Vk
(ggg=hhh)

�, x 2M , �i 2 Ajx.
In the algebra Sec

V
(ggg=hhh)

� we distinguish the subalgebra
�
Sec

V
(ggg=hhh)

��
Io(B)

of invariant sections with respect to an adjoint representation of B in
V
(ggg=hhh)

�
:

	 2
�
Sec

Vk
(ggg=hhh)

�
�
Io(B)

if and only if

(B � �) h	; [�1] ^ ::: ^ [�k]i =
kX
j=1

(�1)j�1 h	; [[j � �; �j ]] ^ [�1] ^ :::|̂::: ^ [�k]i

for all � 2 SecB and �j 2 Secggg. In particular, if 	 2
�
Sec

Vk
(ggg=hhh)

�
�
Io(B)

then

for X 2 X (F ) and � = �B �X we have

X h	; [�1] ^ ::: ^ [�k]i =
kX
j=1

(�1)j�1 h	; [[j � �B �X; �j ]] ^ [�1] ^ :::|̂::: ^ [�k]i :

(4)
In the space

�
Sec

V
(ggg=hhh)

��
Io(B)

of invariant cross�sections we have a di¤er-

ential �� de�ned by

��	; [�1] ^ ::: ^ [�k]

�
= �

X
i<j

(�1)i+j h	; [[�i; �j ]] ^ [�1] ^ :::̂{:::|̂::: ^ [�k]i ;

	 2 Sec
Vk
(ggg=hhh)

�
Io(B), �i 2 Secggg:

H (ggg;B) is the cohomology algebra of
��
Sec

V
(ggg=hhh)

��
Io(B)

; ��
�
:

13



Theorem 19 The homomorphism � commutes with the di¤erentials �� and dL:

Corollary 20 � and �o induce the homomorphisms in cohomology

�#(A;B;r) : H (ggg;B)
�o#�! H (A)

r#

�! H (L) : (5)

The map�# is called the characteristic homomorphism of the triple (A;B;r).
Of course, �o is the characteristic homomorphism of the pair (A;B) ; B � A:

Remark 21 We see that for a pair of transitive Lie algebroids (A;B), B � A,
[they can be both regular over the same foliation] and for an arbitrary element
� 2 H (ggg;B) there exists a �universal� cohomology class �o# (�) 2 H (A)
such that for any (nonregular in general ) Lie algebroid L on M and a �at
L-connection r : L! A the equality holds

�# (�) = r# (�o# (�)) :

Problem 22 Is the characteristic homomorphism �o# : H (ggg;B) �! H (A) a
monomorphism for a given B � A ?

The characteristic homomorphism �#(A;B;r) : H (ggg;B) �! H (L) has func-
toriality property and is invariant under homotopic subalgebroids.

De�nition 23 Two Lie subalgebroids B0; B1 � A (both over (M;F )) are said
to be homotopic if there exists a Lie subalgebroid B � TR�A over (R�M;TR� F )
such that for t 2 f0; 1g

�x 2 Btjx () (�t; �x) 2 Bj(t;x): (6)

B is called a subalgebroid joining B0 with B1.

This relation is closely related to the relation of homotopic subbundles of a
principal bundle.

Theorem 24 (The �rst homotopy independence ) If B0; B1 � A are homotopic
subalgebroids of A and r : L ! A is a �at L-connection in A, characteristic
homomorphisms �# : H (ggg;B0) ! H (L) and �# : H (ggg;B1) ! H (L) are
equivalent in this sense that there exists an isomorphism � : H (ggg;B0)

'�!
H (ggg;B1) of algebras such that the diagram

�#

�
�
�
��
HL(M)

�#
@
@
@
@R

H(ggg;B0)

H(ggg0; B1)
?

� '
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commutes.

De�nition 25 Let H0; H1 : L
0 ! L be homomorphisms of Lie algebroids. By

a homotopy joining H0 to H1 we mean a homomorphism of Lie algebroids

H : TR� L0 �! L

such that H (�0; �) = H0 and H (�1; �) = H1 where �0 and �1 are null vector
tangent bundle of R at 0 and 1, respectively. We say that H0 and H1 are
homotopic and write H0 � H1:

The homotopy H : TR � L0 �! L determines a chain homotopy operator
[?] which implies that H#

0 = H#
1 : HL (M)! HL0 (M

0).

Theorem 26 (The second homotopy independence ) If r0; r1 : L ! A are
homotopic �at L-connections of A then characteristic homomorphisms are equal
�#(A;B;r0) = �#(A;B;r1):

2.3 Application to principal bundles

Taking a connected principal bundle P = P (M;G) with a structure Lie group
G and a connected H-reduction P 0 � P and using the isomorphism of algebras
� we have the commutative diagram

H (g;H)
�0�! Hr

dR (P ) �! HdR (P )
�=# � k

H (ggg;A (P ))
�0�! HA(P ) (M) :

as well as we obtain

Theorem 27 If G is a compact connected group and P 0 is a connected H-
reduction in an G-principal bundle P , then there exists a �universal�homomor-
phism �#o acting from the algebra H (g;H) to the total cohomology HdR (P ),

�#o : H (g;H) �! HdR (P ) :

In the case of �at principal bundle P for every �at connection ! in the bundle
P the characteristic homomorphism �# : H (g;H) �! HdR (M) is factorized
by �#o , i.e. the diagram below commutes

H(g;H) H(M)-
�#

H(P )

�o
#

�
�
�
��

!#
@
@
@
@R
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where !# on the level of right-invariant forms 
r is given as the pullback of
forms,

!� : 
r (P ) �! 
 (M) ;

!� (�) (x;u1 ^ ::: ^ uk) = � (z; ~u1 ^ ::: ^ ~uk)

where z 2 Pjx, ~ui is the horizontal lift of ui. [Recall that Hr
dR (P ) := H (
r (P )) '

HdR (P ).] In the general case (noncompact or nonconnected Lie group G) there
exists a homomorphism �#o : H (g;H) �! Hr

dR (P ) of algebras which factorizes
the characteristic homomorphism for every �at connection. The homomorphism
�#o on the level of forms is given by the following direct formula:

(�o ) (z;w1 ^ ::: ^ wk) = h ; [�! (z;w1)] ^ ::: ^ [�! (z;wk)]i ;

where ! is the form of a connection on P extending an arbitrary connection on
P 0.

It seems to be interesting the following question:
� Is the homomorphism �#o : H (g;H) �! H (P ) a monomorphism?

2.4 Application to �nitely dimensional Lie algebras

A pair (h; g) ; h � g; of �nite dimensional Lie algebras, we have a characteristic
homomorphism

�o : H (g; h) =
�^

(g=h)
�
�
Io
! H (g)

(�o ) (w1 ^ ::: ^ wk) = (�1)k h ; [w1] ^ ::: ^ [wk]i

(H (g; h) = H (g;H) for aritrary connected Lie group having h as its Lie alge-
bra). The homomorphism �o can be nontrivial. For example for g =gl (n;R)
and h = so (n) (= (Sk (n;R) ) the trace formula tr : g=h!R is invariant and
gives nontrivial element in the cohomology.
If �o is not trivial than the identical homomorphism id : g! g is not ho-

motopic to any homomorphism from g to g:
Let h1 be the next Lie algebra and � : h1 ! g be any homomorphism of Lie

algebras. If �(g;h;�) = �# � �o is not trivial then � can not be homotopic to
any homomorphism of Lie algebras h1 ! h:

2.5 Crainic characteristic classes

Take a vector bundle f and its Lie algebroid A (f) as well as a Riemannian metric
h in f. The metric h yields the Lie subalgebroid B = A (f; fhg). We recall that
L 2 Sec (A (f; fhg)) () L 2 Sec (A (f)) and for each sections �; � 2 Sec (f) the
formula holds

h (L (�) ; �) = h (�; �)� h (�;L (�)) :

16



Two Lie subalgebroids Bi = A (f; fhig) ; i = 1; 2; corresponding to Riemannian
metrics hi are homotopic Lie subalgebroids.The Atiyah sequences for A (f) and
A (f; fhg) are

0 �! End (f) �! A (f) �! TM �! 0;

0 �! Sk (f) �! A (f; fhg) �! TM �! 0:

If the vector bundle f is nonorientable (nonoriented), then the characteristic ho-
momorphism�# : H (End f; A (f; fhg))! H (L) corresponding to (A (f) ; A (f; fhg) ;r)
produces the Crainic characteristic classes. Indeed, using the isomorphism �
from Theorem ?? and the classical relation (Kamber-Tondeur, Godbillon) we
have

H (End f; A (f; fhg)) �= H (gl (n;R) ; O (n)) �=
^
(y1; y3; :::; y2n0�1)

where n0 is the largest odd integer � n; and we have by de�nition y2k�1 2
H4k�3 (End f; A (f; fhg)) are represented by the multilinear trace form ~yk 2
�
�V
(End (f) =Sk (f))

��
~y2k�1 ([A1] ; :::; [A4k�3]) =

X
�2S4k�3

sgn� tr
�
~A�(1) � ::: � ~A�(4k�3)

�
(7)

where ~Ai = 1
2 (Ai +A

�
i ) is the symmetrization of Ai with respect to the inner

scalar product induced by the metric h.
In the case of oriented vector bundle with a metric volume v, the matric h

and v induce an SO (n;R)-reduction L (f; fh; vg) of the frames bundle Lf of f:
The Atiyah sequences for A (f; fh; vg) is

0 �! Sk (f) �! A (f; fh; vg) �! TM �! 0:

Consider the characteristic homomorphism�# : H (End f; A (f; fh; vg))! H (L)
corresponding to (A (f) ; A (f; fh; vg) ;r). Therefore
� if n = 2m� 1 is odd, then
H (End f; A (f; fh; vg)) �= H (gl (2m� 1;R) ; SO (2m� 1)) �= H (gl (2m� 1;R) ; O (2m� 1)) ;

� if n = 2m is even, then

H (End f; A (f; fh; vg)) �= H (gl (2m;R) ; SO (2m)) �=
^�

y1; y3; :::; y2n0�1;
�
Sf
�
2m

�
where where n0 is the largest odd integer< 2m; y2k�1 2 H4k�3 (End f; A (f; fh; vg))
are represented by the multilinear trace form ~yk 2 �

�V
(End (f) =Sk (f))

��
de�ned by (7), and

�
Sf
�
2m
2 H2m (End f; A (f; fh; vg)) is represented by

skew P¤a�an Sf2m 2 �
�V2m

(End (f) =Sk (f))
�
�
,

Sf2m ([f1] ; ::::; [f2m]) = d
�
Sf
� �ef 1; ::::; ef 2m�

=
X

�2S2m
�(1)<�(2)

�(3)<:::<�(2m)

sgn� Sf
�hef �(1); ef �(2)i ; ef �(3); ::::; ef �(2m)�
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where f1; :::; f2m 2 End (� (f)), d is the di¤erential on the algebra
V
(End (f))

�,

d (�) (f1; :::; fn) =
X

p<q
(�1)p+q � ([fp; fq] ; f1; :::p̂:::q̂:::; fn)

=
X
�2Sn

�(1)<�(2)
�(3)<:::<�(n)

sgn (�) �
��
f�(1); f�(2)

�
; f�(3); :::; f�(n)

�
;

and Sf 2 �
�V2m�1

(End (f) =Sk (f))
�
�
is described by the formula

Sf (f1; ::::; f2m�1) =
X

�2S2m�1

sgn�Pf
�
f�(1);

�
f�(2); f�(3)

�
; ::::;

�
f�(2m�2); f�(2m�1)

��
=

X
�2S2m�1

sgn�
�
e; �

�
f�(1)

�
^ �

�
f�(2); f�(3)

�
^ ::: ^ �

�
f�(2m�2); f�(2m�1)

��
;

Pf 2 Symm (End (f) ;C1 (M)), Pf (f1; ::::; fm) = (e; � ( f1) ^ ::: ^ � ( fm)),
e is a non-zerro cross-section of �

�^top
f
�
, � : � (End f) ! �

�V2
f
�
is

given by (� (') ; X ^ Y ) = ('X; Y ), ' 2 � (End f), X; Y 2 � (f).

Theorem 28

�# (~y2k�1) = (�1)
(k+1)(k+2)

2 � (2k � 1)!
22k�1 � k! � (k � 1)! [u2k�1 (f;r)]

where u2k�1 (f;r) represent the Crainic characteristic classes.

Explicit formula use any metric h in f and the symmetric-values form � =
r�rh where r is any �at L-connection in f and rh is the adjoint L-connection
induced by the metric h.
rh is de�ned by

#L (a) (h (�; �)) = h (ra�; �) + h
�
�;rha�

�
dla dowolnych a 2 Sec (A), �; � 2 � (f) :

u2k�1 (f;r) = (�1)
k(k+1)

2 csk
�
r;rh

�
;

k - odd (we add that only odd k gives nontrivial classes for real f) and

csk
�
r;rh

�
=

Z 1

0

chk
�
raff

�
= (�1)k�1 k! � (k � 1)!

(2k � 1)! �tr

0@� ^ ::: ^ �| {z }
2k�1

1A 2 
2k�1 (L)

for the a¢ ne combination raff = t � r + (1� t) � rh and chk
�
raff

�
=

tr
�
Rr

aff
�k
:

We add that Crainic have lost the skew Pfa¢ an
�
Sf
�
2m

in oriented vector
bundle of even rank.
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