LOCALLY CONFORMAL SYMPLECTIC STRUCTURES AND THEIR GENERALIZATIONS FROM THE POINT OF VIEW OF LIE ALGEBROIDS

ROMAN KADOBIANSKI, JAN KUBARSKI,

Abstract

We study locally conformal symplectic structures and their generalizations from the point of view of transitive Lie algebroids. To consider l.c.s. structures and their generalizations we use Lie algebroids with trivial adjoint Lie algebra bundle $M \times \mathbb{R}$ and $M \times \mathfrak{g}$. We observe that important l.c.s's notions can be translated on the Lie algebroid's language. We generalize l.c.s. structures to \mathfrak{g}-l.c.s. structures in which we can consider an arbitrary finite dimensional Lie algebra \mathfrak{g} instead of the commutative Lie algebra \mathbb{R}.

1. L.C.S Structures from the point of View of Lie algebroids

We study locally conformal symplectic structures and their generalizations from the point of view of transitive Lie algebroids. We recall that an l.c.s. structure on a manifold M is a pair (ω, Ω) of differentiable forms on M such that
(1) ω is a real closed 1 -form on M,
(2) Ω is a real non-degenerated 2 -form fulfilling the property

$$
d \Omega=-\omega \wedge \Omega
$$

From the non-degeneracy of Ω follows that M has even dimension.
By a transitive Lie algebroid on a manifold $M[\mathrm{P} 1]$ we mean a system $\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)$ consisting of a vector bundle A over M and mappings $\llbracket \cdot, \cdot \rrbracket: \operatorname{Sec} A \times \operatorname{Sec} A \rightarrow \operatorname{Sec} A$, $\#_{A}: A \rightarrow T M$, such that
(a) $(\operatorname{Sec} A, \llbracket \cdot, \cdot \rrbracket)$ is a real Lie algebra,
(b) $\#_{A}$, called an anchor, is an epimorphism of vector bundles,
(c) $\operatorname{Sec} \#_{A}: \operatorname{Sec} A \rightarrow \mathfrak{X}(M), \xi \mapsto \#_{A} \circ \xi$, is a homomorphism of Lie algebras,
(d) $\llbracket \xi, f \cdot \eta \rrbracket=f \cdot \llbracket \xi, \eta \rrbracket+\left(\#_{A} \circ \xi\right)(f) \cdot \eta, \xi, \eta \in \operatorname{Sec} A, f \in \Omega^{0}(M)=C^{\infty}(M)$.

The axiom (c) follows from the remaining ones, see $[\mathrm{H}]$, $[\mathrm{B}-\mathrm{K}-\mathrm{W}]$.
It follows that $\boldsymbol{g}:=\operatorname{ker} \#_{A}$ is a LAB (Lie algebra bundle), called the adjoint of A. The Lie algebra \boldsymbol{g}_{x} is called the structure Lie algebra at x. The exact sequence

$$
0 \rightarrow \boldsymbol{g} \rightarrow A \xrightarrow{\#_{A}} T M \rightarrow 0
$$

is called the Atiyah sequence of A, while any splitting $\lambda: T M \rightarrow A, \#_{A} \circ \lambda=i d_{T M}$, is a connection in A. The following geometric objects give rise to transitive Lie algebroids:

- Lie groupoids,
- principal fibre bundles,
- vector bundles,
- transversely complete foliations,
- nonclosed Lie subgroups.

We add that differential groupoids (non-transitive, in general), Poisson and Jacobi manifolds as well as any infinitesimal action of a Lie algebra on a manifold produce nontransitive Lie algebroids. The image of the anchor always is an integrable singular (or regular) foliation $[\mathrm{P} 2],[\mathrm{F}]$, and the restriction of the Lie algebroid to any leaf of this foliation is a transitive Lie algebroid.

To consider l.c.s. structures and their generalizations we use Lie algebroids with trivial adjoint Lie algebra bundle $\boldsymbol{g}=M \times \mathfrak{g}$.

From the general theorem concerning the form of any transitive Lie algebroids (Mackenzie [M], Kubarski [K1]) we have:

- Each transitive Lie algebroid on M with a trivial adjoint bundle $\boldsymbol{g} \cong M \times \mathbb{R}$ is isomorphic to

$$
A=T M \times \mathbb{R}
$$

with $\#_{A}=\operatorname{pr}_{1}: T M \times \mathbb{R} \rightarrow T M$ as the anchor and the bracket $\llbracket \cdot, \cdot \rrbracket$ in $\operatorname{Sec} A$ is defined via some flat covariant derivative ∇ in $M \times \mathbb{R}$ and a 2form $\Omega \in \Omega^{2}(M)$ fulfilling the Bianchi identity $\nabla \Omega=0$ in the following way

$$
\llbracket(X, f),(Y, g) \rrbracket=\left([X, Y], \nabla_{X} g-\nabla_{Y} f-\Omega(X, Y)\right)
$$

We recall that a covariant derivative ∇ in a vector bundle ξ determines a standard operator $d_{\nabla}: \Omega^{*}(M ; \xi) \rightarrow \Omega^{*}(M ; \xi)$ and $d_{\nabla} \theta$ is sometimes denoted by $\nabla \theta$. If ∇ is flat then $\left(d_{\nabla}\right)^{2}=0$ and it determines the cohomology space $H_{\nabla}(M ; \xi)$ in the obvious way.

Each flat covariant derivative in $\boldsymbol{g}=M \times \mathbb{R}$ is of the form

$$
\nabla_{X} f=\partial_{X} f+\omega(X) \cdot f
$$

where ω is a closed differentiable 1-form on M. Then the differential operator d_{∇} is denoted rather by $d_{\omega}[\mathrm{G}-\mathrm{L}],[\mathrm{H}-\mathrm{R}]$. We have

$$
d_{\omega}(\theta)=d \theta+\omega \wedge \theta
$$

and write $H_{\omega}(M):=H_{d_{\omega}}(M)$.
The condition $\nabla \Omega=0$ is then equivalent to $d \Omega=-\omega \wedge \Omega$.
Hence any transitive Lie algebroid with the trivial adjoint bundle $\boldsymbol{g}=M \times \mathbb{R}$ is determined by the following data:
$\left(^{*}\right)$ a closed 1-form ω and a 2-form Ω such that $d \Omega=-\omega \wedge \Omega$.
The Lie algebroid obtained in this way will be denoted by

$$
(T M \times \mathbb{R}, \omega, \Omega)
$$

Lemma 1.1. A connection $\lambda: T M \rightarrow T M \times \mathbb{R}$ in the Lie algebroid $A=(T M \times \mathbb{R}, \omega, \Omega)$ is of the form $\lambda(X)=(X, \eta(X))$ for a 1-form $\eta \in \Omega^{1}(M)$. The curvature form $\Omega^{\lambda}(X, Y)=\llbracket \lambda X, \lambda Y \rrbracket-\lambda[X, Y]$ of the connection λ is equal to

$$
\begin{equation*}
\Omega^{\lambda}=d_{\omega}(\eta)-\Omega=d \eta+\omega \wedge \eta-\Omega \tag{1.1}
\end{equation*}
$$

According to $\left(^{*}\right)$ the pair (ω, Ω) determining the above Lie algebroid is precisely a locally conformal symplectic structure (l.c.s. structure, for short) on the manifold M provided that the 2 -form Ω is non-degenerate. Therefore our transitive Lie algebroids $T M \times \mathbb{R}$ determined by (ω, Ω) are natural generalizations of the locally conformal symplectic structures. For an l.c.s. structure (ω, Ω), following $\left(^{*}\right)$, the form Ω represents the cohomology class $[\Omega] \in H_{\omega}^{2}(M)$ which is called the Lichnerowicz class of the l.c.s structure (ω, Ω) [B2]. If the 1-form ω is exact the
l.c.s. structure is called globally conformal symplectic structure. The property that an l.c.s. structure is global can be equivalently expressed in the language of Lie algebroids. $[\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{W}]$, $[\mathrm{K}-\mathrm{M}]$. For this purpose we recall that a transitive Lie algebroid $\left(A, \llbracket \cdot, \cdot \rrbracket, \#_{A}\right)$ is called invariantly oriented $[\mathrm{K} 3]$ if there is specified a nonsingular cross section ε of the bundle $\Lambda^{n} \boldsymbol{g}, \boldsymbol{g}:=\operatorname{ker} \#_{A}$ and $n=\operatorname{rank} \boldsymbol{g}$, which is invariant with respect to the adjoint representation of A in $\bigwedge^{n} \boldsymbol{g}$, equivalently, if \boldsymbol{g} is orientable and the modular class of the Lie algebroid is zero ([E-L-W], $[\mathrm{K}-\mathrm{M}]$). We add that for a transitive Lie algebroid the modular class is equal to the characteristic class of the top-power of the adjoint representation ad_{A}. The structure Lie algebras \boldsymbol{g}_{x} of the invariantly oriented Lie algebroid are unimodular.

A cross-section ε of the bundle $\bigwedge^{n} \boldsymbol{g}$ is invariant if and only if, in any open subset $U \subset M$ on which ε is of the form $\varepsilon_{\mid U}=\left(h_{1} \wedge \ldots \wedge h_{n}\right)_{\mid U}, h_{i} \in \operatorname{Sec} \boldsymbol{g}$, we have, for all $\xi \in \operatorname{Sec} A$,

$$
\sum_{i=1}^{n}\left(h_{1} \wedge \ldots \wedge \llbracket \xi, h_{i} \rrbracket \wedge \ldots \wedge h_{n}\right)_{\mid U}=0
$$

In the case $A=(T M \times \mathbb{R}, \omega, \Omega)$ we have $n=1$ and $\boldsymbol{g}=M \times \mathbb{R}$ and a positive function $\varepsilon \in C^{\infty}(M)=\operatorname{Sec}(M \times \mathbb{R})$ is invariant if and only if ε is ∇-constant, $\nabla \varepsilon=0[\mathrm{~K} 3$, Lemma 6.2.1]. The condition $\nabla \varepsilon=0$ is equivalent to $\omega=d(-\ln (\varepsilon))$.

Theorem 1.1. Let (ω, Ω) be an l.c.s. structure on an arbitrary m-dimensional connected manifold (oriented or not) The following conditions are equivalent:
(a) the l.c.s. structure (ω, Ω) is globally conformal symplectic structure (i.e. $[\omega]=0)$.
(b) the associated Lie algebroid $A=(T M \times \mathbb{R}, \omega, \Omega)$ is invariantly oriented,
(c) $H_{\partial_{A}^{o r}, c}^{m+1}(A$, or $(M)) \neq 0$,
(d) $H_{\partial_{A}^{o r}, c}^{m+1}(A, \operatorname{or}(M))=\mathbb{R}$, and the pairing

$$
H^{j}(A) \times H_{\partial_{A}^{o r}, c}^{m+1-j}(A, \operatorname{or}(M)) \rightarrow H_{\partial_{A}^{o r}, c}^{m+1}(A, \text { or }(M)) \cong \mathbb{R}
$$

is non-degenerate, i.e. $H^{j}(A) \cong\left(H_{\partial_{A}^{o r}, c}^{m+1-j}(A, \operatorname{or}(M))\right)^{*}$.
Proof. (a) $\Longleftrightarrow(\mathrm{b})$ see $[\mathrm{K}-\mathrm{K}-\mathrm{K}-\mathrm{W}]$,
(b) $\Longleftrightarrow(\mathrm{c}) \Longleftrightarrow(\mathrm{d})$ see $[K-M]$.

Remark 1.1. (1) For an orientable manifold M the conditions (c) and (d) are equal to:
(c') $H_{c}^{m+1}(A) \neq 0$,
(d') $H_{c}^{m+1}(A)=\mathbb{R}$, and the pairing

$$
H^{j}(A) \times H_{c}^{m+1-j}(A) \rightarrow H_{c}^{m+1}(A) \cong \mathbb{R}
$$

is non-degenerate, i.e. $H^{j}(A) \cong\left(H_{c}^{m+1-j}(A)\right)$.
(2) $\partial_{A}^{o r}$ is the canonical representation of A in the orientation bundle or (M), $\left(\partial_{A}^{o r}\right)_{\gamma}(\sigma)=\left(\partial^{o r}\right)_{\#_{A}(\gamma)}(\sigma), \gamma \in A, \sigma \in \Gamma(o r(M)) . \partial^{o r}$ is the canonical flat structure of the orientation bundle or (M) [B-T].
(3) Each representation ∇ of a Lie algebroid A in a vector bundle ξ (i.e. a homomorphism of a Lie algebroid A in the Lie algebroid $A(\xi)$ of the vector bundle ξ $[\mathrm{K} 2],[\mathrm{M}])$ determines a standard differential operator $d_{\nabla}: \Omega(A ; \xi) \rightarrow \Omega(A ; \xi)$ and $H_{\nabla}(A ; \xi)$ is the space of cohomology of the complex $\left(\Omega(A ; \xi), d_{\nabla}\right)$. Local trivializations of $A(\mathfrak{f})$ are constucted in the following way: Let $\psi: U \times V \rightarrow p^{-1}[U]=\mathfrak{f}_{\mid U}$
be a local trivialization of a vector bundle \mathfrak{f}; V is the typical fibre. Consider the trivial Lie algebroid $T U \times \operatorname{End}(V)$. For a cross-section $\sigma \in \operatorname{Sec} \mathfrak{f}$, denote by σ_{ψ} the V-valued function $U \ni x \mapsto \psi_{x}^{-1}(\sigma(x)) \in V$. The mapping

$$
\begin{gathered}
\bar{\psi}: T U \times \operatorname{End}(V) \longrightarrow A(\mathfrak{f})_{\mid U} \\
\bar{\psi}(v, a)(\sigma)=\psi_{x}\left(v\left(\sigma_{\psi}\right)+a\left(\sigma_{\psi}(x)\right)\right),
\end{gathered}
$$

$\left(v \in T_{x} U, x \in U, a \in \operatorname{End}(V), \sigma \in \operatorname{Sec} f\right)$ is an isomorphism of Lie algebroids [K2].
(4) The associated Lie algebra bundle of the considered Lie algebroid $A=$ $(T M \times \mathbb{R}, \omega, \Omega)$ is the trivial line bundle $\boldsymbol{g}=M \times \mathbb{R}$. Therefore, the top group of cohomology $H_{\partial_{A}^{o r}, c}^{m+1}(A$, or $(M))$ can be written (analogously to real coefficients, see [K-K-K-W]) as follows

$$
H_{\partial_{A}^{o r}, c}^{m+1}(A ; \text { or }(M))=H_{d_{\partial-\omega} \otimes \partial^{o r}}^{m}(M ; \text { or }(M))=H_{\left(\partial^{o r}\right)^{-\omega}}^{m}(M ; \text { or }(M)) .
$$

Then the equivalence $(a) \Longleftrightarrow$ (c) follows trivially, since

$$
H_{\left(\partial^{o r}\right)^{-\omega}}^{m}(M ; \text { or }(M)) \neq 0 \Longleftrightarrow[-\omega]=0,
$$

see $[\mathrm{K}-\mathrm{M}]$.
Two l.c.s. structures (ω, Ω) and $\left(\omega^{\prime}, \Omega^{\prime}\right)$ on a manifold M are called conformally equivalent if

$$
\Omega^{\prime}=\frac{1}{a} \Omega, \quad \omega^{\prime}=\omega+\frac{d a}{a}
$$

for a nowhere vanishing function a on M (non-singular for short).
If two l.c.s. structures $\left(\omega^{\prime}, \Omega^{\prime}\right)$ and (ω, Ω) on a manifold M are conformally equivalent then the associated Lie algebroids $A^{\prime}=\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right)$ and $(T M \times \mathbb{R}, \omega, \Omega)$ are isomorphic via the mapping

$$
\begin{gathered}
H:\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right) \longrightarrow(T M \times \mathbb{R}, \omega, \Omega) \\
H(X, f)=(X, a \cdot f)
\end{gathered}
$$

where $a \in C^{\infty}(M)$ is a non-singular smooth function. The isomorphism $H: A^{\prime} \rightarrow$ A of the above form will be called a conformal isomorphism.

We add that the general form of a homomorphism $H: T M \times \mathbb{R} \rightarrow T M \times \mathbb{R}$ of vector bundles commuting with anchors $\#_{A}=p r_{1}$ is as follows

$$
\begin{equation*}
H(X, f)=H_{\eta, a}(X, f):=(X, \eta(X)+a \cdot f) \tag{**}
\end{equation*}
$$

for $\eta \in \Omega^{1}(M)$ and $a \in C^{\infty}(M)$.
Proposition 1.1. (A) The following conditions are equivalent:
(1) $H_{\eta, a}$ is a homomorphism of Lie algebroids,
(2) (a) $\nabla \eta=\Omega-a \cdot \Omega^{\prime}$,
(b) $\nabla_{X}(a \cdot f)=a \cdot \nabla_{X}^{\prime} f$,
(3) (a) $d_{\omega}(\eta)=d \eta+\omega \wedge \eta=\Omega-a \cdot \Omega^{\prime}$,
(b) $a \cdot\left(\omega^{\prime}-\omega\right)=d a$.

The homomorphism $H_{\eta, a}$ is an isomorphism of Lie algebroids if and only if a is non-singular. Conditions (1), (2), (3) are then equivalent to
(4) (a) $\Omega^{\prime}=\frac{1}{a} \cdot\left(\Omega-d_{\omega}(\eta)\right)$, (b) $\omega^{\prime}=\omega+d(\ln |a|)$.
(B) For an arbitrary Lie algebroid $A^{\prime}=\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right)$ and data (η, a) where $\eta \in \Omega^{1}(M)$ and a is a non-singular function, the differential forms $\omega=\omega^{\prime}-$ $d(\ln |a|), \Omega=a \cdot \Omega^{\prime}+d_{\omega}(\eta)$ fulfil the condition $d \Omega=-\omega \wedge \Omega$, i.e. the data (ω, Ω) determines a Lie algebroid $A=(T M \times \mathbb{R}, \omega, \Omega)$ and $H_{\eta, a}: A^{\prime} \rightarrow A$ given by (${ }^{* *}$) is an isomorphism of Lie algebroids.

Proof. Easy calculation.

$$
\begin{gathered}
\text { Clearly } H_{\eta^{\prime}, a^{\prime}} \circ H_{\eta, a}=H_{\eta^{\prime}+a^{\prime} \cdot \eta, a^{\prime} \cdot a},\left(H_{\eta, a}\right)^{-1}=H_{-\frac{\eta}{a}, \frac{1}{a}} \text {. In particular, } \\
H_{\eta, a}=H_{\eta, 1} \circ H_{0, a},
\end{gathered}
$$

see the diagram

It means that if A^{\prime} is isomorphic to A then there exists a Lie algebroid $A^{\prime \prime}=$ $\left(T M \times \mathbb{R}, \omega, \Omega^{\prime \prime}\right), \Omega^{\prime \prime}=a \cdot \Omega^{\prime}$, conformally isomorphic to A^{\prime}, i.e. such that $[A]$, $\left[A^{\prime \prime}\right] \in \operatorname{Opext}(T M, \nabla, M \times \mathbb{R})=$ the set of isomorphic classes of Lie algebroids having the same representation ∇ (a flat covariant derivative ∇).

Let $\left(\omega^{\prime}, \Omega^{\prime}\right)$ and (ω, Ω) be l.c.s. structures. We observe that the isomorphism $H_{\eta, a}: A^{\prime} \rightarrow A$ given by $\left({ }^{* *}\right)$ is equivalent to conformal equivalence of the associated l.c.s. structures if and only if $\eta=0$.

How we can formulate the problem of existence of l.c.s. structures? We have the simple

Proposition 1.2. Any Lie algebroid $A^{\prime}=\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right)$ is isomorphic to $A=$ $(T M \times \mathbb{R}, \omega, \Omega)$ with Ω non-degenerate (i.e. (ω, Ω) is an l.c.s. structure) if and only if there exists in A^{\prime} a connection for which the curvature tensor is non-degenerate.
Proof. Let $H_{\eta, a}: A^{\prime} \rightarrow A$ be an isomorphism of Lie algebroids
$H_{\eta, a}^{+}(f)=a \cdot f$. For arbitrary connections λ^{\prime} and λ in A^{\prime} and A, respectively such that $H_{\eta, a} \circ \lambda^{\prime}=\lambda$ we have the following equality for curvature tensors

$$
\Omega^{\lambda}=H_{\eta, a}^{+} \circ \Omega^{\lambda^{\prime}}
$$

Therefore, if Ω is nondegenerate and λ^{\prime} is a connection such that $H_{\eta, a} \circ \lambda^{\prime}=\lambda$ where $\lambda(v)=(v, 0)$, then $\Omega^{\lambda}=-\Omega$ (see lemma 1.1) and, clearly, $\Omega^{\lambda^{\prime}}$ is non-degenerate.

Conversely, if $\lambda^{\prime}(X)=(X, \eta(X))$ is any connection in A^{\prime} such that $\Omega^{\lambda^{\prime}}$ is nondegenerate, then $H_{-\eta, 1}$ is an isomorphism of A^{\prime} on $A:=\left(T M \times \mathbb{R}, \omega^{\prime},-\Omega^{\lambda^{\prime}}\right)$ (see (1.1)) and $\left(\omega^{\prime},-\Omega^{\lambda^{\prime}}\right)$ is an l.c.s. structure.

So, the problem of existing of l.c.s. structures can be precisely formulated as follows:

Problem 1.1. We introduce into the class of pairs (ω, Ω) fulfilling (*), i.e. $d \Omega=$ $-\omega \wedge \Omega$, the equivalence relation
r) $\left(\omega^{\prime}, \Omega^{\prime}\right) \approx(\omega, \Omega) \equiv$ the Lie algebroids $A^{\prime}=\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right)$ and $A=$ $(T M \times \mathbb{R}, \omega, \Omega)$ are isomorphic, i.e. there exists $\eta \in \Omega^{1}(M)$ and $a \in$ $C^{\infty}(M), a(x) \neq 0$ for all $x \in M$, such that (4a), (4b) hold: (4a) $\Omega^{\prime}=$ $\frac{1}{a}(\Omega-d \eta-\omega \wedge \eta),(4 b) \omega^{\prime}=\omega+\frac{d a}{a}$.
Let $\operatorname{dim} M$ be even. We can ask: Does there in every (in given) equivalence class $\left[\left(\omega^{\prime}, \Omega^{\prime}\right)\right]$ exist (ω, Ω) being an l.c.s. structure; equivalently, does there in the Lie algebroid $A^{\prime}=\left(T M \times \mathbb{R}, \omega^{\prime}, \Omega^{\prime}\right)$ exist a connection with non-degenerate curvature tensor, i.e. equivalently, does there exist a 1-form $\eta \in \Omega^{1}(M)$ such that $d \eta+\omega \wedge \eta-\Omega$ is a non-degenerate.

This problem has a local solution, see Proposition 2.5 below for more general situations.

We add that for a fixed closed form ω, i.e. a flat covariant derivative $\nabla_{X} f=$ $\partial_{X} f+\omega(X) \cdot f$ in the trivial bundle $M \times \mathbb{R}$, the classification of Lie algebroids of the form $(T M \times \mathbb{R}, \omega, \cdot)$ up to isomorphism is as follows: for the class of isomorphic Lie algebroids O pext $(T M, \nabla, M \times \mathbb{R})$ we have $[\mathrm{M}]$

$$
\operatorname{Opext}(T M, \nabla, M \times \mathbb{R}) \cong H_{\nabla}^{2}(M ; \mathbb{R}), \quad[(T M \times \mathbb{R}, \omega, \Omega)] \mapsto[\Omega]
$$

A. Banyaga [B2] give examples of l.c.s. structures (ω, Ω) such that the Lichnerowicz class $[\Omega]$ is not trivial, $[\Omega] \neq 0$. For deformations and equivalence of l.c.s. structures see [B1].

To sum up we see that important l.c.s's notions can be translated into the Lie algebroid's language. We have the following table:
l.c.s.
$(M, \omega, \Omega) \equiv$
ω is closed,
$d \Omega=-\omega \wedge \Omega$.

globally c.s. \equiv
ω is exact

two l.c.s. structures
$\left(\omega^{\prime}, \Omega^{\prime}\right)$ and (ω, Ω) on M
are conformally equivalent \equiv
$\omega^{\prime}=\omega+\frac{d a}{a}, \Omega^{\prime}=\frac{1}{a} \Omega$

$$
\begin{aligned}
& A=T M \times \mathbb{R} \\
& \text { with anchor } \#_{A}=p r_{1}: T M \times \mathbb{R} \rightarrow T M, \\
& \text { with bracket } \\
& \llbracket(X, f),(Y, g) \rrbracket= \\
& \left([X, Y], \nabla_{X} g-\nabla_{Y} f-\Omega(X, Y)\right) \\
& \text { where } \nabla_{X} g=\partial_{X} g+\omega(X) \cdot g \\
& \nabla \text { is flat and } \nabla \Omega=0 \\
& A \text { is invariantly oriented }
\end{aligned}
$$

the corresponding Lie algebroids are isomorphic via $H_{0, a}: T M \times \mathbb{R} \rightarrow T M \times \mathbb{R}$, $H(X, f)=(X, a \cdot f)$
$a \in C^{\infty}(M), a(x) \neq 0$ for all x.
2. GENERALIZATIONS: \mathfrak{g}-L.C.s. STRUCTURES AND Lie ALGEbroids

We generalize l.c.s. structures to \mathfrak{g}-l.c.s. structures in which we can consider an arbitrary finite dimensional Lie algebra \mathfrak{g} instead of the commutative Lie algebra \mathbb{R}. From the general theorem on the form of Lie algebroids, mentioned above, we have $[\mathrm{M}]$, $[\mathrm{K} 1]$;
Theorem 2.1. Each transitive Lie algebroid with a trivial adjoint bundle of Lie algebras $M \times \mathfrak{g}$ is isomorphic to $T M \times \mathfrak{g}$ with $\#_{A}=\operatorname{pr}_{1}: T M \times \mathfrak{g} \rightarrow T M$ as the anchor and the bracket

$$
\llbracket(X, \sigma),(Y, \eta) \rrbracket=\left([X, Y], \nabla_{X} \eta-\nabla_{Y} \sigma+[\sigma, \eta]-\Omega(X, Y)\right)
$$

in $\operatorname{Sec} A$ is defined via the following data $(\nabla, \Omega):$ a covariant derivative ∇ in the trivial vector bundle $M \times \mathfrak{g}$ and a 2-form $\Omega \in \Omega^{2}(M ; \mathfrak{g)}$ fulfilling the conditions:
(1) $R_{X, Y}^{\nabla} \sigma=-[\Omega(X, Y), \sigma], R^{\nabla}$ being the curvature tensor of ∇,
(2) $\nabla_{X}[\sigma, \eta]=\left[\nabla_{X} \sigma, \eta\right]+\left[\sigma, \nabla_{X} \eta\right], \sigma, \eta \in C^{\infty}(M ; \mathfrak{g})$,
(3) $\nabla \Omega=0$.

The Lie algebroid obtained in the above way via the data (∇, Ω) fulfilling $(1) \div(3)$ above will be denoted here by

$$
\begin{equation*}
(T M \times \mathfrak{g}, \nabla, \Omega) \tag{2.1}
\end{equation*}
$$

The form $-\Omega$ is the curvature form of the connection $\lambda: T M \rightarrow T M \times \mathfrak{g}, \lambda(v)=$ $(v, 0)$, in this Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$.

$$
0 \rightarrow M \times \mathfrak{g} \rightarrow T M \times \mathfrak{g} \underset{\lambda}{\rightleftarrows} T M \rightarrow 0 .
$$

More generally, the curvature form of an arbitrary connection $\lambda(X)=(X, \eta(X))$, $\eta \in \Omega^{1}(M ; \mathfrak{g})$, is given by

$$
\begin{equation*}
\Omega^{\lambda}(X, Y)=(\nabla \eta)(X, Y)+[\eta X, \eta Y]-\Omega(X, Y) \tag{2.2}
\end{equation*}
$$

We write the covariant derivative ∇ in the trivial bundle $M \times \mathfrak{g}$ in the form

$$
\nabla_{X} \sigma=\partial_{X} \sigma+\omega(X)(\sigma)
$$

for a 1-form $\omega \in \Omega^{1}(M ;$ End $\mathfrak{g})$. Then $\nabla \theta=d_{\nabla} \theta=d_{d R} \theta+\omega \wedge \theta$. The curvature tensor R^{∇} of ∇ is equal to

$$
R_{X, Y}^{\nabla} \sigma=d \omega(X, Y)(\sigma)+[\omega(X), \omega(Y)](\sigma)
$$

Theorem 3.31 Chapter IV from [M] classifies all transitive Lie algebroids having a given coupling Ξ. For the Lie algebroid (2.1) we have,

$$
\begin{gathered}
\Xi: T M \rightarrow \operatorname{OutDo}[(M \times \mathfrak{g})]=T M \times \operatorname{Der}(\mathfrak{g}) / \operatorname{ad}(\mathfrak{g}) \\
\Xi(v)=\left(v,\left[a_{v}\right]\right)
\end{gathered}
$$

where $a_{v}(\sigma)=\nabla_{v} \tilde{\sigma}-v(\tilde{\sigma}), \tilde{\sigma}: M \rightarrow \mathfrak{g}, \tilde{\sigma}(x) \equiv \sigma \in \mathfrak{g}$,

$$
\begin{equation*}
\operatorname{Opext}(T M, \Xi, M \times \mathfrak{g}) \cong H_{\rho \Xi}^{2}(M, Z \mathfrak{g}) \tag{2.3}
\end{equation*}
$$

where $Z \mathfrak{g}$ is the center of \mathfrak{g} and $\rho^{\Xi}: T M \rightarrow T M \times \operatorname{End}(Z \mathfrak{g})$ is the central representation $\rho^{\Xi}(v)=\left(v, a_{v}\right)$ for Ξ.
Proposition 2.1. The conditions (1)-(3) characterizing the data (∇, Ω) determining the Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$ can be expressed as follows

- the condition (1) is equivalent to

$$
d \omega(X, Y)(\sigma)+[\omega(X), \omega(Y)](\sigma)=-[\Omega(X, Y), \sigma]
$$

- the condition (2) is equivalent to $\omega_{x} \in \operatorname{Der}(\mathfrak{g})$, i.e. ω_{x} is a differentiation of the Lie algebra \mathfrak{g},
- the condition (3) is equivalent to

$$
d \Omega=-\omega \wedge \Omega
$$

(the values of forms ω and Ω are multiplied with respect to the 2-linear homomorphism End $\mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g},(a, \sigma) \mapsto a(\sigma)$.

Definition 2.1. The pair (∇, Ω) determining the above Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$ will be called \mathfrak{g}-locally conformal symplectic structure (\mathfrak{g}-l.c.s. structure, for short) on the manifold provided that the 2-form Ω is non-degenerate in the following sense: for each point $x \in M$ the mapping

$$
\begin{equation*}
T_{x} M \rightarrow L\left(T_{x} M, \mathfrak{g}\right), \quad v \mapsto \Omega_{x}(v, \cdot) \tag{2.4}
\end{equation*}
$$

is a monomorphism.
It is easy to see that if the mapping (2.4) is a monomorphism at a point x then it is a monomorphism at every point near x.

We notice that if $\operatorname{dim} \mathfrak{g} \geq 2$ there is no dimensional obstructions to the existence of an non-degenerate tensors:

Lemma 2.1. For arbitrary vector spaces V and \mathfrak{g} such that $\operatorname{dim} \mathfrak{g} \geq 2$ there exists a 2-linear skew-symmetric non-degenerate tensor $\Omega \in \Omega^{2}(V ; \mathfrak{g})$.

Proof. Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of \mathfrak{g}. If $\operatorname{dim} V$ is even, then there exists a real 2-linear skew-symmetric non-degenerate tensor, say Ω_{0}. The form $\Omega:=\Omega_{0} \cdot e_{1} \in$ $\Omega^{2}(V ; \mathfrak{g})$ is non-degenerate. If $\operatorname{dim} V=2 k+1$ and $\left(v_{1}, \ldots, v_{2 k+1}\right)$ is a basis of V and $u^{1}, \ldots, u^{2 k+1}$ is a dual basis, then put

$$
\begin{aligned}
& \Omega_{0}=u^{1} \wedge u^{2}+\ldots+u^{2 k-1} \wedge u^{2 k} \\
& \Omega_{1}=u^{2 k} \wedge u^{2 k+1}
\end{aligned}
$$

The form $\Omega:=\Omega_{0} \cdot e_{1}+\Omega_{1} \cdot e_{2}$ is non-degenerate.
Definition 2.2. $A \mathfrak{g}$-l.c.s. structure is called globally conformal symplectic structure if the associated Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$ is invariantly oriented.

Theorem 2.2. Let (∇, Ω) be a \mathfrak{g}-l.c.s. structure on an arbitrary m-dimensional connected manifold (oriented or not), $\operatorname{dim} \mathfrak{g}=n$. Write $\nabla_{X} \sigma=\partial_{X} \sigma+\omega(X)(\sigma)$ for $\omega \in \Omega^{1}(M ;$ End $\mathfrak{g})$. The following conditions are equivalent:
(a) The Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$ is invariantly oriented (i.e. (∇, Ω) is a globally conformal symplectic structure),
(b) \mathfrak{g} is unimodular and $\operatorname{tr} \omega$ is an exact form. [Let e_{1}, \ldots, e_{n} be a basis of \mathfrak{g}. For a non-singular function $f \in C^{\infty}(M)$ the element $\varepsilon=f \cdot e_{1} \wedge \ldots \wedge e_{n}$ is an invariant cross-section if and only if $\operatorname{tr} \omega=d(-\ln |f|)]$,
(c) the modular class of $A=(T M \times \mathfrak{g}, \nabla, \Omega)$ is zero, $m_{A}=0$,
(d) $H_{\partial_{A}^{o r}, c}^{m+n}(A$, or $(M)) \neq 0$,
(e) $H_{\partial_{A}^{o r}, c}^{m+n}(A$, or $(M))=\mathbb{R}$, and the pairing

$$
H^{j}(A) \times H_{\partial_{A}^{o r}, c}^{m+n-j}(A, \operatorname{or}(M)) \rightarrow H_{\partial_{A}^{o r}, c}^{m+n}(A, \operatorname{or}(M)) \cong \mathbb{R}
$$

is non-degenerate, i.e. $H^{j}(A) \cong\left(H_{\partial_{A}^{o r}, c}^{m+n-j}(A, \operatorname{or}(M))\right)^{*}$.
Proof. (a) \Longleftrightarrow (b) The very easy proof will be omitted.
$(\mathrm{a}) \Longleftrightarrow(\mathrm{c}) \Longleftrightarrow(\mathrm{d}) \Longleftrightarrow(\mathrm{e})$ see $[\mathrm{K}-\mathrm{M}]$.
Theorem 2.3. If the Lie algebra \mathfrak{g} is semisimple, then each \mathfrak{g}-l.c.s. structure is globally c.s. structure.
Proof. According to Theorem 7.2.3 from [K1] (see independently (2.3)) for the trivial LAB $\boldsymbol{g}=M \times \mathfrak{g}$ there exists exactly one, up to isomorphism, a transitive Lie algebroid A with the adjoint LAB $\boldsymbol{g}=M \times \mathfrak{g}$. Therefore, A must be isomorphic to the trivial Lie algebroid $A=T M \times \mathfrak{g}$ with the data $(\partial, 0)$. This Lie algebroid is invariantly oriented: $\varepsilon(x) \equiv \varepsilon_{o} \in \bigwedge^{n} \mathfrak{g}$ is an invariant cros-section.

Let $\left(e_{1}, \ldots, e_{n}\right)$ be a basis of \mathfrak{g} with the structure constants $c_{i j}^{k}$. The covariant derivative ∇ determines a matrix of 1-forms $\omega_{i}^{j} \in \Omega^{1}(M)$ by

$$
\nabla_{X} e_{i}=\sum_{j} \omega_{i}^{j}(X) e_{j}
$$

Analogously we have a collection of 2 -forms Ω^{j} by

$$
\Omega_{X, Y}=\sum_{j} \Omega_{X, Y}^{j} e_{j}
$$

We interpret the data $(1) \div(3)$ concerning (∇, Ω) in the terms of the matrix ω_{i}^{j} and the collection Ω^{j} and the structure constants $c_{i j}^{k}$.
Proposition 2.2. (\boldsymbol{A}) The conditions (1)-(3) characterizing the data (∇, Ω) determining the Lie algebroid $(T M \times \mathfrak{g}, \nabla, \Omega)$ can be expressed as follows.

- The condition (1) is equivalent to
$-\sum_{j} \Omega_{X, Y}^{j} \cdot c_{j, i}^{r}=d \omega_{i}^{r}(X, Y)-\sum_{j}\left(\omega_{i}^{j}(X) \omega_{j}^{r}(Y)-\omega_{i}^{j}(Y) \omega_{j}^{r}(X)\right)$,
- the condition (2) is equivalent to

$$
\sum_{k} c_{i j}^{k} \cdot \omega_{k}^{r}(X)=\sum_{k}\left(\omega_{i}^{k}(X) c_{k j}^{r}-\omega_{j}^{k}(X) c_{k i}^{r}\right)
$$

- the condition (3) is equivalent to $d \Omega^{j}=-\sum_{i} \Omega^{i} \wedge \omega_{i}^{j}$.
(B) For an abelian Lie algebra $\mathfrak{g}=\mathbb{R}^{n}$ (i.e. $c_{i j}^{k}=0$) the conditions above are equivalent to
- $d \omega(X, Y)=-\omega(X) \circ \omega(Y)+\omega(Y) \circ \omega(X) \quad$ (equivalently $d \omega_{i}^{r}(X, Y)=$ $\left.\sum_{j}\left(\omega_{i}^{j}(X) \omega_{j}^{r}(Y)-\omega_{i}^{j}(Y) \omega_{j}^{r}(X)\right)\right)$,
- $d \Omega^{j}=-\sum_{i} \Omega^{i} \wedge \omega_{i}^{j}$.

Two \mathfrak{g}-l.c.s. structures $\left(\nabla^{\prime}, \Omega^{\prime}\right),(\nabla, \Omega)$ on a manifold M will be called \mathfrak{g} conformally equivalent if the associated Lie algebroids are isomorphic via an isomorphism of the special form (called \mathfrak{g}-conformal) $H(X, \sigma)=(X, a(\sigma))$ for some mapping $a: M \rightarrow$ Aut (\mathfrak{g}). Then the equivalent relations between the data (∇, Ω) and $\left(\nabla^{\prime}, \Omega^{\prime}\right)$ are as follows:

- $\Omega^{\prime}=a^{-1} \circ \Omega$,
- $a \circ \nabla_{X}^{\prime}(\sigma)=\nabla_{X}(a \circ \sigma)$.

We use the notation $a \circ \sigma$ for the cross-section defined by $(a \circ \sigma)_{x}=a_{x}\left(\sigma_{x}\right)$.
Writing ∇^{\prime} and ∇ with using 1-forms $\omega^{\prime}, \omega \in \Omega^{1}(M$; End $\mathfrak{g})$ (as above) the last condition can be equivalently written in the form

$$
\omega(X) \circ a=-\partial_{X} a+a \circ \omega^{\prime}(X)
$$

In the terms of the matrices $\omega_{i}^{j \prime}$ and ω_{i}^{j} this condition is equivalent to

$$
\sum_{j} \omega_{i}^{\prime j}(X) \cdot a_{j}^{k}-\sum_{j} a_{i}^{j} \cdot \omega_{j}^{k}(X)=\partial_{X}\left(a_{i}^{k}\right)
$$

The general form of a homomorphism $H: T M \times \mathfrak{g} \rightarrow T M \times \mathfrak{g}$ commuting with anchors $p r_{1}$ is as follows

$$
\begin{equation*}
H(X, \sigma)=H_{\eta, a}(X, \sigma)=(X, \eta(X)+a \circ \sigma) \tag{2.5}
\end{equation*}
$$

for $\eta \in \Omega^{1}(M ; \mathfrak{g}), a \in C^{\infty}(M$, End $\mathfrak{g})$. Consider two Lie algebroids

$$
A^{\prime}=\left(T M \times \mathfrak{g}, \nabla^{\prime}, \Omega^{\prime}\right) \text { and } A=(T M \times \mathfrak{g}, \nabla, \Omega)
$$

Proposition 2.3. The following conditions are equivalent.
(1) H is a homomorphism of Lie algebroids $H: A^{\prime} \rightarrow A$,
(2) (a) a_{x} is a homomorphism of Lie algebras,
(b) $(\nabla \eta)(X, Y)+[\eta(X), \eta(Y)]=\left(\Omega-a \Omega^{\prime}\right)(X, Y)$,
(c) $a \circ \nabla_{X}^{\prime} \sigma=\nabla_{X}(a \circ \sigma)+[\eta(X), a \circ \sigma]$,
(3) For the basis e_{1}, \ldots, e_{n} and the matrix a_{i}^{j} defined by $a\left(e_{i}\right)=\sum_{j} a_{i}^{j}\left(e_{j}\right)$
(a) a_{x} is a homomorphism of Lie algebras,
(b) $d \eta^{k}(X, Y)-\left(\sum_{i} \eta^{i} \wedge \omega_{i}^{k}\right)(X, Y)+\sum_{i, j} \eta^{i}(X) \cdot \eta^{j}(Y) \cdot c_{i j}^{k}=$ $=\left(\Omega^{k}-\sum_{i} \Omega^{\prime i} \cdot a_{i}^{k}\right)(X, Y)$,
(c) $\sum_{j} \omega_{i}^{\prime j}(X) \cdot a_{j}^{k}=\sum_{j} a_{i}^{j} \cdot \omega_{j}^{k}(X)+\partial_{X} a_{i}^{k}+\sum_{j, s} \eta^{j}(X) \cdot a_{i}^{s} \cdot c_{j s}^{k}$.

The homomorphism $H_{\eta, a}$ is an isomorphism of Lie algebroids if and only if a_{x} is an isomorphism of Lie algebras.

Proof. Straightforward calculations.
If $\left(\nabla^{\prime}, \Omega^{\prime}\right)$ and (∇, Ω) are \mathfrak{g}-l.c.s structures and A^{\prime} and A are corresponding Lie algebroids, then the isomorphism $H_{\eta, a}$ given by (2.5) is equivalent to conformal equivalence of the associated \mathfrak{g}-l.c.s structures $\left(\nabla^{\prime}, \Omega^{\prime}\right)$ and (∇, Ω) if and only if $\eta=0$.

Analogously, we can put the problem of existence of l.c.s. structures. We have firstly the simple

Proposition 2.4. Any Lie algebroid $A^{\prime}=\left(T M \times \mathfrak{g}, \nabla^{\prime}, \Omega^{\prime}\right)$ is isomorphic to $A=$ $(T M \times \mathfrak{g}, \nabla, \Omega)$ with Ω non-degenerate (i.e. (∇, Ω) is a \mathfrak{g}-l.c.s. structure) if and only if there exists in A^{\prime} a connection for which the curvature tensor is nondegenerate.

Problem 2.1. We introduce into the class of pairs (∇, Ω) fulfilling (1)-(3) from Theorem 2.1, the equivalence relation
$\mathrm{rg})\left(\nabla^{\prime}, \Omega^{\prime}\right) \approx(\nabla, \Omega) \equiv$
\equiv the Lie algebroids $A^{\prime}=\left(T M \times \mathfrak{g}, \nabla^{\prime}, \Omega^{\prime}\right)$ and $A=(T M \times \mathfrak{g}, \nabla, \Omega)$ are isomorphic,
i.e. there exist $\eta \in \Omega^{1}(M ; \mathfrak{g}), a \in C^{\infty}(M$, Aut $\mathfrak{g})$ such that (2b) and (2c), from Prop. 2.3 holds: $(\nabla \eta)(X, Y)+[\eta(X), \eta(Y)]=\left(\Omega-a \Omega^{\prime}\right)(X, Y)$ and $a \circ \nabla_{X}^{\prime} \sigma=\nabla_{X}(a \circ \sigma)+[\eta(X), a \circ \sigma]$.
We can ask: does there in every (in given) equivalence class $\left[\left(\nabla^{\prime}, \Omega^{\prime}\right)\right]$ exist (∇, Ω) being a \mathfrak{g}-l.c.s. structure; equivalently, does there in the Lie algebroid $A^{\prime}=\left(T M \times \mathfrak{g}, \nabla^{\prime}, \Omega^{\prime}\right)$ exist a connection with non-degenerate curvature tensor, i.e. equivalently, does there exists a 1-form $\eta \in \Omega^{1}(M ; \mathfrak{g})$ such that the 2-form $(\nabla \eta)(X, Y)+[\eta X, \eta Y]-\Omega(X, Y)$ is a non-degenerate.

For $\mathfrak{g}=\mathbb{R}$ we obtain Problem 1.1 and we need to assume that $\operatorname{dim} M$ is even.
Proposition 2.5. The above problem has a local solution.
Proof. Let $a: T_{x_{0}} M \times T_{x_{0}} M \rightarrow \mathfrak{g}$ be an arbitrary non-degenerate 2-linear skewsymmetric tensor (for $\operatorname{dim} \mathfrak{g} \geq 2$ see Lemma 2.1). We can locally extend $\Omega_{x_{0}}+a$ to a closed 2 -form Φ and find by the Poincaré lemma a 1-form η such that $d \eta=\Phi$; therefore that $(d \eta)_{x_{0}}=\Omega_{x_{0}}+a$. Slightly modifying η we can assume that $\eta_{x_{0}}=0$, indeed, locally there is a closed 1-form θ such that $\theta_{x_{0}}=\eta_{x_{0}}$, so $\eta-\theta$ is zero at x_{0} and $d(\eta-\theta)_{x_{0}}=(d \eta)_{x_{0}}$. Clearly $(\nabla \eta)_{x_{0}}(X, Y)+\left[\eta_{x_{0}} X, \eta_{x_{0}} Y\right]-\Omega_{x_{0}}(X, Y)=a(X, Y)$ so the curvature tensor Ω^{λ} of the connection $\lambda(X)=(X, \eta(X))$, see (2.2), is a non-degenerate near x_{0}.

Problem 2.2. It would be interesting to investigate the group of all compactly supported diffeomorphisms of M that preserve the \mathfrak{g}-l.c.s. structure up to \mathfrak{g}-conformal equivalence (analogously as was given for usual l.c.s. structures by Haller and Rybicki [H-R]).

We add that two extreme cases: (1) \mathfrak{g} commutative (for example $\mathfrak{g}=\mathbb{R}$) and (2) \mathfrak{g} semisimple, are quite different. In the second case all Lie algebroids of the form $(T M \times \mathfrak{g}, \nabla, \Omega)$ (i.e. with the trivial adjoint Lie algebra $M \times \mathfrak{g})$ are isomorphic, clearly to the trivial one $T M \times \mathfrak{g}$ with the structure given by the data $(\partial, 0)$. We add that not each isomorphism is \mathfrak{g}-conformal. This Lie algebroid is invariantly oriented.

References

[B-K-W] B. Balcerzak, J. Kubarski, W. Walas, Primary characteristic homomorphism of pairs of Lie algebroids and Mackenzie algebroid, In: Lie Algebroids and Related Topics in Differential Geometry, Banach Center Publications, Volume 54, Institute of Mathematics, Polish Academy of Science, Warszawa 2001, pp. 135-173.
[B1] A. Banyaga, Some properties of locally conformal symplectic structures, Comment. Math. Helv. 77 (2002) 383-398.
[B2] A. Banyaga, Examples of non d_{ω}-exact locally conformal symplectic forms, arXiv: math.SG/0308167v1 (2003).
[B-T] R. Bott, L. Tu, Differential forms in algebraic topology, GTM 82, Springer-Verlag 1982.
[E-L-W] S. Evens, J-H. Lu, and A. Weinstein, Transverse measures, the modular class and a cohomology pairing for Lie algebroids, Quart. J. Math. Oxford 50 (1999), 417-436.
[F] R.L. Fernandes, Lie algebroids, holonomy and characteristic classes, DG/0007132 (2000). Advances in Mathematics 170, (2002) 119-179.
[G-L] F. Guedira, A. Lichnerowicz, Géometrie des algébres de Lie locales de Kirillov, J. Math. Pures Appl. 63 (1984), 407-484.
[H-R] S. Haller and T. Rybicki, On the group of diffeomorphisms preserving a locally conformal symplectic structure, Ann. Global Anal. Geom. 17, 475-502, 1999.
[H] J.C. Herz, Pseudo-algèbres de Lie, C. R. Acad. Sci. Paris, 263 (1953), I, 1935-1937 and II, 2289-2291.
[K-K-K-W] R. Kadobianski, J. Kubarski, V. Kushnirevitch, and R. Wolak Transitive Lie algebroids of rank 1 and locally conformal symplectic structures, Journal of Geometry and Physics 46 (2003) 151-158.
[K1] J. Kubarski, Lie algebroid of a principal fibre bundle, Publ. Dep. Math. University de Lyon 1, 1/A, 1989.
[K2] J. Kubarski, The Chern-Weil homomorphism of regular Lie algebroids, Publications du Departement de Matematiques Universite de Lyon 1, 1991.
[K3] J. Kubarski, Fibre integral in regular Lie algebroids, New Developments in Differential Geometry, Budapest 1996, 173-202. Proceedings of the Conference on Differential Geometry, Budapest, Hungary, July 27-30, 1996; Kluwer Academic Publishers 1999.
[K-M] J. Kubarski, A.S.Mishchenko, Nondegenerate cohomology pairing for transitive Lie algebroids, characterization, submitted.
[M] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, Cambridge University Press, 124, 1987.
[P1] J. Pradines J., Théorie de Lie pour les groupoides differentiables, Atti del Convegno Internazionale di Geometria Differenziale, Bologna, 28-30, IX, 1967,
[P2] J. Pradines, How to define the graph of a singular foliation, Cahiers Top. et Géom. Diff., XVI-4 (1985), 339-380.

Roman Kadobianski: National Technical University of Ukraine, "Kiev Polytechnic Institute", UKRAINE, Prosp. Peremogy 37, Kiev 03056

Jan Kubarski: Institute of mathematics, Technical University of Łódź, PL-90-924 Łódź, Al. Politechniki 11, POLAND

