NONDEGENERATE COHOMOLOGY PAIRING FOR
TRANSITIVE LIE ALGEBROIDS, CHARACTERIZATION
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ABSTRACT. The Evens-Lu-Weinstein representation (Q4,D) for a Lie alge-
broid A on a manifold M is studied in the transitive case. To consider at
the same time non-oriented manifolds as well, this representation is slightly
modified to (Q‘X', DO") by tensoring by orientation flat line bundle, QY =
Q4 ®or (M) and D°" = D ® 09". It is shown that the induced cohomol-
ogy pairing is nondegenerate and that the representation (Q%,DOT) is the
unique (up to isomorphy) line representation for which the top group of com-
pactly supported cohomology is nontrivial. In the case of trivial Lie algebroid
A = TM the theorem reduce to the following: the orientation flat bundle
(or (M) ,0°") is the unique (up to isomorphy) flat line bundle (¢, V) for which
the twisted de Rham complex of compactly supported differential forms on M
with values in £ possesses the nontrivial cohomology group in the top dimen-
sion. Finally it is obtained the characterization of transitive Lie algebroids
for which the Lie algebroid cohomology with trivial coefficients (or with co-
efficients in the orientation flat line bundle) gives Poincaré duality. In proofs
of these theorems for Lie algebroids it is used the Hochschild-Serre spectral
sequence and it is shown the general fact concerning pairings between graded
filtered differential R-vector spaces: assuming that the second terms live in the
finite rectangular, nondegeneration of the pairing for the second terms (which
can be infinite dimensional) implies the same for cohomology spaces.

1. INTRODUCTION

The cohomology pairing coming from Evens-Lu-Weinstein representation of a
Lie algebroid [E-L-W] is very important in many applications of Lie algebroids
(Poisson geometry, intrinsic characteristic classes). This pairing generalizes the
well known pairings that give Poincaré duality for Lie algebra cohomology and
de Rham cohomology of a manifold and real cohomology of transitive invariantly
oriented Lie algebroids [K3]. For a Poisson manifold, this pairing agree with the
pairing on the Poisson homology. The authors of [E-L-W] give an example of a
nontransitive Lie algebroid for which the pairing is not necessarily nondegenerate
and post the problem of when it is nondegenerate. This paper gives the positive
answer for the case of any transitive Lie algebroids and proves the property of this
representation: it is the one (up to isomorphy) for which the top group of compactly
supported cohomology is nontrivial.
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Finally, we prove that for the nonregular transformation Lie algebroid corre-
sponding to the action v: R — X (R), v () =t - X where X = zN%, there is no
line representation for which the cohomological pairing is nondegenerate.

More detailed, this paper is devoted to prove two cycles of theorems, mutually
overcoming.

FIRST CYCLE concerns nondegenerate cohomology pairings for manifolds
(Theorem 2.3), Lie algebras (Theorem 3.4) and Lie algebroids (Theorem 7.3).

— Assume that M is a connected m-dimensional manifold (oriented or not)
and &1, & are two flat vector bundles with flat covariant derivatives Vi and Vq
respectively. Denote by or (M) the orientation bundle with canonical flat structure
0°". Let F: & X & — or (M) be a pairing (i.e. 2-linear homomorphism) of vector
bundles compatible with the flat structures (V1, Va,9°"), nondegenerate at least
at one point (therefore, at every). From such a pairing one obtains a pairing on
differential forms and the induced pairing in cohomology

A

HE (M, &) x Hg ) (M, &) = Hye (M, or (M)) > R

is nondegenerate in the sense that

~

H%l (M’ 51) - (Hgl;cj (M’ 52) )*
The index ”¢” means that the compactly supported cohomology are considered.

This theorem generalizes the classical Poincaré duality as well as the one for d-
cohomologies [G-L].

— Assume that g is an arbitrary n-dimensional Lie algebra and V1,Vs : g — Lg
are two representations of g in R. Denote by Vi;aq : § — Lg the trace-representation
(Vtrad), = tr (ad,)-id. Then the top group of cohomology H{:, , (g) of g with respect

t0 Viraa is nonzero, H , (g) = R, and if the multiplication of reals is compatible
with respect to (V1, Va, Virad) then the exterior multiplication A : A"g*x A" "g* —
A"g* 2 R yields the induced nondegenerate pairing in cohomology

Hg, (9) x HE' (9) — H{toa (8) = R,

i.e.

Hg, (9) = (Hg," (9))" -

In particularv for (Vl, v27 vtrad) = (Oa vtrada vtrad) we obtain
Hi(0) 5 (Hid (@)
For unimodular Lie algebra g the usual Poincaré duality is obtained in this way.
— Let A= (A,[,],#4) be a Lie algebroid on M and

QA — AtopA ® AtopT*M

the line vector bundle with canonical Evens-Lu-Weinstein representation [E-L-W],
D, (Y®p)=Ly(Y)@p+Y @ Ly, (¢).
To consider non-oriented manifolds we modify it into
A =Qa®or (M)

and
Do’r =D ® ajoqr
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tensoring by the orientation bundle and its flat structure ((0%")., 0 = (0°") ., () 7

o €T (or(M)), #4 : A — TM is the anchor of A). For transitive Lie algebroids

with n-dimensional isotropy Lie algebras and multiplications by reals (M x R) ®
9 — Q9 the induced pairing in cohomology

HY (A) x HRo" 7 (A,QY) — Hptl (A,Q%) — R
is nondegenerate, i.e. Hgﬁ,t”c (A,Q%) =R and
H (A) 2 (Hp 7 (A.QF))"

SECOND CYCLE shows the uniqueness of the representation for which the
top group of compactly supported cohomology is not zero (Theorems 2.10, 3.5,
7.10).

— Hg . (M,§) # 0 if and only if (§, V) is, up to isomorphy, the orientation flat
line bundle (or (M), 0°"). In particular, for oriented manifold, Hg . (M,¢§) # 0 if
and only if (£, V) is, up to isomorphy, the trivial flat line bundle (M x R, 9).

— For an n-dimensional Lie algebra g the trace-representation Vy,q is the unique
line representation V for which HE (g) # 0.

— Let A be a transitive Lie algebroid and V a representation of A in a line
vector bundle £. Then H@Tj” (A,€) # 0 if and only if (£, V) is, up to isomorphy,
the E-L-W-representation (Q9", D7) .

In conclusion we obtain a full classification of transitive Lie algebroids for which
the algebra of real cohomologies with trivial coeflicients satisfies the Poincaré du-
ality.

— If A is a transitive Lie algebroid then the following conditions are equivalent:
o H™ ™ (A) #£0,
o H""(A) =R and HY (A) = (H "7 (A))",
e A is orientable vector bundle and the modular class of A is zero, 04 = 0.

In particular,

— For an orientable manifold M we have: H™t™ (A) # 0 if and only if A is a
TUIO-Lie algebroid [K2], i.e. the adjoint Lie Algebra Bundle g = ker # 4 is oriented
and there is a global nonsingular section ¢ € I' (A"g) invariant with respect to the
adjoint representaion.

The above theorem for a compact oriented manifold M and 1-rank adjoint LAB
g = M x R was proved earlier in [K-K-K-W].

To prove Theorem 7.10 we use Theorem 4.4 concerning a pairing - : 'Ax 24 — 34
between graded filtered differential R-vector spaces and theirs spectral sequnces.
Roughly speaking, if the second terms "EJ" live in the rectangular 0 < j < m,

0<i<n, 3E§m+n) = 3Ey"" = R and the multiplication of the second terms
()2« EY) x 2EmtnT) . 8Epmn ~ R s nondegenerate in the sense that
1E§j ) o (2E£m+n7j ))*7 then the cohomology pairing for cohomologies of spaces
is nondegenerate as well, ie. 3H™+" =~ R and HI — ((H™+7=9)" . We must

stress that the spaces TE%’ may be infinite dimensional.



4 JAN KUBARSKI AND ALEXANDR MISHCHENKO

2. NON-DEGENERATE PAIRINGS FOR TWISTED COHOMOLOGY OF A MANIFOLD

Many of the facts from this section belong to ”the folklore”. We call 1-dimensional
vector bundles line bundles.

2.1. Twisted cohomology, elementary properties
Let M be an m-dimensional paracompact manifold and £ a vector bundle of rank
pand Vxv, X € X (M), v €T (£, a flat covariant derivative on M in &.

() The differerential equation Vv = 0 (with respect to the local section v of
€) is locally uniquelly integrable.

The local section v satisfying Vv = 0 is called V-constant (or sometimes V-
invariant). To set a flat covariant derivative V is equivalent to set local trivializa-
tions { (U, ¢q)} relative to which the transitive functions are locally constant which
is, in turn, equivalent to set a homomorphism of Lie algebroids V : TM — A (§)
where A (&) is the Lie algebroid of £. The flat bundles (£, V) form a category with
morphisms F' : (§1, V1) — (&2, Va) being linear isomorphisms F' : & — & compati-
ble with flat covariant derivatives (V1, Va), i.e. for which F (V1 xv) = Vo x (Fv).
We write also

(&1, V1) L (&2, Va)

or briefly V; X V,.

Two flat line bundles over a connected manifold are isomorphic if and only if
they have the same holonomy homomorphism h : 7 (M,2) — GL(R,1). For a
flat vector bundle (£, V) the differential operator dv of the degree 1 for ¢-valued
differential forms Q* (M, &) is defined by the standard formula

dy (¢) (Xo, ..., X,)
— Z (—1)' Vx, (¢ (Xo, .0, X)) + Z (1) ¢ ([Xi, Xj], X0y oienfoos Xy) -

Let ol,...,0P be local sections of ¢ over U, corresponding to the standard basis
e!,...,eP € RP under the trivialization ¢, o7, () = ¢a,z (€') . The local sections o7,
are V-constant, Vo!, = 0. Over U, a &-valued g-form ¢ can be written as Y ¢'®@0?,
¢’ € Q1 (U,) and we have dy (3 ¢' ® o)) = > dar (¢*) ® ol The flatness of V
implies that dvy is a differential operator, dQV = 0, therefore Q* (M, §) is a differential
complex and the (twisted) cohomology

HG (M,§) = H (2" (M,§) ,dv)

makes sense. By the definition the 0-group of cohomology can be written as

(2.1) HY (M, &) ={veT(¢); Vxrv=0forall X € X(M)}.
(ee) If (¢,V) is a line nontrivial flat vector bundle then according to (e) above
H% (M,¢) =0.

If V is a flat covariant derivative in a vector bundle ¢ and w € Q' (M) is a
closed real 1-form, then

(2.2) Vir=Vxvr4+w(X) v
is a flat covariant derivative as well. If £ is a line bundle and V and V; are two
flat covariant derivatives then there exists a closed 1 -form w such that V; = V¥.

Each flat covariant derivative V in the trivial vector bundle M x R is of the
form 0¥ for some closed 1-form w (0 is the standard covariant derivative in the
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trivial vector bundle M X R defined by differentiation of functions dx (f) = X (f)
). Differential operator dg. is given directly by

dow (¢) = dard +w A ¢.
The operator dgw is in the literature denoted rather by d,, than by dg. [G-L], [H-R]
and the cohomology space Hgw (M, M X R) is denoted by H, (M). If w = 0 the
usual de Rham cohomology of M is obtained. It is easy to see that

(2.3) H°

w

0 <= w is nonexact
M) = . ’
(M) { R < w s exact.

The space of &-valued g-forms with compact support Q} (M, ) is a differential
complex as well and we have the compactly supported cohomology Hg; . (M,€).

If (£&,V1) & (&,V2) then F, : Q* (M, &) — Q* (M, &) commutes with the dif-
ferential operators dy, and dy, and gives rise to an isomorphism in cohomology
Fy : HG (M, &) — HS, (M,§2). Analogously, for compact supports, we have an
isomorphism Fy . : Hy, . (M,&§1) — Hy, (M, &) .

For an open subset U C M we have the restricted flat covariant derivative Vy;
on U in the vector bundle {y and the twisted cohomology Hy (U, ) and Hy . (U, €)
are defined. Similarly as in the case of real coefficients (see for example [B-T]) we
can obtain the short exact Mayer-Vietoris sequences (Uy, Uz C M are open subset,
U= U1 UUQ, and U12 = U1 ng)

0= Q (U,6) S Q° (U1,€) © 0 (Up, &) D Q (Uy2,€) — 0
and
0 — Q2 (U,€) & Q2 (U, ) @ Q (Us, €) & Q7 (U1, 6) — 0.

They give rise to long exact sequences in cohomology

« ,6‘ q
— HL (U, €) % HL (Uy,€) ® HL (U, €) 2% HL (U1, 6) & HET (U, ¢) —
and

g et r1a q Be# 1rq 0 rrg+1
- V,c (U’ 5) — HV,C (U17£) D HV7C <U27€> — HV7C (U12>£) — HV (U) 5) —

,C

Remark 2.1. There is a natural isomorphism H, (M, §) = Hj o) (U, €) of HG (M, §)
with HF o) (4, &), the cohomology of M in the sheaf I (V) of local V-constant sec-
tions of £. In other words, HS (M,€) are cohomology of M with local system of

coefficients.

2.2. Orientation flat bundle and its characterization. Let {(Uy,z,)} be a
coordinate open cover for the manifold M, with transition functions gng = z« ozgl.
Take the orientation bundle or (M), i.e. the line bundle on M with a distinguished
system of local trivializations {¢,} such that the transition functions are equal
to sgnJ (gag) [B-T]. Let {eqn} be a family of local sections corresponding to 1
under the trivializations {¢a}, €q () = @a,z (1) . In the bundle or (M) there exists
exactly one flat covariant derivative 0°" such that e, are 0°"-constant, 0°7 (eq) = 0.
The notation e, and 9°" is valid in the whole paper.

The flat orientation bundle (or (M) ,0°") is characterized by the holonomy homo-
morphism s : m (M, z9) — Zo C GL (R, 1) that can be identified with monodromy
to the [o co tu chodzi?] group of the local orientations in the fixed point zy which
also is Zs.
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In the sequel it will be useful to give other characterization of the flat orientation
bundle.

Proposition 2.2. Let (£,V) be a flat line bundle. The following conditions are
equivalent:
(8) (€,9) = (or (M), 0,
(b) there exists a collection of local sections {on} of & such that o, are V-
constant and the transition functions are equal to sgnJ (gag) ,
(c) (or( (M) ®&,0"@V) 2 (M xR,d),
(d) there exists a global nonsingular section t € T (or (M) ® &) which is 9°"QV -
constant.

Proof. Equivalences (a)<(b) and (¢)<(d) are evident by definition.
(b)=(c) The linear homomorphism F : or (M)®¢ — M xR defined by F' (e, ® 04) =
1 is a well defined linear isomorphism compatible with (0°" @ V,0).
(d)=(b) Locally t = e, ® o4 for some local nonsingular sections o, of £&. Since
0=0"QV(ea®04) =07 ®04+eq Vo, =€, Vo,

it follows that o, are V-constant and have the same transition functions sgn J (gag) -
O

The or (M)-valued m-differential forms are called densities. There exists an
operator

/ Q7 (M,or (M) — R
M
of the integration of densities and the Stoke’s Theorem for densities holds

/ dam- (w) =0
M

for w € Q™1 (M, or (M)) [B-T]. Hence it produces a linear operator

or,#
(2.4) / L HE (M, or (M) — R,
M

2.3. Pairings and cohomology, nondegeneracy. Now let (£1,V1), (£2,Va),
and (&3, V3) be three flat vector bundles. We say that (£1,V1) and (&2, Va) are
paired to (€3, V3) if there is a bilinear homomorphism F : & x & — &3 compatible
with flat covariant derivatives (V1, Vg, V3), i.e. such that, for every X € X (M),
(2.5) ngxF (Vl, 1/2) = F (Vl,Xul, VQ) + F (Vl, VQ,XVQ) .
Then we write F : (&1, V1) X (&, V2) — (€3, V3) . From such a pairing one obtains
a pairing (6,) — ¢ Av := F, (6,4) of Q7 (M. &) and 07 (M, &) to Q1+ (M, &)
fullfilling the equality

dy, F. (9,4) = F. (dv,¢,9) + (~1) 5 F. (¢, dv,¥).

Clearly, ¢ A ¢ := F, (¢,) is the usual wedge product of differential forms with
F-multiplication of values, see [G-H-V, Vol.II]. The pairing of differential forms
induces a pairing of cohomology classes

Fy : Hg, (M, &) x Hy, (M, &) — Hy, (M, &3)
as well as the pairing for compact supports
Fyo: Hg, (M,&) x Hg, . (M, &) — Hy, (M, &3).
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Consider two flat vector bundles (£1,V1), (§2,V2) and a pairing
(26) F: (51, Vl) X (52, VQ) — (07’ (M) 780T) .

For an open subset U C M we define a pairing

O'r‘,# or,#
/U oFy : HY (U&) x HE 0 (U, &) ™% 1. (U,0r () "5 R,

and the Poincaré linear homomorphism

D+ Y, (U.6) = (R U.&))", D (@) (#) = [ @nw).

Similarly as in the case of real coefficients we check that the family of Poincaré
homomorphisms {D{;} induces a map from the long exact sequences in cohomology
to the long exact sequences in compactly supported cohomology (the symbols of
vector bundles £; and &5 in the diagram below are ommitted and the sign + is equal
precisely to (—1)7™)
(2.7)

HL(U) —** HL(U)®HL(U,) —* HL(UL) -2 HI(©)

v v Y1 v (U2 v (V12 v

lDU JVDUI@D[& JVDUIQ lDU

od)” %
= B )

HE (U,&)" —" HL (h) @ HE  (U2)" —"— HE  (Up)"
For an infinite disjoint open subsets U = [[U; we deduce that Dy can be
identifying with [] Dy,.

Theorem 2.3. Assume that M is connected. If pairing (2.6) is nondegenerate at
least one point then the cohomology pairing
or.# m— F# ‘1\(;17.’#
/ oFy : H (M, &) x Hvz,cq (M, &) = Hpor .(M,or (M)) "= R,
M

is also nondegenerate in the sense that
Dy H, (M. &) = (Hg, ! (M, &))"
is an isomorphism, ¢ € {0,1,...,m}.

Proof. We can use the standard method from [G-H-V, Vol.I] (or a slightly modi-
fied method by using Riemannian structure and properties of geodesically convex
neighbourhoods, [B-T], [S]. According to [G-H-V, VolI, Prop.Il, p.16] and the
commutativity of diagram (2.7) and remark on infinite disjoint open subsets we
need only to prove the theorem for the manifold M = R™.

Each vector bundle £ over R™ is trivial, each flat covariant derivative V has trivial
holonomy, so the differential equation Vv = 0 is globally integrable. Therefore for
an arbitrary point o € M there exists an isomorphism of flat vector bundles

¢: (V) = (R x &y, 0)

where by 0 is denoted the standard flat covariant derivative dx f = X (f).

(Remark: for the line bundle £ the isomorphism ¢ can be given directly as follows.
For £ = R™ xR any flat covariant derivative V is of the form Vx f = 0x f+0x (a)-f
for some function a. Then ¢ (f) = e~*f is a required isomorphism.)
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The isomorphism ¢ gives rise to an isomorphism in cohomology

oy Hy (R™,€) S Hap (R™,&,,)

especially for the zero level

(0]
©
H% (Rm7§) 5 HgR (Rm7§wo) 5 fzo'
On the other hand, the isomorphism ¢ also gives rise to an isomorphism in com-

pactly supported cohomology ¢4 . : Hy . (R™, &) = Harc (R™, &, ), especially for
the top level

m

(pr#c . Hm (Rm7§) ‘P# c Hm (Rm’gwo) % gwo’
where p. is defined by the formula
[ asa) =X ([ 5y

where v; is a basis of &,,, A is a determinant function on R™ and f* € C° (R™)
are functions with compact support. p. is independent of the choice of the basis v;
and fulfils the equality p. ([f - A ®v]) = (fgm f) -0, f € CZ (R™), v € &y -

Now take flat vector bundles (¢;, V;) on R™ and linear isomorphisms ; : (&, V;) —

(]Rm X (&), 78) . For any pairing F' : (&1, V1) x (&2, Va) — (&3, V3) we get easily
the commutative diagram

Fy:HY (R™ &) x HE, (R™, &) — Hy, (R™&)

)
ls@ XPYy lsaé”#,c

X Hg}L%c( m7(£2)x0) - Hg}’%c( m’(£3)zo)

lpxpc l/)e
ot (€1) 4, % (§2)4, — (€3) 4,

where the middle pairing comes from the ”constant” pairing
F : (Rma (gl)wo) X (Rma (62)@)) - (Rmv (53)@)) ) FQL = Lzg-

To prove the theorem take (£3,V3) = (or (M),0°") and choose a point xy such
that Fy, is nondegenerate. (]

F#ngR(

930

2.4. Applications of the nondegenerate cohomology pairing. Now we give
a number of applications of Theorem 2.3.

Example 2.4. For a connected orientable manifold M and the trivial flat vec-
tor bundles (§,V;) = (M x R,0) and the multiplication of reals - : Rx R — R
we obtain the classical Poincaré duality H/ (M) x H" ™7 (M) — H™ (M) — R.
Especially H" (M) =R and H’ (M) = (H?7 (M))"

Example 2.5. More generally, for arbitrary connected manifold M taking (&1, V1) =
(M x R,0) and (&2, Va) = (or (M), 9°") and the multiplication by reals F' : (M x R)x
or (M) — or (M) we get the Poincaré duality also for nonorientable manifold [B-T].

~

Especially operator (2.4) is an isomorphism, Hz. . (M,or (M)) = R.

Example 2.6. [G-L], [H-R] Let M be an oriented connected manifold. The fol-
lowing conditions are equivalent:
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(1) HZ. (M) =0,
(2) H' (M) > [w] #0.
If [w] = 0 then H™ (M) = R. Indeed, consider multiplication by reals F :

(M xR) x (M xR) — M x R. This pairing is nondegererate and compatible
with (07%,0%,0). By Theorem 2.3 we get the nondegenerate pairing H” (M) x
HI'oP (M) — H™ (M) = R. In particular, we get H® , (M) = (H[". (M))*7 so all
follows from (2.3).

Each flat covariant derivative in or (M) is of the form (9°")“ for a closed 1-form

w. Concider the multiplications by reals F': (M x R) x or (M) — or (M). Then we
easily get:
Example 2.7. For any connected manifold M (oriented or not) the following
conditions are equivalent:

(1) Hrro, (M,or (M) = 0,

(2) H'(M)3[w] #0.

If [w] = 0 then H,, . (M, or (M)) =R.

)

The next applications are given in the following propositions.
Proposition 2.8. If M is orientable and & is an arbitrary line nonorientable (i.e.
nontrivial) vector bundle then for any flat covariant derivative V in &
HY . (M,§) = 0.
Proof. Indeed, consider the natural nondegenerate pairing
F:(§V)x (V)= (E0LVRV), (vp)—rep,

and any linear isomorphism ¢ : £ ® ¢ — M x R. The latter transforms the flat
covariant derivative V ® V to the 90“ for some closed 1-form w. We recall that
(VoV)y (r@u) =Vxr@pu+r®Vxp Then the pairing po F : Ex{ — M xR
is compatible with (V,V,8%) and, in consequence, with (V=% V,9) (for V™% see
(2.2)). By Theorem 2.3 we have the nondegenerate pairing

m m fZVI
H%—W (Mag) X HV,c (Mvg) - Hc (M) = R.

In consequence we obtain by the nontriviality of £ and observation (e) from section
2.1

0= Hy . (M.§) = (HF., (M,8))’
which imply Hy' . (M, §) = 0. |
Proposition 2.9. If¢ is a line bundle not isomorphic to or (M) then for arbitrary
flat covariant derivative V in & we have
Hg . (M, §) = 0.
Proof. Indeed, fix a linear isomorphism
p:E®E— M xR,
Such isomorphism ¢ exists since £ ® £ is orientable line vector bundle, therefore,
trivial. Let V@ V & 9 for a closed 1-form w. Take the multiplication by reals
Tior(M)® (M xR) — or (M)
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and notice that 7 is compatible with (9°" ® 8~,(9°7)*). Consider the canonical
nondegenerate pairing F' : (or (M) ® &) x £ — or (M) ® £ ® £ which is compatible
with (0°" ® V,V,0°" ® V ® V). The composition

F'i(or(M)@€) x €5 or (M) @€ 28 or (M) ® (M xR) 5 or (M),
clearly, is nondegenerate and is compatible with (0°" @ V,V, (9°")“) . Therefore F”
is compatible with (9°" @ V™ V,9°"). According to Theorem 2.3 applied to F’
we get

Hpor gy (M, 0or (M) ® €) = (HY . (M, £))" .
Since ¢ is not isomorphic to or (M) the vector bundle or (M) ® £ is not triv-
ial (indeed, if or (M) ® € =2 M X R then or(M) = & = ¢ ) which produces

HY,r oo (M, or (M) @ €) = 0 and further HZ (M, &) = 0. O

Finally we have the main application.

Theorem 2.10. The following conditions are equivalent:
a) Hg . (M,§) #0,
b) Hg (M, &) =R,
C) (57 V) ~ (OT (M) ,807") )

Proof. For ¢c) = b) see Example 2.5 or [B-T|; b) = a) is evident. It remains to
show that

a) = c). Keep the notation ¢ and w from the proof of the previous proposition.
By the same reasoning we check

HYuvg (M, 0r (M) @ €) #0.

It means that or (M) ®¢ is trivial and there exists a nonsingular global cros-section
v € T (or(M)®¢&) which is 9°" @ V™ “-constant. Express locally v in the form
v =-¢eq, ® fq for some local sections f, of £, for e, see subsection 2.2. It is evident
that {f,} has the transition function equal to sgn Jg.s and that V=“f, =0, i.e.
Vx fa =w(X)-fo. The formula f = ¢ (fo ® fo) determines correctly a nonsingular
function f. Since V@V £ 8¢ then dx f +w (X) - f =0%f =2-w(X) - f, one has

Oxf=w(X)-f
1

The global cros-section v/ = i is 0°" @ V-constant. The proposition follows now
from Proposition 2.2. ]

3. A GENERALIZATION OF THE CHERN-HIRZEBRUCH-SERRE LEMMA AND
APPLICATIONS TO COHOMOLOGY OF LIE ALGEBRAS

We generalize Lemma 3 from [Ch-H-S] concerning Poincaré differentiation from
algebras to pairings. The assumption on finite dimensionality is superfluous.

Lemma 3.1. Let A, = @) AL ds : A, — Ay, s = 1,2,3, be three graded
differential R-vector spaces such that

(1) ds [AL] C AL,

(2) d =0,

(3) ds [A57'] =0.

(4) Ay =R, Ay =0 fori>n.
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Let
LN Al X A2 — A3
be a pairing such that
(5) Aj- A} C A5Y,
(6) ds(z-y) = dra-y+ (—1)*"z - day,
(7) -t AT x Ay — A =2 R, r=0,1,...,n are nondegenerate in the sense that
the induced mappings
i A S (A
are linear isomorphisms.

Then the induced homomorphisms in cohomology
<t H" (Ay,dy) x H" ™" (Ag,dy) — H" (A3,d3) 2R
are nondegenerate as well, i.e. the induced linear homomorphism
il s H" (Ay,di) — (H"" (Ag,da))”
are linear isomorphisms.
Proof. The proof is identical with the original proof by Chern-Hirzebruch-Serre for
an algebra and it is sufficient to check that

7 HT (Ay,dy) S HDT (A, ) s HPT (As, dy)

where (A%, d3) denotes the dual complex. (]

Now we give some applications to the cohomology of Lie algebras with coeffi-
cients. Let g be a real Lie algebra of dimension n and let
Vig— Lg=EndR=R
be an arbitrary representation in 1 dimensional vector space. We will distinguish
two representations
° v0 = 07
® (Virad), = tr(ad,) -id.
We see that Vo = Viaq if and only if g is unimodular. Denote the differential
with respect t0 Viyag by dirad and the cohomology of g by Hiraq (g) - Straightforward
computations show that dzgdl = 0. Therefore

Proposition 3.2. H ,(g) = A"g* 2 R for every Lie algebra.

Let us notice the following

Remark 3.3. (1) Each representation V : g — Lg is equal to 0 on g and,
conversely, each linear homomorphism V : g — Ly such that V|g? =0 is a
representation.

(2) The zero group of cohomology HY (g) = 0 if and only if V # 0.
(3) The multiplication of reals - : R x R — R is compatible with (V1, Vg, V3)
if and only if V3 = V1 + Vs.

Point (1) from the remark above implies that any linear combination of repre-
sentations is a representation. Take an arbitrary representation V and put

V/ = vtrad - V.
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Then the multiplication of reals is compatible with (V' V,Viraq) by (3) from the
remark. Therefore, for differential operators dy/, dv, diaqa the condition (6) from
Lemma 3.1 holds. Since the exterior multiplication

A ATg* x A" "g* — A”g* ~ R
is nondegenerate then according to Lemma 3.1 the multiplication in cohomology
Hg (g) x Hg " (9) — Hijaa (9) =R
is nondegenerate as well, i.e. in particular
Hy (9) = (Hg ()"
Immediately from the above reasoning we obtain the following theorems.

Theorem 3.4. The multiplication of reals is compatible with the representations
(0, Virad, Viraa) and the induced cohomology pairing

H"™" (g) X trrad (g) - ‘:;ad (g) = Ra

is nondegenerate. In particular we obtain a noncanonical isomorphism
trad (8) = (H{ra (9))" = H" " (g).
Theorem 3.5. Vi;aq is the unique representation V for which HE (g) # 0.
Proof. For any representation V take V' = Vi..q — V. By (2) from the remark

above and isomorphism (3) we have
Hg (8) = Hy (8) #0 <= V'=0 <= V=V
t

4. PAIRINGS FOR GRADED FILTERED DIFFERENTIAL R-VECTOR SPACES AND
SPECTRAL SEQUENCES

The aim of this chapter is to prove that for any pairing of graded regularly
filtered differential R-vector spaces, if the second terms of spectral sequences gives
the nondegenerate pairing then the same holds for the cohomology algebras of the
spaces. This holds without assumption that dim Es is finite and generalizes the
suitable theorem for graded filtered differential algebras [K-M].

Given three graded filtered differential R-vector spaces

(4.1) (A=@p A’ d,14;), r=12.3,
i>0

denote for shortness

"H:=H(A, d).
Assume

A x 24084
preserves gradations and filtrations
(4.2) 145 . 24t © 345+t
(4.3) 1A, - A C A ik,

and that the differentials "d satisfy the compatibility condition
(4.4) Mz-y) = Ydo-y+ (—1)"% 2 Xy
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Clearly, there exists a multiplication of cohomology classes
T ) CPHE = CPHIYE (2] [y]) e [y
Let
(rEg,i’ Tds)
be spectral sequences of graded filtered differential R-vector spaces (4.1).
Lemma 4.1. (1)
lZz,i . QZ;C,I C 3Zg—‘,-k‘,i—‘,-l7 0 S s S 00,
(2)
1Zg',i. 2Dic,_l1 + 1Dg,ic1 . ZZ;',Z - BngfH’iH_l + 3Dgf]f’i+l, 0<s< oo,
j i k,l i k,l ki1
730 2D+ DI Pz C PDITR T (5= 00).
Proof. Straightforward calculations. ]

Conclusion 4.2. There exists a multiplication of s-terms of spectral sequences
B % 2B = BT ([, [y]) - [2oy), 0< s < oo

The differentials 'dy, %ds, %ds fulfils the compatibility condition with respect to the
total gradation

Yy (x-y) = dex -y + (—1)tomldegm x - %dgy.
There exists a multiplication of cohomology classes of s-terms
H (B, ) x HY (B, M) — B0 (B, ) s (), 0) = 231
The linear isomorphisms of bigraded spaces
"os: "Esy1 — H("Es, "dy)
oot "Eoo — Eoy ("H)

conserve the multiplications

‘o (2] [y]) = o [] Pos [yl

3000 (E : y) = 1000 (E) : 2000 (g) .
Remark 4.3. For s > ¢ + 2 we consider the canonical epimorphisms
A o I/ LY 7 AR SR by A W2 L (772 m S Sy EA0 IS 7

For s > i+ [ + 2 the canonical epimorphisms yJ:¢, %kl 3yi+ki+l are compatible
with multiplications

3. jtkyitl _ 1 gy 2 Kl

VI (] [y]) = 2 fe] R )
This implies that if spectral sequences ("Es, "ds) collapse at the mth term then the

canonical isomorphisms "By : "Eg = "Fw, see [G-H-V, VolIII. §1.1.2], conserve
bigradations and are compatible with multiplications. We recall the construction
of "By,. For arbitrary (j,i) we select arbitrary s > max (m,i + 2) and put

. L orgdi . TyIhi
ralyt . rpdit Om rppgyi rmgd S rg.i

The following main result of this chapter generalizes Corollary 12 from [K-M].
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Theorem 4.4. Given three graded filtered differential R-vector spaces (4.1) and a
pairing - : YAx 2A — 3A satisfying (4.2), (4.3), (4.4), assume that the filtrations are
reqular in the sense "TAg = "A and that the second terms TE%l live in the rectangular
0<j<m,0<i<n and that 3BT = 3EI" = R.
If the multiplication in the second terms
<.7.>2 . 1E£j) % QEéern*j) N SE;TL,H ~R

is nondegenerate in the sense that

Y= CETT) w0
is a linear isomorphism, then
(a) SH™T" 2R,
(b) "Ht* =0 fort > m +n,
¢) the multiplication in cohomology classes
)

(4.5 (Vg HI x 2H™ANTT o 3gman R

s nondegenerate as well, i.e.
i =, (QHern—j)*’ (2] — ([z],")m,
s a linear isomorphism.

Proof. The terms "E3, "Ey, ..., "Es, live also in the same rectangular 0 < j < m,
0 < i < n. The bidegree argument of the second differential operator %dy implies
(compare with [K-M]) the condition *d, [3E§m+"71)] = 0. By the generalized Chern-
Hirzebruch-Serre Lemma 3.1 we get 3ES™ ™™ = 3E™" =~ R and nondegeneracy of
the multiplication for third terms. Proceeding inductively we get the same for all
finite terms. The bidegree argument for the further differential operators "dg im-
plies the colapsing of spectral sequences ("Ey,"ds) , say at "m > max (m + 1,n + 2)
places. Then 3ES"™™ = 3Emn = R g0 (a) holds because 3H™+n =~ g+ ~ R
and next, for m > max (Lm, m, 3”m) the canonical isomorphisms "3 (see Remark
4.3) are compatible with multiplications. In consequence, the multiplication in the
infinite terms

(4.6) c IBU)  2p(min—d) _, Spmin o~ R
is nondegenerate as well.
It remains to prove the nondegeneracy of the multiplication of cohomology classes

(4.5). The spaces "H possess a natural graded filtration "H7*, and thanks to the
regularity of filtrations we have

(4.7) "HY="H% o> "HY L S o "HYY 50

and a noncanonical isomorphism

(4.8) THt = ("HOt/THN Y @ (HML T2 g THYO = @ B ("H).
Jti=t

Analogously to the proof of Theorem 11 from [K-M] we assert that

(4.9) ES™ (H) = Byt (H) = TH™,

and
THI = "HITL T for j > mor i > n.
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Therefore by (4.8) "H' = 0 for ¢ > m + n which proves (b). As in [K-M] we check
the rule:

o if 0l (z) = [z] for z € B}, x € H7' and if %777 (§) = [y] for

g€ EmInTiy € 2HMTInT then
(4.10) Sy (5 5) = [o] - [y] = 2 -y
We fix generators o, € SE7" and £ € 3H™™ in such a way that %" (£) = Ex.
Consider the pairings, see (4.6),
(Voo : lEgg) % QEgz+n—j) — R, (2,900 oo =T -7,
<'a >H : lHj X 2Hm+n—j - R7 <$,y>H : §H =Y.
By (4.10) we have
(4.11) (Z,9)oc = (T, y)m
where 0 (Z) = [z] and % ~3"~ (§) = [y]. According to (4.6) the pairing (-, ) is
nondegenerate, that is E{) =~ (QE&H g ))*. Consider the induced linear mapping
ko lgio (QHm+n—j)*7 T (z, ).

Similarly to [K-M] we easily check the monomorphy of k. It remains to check that
k is an epimorphism.

Take a linear function 0 # [ : 2H™*"~J — R and consider the filtration (4.7) for
r=2andt=m+n—j. Let VP C 2HP"™T"~J=P be a subspace complementary to
2gptlmin—j—p=1 5 —0,1,...,m+n —j and

WP VP — BRI CH) e o],

the induced isomorphism. Put
Y= yr 2 = (Qvr = @ EFTI (H).
P P P

The composition [ oyp~! € (EBp EpmAnTIR (°H) )* determines a family of linear
functions 1§ € (EZ™ ™77 (2H))". Define

I = {p; Iy # 0}
For each p € I} we define - through isomorphisms

ZppmAn—j=p . 2ppmtn—j-p =, Eg,m+n—j—p (2H)
- a linear nonzero functions
1B, € (PERmtnmimh)t B = (b o FpmAnip,

The nondegenerate pairing (-, -)oo : EZ"PPHI =M x 2ppmin=j—p _ R determines
an element 0 # z™ P € ER-PPHI =" such that (T 7, Yoo = B, € (2ELTI7P)",
Let lom-ppti=m (zm=r) = [gm=P| € Ey* PP (1) | where

xm—p c 1Hm—p,p+j—m and mm—p ¢ 1Hm—p+l,p+3—m—1.

T = g z™P,

pel;

Put
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We prove the equality

Since *H™*"~7 = @, VP, we need only to prove & (z) (y*) = (z,-)u (y*) = 1 (y")
for y? € VP C 2HP™mI=i=P If p ¢ I}, ie. I§ =0, then [ (y?) = 0 and for all p’ € I,
by (4.9) and (4.10)

@y € =2 P = [ [y € BT (H) = 0,
If pe I, and 0 # y? € VP then
LyP) = (VP o (P) 7 [y] = 1 [yP] = 1B o (ol 77P)

= (@7, (GBI T ([5P])) oo

(4.11)

m—p’

1

([v"])

m-—p

(@ Y E
= (z,9")n.
The last equation holds because for p’ # p, p’ € I;, we have
0# [« 7] e B PP (1H)
and by (4.9) and (4.10)

m—p’ yP = [xm—p'] . [yp] e Eg’L—P/;P/-‘rj—m (3H) - 0.

5. HOCHSCHILD-SERRE FILTRATION AND THE SPECTRAL SEQUENCE FOR
TRANSITIVE LIE ALGEBROIDS

We fix a transitive Lie algebroid A = (A, [, ], #4) with the Atiyah sequence

0—-g— A 4 TM — 0 and a representation V : A — A (§) of a Lie algebroid
A on a vector bundle £. V is a homomorphism of Lie algebroids, then V induces a
homomorphism of vector bundles V* : g — End (§)

9 Y End(¢)

l |

A Y A

and V; : g, — End (&) is a representation of the isotropy Lie algebra g, in the
vector space £,. We will consider the pair of R-Lie algebras (g, ¢) where

g=T(4), t=T(9).

Below, the elements of g will be denoted by ~,v1,72,... while elements of £ by
0,01,039,.... Of course, £ is an ideal of g (actually, € is C° (M)-Lie algebra but it
is not interesting here). The space T' (§) is a g-modul with respect to the induced
representation denoted by the same letter V : I'(A) — CDO(§) C Lr(. Fol-
lowing Hochschild-Serre [H-S] we can consider a graded cochain group of R-linear
alternating functions

An=PA, A=C"(g,T(9),

i>0
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with the R-differential operator of degree 1

dy : C" (g, T (§)) = C"" (8,1 (¢))
defined by the standard formula
(A9 f) (Yos 1) = 3 (=)' Vo, (f (os vy W)+ (=) f ([, 750, i)
7 i<j
For the trivial representation 04 : A — A(M xR), (9a), (f) = 9y (f), this

operator is denoted by d 4. Clearly, for a real alternating ¢-cocycle ¢ and o € T (£)
we get
dy (p®0) =dap @0+ (1) p Adyo.
In the space @, A" we have the Hochschild-Serre filtration A; C Ag as follows:
Aj=Ag for j <0.1fj >0, A; = D,s; A% AL = A;N AY, where A} consists of all
those t-cochains f for which f (v1,...,7:) = 0 whenever t — j 4+ 1 of the arguments

~v; belongs to €. In this way we have obtained a graded filtered differential R-vector
space

(5.1) (Ar =P A’ dv, A
t>0

and we can use its spectral sequence

(5.2) (B2, dy).

Following K.C.M.Mackenzie [M] (see also V.Itskov, M.Karashev, and Y.Vorobjev
[[-K-V]) we will consider the C* (M)-submodule of C°° (M)-linear altarnating
cochains with values in the vector bundle ¢ (i.e. A-differential £&-valued forms)

Q' (4,¢) c C* (g, T (¢))
and the induced filtration
Q; =05 (4,8 =A4;NQ(4¢)

of C* (M)-modules. The differential dy of a C'*° (M )-cochain is a C*° (M)-cochain,
so we get dav @ Q(A4,&) — Q(A,€). We obtain in this way a graded filtered
differential space

(5.3) (24,9 =P (4,9 ,dav, )

and its spectral sequence
(5.4) (E%', dav.s)-

Now we consider as well a submodule of C*° (M)-linear altarnating cochains with
compact support Qf (A, &) C QF (A, €) and the corresponding filtration

Qc,j = Q] N QC (A7€)
of C*° (M)-modules. Since suppdy f C supp f then we obtain
da.v Qe (4,8 — Q (4,8

and we get a graded filtered differential space with compact support

(5.5) @Qt A€),da, v, Q)
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and its spectral sequence
(5.6) (BL o da,vs)-

Sometimes we can deduce directly properties of the last two spectral sequences
(5.4), (5.6) from the suitable properties of (5.2), see [H-S], denoted further by ,
sometimes we must use some additional observations.

Lemma 5.1. The homomorphisms py pco in the sequence

.. A L Pec,0 A L. .. po A L ..
J,t _ J+i j0ite j+i /0J Tt _ it JHi ) ATHE it
EAC,O = Qc,s /Qc,s+1 — /Qs+1 = EA,O — Al /Aj+1 = Ey

are monomorphisms. For differentials da, v, dav, do the following diagram is
commutative

7% Pe,0 7% Po 7%
EAC,O - EA70 - Ey

g i i
ldAC,V,O ldA,V,O ldo

jitl  Peo Grit1 0 G+l
EAE,O - EA,o - Ey .

From

° For R-cochains there exists an isomorphism
a By — O (g/e,Ct (8, (€)))
such that
(5.7) a? [f1 (] s oo [%5]) 01y oy 02) = F(O1y oy Tis V1, oes V) 5 -
we can easily obtain the following
Conclusion 5.2. The homomorphisms
aff : Eil’,io — (M, ANg*® 3)
By 0 (N 5
defined by the formula
@ ] (X1y oo X5) (01, 0oy 03) = [ (01, ooy 03 AX L, ooy AX)

Xr € X (M), 00 €€, (ai"i defined by the identical formula) where A : TM — A
is an arbitrary connection, are correctly defined linear isomorphisms of C* (M)-
modules.

Proof. Monomorphy of aiii and aiii follows from the commutativity of the diagram

Pec,0

J,t J,t Po 7>t
EAC,O - EA,o - Ey

g, i .
laAc lu’A J,a“

Q5 (M, N'g" @ €) —2 Q7 (M, Nig" ©€) — €7 (g/t,C* (6T (€))).
To prove that ai{i is an epimorphism it is sufficient to check that if a’t[f] is
a C° (M)-linear cochain, i.e. a’* [f] = po (f) for some f € Q7 (M,A'g* ®¢), ie.

f@#am), - #a () (01,.,0i) = f(01,...,04,71, .., 7;) , then there exists a rep-
resentative f’ € [f] € EY’, which is C° (M)-linear cochain such that a’;’ [f'] = f.
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To this end take a connection form wy : A — g coresponding to A and put

f/ (7{7"'77}3717"'772') = f (WO (71) y ey WO (’7;) » V1, 771) . Then f/ fulfils the de-
sired conditions. O

° Through isomorphism a’* the differential dé’i becomes a differentiation
of values with respect to the differential

(5.8) dyo, : C* ({,T(§)) — C™1 (8,1 (€))
(t: %< g, is the inclusion),
dye, : €7 (g/t.C* (£.T(€))) — C7 (g/b,C"TH (2.1 (8)))
JVOL (f) ([71] PR [’Yj]) =dvo. (f (['71} yeeey h’j])) .

In conclusion, the differentials d{&fv,o and diii,v,o becomes (through the isomor-

phisms ai{i and ai{i) differentials of values with respect to
dy+ : N'g" @& — A"g* @,
namely
dy+ : ¥ (M, A'g* @ ¢) — & (M, A" g" ®¢),
dy+ (f) (X1, X;) = dyo+ (f (X150, X5)).
Analogously we obtain a differential JC’VJF for compact supports.

Remark 5.3. According to K.Mackenzie [M, Th.2.5, p.201] the homomorphisms
div+ tAig* ® € — ATlg* @ € are locally of constant mnk7 and consequently, there
are well-defined vector bundles Z% = kerdt., B" = Im dzvjf and H'(g,¢) = Z'/B?
such that I' (H' (g,€)) = H (T (Ag* ® &) , dy+) . Clearly,
H' (gag)w = Hl(AgI ®§x7dv;)~
Therefore
H(Q (M, Ng* ©¢),dg+) = Q7 (M, Hy (9,6))
H(Q (M, A'g" ®¢€) ,dev+) = QL (M, Hys (9,€)) .-
From the above we obtain isomorphisms of C'*° (M )-modules
(%) H' (B, dily o) = @ (M A'g" ® ),
(%52) 4+ H (BS 00 847 0 0) = QL (M A'g" @ €) .
Now we pass to consideration of the modules Zs, Dy, Es and Za s, Da s, Eas

and Z4, s, Da. s, Ea. s for three spectral sequences for graded, filtered, differential
spaces (5.1), (5.3), (5.5), respectively. Immediately by definitions we get

Lemma 5.4. (1) Z, = ZINQ(A§), (2) D, = DINQ(A¥), (3) Z%_, =
74, NQ(A8).

Fix an auxiliary a connection A\ : TM — A and for f € Zf;{fl C QIH(A€) we
define

fi e (M, Ag*®¢)
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by the formula
fj (Xl, ceey X]) (01, ceey O'i) = f ()\Xl, ceey )\Xj,(fl, ceey O'i)
= (—1)ji f (0’1, ey 04y )\Xl, ceny )\XJ) .
Lemma 5.5. If f € Zi"fl then f; (X1,...,X;) € F(Aig*®§) is a dy+-cocycle,
dy+ (f] (X1, ...,Xj)) = 0, independent of the choice of A.

Proof. For f € Zﬁ{fl C Q;J” (A,€) C ATT we take a cochain f; € C7 (g,C* (g,T (€)))

defined by f] (71””%’) (7{777’2) = f(Vla,an”Y;/u---a%{), see [H'S] From the
equalities

75, = {f et dyf e Q;Zfﬁl} = 2P NIt (4,¢)
we get (see [H-S]) that ¢f (f; (71,,,,75)) € C7 (& T (§)), where

007 (@, (€) — O (T (€), 5 (9) = glt x o x &,

is a (V otL:t— Lp(f))—cocycle and that this cocycle depends only on the equiva-
lence class [y;/] € g/€ = X (M), i.e. on the anchors of the elements v;/, i.e. on

#a () But 5 (f5 (0155,,75)) is C°° (M)-linear ¢5 (f; (11,,,,7;)) € T (A'g* ®¢)
therefore the condition dy,, (L; (fi (1,55, ’yj))) = 0 is equivalent to

dy+ (¢ (f; (n1555,75))) =0.
The equality o5 (f5 (v1,,,,7)) = fi (#a4 (1), #4(7;)) proves the lemma. O
We recall that
Bl = 240 (25 + D)
={F e (A.9; dof € I}/ (Vi1 + v [7)
and analogously for Eiil
Lemma 5.6. The homomorphisms
Wi By — @ (M Hy (9,9). [
Wy e Ei111 — QL (M,H4 (9.9)), |f

are isomorphisms of C* (M)-modules.

— =
| |
RN
=2 =
. <.
SRS
— —
SH S
=0

Proof. Clearly, we need to notice only that ¥ 4 ; is a composition of isomorphisms

Wart B e ) o0 (g .9)

and analogously for compact supports. O

From the above lemmas we see that the canonical homomorphism E%" | — E%"
o ;
is a monomorphism.

° There exists a representation [precisely, a Lie derivation]
L9 Leere)
defined by the formula
(Ezvf) (01,..0,04) =V (f(o1,..0,04)) — Z floty [y, 0e]s ey 04) -
t
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Ei commutes with R-differential operator dvy.,, see (5.8), induces a repre-
sentation in cohomology

#.0 . )
L7029 — Lgg ere)

and € C ker L% (because LLf = dvo, (tof) if f is a dyo.-cocycle.). It
produces a representation

[£77] s 9/t = Ly erce))-
Noticing that a Lie derivation of a C'*° (M)-linear cochain is C*° (M )-linear too,
we can pass to I' (A’g* ® £) . Additionally we observe that £ : I’ (Alg* ® §) —
r (Aig* ® 5) is a covariant derivative operator with the anchor #4 () and Eg is

C*> (M)-linear with respect to . In conclusion we obtain a representation of the
Lie algebroid A in the vector bundle Alg* ® &

Ly:A— ANg ®¢).
Lemma 5.7. The representation L coincides with the adjoint representaion of A
in N'g* cross V, Ly = ady @ V.

Proof. The adjoint representation ads : A — A(g), ada (v) (6) = [v, 0], induces
the one in the associated bundle A’g* (denoted also ad4) and its tensor product
with V is just equal to L. (]

The representation £?, induces the one in cohomology
LR A— A(Hgs (9,€))

such that g C ker £% (indeed, (£Y), (f) = dy+ (1o f) for a dy+-cocycle f). There-
fore, we obtain a flat covariant derivative

(5.9) VM — A(HS, (9.€))
by the formula

Vic (1) = (£57) 1 (11D = [(£4) 15 (£)]
where for a dy+-cocycle f € Alg* ® &

(ﬁfax),\x (f) (o1, .s00) = Vax (f (01,0, 04)) — Zf (01, NX, 04], ooy 04) -

Remark 5.8. For the trivial representation V = 04 we get a flat structure in the
cohomology bundle H?(g). If the structure Lie algebras g, are unimodular then
H" (g) = A™g* and the induced flat covariant derivative 0% : M — A (A"g*) is
defined by

((QZ)X f) (0’1, ---70n) = X(f (Ul,...,O'n)) - Zf(o'la-"[[)‘X7 Oi]]aan) .

This flat structure coincides with the flat structure in A™g* defined in the paper
[K-M] via some system A = {@};} of local trivializations with locally-constant
transitive functions. We recall that ¢f, : U x A"g* — A™g* (g is the typical fiber
of g) is determined by a local trivialization ¢y : Ay — TU x g of the Lie algebroid
A in the following way: @y induces a local trivialization (p?} :gu — U x g of the
adjoint Lie Algebra Bundle g and we put (@), = A" (gp$)i .
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'Now, we carry over the differentials d%l : Eﬁ{fl — Eﬁlﬁl’i, diii,1 : E,J4:1 —
Eiltll’z, to the spaces QU (M, HL . (g,€)) and QF (M, HL, (g,£)) , respectively, via
the isomorphisms W 4 ; and ¥ 4_ ;. Since the canonical homomorphism

T (Hg+ (9,€)) — Heo, (8T (€))

is not a monomorphism unless the Lie algebra bundle g is trivial, we can not infer the
form of this differentials immediately from the level of R-cochains and its spectral
sequence (5.2). In comparising of the cohomology classes from HS,, (€, T (€)) having
representative of C*° (M)-linear cochains we must see whether these representatives
differ by a C*° (M)-linear cochain.

Proposition 5.9. The following diagrams are commutative

i a4
E34 ”
,

[ v [war

Qi (M, Hi, (g.6)) 2% it (B, (g,€)

J4+1,i
EA,l

. a7 o
J,t Acs1 Jj+1,4
EAC,l - EAc,l

jvi i1,
o o

. ) (—1)'dgs . .
Qg (Ma H’Lv-f— (gag)) — Q%Jrl (Masz-%— (gag))

Proof. The calculations identical as in the R-linear cochains [H-S] yield for f €
Z%' C Z{" the following formulae

(—1)' (dye 0 Wi [f]) (X1y ooy Xjia) = (=) [of (X, o, X)),

(WL o dll 1f]) (X ey Xj)
= (=) g (X1, e Xjp1) = do (<1 Fien (X1 K1) )]
where py € Q9T (M, A'g* ® €) and py (X1, ..., Xj4+1) is a dy+-cocycle defined by

pf (Xh ...7Xj+1) (0'17 ~~~7Ji)

Jj+1

= Z (—1)t+1 V)\Xt (fTJ (Xl, f,XJJrl) (0‘1, -~-;Ui)) +
J+1 1

+Z ij (X1y ety Xj1) (015 ooy [NX3, 05]0) +

+ Z D™ (X, X, X,y o8 X 41) (01, 0y 04)
r<s
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The cochain fji1 (X1, ..., X;41) is C° (M)-linear, i.e. belongs to the module
QI (M, A "'g* @ ) . This gives

—~

(—1)" dgi 0 W', — W o dl ) (F) (X1, Xj)
= (—)Ur [dy+ (1) fijp1 (X1, Xjp1) )]
0.

If f has a compact support, the same hold for p; and f;j;1 and we get the
commutativity of the second diagram. O

The next theorem is the main goal of this section. It describes the second terms
of the sepectral sequences (5.4) and (5.6) (see also [M]).

Theorem 5.10. The homomorphisms
Vas: EYYy — HL (M, Hy, (9,9)), [f]
Vi BYy — Hy (M Hy. (9.6)), [f

are isomorphisms of C>° (M)-modules.

—_——
R
. .
S
— —
S S
-

Proof. Clearly, we need to notice only that ¥4 o is a composition of isomorphisms

o ()

Wy B - H (B3, dy) ?# HE, (M, Hg- (9,¢))
and analogously for compact supports. O

6. ALGEBROIDS AND PAIRINGS

Assume that A is a transitive Lie algebroid with three representations
Vet A= A&), r=1,2,3,
and a pairing
F:& x&—&
compatible with the representations (V1, Vg, V3), i.e. fulfilling the property anal-

ogous to (2.5) in which we must replace X by v € I'(A). Then the multiplication
of cochains

NiNg @6 x Ng @& — Mg" @&
is compatible with _ o
(a) suitable representations £7,, L%, £/,

L (frg) =L5 () ng+ ALY (9),
fET(Ng*®&),geT (Ag*® &),
(b) differentials dgy; dgy, degt
dys (f A g) =dgs (f) A g+ (=1) f Adgy (9),

f, g as above.
The latter equality gives the pairing of cohomology vector bundles

(6.1) At HE. (9.60) X He: (9.62) = HIY (9.65)
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which is compatible with the suitable representations L’ﬁ’j , ,Cff’i, Ef’j * and finally
with the flat covariant derivatives V7, V¢, VI T¢

VAN L) = Vi (D Algl + LA A Vi [al.-
We assume in the sequel that n = rank g (and we recall that m = dim M).
Together with three representations V, one consider three graded filtered dif-
ferential spaces 2 (A,&1), Qc (A,82), Qc (A,83) (5.3), (5.5), and theirs spectral se-
quences (‘B 'dav.s), (CEY [ 2da,v.s), (B ,2da, v.s). Using monomorphy
of pg and of p. o, Lemma 5.1, we see immediately from the case of R-linear cochains
[H-S] that the following diagram commutes.
B, x 2B, S Tl

cs

L. o .. ]
7,7 J T J,7 VRXS
laq Xalc l(Z’ Xadc

0 (M, Ng* © &) x 0f (Mg ©.&) X0 0 (Mg e g).

Passing twice to cohomology and using definitions of suitable homomorphisms we
get the commutativity of the diagram

(6.2)
i o 2ppi A 3ppi+i it
A2 A2 An2
1y, i’ i j+3i+i’
l \PZA,ZX 2\I’Z4C,2 lB\I/ZQCJY2

/].'/\

. i ./ & (=1)* Y it
HJV1 (MﬂHviF (gvgl)) X vai’yc(M7HvéF (9752)) vatii/’c(M? vE’ (gvfd))
The main theorem of Chapter 1 one gets the very important

Conclusion 6.1. If & is a line bundle and (Hg;r (g,é},),V”) ~ (or(M),0°")

[in particular, (V;)m = Virad ® id according to Lemma 3.5] and the pairing of
cohomology vector bundles

A HZViF (g’gl) X ngzl (9352) - Hgg— (9353)

is nondegenerate, then the same holds for the pairing

(6.3)

j 7 m—j —3 m n f#
va1. (Ma HV;r (9751)) X an—ji,c(Ma Hgg—z (ga£2)) - HV”,C(Mv HV3+ (g7€3)) = R.
i.e.

. . ~ s ) *

(M L (9.60)) = (2 (M. (9.6))"
Diagram (6.2) assert that the nondegenerate pairing (6.3) is Lequal to the multi-
plication of the second term of the spectral sequences

B x BRI ER SR
so the last is nondegenerate as well,
By = CELA" )

and the main theorem of Chapter 4 gives that the multiplication of cohomology
classes

(oym s HE (A &) x HEI (A, 6) — HEIM (A,6) S R
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is mondegenerate too, i.e.

HL (A &) = (HETT7 (A &))"

7. EVENS-LU-WEINSTEIN PAIRING FOR TRANSITIVE LIE ALGEBROIDS

7.1. Nondegeneracy of Evens-Lu-Weinstein pairing for transitive Lie al-
gebroids. We prove that for transitive Lie algebroid A the duality of Evens-Lu-
Weinstein [E-L-W]

HY (A) x Hpo" 7 (A,QY) — Hpat! (A,Q%) — R

is nondegenerate, i.e. Hpot" (A,Q%) — R and

HI(A) = (HRE"7(4,Q%))"

For arbitrary (nonregular in general) Lie algebroid A on a manifold M the authors
[E-L-W] introduced a vector bundle

QA — AtopA ® AtopT*M

(the notation AP refers to the highest exterior power). Geometrically, sections of
@ 4 can be thought of as transverse measures to characteristic foliation Im # 4 to any
Lie algebroid A [E-L-W]. For Poisson manifolds, the Evens-Lu-Weinstein pairings
takes the form of the pairing on the Poisson homology; for more applications see
[E-L-W]. Ibidem, there is an example of nonregular Lie algebroid A over a compact
oriented manifold for which the pairing H7 (A) x Hgb,t"_j (A,Q4) — R is not
necessarily nondegenerate. J.Huebschmann in [H] has generalized the construction
of the bundle @4 and the modular class 84 to Lie-Rinehart algebras, an algebraic
generalization of Lie algebroids.

We slightly modify the Weinstein construction to consider nonoriented manifolds:

Y =Qa®or(M).

For an oriented manifold M we can identify Q% = Q4.
In [E-L-W] a representation

D:A— A(Qa)
was introduced by
DW(Y®§0) :L’Y(Y)®SD+Y®L#A("/) (),

Y €T (A"PA), o € T (APT*M) = Q™ (M), where L, (Y) = [7,Y] ([, Y] denotes
the Schouten bracket) and Ly ,(,) (¢) is the usual Lie derivative of a differential
form . We recall that for Y =1 A ... Ay

L,(Y)= Z’yl A Ay A cee Ay

There is some interest to consider the representation D in the context of intrinsic
characteristic classes of Lie algebroids [C], [F].
We modify the representation D to

D" =D®JY:A— AQY).
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In the sequel we will be interested only in the transitive case. A choice of a
connection A\ : TM — A enables us to identify

A" A = Ag @ AT M,
EAAMN)(X) =Y,

and
(7.1) Y=A"gQA"TM QA"T*M @ or (M) =A"g®or(M).
Lemma 7.1. (a) Dt :g— End(Qa4) is defined by

D} = (Vizaa), = tr(ad,) -id, o €T (g).
(b) H} (9,Qa) = A"g* @ Qa, Hpori (9,Q%) = A"g* @ QY.

Proof. (a) Consider locally defined nonsingular section of Q4 of the form ey ®
Xu ®¢u, ev € T'(A"gy), Xy € T(A™TMy), vu € T'(A™T*My), and assume
that (Xy,pu) = 1. For 0 € T'(g) we have #4 (o) = 0 and [o, \W;] € T'(g).
Therefore if ey =01 A ceo Aoy, Xy = Wi Ao AWy, 0, €T (g), W, e T (TMy),

D, (ev ® Xvu ® ¢u)
= Ly (ev ® Xu) ® pu
=Lo (01 N e Ao AXWL A LA XMW, @ pu

=Y 1A A [0 0 A Aoy AXWLA AW, ® 9y

=tr(ady,) ey @ Xy ® ¢u.
(b) Follows immediately from Proposition 3.2. O

The vector bundle A"g* ® @ 4 is trivial. Indeed, the classical homomorphism

c:A"g* @ Qa = A"g* @ A"g ® AT M @ A™T*M — M x R

(7.2) ce"®@e® X @) = (e",¢) - (X, )

is an isomorphism. Therefore
(7.3) c®id: AN"g* ® QY — or (M).

Let A(c) : A(A"g* ® Qa) — A(M x R) be the induced isomorphism of Lie alge-
broids [K1],

A(e) () (f) =c(u(c o f)),
uel (AA"g* ®Q4)), feC®(M). Let

VP TM — A(Hp, (9,Q4)) = A(A"g* ® Qa)

be the induced flat adjoint covariant derivative (5.9) for D. Analogously we have
va CTM — A(Ang* ® Q?qr) .

Lemma 7.2. The compositions

VP TM — A(A"g" @ Qa) 22 A(TM x R),

VP TM — A(A"g* © Q) A%@’@d) A(or (M)),
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are trivial representations O and 0°", respectively, so
(HB-%— (ga QA) va) ~ (TM X Ra 8) )
(H?)OH— (gv Q%T) 9 VDOT) ~ (OT (M) 9 80r) .
Proof. 1t is necessary to check it locally. Take locally defined nonsingular sec-
tions ey € I'(A"gy), Xy € T'(A™TMy) and theirs duals €}, € T'(A"g};), pu €
L' (A™T*My), (ef,ev) = 1, (Xu,pu) = 1. On the set U arbitrary section of the
bundle A”g* ® Qa = A"g* @ A"g ® A"TM @ A™T*M is of the form f - e}, ®
e @ Xy oy, f€C®(U).For X € X(My), Xy = Wi Ao AW,y (W1, o, Wiy
is a base of vector fields on U) and oy = Wi A ... AW}, W is the dual ba-
sis, and ey = 01 A ... Aoy, (0; is a base of the vector bundle g on U), we write
X, o:] =32, 9] - 05, [NX,AW] = 32, hE .o +ak - \g, so [ X, W;] = a¥ - Wj. Then
Dyx (ev ® Xu ® ¢v)
= Lyx (ev ® Xv) ® pu +ev ® Xu ® Lxypu

=Y gl-oAX)@euton (D al AX)@eu+oANX @ (—al) ey
=> gi-ev®Xu @ gu.
i

Therefore
VR (f e ®ev @ Xu ®u) (cv)
=Dixx (f-ev @ Xu®ou)—
*Zf~€?}(0’1/\.../\[[/\X,O’i]]/\.../\O’n)'EU(X)XU@gDU

2

=8Xf'€U®XU®<PU+f'D,\X(€U®XU®<PU)—f'ng-€U®XU®30U
i

=0xf-ev®@Xvu®pu
=0x[f (e ®ev @ Xu @ ¢u) (ev) -
Finally
(A(©oVR) (/) =c(VR(f ey ®@ev @ Xu @ ¢v))
=c(Oxf (ep ®ev @ Xy ® pu))
= 0Ox f.

For the proof of the second part we notice that for local 0°"-constant section o of
or (My) one has

(A(c®id) o VR ) (f®00) = (A(c) o VR) (f) @ 09
=0xf®og
= 0% (f®o0).

Theorem 7.3. For an arbitrary transitive Lie algebroid A

Hp" (A,Q%) =R,



28 JAN KUBARSKI AND ALEXANDR MISHCHENKO

and the Fvens-Lu-Weinstein cohomology pairing
HI (A) x Hp 77 (A, Q%) — HBA" (A,Q%) = R
is nondegenerate, i.e.
HY(A) = (Hp"0 (A,Q%))".
Proof. Conclusion 3.4 and Lemma 7.1 show that the pairing
H' (g) x Hpyo's (9, Q) — Hpors (9, Q%)
is nondegenerate. On account of Theorem 2.3 and Conclusion 6.1 we assert that
the pairing

Hyp (M, H' (9))xHgol, (M, Hpy ' (9.Q%F)) — Heloor . (M, Hpory (9,Q%) £ R

is nondegenerate. Equivalently, this is a multiplication of the second terms of the
Hochshild-Serre spectral sequences of graded filtered differential spaces Q (A) with
the trivial differential and Q. (A4, Q%) with the differential D°". The fundamental
Theorem 4.4, see also mentioned above Conclusion 6.1, completes the proof. O

7.2. Remarks on the top group of cohomology. Analyzing the proof of The-
orem 4.4 and composing isomorphism (7.3) with isomorphism (2.4) we can define
the isomorphism I : ng;”c (A,Q%) Z,Rasa composition
] ] ] o_?rL(;TLoo
T HPE™ (4,Q%) = B (A,QY) = By (Hpor o (A,Q%)) 22 B =

=B “‘? Toor o (M, Hpori (9,Q%)) =

(c@id) ror.#

Toor o (M A"g" @ Q) " HElw (M, or (M)) *2> R.

We compare this isomorphism with the one defined by direct formula in [E-
L-W] resctricting our interest to transitive Lie algebroids. Immediately from the
definition of ¥',"", (see Theorem 5.10), W'}, [f] = (=1)"" [fim] , and definition of
o\, we observe that

m—+n m n Uzbcﬂoo m,n m,n \Iﬂ:c"‘z m n % or
I - Hpyo:l (A, Q) = = Eplco = Ealn = b (M, A"g" @ QF)
is given by the formula looking analogously to W/, I [f] = (—=1)"" (], or
equivalently (under the identification A™T"A* = A™T*M ® A™g* given by the
help of a connection A : TM — A) by

L{(p@e)@q) =(-1)"[pe (" ®q)
where ¢ € Q" (M), e* € T (A"g*), ¢ € T (Q5 )Thereforeifqzs@X@,u@e,
eel(A"g), X eT(A"TM), peT (A™T*M ) ™ (M), eeT (or(M)) then
(c®id), 0[1((<P®€*)®E®X®u®e):(—1)m"[<p~<5*,5)-(X,u)@e].
So, for f=(pRe")Re® X Qu® e we get

or

I(f /M (X, <p®6:(*1)m"/ (€ e) (X, p) - u®e

M

or
/ (p®e", X®e) - p®e
M
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which is concordant up to the sign with the definition of Evens-Lu-Weinstein
[E-L-W] given by them only for oriented compact manifold (but for any Lie al-
gebroid, not necessary transitive).

The fact HBS" (A, Q%) =, R for transitive Lie algebroids is not proved in
[E-L-W]. Below we prove this immediately without use of the spectral sequences.

(a) on oriented manifolds. The authors of [E-L-W] introduced an isomorphism
of vector bundles

ﬁ . AtOPA* ® AtopA ® AtopT*M — AtOPT*M,
pPYRY @pu)=(V,Y) un

and proved a version of Stokes Theorem (to be sure for compact manifold but
without troubles we can extend it to differential forms with compact support on
arbitrary oriented manifold).

Theorem 7.4 (Stokes Theorem [E-L-W]). Let rank A = r. For r — 1-form ¥’ €
I (A"~ A*) we have

pldp (V@Y @) = (1) dar (ty, v av)h)-
Consequently, if the form V' QY ® u has compact support then

[ plan oy o w —o
M

Put
PN ® Qa — ATTITM, (VY @ p) s (—1) " g ary is

and notice the commutativity of the diagram

~r—1

Q7 (A,Qa) S QI (M)

(& (&

L« Joo

Q(A,Qa) —L— ().

From this we deduce that p. induces an R-linear homomorphism in cohomology
Pe t Hp o (A,Qa) — He (M).

Since p is an isomorphism p, 4 is an epimorphism.

Lemma 7.5. If A is transitive Lie algebroid, then p. 4 is an isomorphism.

Proof. One can easily see the lemma provided that 5"~! is an epimorphism. It is

a simple matter to show that pr~! is an epimorphism at every point x € M using
transitivity of the Lie algebroid A i.e. using the fact that the anchor (#4), : Az —

T, M is an epimorphism. This finishes the proof that
#
e Hb o (4,Qa) — HE (M) 25 R
is an isomorphism. O

(b) on nonoriented manifolds. We prove this analogously multiplying the vector
bundles by or (M) and use the Stokes theorem for densities [B-T].
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7.3. Exceptional property of the Evens-Lu-Weinstein representation. As-
sume A is a transitive Lie algebroid. Before the next theorems we must give
algebroid’s equivalent of some lemmas from Chapter 1. For any A-connection
V:A— A() and a 1-form w € Q! (A) we define a new A-connection

V¥ A= A, Viv=Vv+w(y) v

The curvature tensors RV, RV € Q2 (A, €) of the connections V* and V are related
via the formula

RY" =RY +daw®id.
Therefore, if V is flat (it means, V is a representation) then V¢ is flat if and only
if w is closed. Each A-connection V : A — A (M x R) in the trivial vector bundle
M x R is of the form 94, indeed, we need to put w (y) = V, (1).

For a line bundle € and a representation V : A — A () the differential equation
Vv = 0 is locally uniquelly integrable provided that it is locally integrable.

Lemma 7.6. For a line bundle £ and a representation V : A — A (&) the differen-
tial equation Vv = 0 is locally integrable if and only if V¥ = 0. This last condition
is equivalent to the projectability of V, i.e. that V = V o #4 for some usual flat
covariant derivative V on M in the vector bundle €.

Proof. "= Assume that Vv = 0 is locally integrable. If v is locally defined
nonsingular V-constant section of ¢ then arbitrary section is equal to v; = f - v for
a smooth function f and for o € T' (g)

Vi(f-v)=0p,o)f v+ [ Vor=0.

7<=" Assume that V1 = 0. Take zg € M and u € &,,. Locally (z¢g € U = R™)
Vv =84, : Av — A(y) = A(U xR) for a closed 1-form w € Q' (Ay). By
assumption V¥ = 0, w(o)-v =0forall 0 € T'(g) and v € T'(§), so w(cg) =0
and w is projectable on U, w = #% (©) for some © € Q! (U). Since the anchor # 4
is an epimorphism, the pullback of the differential forms #7% is a monomorphism.
Therefore, since 0 = daw = da (#% (©)) = #% (dar®) we get dgrw = 0. Clearly,
then @ = df for some function f € C*® (U). It is easy to see that the section
o = e~ of the bundle U x R = ¢, is V-constant. d

Similar considerations show that for trivial vector bundle £ = M X R and a
representation 94 the following conditions are equivalent (1) V* = 0, (2) w is
projectable (i.e. w = #% (©) for some @ € Q' (M). On the other hand, if w is
exact, i.e. 0 = [w], € H'(A), then V* = 0, which impies that the differential
equation Vv = 0 is locally uniquelly integrable.

By the definition the 0-group of cohomology can be written similarly to (2.1).

HY (A,6) ={v el (¢); Vv =0}.

Proposition 7.7. (1) H (A, &) =0 if £ is nontrivial.
(2) For the trivial vector bundle & = M x R and V = 0% for closed 1-form
w € Q' (A) we have

HY (A,6) 0 = [u], =0
In particular, if HS (A,€) # 0 then VT = 0.
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Proof. (1) Evidently, since each section of nontrivial line bundle ¢ is singular and
by Lemma 7.6 the set {x; Vv = 0} is open-closed.

(2) This result may be proved in the same way as in the case of A =TM, i.e. as
the formula (2.3), see also Example 2.6 from Chapter 1. O

Proposition 7.7(1) generalizes observation (ee) from section 2.1.

Proposition 7.8. Let £ be a line bundle and fiz an isomorphism ¢ : £ @ € —
M x R. Let us assume that ¢ transforms a given A-representation V : A — A (§)
to A-representation 84 for a closed 1-form w € Q' (A). Then there exists a linear
isomorphism

Hpyor gy (4,Q4 @ €) = HG " (A,€)".
In particular
Hporgy-o (A, Q% © &) = HF " (A,€)".
Proof. Consider the multiplication by reals
p: QY x (M xR)— Q%Y.
p is compatible with (D", 9%, (D°")*). The canonical nondegenerate pairing
FrQi@x{—- Q) ®E®¢
is compatible with (D°" @ V,V,D°" @ V ® V), so the composition
~ id
F:Qi ®6x &5 QY00 =f Q7 o (M xR) % QY
is compatible with (D°" ®@ V,V, (D°")”) which implies that it is also compatible
with (D" @ V=%, V, D7) . Therefore, for each point x € M, the pairing F; : Q% ,®
o x & — QY , is compatible with the representations (D ® V‘“’); , Vi, Do)
of the isotropy Lie algebra g, in the vector spaces QY , ® &z, &z, QY ., respectively.
From this it follows that the differentials d( por gy -w)+, dg+, d(pory+ fulfil condition
(6) from Lemma 3.1. Of course, d(Dor)f = dirad ® id satisfies condition (3) from
the mentioned lemma. Since
AN:NgE®(QY,®E&) x A" g & — A"gh®QY,
is nondegenerate, the generalized Chern-Hirzebruch-Serre Lemma 3.1 asserts that
induced pairing in cohomology

H{porgrg-oyr (9,Q% ® &) x HgT' (9,€) = Hporr (9,Q%)

is nondegenerate at every point x € M. The fundamental Theorem 4.4, see also
Conclusion 6.1, shows that the pairing

HY oo (A,Q% @ &) x HET" ™ (A,6) — HE™ (A, Q)

is nondegenerate. This ends the proof. O

Y02 o ()

Conclusion 7.9. If £ is not isomorphic to Q%Y (i.e. & is not isomorphic to
A'g @ or (M), see (7.1), then for an arbitrary connection V : A — A(€) we have
HEH (4,6) = 0.

Proof. If £ is not isomorphic to Q% the vector bundle Q% ® ¢ is not trivial so
Proposition 7.7 gives H%M(X)V,w (A,Q% ® &) = 0. Proposition 7.8 proves our theo-
rem. (]
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The next theorem is one of the importest theorems of the paper. Compare this
theorem and Theorem 7.3 with Theorem 5.4 form [H].

Theorem 7.10. For a line bundle & and o representation V : A — A(E) the
following conditions are equaivalent:

(a) HZL" (A.) £0, |
(b) Hgi'" (A, &) = R and the pairing H’ (A) xH?:"ﬂ (A, €) — H@fg” (A €)=
R is nondegenerate, i.e. HI (A) = (Hg'g"_] (A, ) )*,
(c) (57 V) ~( A DOT) :
Proof. (¢) = (b) by Lemma 7.2, (b) = (a) is evident.

(a) = (c). Let H@‘Jg” (A,€) # 0. By Conclusion 7.9 £ = Q9% . It remains to
compare the representations. Consider then a flat bundle (£ = Q9 ,V) and any
linear isomorphism

RQUQY - M xR, VoV ~dj.
By Proposition 7.8
H%O’“@)V—W (A7 QOAT ® QOAT) = HTVn:(";_n (A7 Q%’r) 7£ 07
therefore there exists a nonsingular global section v € T' (QY" ® Q%) which is D" ®
V~“-constant. Additionally, V®V ~ 04 implies V® V~“ ~ d4 which means that
there exists a second nonsingular section v’ € T'(QY ® Q%) which is V@ V~¢-
constant. The bundle Q% ® Q% is 1-dimensional, so v/ = f - v for a nonsingular
function f € C*° (M) . Write locally v = v/, ® v, for nonsingular sections v/, v, of
Q% . Then
0= (D" ® V_“’)7 (v) =D (V) @ Vo + 5 @ V¥ (Va)
0=(VOV™) (f-r)=Vy(f ) @vat [ 10V (va).
Multiplying first equation by f and then substracting the second we get
(f- D (Wh) =V (f-v)) ®va = 0.
The nonsingularity of v, yields the equation f-D3" (v,,) = V. (f - v,) . The bundle
Q% is 1-dimensional, so
(7.4) f-DT(5) =V, (f )
for all 7 € T'(Q%) . Define a linear isomorphism
p: QY = QY, v f-v.
By (7.4) one has that (Q% ", V) ~ (Q%, D). O

7.4. Characterization of transitive Lie algebroids with Poincaré duality.

The last aim is to characterize two classes of transitive Lie algebroids.
(1) H'™™ (A) # 0 - the top group of real compact cohomology is not trivial.

da,c

This condition is equivalent to (Q%,D°") ~ (M x R,04). These classes fulfil
the Poincaré duality: the pairing

HI(A) x H""=J (A) — H™" (A) =R
is not degenerate, see Theorem 7.3, i.e. H7 (A) & (H[ " (A))* .
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(2) Hgéf? (A,or (M)) # 0 - the top group of or (M)-valued compact cohomology
s not trivial.

This condition is equivalent to (Q%, D°") ~ (or (M),09). In this class the
multiplication of cohomology classes

HY (A) x Hgo 277 (A or (M) — HE:E? (A,or (M) = R

*

is not degenerate, see Theorem 7.3, i.e. H7 (A) = (Hm+n_j (A))".

(o)

Before the characterization of these classes we reduce the Evens-Lu-Weinstein
representation (Q9 ', D°") to equivalent simple form (only for transitive Lie alge-
broids of course). We recall that the adjoint representation ad4 : A — A (g) induces
a top-power representaion ad'y” : A — A (A*Pg) by

(adt;;p)w (1 Ao Noy) = Zal A N[y oi] Ao Aoy, = Zai co1 ANy,
where [y, 0:] =3, al o
Lemma 7.11. There exist isomorphisms of flat vector bundles
(Qa, D) = (A*Pg, ady")
(QY, D) = (A*Pg @ or (M), ad'y? @ o) .
Proof. 1t is necessary to show the first assertion, because the second follows from

first by tensor product with or (M). Fix arbitrary a connection A\ : TM — A and
a linear isomorphism

K:A™A@ AT M & Ag @ A™TM @ A™T*M — A"g
EANAX @p—e®@X@pr—ce- (X, 0).
Taking a local basis o1, ..., 0, of g, W1, ..., W, of TM and the duals W} ,..., W}

m

we see that K (o1 Ao Aoy ANWI A AM ., @ WA LAWE) = 01 A A Oy

To prove our lemma it is necessary to show the compatibility D X ad’y on these
nonsingular sections only, i.e.

(adi), (o1 A e ANap) =K (Dy (01 Ao Aoy AXWLA o AW @ WEA L AW))

Let [y, 0:] = Zj ag-aj, [y, A\ W] =>4 &?-ok—kzr b} - AW, then [#a(y),W;] =
> b7 - AW,.. The right side of the above equation is equal to

16(Za;f~olA...AanA/\WlA...AAWm@)W{*A...AWQ;Jr
FOLA AT A D BIAAWL A AW @ WA L AW+
+01/\.../\an/\/\W1/\.../\/\Wm®(—Zbg)Wl*/\.../\W;l)
:/C(Za;i-alA...Ao—nmwlA...AAWm®WfA...AW,;)
= a;- (K(o1 Ao Aoy AAWLA L AW, @ WAL ATV))

= (ad}), 01N ... NOp.
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Conclusion 7.12. (1)
Hp i (A) #0 <= (A"g@or(M),adi ® %) ~ (M x R,d4),

(2)
Hy w(Ayor (M) £0 <= (A"g®@or (M), ad} © ) ~ (or (M), ).
The following proposition generalizes Proposition 2.2. The proof is analogous.

Proposition 7.13. For a representation V : A — A () in a line vector bundle &
the following conditions are equivalent:

(a) (&)~ (or(M),07),
(b) (@or (M), V@dy)~ (M xR,d4).

In the sequel we need the notion of a modular class of a Lie algebroid [W],
[E-L-W]. Firstly, we recall the characteristic classes of a representation V : A —
A () in a line vector bundle £. If £ is trivial as a line bundle and s € T (§) is a
nonsingular section of ¢ we define a 1-cocycle § € Q' (A) with respect to d4 defined
by V,v = 05 (7) - s. The class 0y = [0] € H' (A) is independent on the choice of
s and is called characteristic class of A associated to the representation V. For a
general £, we define 6y = %Gv@,v (V ® V is a flat representation in trivial line
bundle £ ® £). We add that if £ is trivial, the last equation holds.

For next propositions and theorems we need the following lemma.

Lemma 7.14. If € is a line bundle and {pa} is a collection of local trivialiations
with the transition functions Ao : Uy x Ug — R, @g = @q - Ao, then there exist
functions fo, > 0 such that the local trivializations

Pa = Pa " fa
(Paw = Pax - fa (T)) have transition functions 5\,15 = 5gN A\pg.
In conclusion, each line bundle £ possesses a system of local trivializations with

transition functions equaling to +1 and then a family {s,} of nonsingular +1sections
i.e. with transition functions equaling just to £1.

Proof. Consider a line bundle & with a collection of local trivialiations {¢,} and
transition functions A,g. The tensor product £ ® £ is a trivializable vector bundle
with local system of trivializations {p, ® @} . Choice a global trivialization p :
£ ®&— M x R such that p := p (o ® o (1 ®1)) > 0. We put

1
fo = > 0.

P

We show that {f.} is a required family. The transition functions A,s for the

collection of new local trivializations {@, := @ - fo} are equl to 5\(15 = Aag ]{—ﬁ o)
that sgn a5 = sgn Ao On the other hand, ps = p (s @ 5 (1®1)) = A2g P SO

_ 2 _ _ _
)\iﬁ = ()\ag - }C—B) = )\iﬁ - g—; = 1 and next ‘)\QB‘ = 1. Finally A\og = sgnAap =

sgn Aq 3. O

Lemma 7.15. For an arbitrary line bundle & the characteristic class v of a rep-
resentation V : A — A(§) can be computed via any family of local nonsingular
tsections {so} (see Lemma 7.14) of & in the following way: the 1-differential A-
form 6 € Q (A) defined by

0 ()0, 50 = Vo (50)
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is a correctly defined da-cocycle and its cohomology class is equal to Ov. 0y = 0 if
and only if there exists a family of local nonsingular V-constant tsections {sq},
Vsa = 0. For transitive Lie algebroid A if Oy = 0 then V' = 0, so the isotropy
Lie algebras g, are unimodular.

The simple proof will be omitted.

We have 0o = 0. The modular class of a Lie algebroid A is by definition the
characteristic class 64 of the associated representation D : A — A (Q4) . According
to Lemma 7.11 for a transitive Lia algebroid A we have 04 = Gadv;‘ where ad’} :
A — A(A™g) is the representation induced by the adjoint one ads : A — A(g).

For real coefficients we have the following characterization of Lie algebroids in
the case of the nontriviality of the top group of cohomology. Let {(Uy,z,)} be a
coordinate open cover for the manifold M, with transition functions gog = 24 omgl.
Each map z, determines canonically a local trivialization Z, of the line bundle
A™TM and the family {Z,} has the transition functions J (gas) -

Theorem 7.16. The following conditions are equivalent
(a) Hy " (A) #0,

da,cC
(b) Hg:*': (A) 2R and H (A) is an Poincaré algebra, i.e. the pairing H7 (A) x
Hm =3 (A) — HI"™™ (A) 2 R is nondegenerate, H7 (A) = (H "= (A))* ,
(C) (Q%aDOT) ~ (M X Ra aA) )
(d) (A"g@or(M),ad} @07) ~ (M xR,04),
(e) (A"g,ad?) ~ (or (M),0%), that is the holonomy homomorphism of (A"g, ad’})
is the same as for the orientation bundle (or (M) ,0%").
(f) A is orientable vector bundle and 04 = 0. (in particular, g, are unimodu-

lar).

Proof. (a) <= (b) <= (c) follows immediately from Theorem 7.10 for (£, V) =
(M xR,04),

(¢) <= (d) by Lemma 7.11,

(d) <= (e) see Proposition 7.13,

(e) = (f) indeed, 04 = fagn = Ogor = 0. The bundle A" A = A"gRA™TM =
or (M) ® A™TM is trivial line bundle because it possesses a local system of trivi-
alizations with positive transition functions |J (gag)| -

(f) = (a) It is necessary to find a local system of nonsingular ad’j-constant
sections {0} of A™g with transition functions sgn J (gag) -

Fix a system of local trivializations {1} of A™*"A with positive transition
functions y,s > 0. We can choose a system of local trivializations {¢,} of the line
bundle A™g in such a way that ¢, ® Z,, form a system of local trivializations of the
line bundle A" A = A"g ® A™T M compatible with {1}, i.e. such that

@a®ja:ga'wa7 ga>0-

This implies that the transition functions A, of the system {¢,} have the sign of
J (gap) - Indeed,

SOﬁ@f[-}:{ wa@‘fa_')\aﬂ"e](.?aﬁ) :’(/}a'ga')\aﬁ"](gaﬁ)a
¢ﬁ 98 = Yo Yap - 98-
Therefore, since ¢q, g3 and 43 are positive we have Ao - J (gag) > 0, i.e.

sgn Ao = sgnJ (gag) -
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By Lemma 7.14 there exists functions f, > 0 such that the local trivializations
Pa = Pa * fa
(Pax = Paz - fo (7)) have transition functions Aag = sgn Aas = sgn J (gas) . The
family of 4-sections 7, = @, (1) determine a 1-cocycle § € Q! (A) with respect do d 4
defined by 0 (7). - 0a = (ad}), (6a) whose cohomology class is the characteristic
class of the adjoint representation ad’y, [0] = aar, . Since Oaqn = 64 = 0 one has
0 = daf for some function f € C* (M), i.e.

0 () = (daf) (v) = Op ) f-

Put 0, = ¢~/ - 5,. Then the transition functions of {o,} are equal to sgn J (gas)
and the sections o, are ad’j-constant. [l

In case of oriented manifold the above theorem yields:

Theorem 7.17. If M is a oriented manifold then the following conditions are
equivalent

(a) Hy ' (A) #0,

)
(b) Hgfcn (A) =2 R and H (A) is an Poincaré algebra, i.e. the pairing HI (A) x
H =3 (A) — H™ " (A) 2 R is nondegenerate, H7 (A) = (HI=7 (4))"
(c) (A"g,ad’) ~ (M xR,0y4), i.e. there exists a global nonsingular section
e € I'(A"g) which is ad’y-constant, that is, A is a TUIO-Lie algebroid, see
[K2],
(d) g is orientable and 64 = 0.

The independent proof of the implication (¢) = (b) one can be found in [K2].
Finally we give a characterization of Lie algebroids whose the top group of co-
homology with coefficients in the orientation bundle or (M) is not trivial.

Theorem 7.18. The following conditions are equivalent:
(a) Hyt™ (A,or (M) #0,
(b) Hgéf’cl (A or (M)) 2R and the pairing

HY (A) x Hgef 77 (A or (M) — Hyit™ (A, or (M) = R

is not degenerate, i.e. HI (A) = (Hg?ﬁfj (A, or (M)))",

Q. D) ~ (or (M), 0).

(g @ or (M) ,ady  0F) ~ (or (M), 0F )

(A™g,ad?) ~ (M xR,04),

g is orientable and there exists a global nonsingular section e € T (§) which
is ad’y-constant (i.e. A is a TUIO-Lie algebroid, see [K2]),

(g) g is orientable and 04 = 0.

(¢
(d
(e
(f

~—

Proof. Ounly the implication (d) = (e) needs a proof. Since
(or (M) ®@or(M),04 @0%) ~ (M xR,0,4)
one has
(A"g,ad’y) ~ (A"g®@or (M) ®or (M) ,ad} ® 09 @ 0%")

Y (or (M) ® or (M), 07 © )

~ (MXR,@A).
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For an orientable manifold we get Conclusion 7.17.

7.5. Remarks on Example 5.3 from [E-L-W]. In the cited paper there is an
example of nonregular Lie algebroid for which the E-L-W cohomological pairing is
not necessary nondegenerate. In the text of Example 5.3 from [E-L-W] there are
some inaccuracies which we remove here. We prove additionally that there is no
line representation for which the cohomological pairing is nondegenerate and we
prove that the E-L-W representation is not exceptional. The example is the Lie
transformation algebroid A = g x M — M associated with the infinitesimal action
v :g— X (M) of a finitely dimensional Lie algebra g on a manifold M. The anchor
is given by p (v,x) = v (v), , and Lie bracket by

[a, 8] () = [a (2) ;b (2)] + 7 (a (2)), (b) =~ (b(2)), (),

a,b € C®(M,g) 2 T(gx M) and 2 € M. The vector field X = :CN% on R
(N € N) defines an action of the 1-dimensional Lie algebra g = R on M = R by
v:R—=X(R),vy(t) =t - X. Let A be the transformation Lie algebroid associated
with 7. Then I' (A) = C®° (R), #, : Ay =R = T, M, t — t -2V - 2L [a,b] =
2N (a-b —b-d), Q°(A)=C>*(R),

(7.5) Q' (4) =T (4*) = C™ (R,R*) = Q' (R) 2 C™ (R), fdz+ f,
and, clearly, Q2 (A) = 0.
Lemma 7.19. H' (A) = RV,

Proof. By definition d4 : C*™ (R) — Q! (A) = C*(R), da (f) (a) = # (a) (f) =
a-zN - f, and therefore ds (f) = 2V - f' and

H1 (A)=C> (R)/{mN-f', fecm(®)} = C> (R)/zN.Coo(R) ~ RN

Indeed, the classes of functions 20, 2!, ...,z ~! form a basis of C*® (R)/lecm(R)
because the classes are linearly independent and for any f € C*° (R) the equality

[f] = Zf\;_ol ar, [z*] holds where a, = % O

Proposition 7.20. For each linear representation V : A — A(€) we have (1)
HO., (A,€) =0, (2) H:, (A,€) £0.

Therefore, for each representation V of A in a line bundle & the cohomological
pairing H' (A) x H%7C (4,6) — H%,C (A,&) is not nondegenerate even in a weak

manner1 .

Proof. (1): The line bundle £ over R is trivial £ = M x R (M = R) so each
representation V : A — A (£) is of the form V = 94 for some 1-form w € Q' (A). Let
w(a) = g-afor g € C (R). Then (03), (f) = (0a), (f)+w(a) f = a-a™f'+a-g-f
and
Hy. (A& ={f € CZ R); a™ - f'+g- f =0} =0.
g(z)

by the uniqueness of the Cauchy problem for the differential equation 3’ = — £ -y.

L\ pairing F' : V. x W — U is called weakly non-degenerated if both null spaces N; =
{veV;F(v,-)} and No ={w € W; F (-,w)} are zero.
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(2) Hy o (A,€) = O (R) jgun .1y g.5; fecos(r)y 7 0- To prove this we find a com-
pactly supported function h € C¢° (R). such that the differential equation
(7.6) Ny +g-y=nh
has no global solution y € C° (R).

Case ¢ (0) = 0. For any h such that h (0) # 0 there is no solution of (7.6).

Case g(0) # 0. Let |g(z)] > § > 0 for |z| < g, ¢ > 0. Take any function
h € C (R) such that h > 0, h # 0 and supph C [a, 8] C (€,00). The elementary
theory of linear differential equations [the formula solving the Cauchy problem in
the form of denoted integrals] yields easily that no global compactly supported
solution of (7.6) exists. O

Consider the E-L-W representation D : A — A(Q4). We see that Q4 = A ®
T"R2MxR[M=R]sol'(Qa) =T(A) @ Q' (R) = C®(M) by 1® fdr — f
and that D is equivalent to 94 for w = (zV )/ (with respect to isomorphism (7.5)).
According to Proposition (7.20) the top group of cohomology of A for trivial and
for E-L-W representations are nontrivial. We prove that this representations are
not isomorphic so the E-L-W representation is not exceptional.

Proposition 7.21. The A-flat line bundles (M x R,04) and (Qa,D) [M = R]
are mot isomorphic.

Proof. Let ¢ : M x R —Q4 be a linear homomorphism compatible with 04 and
D. ¢ is of the form ¢ (f) = 1® g - f - dx for some g € C* (M). The equality

Do (¢ (f)) =¢((0a), f) yields a- (xN . fg)/ =a-zV . f g, therefore (xN . g)/ =0
which produces g = 0 and that ¢ is not an isomorphism. (]
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