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Abstract. We study locally conformal symplectic structures and their gener-
alizations from the point of view of transitive Lie algebroids. To consider l.c.s.

structures and their generalizations we use Lie algebroids with trivial adjoint

Lie algebra bundle M × R and M × g. We observe that important l.c.s’s no-
tions can be translated on the Lie algebroid’s language. We generalize l.c.s.

structures to g-l.c.s. structures in which we can consider an arbitrary finite

dimensional Lie algebra g instead of the commutative Lie algebra R.

1. l.c.s structures from the point of view of Lie algebroids

We study locally conformal symplectic structures and their generalizations from
the point of view of transitive Lie algebroids. We recall that an l.c.s. structure on
a manifold M is a pair (ω,Ω) of differentiable forms on M such that

(1) ω is a real closed 1-form on M,
(2) Ω is a real non-degenerated 2-form fulfilling the property

dΩ = −ω ∧ Ω.

From the non-degeneracy of Ω follows that M has even dimension.
By a transitive Lie algebroid on a manifold M [P1] we mean a system (A, [[·, ·]],#A)

consisting of a vector bundle A over M and mappings [[·, ·]] : SecA×SecA→ SecA,
#A : A→ TM, such that

(a) (SecA, [[·, ·]]) is a real Lie algebra,
(b) #A, called an anchor, is an epimorphism of vector bundles,
(c) Sec #A : Sec A→ X (M) , ξ 7→ #A ◦ ξ, is a homomorphism of Lie algebras,
(d) [[ξ, f · η]] = f · [[ξ, η]] + (#A ◦ ξ) (f) · η, ξ, η ∈ SecA, f ∈ Ω0 (M) = C∞ (M) .

The axiom (c) follows from the remaining ones, see [H], [B-K-W].

It follows that ggg := ker#A is a LAB (Lie algebra bundle), called the adjoint of
A. The Lie algebra gggx is called the structure Lie algebra at x. The exact sequence

0 → ggg → A
#A−→ TM → 0

is called the Atiyah sequence of A, while any splitting λ : TM → A, #A◦λ = idTM ,
is a connection in A. The following geometric objects give rise to transitive Lie
algebroids:

— Lie groupoids,
— principal fibre bundles,
— vector bundles,
— transversely complete foliations,
— nonclosed Lie subgroups.
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We add that differential groupoids (non-transitive, in general), Poisson and Ja-
cobi manifolds as well as any infinitesimal action of a Lie algebra on a manifold
produce nontransitive Lie algebroids. The image of the anchor always is an inte-
grable singular (or regular) foliation [P2], [F], and the restriction of the Lie algebroid
to any leaf of this foliation is a transitive Lie algebroid.

To consider l.c.s. structures and their generalizations we use Lie algebroids with
trivial adjoint Lie algebra bundle ggg = M × g.

From the general theorem concerning the form of any transitive Lie algebroids
(Mackenzie [M], Kubarski [K1]) we have:

• Each transitive Lie algebroid on M with a trivial adjoint bundle ggg ∼= M×R
is isomorphic to

A = TM × R
with #A = pr1 : TM × R → TM as the anchor and the bracket [[·, ·]] in
SecA is defined via some flat covariant derivative ∇ in M × R and a 2-
form Ω ∈ Ω2 (M) fulfilling the Bianchi identity ∇Ω = 0 in the following
way

[[(X, f) , (Y, g)]] = ([X,Y ] ,∇Xg −∇Y f − Ω (X,Y )) .

We recall that a covariant derivative∇ in a vector bundle ξ determines a standard
operator d∇ : Ω∗ (M ; ξ) → Ω∗ (M ; ξ) and d∇θ is sometimes denoted by ∇θ. If ∇
is flat then (d∇)2 = 0 and it determines the cohomology space H∇ (M ; ξ) in the
obvious way.

Each flat covariant derivative in ggg = M × R is of the form

∇Xf = ∂Xf + ω (X) · f
where ω is a closed differentiable 1-form on M . Then the differential operator d∇
is denoted rather by dω [G-L], [H-R]. We have

dω (θ) = dθ + ω ∧ θ,
and write Hω (M) := Hdω

(M) .
The condition ∇Ω = 0 is then equivalent to dΩ = −ω ∧ Ω.
Hence any transitive Lie algebroid with the trivial adjoint bundle ggg = M ×R is

determined by the following data:
(*) a closed 1-form ω and a 2-form Ω such that dΩ = −ω ∧ Ω.

The Lie algebroid obtained in this way will be denoted by

(TM × R, ω,Ω) .

Lemma 1.1. A connection λ : TM → TM×R in the Lie algebroid A = (TM × R, ω,Ω)
is of the form λ (X) = (X, η (X)) for a 1-form η ∈ Ω1 (M) . The curvature form
Ωλ (X,Y ) = [[λX, λY ]]− λ [X,Y ] of the connection λ is equal to

(1.1) Ωλ = dω (η)− Ω = dη + ω ∧ η − Ω.

According to (*) the pair (ω,Ω) determining the above Lie algebroid is precisely
a locally conformal symplectic structure (l.c.s. structure, for short) on the man-
ifold M provided that the 2-form Ω is non-degenerate. Therefore our transitive
Lie algebroids TM × R determined by (ω,Ω) are natural generalizations of the
locally conformal symplectic structures. For an l.c.s. structure (ω,Ω) , following
(*), the form Ω represents the cohomology class [Ω] ∈ H2

ω (M) which is called the
Lichnerowicz class of the l.c.s structure (ω,Ω) [B2]. If the 1-form ω is exact the
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l.c.s. structure is called globally conformal symplectic structure. The property
that an l.c.s. structure is global can be equivalently expressed in the language of
Lie algebroids.[K-K-K-W], [K-M]. For this purpose we recall that a transitive Lie
algebroid (A, [[·, ·]],#A) is called invariantly oriented [K3] if there is specified a non-
singular cross section ε of the bundle

∧n
ggg, ggg := ker#A and n = rankggg, which is

invariant with respect to the adjoint representation of A in
∧n

ggg, equivalently, if ggg
is orientable and the modular class of the Lie algebroid is zero ([E-L-W], [K-M]).
We add that for a transitive Lie algebroid the modular class is equal to the charac-
teristic class of the top-power of the adjoint representation adA . The structure Lie
algebras gggx of the invariantly oriented Lie algebroid are unimodular.

A cross-section ε of the bundle
∧n

ggg is invariant if and only if, in any open subset
U ⊂ M on which ε is of the form ε|U = (h1 ∧ . . . ∧ hn)|U , hi ∈ Secggg, we have, for
all ξ ∈ SecA,

n∑
i=1

(h1 ∧ . . . ∧ [[ξ, hi]] ∧ . . . ∧ hn)|U = 0.

In the case A = (TM × R, ω,Ω) we have n = 1 and ggg =M × R and a positive
function ε ∈ C∞ (M) = Sec (M × R) is invariant if and only if ε is ∇-constant,
∇ε = 0 [K3, Lemma 6.2.1]. The condition ∇ε = 0 is equivalent to ω = d (− ln (ε)) .

Theorem 1.1. Let (ω,Ω) be an l.c.s. structure on an arbitrary m-dimensional
connected manifold (oriented or not) The following conditions are equivalent:

(a) the l.c.s. structure (ω,Ω) is globally conformal symplectic structure (i.e.
[ω] = 0).

(b) the associated Lie algebroid A = (TM × R, ω,Ω) is invariantly oriented,
(c) Hm+1

∂or
A ,c (A, or (M)) 6= 0,

(d) Hm+1
∂or

A ,c (A, or (M)) = R, and the pairing

Hj (A)×Hm+1−j
∂or

A ,c (A, or (M)) → Hm+1
∂or

A ,c (A, or (M)) ∼= R

is non-degenerate, i.e. Hj (A) ∼=
(
Hm+1−j
∂or

A ,c (A, or (M))
)∗
.

Proof. (a) ⇐⇒ (b) see [K-K-K-W],
(b) ⇐⇒ (c) ⇐⇒ (d) see [K-M]. �

Remark 1.1. (1) For an orientable manifold M the conditions (c) and (d) are
equal to:

(c’) Hm+1
c (A) 6= 0,

(d’) Hm+1
c (A) = R, and the pairing

Hj (A)×Hm+1−j
c (A) → Hm+1

c (A) ∼= R

is non-degenerate, i.e. Hj (A) ∼=
(
Hm+1−j
c (A)

)
.

(2) ∂orA is the canonical representation of A in the orientation bundle or(M),
(∂orA )γ (σ) = (∂or)#A(γ) (σ) , γ ∈ A, σ ∈ Γ (or (M)) . ∂or is the canonical flat struc-
ture of the orientation bundle or (M) [B-T].

(3) Each representation ∇ of a Lie algebroid A in a vector bundle ξ (i.e. a ho-
momorphism of a Lie algebroid A in the Lie algebroid A (ξ) of the vector bundle ξ
[K2], [M]) determines a standard differential operator d∇ : Ω (A; ξ) → Ω (A; ξ) and
H∇ (A; ξ) is the space of cohomology of the complex (Ω (A; ξ) , d∇) . Local trivializa-
tions of A (f) are constucted in the following way: Let ψ : U × V → p−1 [U ] = f|U
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be a local trivialization of a vector bundle f; V is the typical fibre. Consider the
trivial Lie algebroid TU ×End (V ). For a cross-section σ ∈ Sec f, denote by σψ the
V -valued function U 3 x 7→ ψ−1

x (σ (x)) ∈ V. The mapping

ψ̄ : TU × End (V ) −→ A (f)|U

ψ̄ (v, a) (σ) = ψx (v (σψ) + a (σψ (x))) ,

(v ∈ TxU, x ∈ U, a ∈ End (V ) , σ ∈ Sec f) is an isomorphism of Lie algebroids [K2].
(4) The associated Lie algebra bundle of the considered Lie algebroid A =

(TM × R, ω,Ω) is the trivial line bundle ggg =M × R. Therefore, the top group of
cohomology Hm+1

∂or
A ,c (A, or (M)) can be written (analogously to real coefficients, see

[K-K-K-W]) as follows

Hm+1
∂or

A ,c (A; or (M)) = Hm
d∂−ω⊗∂or

(M ; or (M)) = Hm
(∂or)−ω (M ; or (M)) .

Then the equivalence (a) ⇐⇒ (c) follows trivially, since

Hm
(∂or)−ω (M ; or (M)) 6= 0 ⇐⇒ [−ω] = 0,

see [K-M].

Two l.c.s. structures (ω,Ω) and (ω′,Ω′) on a manifold M are called conformally
equivalent if

Ω′ =
1
a
Ω, ω′ = ω +

da

a
,

for a nowhere vanishing function a on M (non-singular for short).
If two l.c.s. structures (ω′,Ω′) and (ω,Ω) on a manifoldM are conformally equiv-

alent then the associated Lie algebroids A′ = (TM × R, ω′,Ω′) and (TM × R, ω,Ω)
are isomorphic via the mapping

H : (TM × R, ω′,Ω′) −→ (TM × R, ω,Ω)
H (X, f) = (X, a · f)

where a ∈ C∞ (M) is a non-singular smooth function. The isomorphism H : A′ →
A of the above form will be called a conformal isomorphism.

We add that the general form of a homomorphism H : TM × R → TM × R of
vector bundles commuting with anchors #A = pr1 is as follows

(**) H (X, f) = Hη,a (X, f) := (X, η (X) + a · f) ,

for η ∈ Ω1 (M) and a ∈ C∞ (M) .

Proposition 1.1. (A) The following conditions are equivalent:
(1) Hη,a is a homomorphism of Lie algebroids,
(2) (a) ∇η = Ω− a · Ω′,

(b) ∇X (a · f) = a · ∇′Xf,
(3) (a) dω (η) = dη + ω ∧ η = Ω− a · Ω′,

(b) a · (ω′ − ω) = da.

The homomorphism Hη,a is an isomorphism of Lie algebroids if and only if a is
non-singular. Conditions (1), (2), (3) are then equivalent to

(4) (a) Ω′ = 1
a · (Ω− dω (η)) ,

(b) ω′ = ω + d (ln |a|) .



L.C.S STRUCTURES, GENERALIZATIONS AND LIE ALGEBROIDS 5

(B) For an arbitrary Lie algebroid A′ = (TM × R, ω′,Ω′) and data (η, a) where
η ∈ Ω1 (M) and a is a non-singular function, the differential forms ω = ω′ −
d (ln |a|) , Ω = a · Ω′ + dω (η) fulfil the condition dΩ = −ω ∧ Ω, i.e. the data (ω,Ω)
determines a Lie algebroid A = (TM × R, ω,Ω) and Hη,a : A′ → A given by (**)
is an isomorphism of Lie algebroids.

Proof. Easy calculation. �

Clearly Hη′,a′ ◦Hη,a = Hη′+a′·η,a′·a, (Hη,a)
−1 = H− η

a ,
1
a
. In particular,

Hη,a = Hη,1 ◦H0,a,

see the diagram

A′ = (TM × R, ω′,Ω′) (TM × R, ω,Ω) = A-Hη,a

(TM × R, ω, a · Ω′)

H0,a

@
@

@
@
@R

Hη,1

�
�

�
�

�	

It means that if A′ is isomorphic to A then there exists a Lie algebroid A′′ =
(TM × R, ω,Ω′′), Ω′′ = a · Ω′, conformally isomorphic to A′, i.e. such that [A] ,
[A′′] ∈ Opext (TM,∇,M × R) = the set of isomorphic classes of Lie algebroids
having the same representation ∇ (a flat covariant derivative ∇).

Let (ω′,Ω′) and (ω,Ω) be l.c.s. structures. We observe that the isomorphism
Hη,a : A′ → A given by (**) is equivalent to conformal equivalence of the associated
l.c.s. structures if and only if η = 0.

How we can formulate the problem of existence of l.c.s. structures? We have the
simple

Proposition 1.2. Any Lie algebroid A′ = (TM × R, ω′,Ω′) is isomorphic to A =
(TM × R, ω,Ω) with Ω non-degenerate (i.e. (ω,Ω) is an l.c.s. structure) if and only
if there exists in A′ a connection for which the curvature tensor is non-degenerate.

Proof. Let Hη,a : A′ → A be an isomorphism of Lie algebroids

(1.2)

0 −−−−→ M × R −−−−→ (TM × R, ω′,Ω′) −−−−→
←−
λ′

TM −−−−→ 0yH+
η,a

yHη,a

y
0 −−−−→ M × R −−−−→ (TM × R, ω,Ω) −−−−→

←−
λ

TM −−−−→ 0

H+
η,a (f) = a · f. For arbitrary connections λ′ and λ in A′ and A, respectively

such that Hη,a ◦ λ′ = λ we have the following equality for curvature tensors

Ωλ = H+
η,a ◦ Ωλ

′
.

Therefore, if Ω is nondegenerate and λ′ is a connection such that Hη,a◦λ′ = λ where
λ (v) = (v, 0) , then Ωλ = −Ω (see lemma 1.1) and, clearly, Ωλ

′
is non-degenerate.

Conversely, if λ′ (X) = (X, η (X)) is any connection in A′ such that Ωλ
′
is non-

degenerate, then H−η,1 is an isomorphism of A′ on A :=
(
TM × R, ω′,−Ωλ

′)
(see

(1.1)) and
(
ω′,−Ωλ

′)
is an l.c.s. structure. �
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So, the problem of existing of l.c.s. structures can be precisely formulated as
follows:

Problem 1.1. We introduce into the class of pairs (ω,Ω) fulfilling (*), i.e. dΩ =
−ω ∧ Ω, the equivalence relation

r) (ω′,Ω′) ≈ (ω,Ω) ≡ the Lie algebroids A′ = (TM × R, ω′,Ω′) and A =
(TM × R, ω,Ω) are isomorphic, i.e. there exists η ∈ Ω1 (M) and a ∈
C∞ (M) , a (x) 6= 0 for all x ∈ M, such that (4a), (4b) hold: (4a) Ω′ =
1
a (Ω− dη − ω ∧ η) , (4b) ω′ = ω + da

a .

Let dimM be even. We can ask: Does there in every (in given) equivalence
class [(ω′,Ω′)] exist (ω,Ω) being an l.c.s. structure; equivalently, does there in
the Lie algebroid A′ = (TM × R, ω′,Ω′) exist a connection with non-degenerate
curvature tensor, i.e. equivalently, does there exist a 1-form η ∈ Ω1 (M) such that
dη + ω ∧ η − Ω is a non-degenerate.

This problem has a local solution, see Proposition 2.5 below for more general
situations.

We add that for a fixed closed form ω, i.e. a flat covariant derivative ∇Xf =
∂Xf + ω (X) · f in the trivial bundle M × R, the classification of Lie algebroids of
the form (TM × R, ω, ·) up to isomorphism is as follows: for the class of isomorphic
Lie algebroids Opext (TM,∇,M × R) we have [M]

Opext (TM,∇,M × R) ∼= H2
∇ (M ; R) , [(TM × R, ω,Ω)] 7→ [Ω] .

A. Banyaga [B2] give examples of l.c.s. structures (ω,Ω) such that the Lichnerowicz
class [Ω] is not trivial, [Ω] 6= 0. For deformations and equivalence of l.c.s. structures
see [B1].

To sum up we see that important l.c.s’s notions can be translated into the Lie
algebroid’s language. We have the following table:

l.c.s. Lie algebroid

(M,ω,Ω) ≡
ω is closed,
dΩ = −ω ∧ Ω.

A = TM × R
with anchor #A = pr1 : TM × R → TM,
with bracket
[[(X, f) , (Y, g)]] =
([X,Y ] ,∇Xg −∇Y f − Ω (X,Y ))
where ∇Xg = ∂Xg + ω (X) · g
∇ is flat and ∇Ω = 0.

globally c.s. ≡
ω is exact A is invariantly oriented

two l.c.s. structures
(ω′,Ω′) and (ω,Ω) on M
are conformally equivalent ≡
ω′ = ω + da

a , Ω′ = 1
aΩ

the corresponding Lie algebroids
are isomorphic via
H0,a : TM × R → TM × R,
H (X, f) = (X, a · f)
a ∈ C∞ (M) , a (x) 6= 0 for all x.
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2. GENERALIZATIONS: g-l.c.s. structures and Lie algebroids

We generalize l.c.s. structures to g-l.c.s. structures in which we can consider an
arbitrary finite dimensional Lie algebra g instead of the commutative Lie algebra
R. From the general theorem on the form of Lie algebroids, mentioned above, we
have [M], [K1];

Theorem 2.1. Each transitive Lie algebroid with a trivial adjoint bundle of Lie
algebras M × g is isomorphic to TM × g with #A = pr1 : TM × g → TM as the
anchor and the bracket

[[(X,σ) , (Y, η)]] = ([X,Y ] ,∇Xη −∇Y σ + [σ, η]− Ω (X,Y ))

in SecA is defined via the following data (∇,Ω): a covariant derivative ∇ in the
trivial vector bundle M × g and a 2-form Ω ∈ Ω2 (M ; g) fulfilling the conditions:

(1) R∇X,Y σ = − [Ω (X,Y ) , σ] , R∇ being the curvature tensor of ∇,
(2) ∇X [σ, η] = [∇Xσ, η] + [σ,∇Xη] , σ, η ∈ C∞ (M ; g),
(3) ∇Ω = 0.

The Lie algebroid obtained in the above way via the data (∇,Ω) fulfilling (1)÷(3)
above will be denoted here by

(2.1) (TM × g,∇,Ω) .

The form −Ω is the curvature form of the connection λ : TM → TM × g, λ (v) =
(v, 0) , in this Lie algebroid (TM × g,∇,Ω).

0 →M × g → TM × g −→
←−

λ

TM → 0.

More generally, the curvature form of an arbitrary connection λ (X) = (X, η (X)) ,
η ∈ Ω1 (M ; g) , is given by

(2.2) Ωλ (X,Y ) = (∇η) (X,Y ) + [ηX, ηY ]− Ω (X,Y ) .

We write the covariant derivative ∇ in the trivial bundle M × g in the form

∇Xσ = ∂Xσ + ω (X) (σ)

for a 1-form ω ∈ Ω1 (M ; End g) . Then ∇θ = d∇θ = ddRθ + ω ∧ θ. The curvature
tensor R∇ of ∇ is equal to

R∇X,Y σ = dω (X,Y ) (σ) + [ω (X) , ω (Y )] (σ) .

Theorem 3.31 Chapter IV from [M] classifies all transitive Lie algebroids having a
given coupling Ξ. For the Lie algebroid (2.1) we have,

Ξ : TM → OutDo[(M × g)] = TM ×Der (g) /ad (g) ,

Ξ (v) = (v, [av]) ,
where av (σ) = ∇vσ̃ − v (σ̃) , σ̃ : M → g, σ̃ (x) ≡ σ ∈ g,

(2.3) Opext (TM,Ξ,M × g) ∼= H2
ρΞ (M,Zg)

where Zg is the center of g and ρΞ : TM → TM × End (Zg) is the central repre-
sentation ρΞ (v) = (v, av) for Ξ.

Proposition 2.1. The conditions (1)-(3) characterizing the data (∇,Ω) determin-
ing the Lie algebroid (TM × g,∇,Ω) can be expressed as follows
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• the condition (1) is equivalent to

dω (X,Y ) (σ) + [ω (X) , ω (Y )] (σ) = − [Ω (X,Y ) , σ] ,

• the condition (2) is equivalent to ωx ∈ Der (g) , i.e. ωx is a differentiation
of the Lie algebra g,

• the condition (3) is equivalent to

dΩ = −ω ∧ Ω

(the values of forms ω and Ω are multiplied with respect to the 2-linear
homomorphism End g× g → g, (a, σ) 7→ a (σ) .

Definition 2.1. The pair (∇,Ω) determining the above Lie algebroid (TM × g,∇,Ω)
will be called g-locally conformal symplectic structure (g-l.c.s. structure,
for short) on the manifold provided that the 2-form Ω is non-degenerate in the
following sense: for each point x ∈M the mapping

(2.4) TxM → L (TxM, g) , v 7→ Ωx (v, ·) ,

is a monomorphism.

It is easy to see that if the mapping (2.4) is a monomorphism at a point x then
it is a monomorphism at every point near x.

We notice that if dim g ≥ 2 there is no dimensional obstructions to the existence
of an non-degenerate tensors:

Lemma 2.1. For arbitrary vector spaces V and g such that dim g ≥ 2 there exists
a 2-linear skew-symmetric non-degenerate tensor Ω ∈ Ω2 (V ; g) .

Proof. Let (e1, ..., en) be a basis of g. If dimV is even, then there exists a real
2-linear skew-symmetric non-degenerate tensor, say Ω0. The form Ω := Ω0 · e1 ∈
Ω2 (V ; g) is non-degenerate. If dimV = 2k + 1 and (v1, ..., v2k+1) is a basis of V
and u1, ..., u2k+1 is a dual basis, then put

Ω0 = u1 ∧ u2 + ...+ u2k−1 ∧ u2k,

Ω1 = u2k ∧ u2k+1.

The form Ω := Ω0 · e1 + Ω1 · e2 is non-degenerate. �

Definition 2.2. A g-l.c.s. structure is called globally conformal symplectic struc-
ture if the associated Lie algebroid (TM × g,∇,Ω) is invariantly oriented.

Theorem 2.2. Let (∇,Ω) be a g-l.c.s. structure on an arbitrary m-dimensional
connected manifold (oriented or not), dim g = n.Write ∇Xσ = ∂Xσ+ω (X) (σ) for
ω ∈ Ω1 (M ; End g). The following conditions are equivalent:

(a) The Lie algebroid (TM × g,∇,Ω) is invariantly oriented (i.e. (∇,Ω) is a
globally conformal symplectic structure),

(b) g is unimodular and trω is an exact form. [Let e1, ..., en be a basis of g.
For a non-singular function f ∈ C∞ (M) the element ε = f · e1 ∧ ...∧ en is
an invariant cross-section if and only if trω = d (− ln |f |)],

(c) the modular class of A = (TM × g,∇,Ω) is zero, mA = 0,
(d) Hm+n

∂or
A ,c (A, or (M)) 6= 0,
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(e) Hm+n
∂or

A ,c (A, or (M)) = R, and the pairing

Hj (A)×Hm+n−j
∂or

A ,c (A, or (M)) → Hm+n
∂or

A ,c (A, or (M)) ∼= R

is non-degenerate, i.e. Hj (A) ∼=
(
Hm+n−j
∂or

A ,c (A, or (M))
)∗
.

Proof. (a) ⇐⇒ (b) The very easy proof will be omitted.
(a) ⇐⇒ (c) ⇐⇒ (d) ⇐⇒ (e) see [K-M]. �

Theorem 2.3. If the Lie algebra g is semisimple, then each g-l.c.s. structure is
globally c.s. structure.

Proof. According to Theorem 7.2.3 from [K1] (see independently (2.3)) for the
trivial LAB ggg = M ×g there exists exactly one, up to isomorphism, a transitive Lie
algebroid A with the adjoint LAB ggg = M × g. Therefore, A must be isomorphic
to the trivial Lie algebroid A = TM × g with the data (∂, 0) . This Lie algebroid is
invariantly oriented: ε (x) ≡ εo ∈

∧n
g is an invariant cros-section. �

Let (e1, ..., en) be a basis of g with the structure constants ckij . The covariant
derivative ∇ determines a matrix of 1-forms ωji ∈ Ω1 (M) by

∇Xei =
∑
j

ωji (X) ej .

Analogously we have a collection of 2-forms Ωj by

ΩX,Y =
∑
j

ΩjX,Y ej .

We interpret the data (1)÷(3) concerning (∇,Ω) in the terms of the matrix ωji and
the collection Ωj and the structure constants ckij .

Proposition 2.2. (A) The conditions (1)-(3) characterizing the data (∇,Ω) de-
termining the Lie algebroid (TM × g,∇,Ω) can be expressed as follows.

• The condition (1) is equivalent to

−
∑
j

ΩjX,Y · c
r
j,i = dωri (X,Y )−

∑
j

(
ωji (X)ωrj (Y )− ωji (Y )ωrj (X)

)
,

• the condition (2) is equivalent to∑
k

ckij · ωrk (X) =
∑
k

(
ωki (X) crkj − ωkj (X) crki

)
,

• the condition (3) is equivalent to dΩj = −
∑
i Ω

i ∧ ωji .
(B) For an abelian Lie algebra g = Rn (i.e. ckij = 0) the conditions above are

equivalent to
• dω (X,Y ) = −ω (X) ◦ ω (Y ) + ω (Y ) ◦ ω (X) (equivalently dωri (X,Y ) =∑

j

(
ωji (X)ωrj (Y )− ωji (Y )ωrj (X)

)
),

• dΩj = −
∑
i Ω

i ∧ ωji .
Two g-l.c.s. structures (∇′,Ω′) , (∇,Ω) on a manifold M will be called g-

conformally equivalent if the associated Lie algebroids are isomorphic via an iso-
morphism of the special form (called g-conformal) H (X,σ) = (X, a (σ)) for some
mapping a : M → Aut (g) . Then the equivalent relations between the data (∇,Ω)
and (∇′,Ω′) are as follows:
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• Ω′ = a−1 ◦ Ω,
• a ◦ ∇′X (σ) = ∇X (a ◦ σ) .

We use the notation a ◦ σ for the cross-section defined by (a ◦ σ)x = ax (σx) .
Writing ∇′ and ∇ with using 1-forms ω′, ω ∈ Ω1 (M ; End g) (as above) the last

condition can be equivalently written in the form

ω (X) ◦ a = −∂Xa+ a ◦ ω′ (X) .

In the terms of the matrices ωj′i and ωji this condition is equivalent to∑
j

ω′ji (X) · akj −
∑
j

aji · ω
k
j (X) = ∂X

(
aki

)
.

The general form of a homomorphism H : TM × g → TM × g commuting with
anchors pr1 is as follows

(2.5) H (X,σ) = Hη,a (X,σ) = (X, η (X) + a ◦ σ)

for η ∈ Ω1 (M ; g) , a ∈ C∞ (M,End g) . Consider two Lie algebroids

A′ = (TM × g,∇′,Ω′) and A = (TM × g,∇,Ω)

Proposition 2.3. The following conditions are equivalent.

(1) H is a homomorphism of Lie algebroids H : A′ → A,
(2) (a) ax is a homomorphism of Lie algebras,

(b) (∇η) (X,Y ) + [η (X) , η (Y )] = (Ω− aΩ′) (X,Y ) ,
(c) a ◦ ∇′Xσ = ∇X (a ◦ σ) + [η (X) , a ◦ σ] ,

(3) For the basis e1, ..., en and the matrix aji defined by a (ei) =
∑
j a

j
i (ej)

(a) ax is a homomorphism of Lie algebras,
(b) dηk (X,Y )−

(∑
i η
i ∧ ωki

)
(X,Y ) +

∑
i,j η

i (X) · ηj (Y ) · ckij =
=

(
Ωk −

∑
i Ω
′i · aki

)
(X,Y ) ,

(c)
∑
j ω
′j
i (X) · akj =

∑
j a

j
i · ωkj (X) + ∂Xa

k
i +

∑
j,s η

j (X) · asi · ckjs.
The homomorphism Hη,a is an isomorphism of Lie algebroids if and only if ax

is an isomorphism of Lie algebras.

Proof. Straightforward calculations. �

If (∇′,Ω′) and (∇,Ω) are g-l.c.s structures and A′ and A are corresponding Lie
algebroids, then the isomorphism Hη,a given by (2.5) is equivalent to conformal
equivalence of the associated g-l.c.s structures (∇′,Ω′) and (∇,Ω) if and only if
η = 0.

Analogously, we can put the problem of existence of l.c.s. structures. We have
firstly the simple

Proposition 2.4. Any Lie algebroid A′ = (TM × g,∇′,Ω′) is isomorphic to A =
(TM × g,∇,Ω) with Ω non-degenerate (i.e. (∇,Ω) is a g-l.c.s. structure) if and
only if there exists in A′ a connection for which the curvature tensor is non-
degenerate.

Problem 2.1. We introduce into the class of pairs (∇,Ω) fulfilling (1)-(3) from
Theorem 2.1, the equivalence relation
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rg) (∇′,Ω′) ≈ (∇,Ω) ≡
≡ the Lie algebroids A′ = (TM × g,∇′,Ω′) and A = (TM × g,∇,Ω) are

isomorphic,
i.e. there exist η ∈ Ω1 (M ; g) , a ∈ C∞ (M,Aut g) such that (2b) and

(2c), from Prop. 2.3 holds: (∇η) (X,Y )+[η (X) , η (Y )] = (Ω− aΩ′) (X,Y )
and a ◦ ∇′Xσ = ∇X (a ◦ σ) + [η (X) , a ◦ σ] .

We can ask: does there in every (in given) equivalence class [(∇′,Ω′)] ex-
ist (∇,Ω) being a g-l.c.s. structure; equivalently, does there in the Lie algebroid
A′ = (TM × g,∇′,Ω′) exist a connection with non-degenerate curvature tensor,
i.e. equivalently, does there exists a 1-form η ∈ Ω1 (M ; g) such that the 2-form
(∇η) (X,Y ) + [ηX, ηY ]− Ω (X,Y ) is a non-degenerate.

For g = R we obtain Problem 1.1 and we need to assume that dimM is even.

Proposition 2.5. The above problem has a local solution.

Proof. Let a : Tx0M × Tx0M → g be an arbitrary non-degenerate 2-linear skew-
symmetric tensor (for dim g ≥ 2 see Lemma 2.1). We can locally extend Ωx0 + a
to a closed 2-form Φ and find by the Poincaré lemma a 1-form η such that dη = Φ;
therefore that (dη)x0

= Ωx0 + a. Slightly modifying η we can assume that ηx0 = 0,
indeed, locally there is a closed 1-form θ such that θx0 = ηx0 , so η−θ is zero at x0 and
d (η − θ)x0

= (dη)x0
. Clearly (∇η)x0

(X,Y )+ [ηx0X, ηx0Y ]−Ωx0 (X,Y ) = a (X,Y )
so the curvature tensor Ωλ of the connection λ (X) = (X, η (X)) , see (2.2), is a
non-degenerate near x0. �

Problem 2.2. It would be interesting to investigate the group of all compactly sup-
ported diffeomorphisms of M that preserve the g-l.c.s. structure up to g-conformal
equivalence (analogously as was given for usual l.c.s. structures by Haller and Ry-
bicki [H-R]).

We add that two extreme cases: (1) g commutative (for example g = R) and (2)
g semisimple, are quite different. In the second case all Lie algebroids of the form
(TM × g,∇,Ω) (i.e. with the trivial adjoint Lie algebra M × g ) are isomorphic,
clearly to the trivial one TM × g with the structure given by the data (∂, 0) . We
add that not each isomorphism is g-conformal. This Lie algebroid is invariantly
oriented.
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