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Abstract. The Evens-Lu-Weinstein representation (QA, D) for a Lie alge-

broid A on a manifold M is studied in the transitive case. To consider at
the same time non-oriented manifolds as well, this representation is slightly

modified to
(
Qor

A , Dor
)

by tensoring by orientation flat line bundle, Qor
A =

QA ⊗ or (M) and Dor = D ⊗ ∂or
A . It is shown that the induced cohomol-

ogy pairing is nondegenerate and that the representation
(
Qor

A , Dor
)

is the

unique (up to isomorphy) line representation for which the top group of com-
pactly supported cohomology is nontrivial. In the case of trivial Lie algebroid
A = TM the theorem reduce to the following: the orientation flat bundle
(or (M) , ∂or) is the unique (up to isomorphy) flat line bundle (ξ,∇) for which
the twisted de Rham complex of compactly supported differential forms on M
with values in ξ possesses the nontrivial cohomology group in the top dimen-
sion. Finally it is obtained the characterization of transitive Lie algebroids

for which the Lie algebroid cohomology with trivial coefficients (or with co-
efficients in the orientation flat line bundle) gives Poincaré duality. In proofs
of these theorems for Lie algebroids it is used the Hochschild-Serre spectral

sequence and it is shown the general fact concerning pairings between graded
filtered differential R-vector spaces: assuming that the second terms live in the
finite rectangular, nondegeneration of the pairing for the second terms (which

can be infinite dimensional) implies the same for cohomology spaces.

1. Introduction

The cohomology pairing coming from Evens-Lu-Weinstein representation of a
Lie algebroid [E-L-W] is very important in many applications of Lie algebroids
(Poisson geometry, intrinsic characteristic classes). This pairing generalizes the
well known pairings that give Poincaré duality for Lie algebra cohomology and
de Rham cohomology of a manifold and real cohomology of transitive invariantly
oriented Lie algebroids [K3]. For a Poisson manifold, this pairing agree with the
pairing on the Poisson homology. The authors of [E-L-W] give an example of a
nontransitive Lie algebroid for which the pairing is not necessarily nondegenerate
and post the problem of when it is nondegenerate. This paper gives the positive
answer for the case of any transitive Lie algebroids and proves the property of this
representation: it is the one (up to isomorphy) for which the top group of compactly
supported cohomology is nontrivial.
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Finally, we prove that for the nonregular transformation Lie algebroid corre-
sponding to the action γ : R → X (R) , γ (t) = t ·X where X = xN d

dx , there is no
line representation for which the cohomological pairing is nondegenerate.

More detailed, this paper is devoted to prove two cycles of theorems, mutually
overcoming.

FIRST CYCLE concerns nondegenerate cohomology pairings for manifolds
(Theorem 2.3), Lie algebras (Theorem 3.4) and Lie algebroids (Theorem 7.3).

— Assume that M is a connected m-dimensional manifold (oriented or not)
and ξ1, ξ2 are two flat vector bundles with flat covariant derivatives ∇1 and ∇2

respectively. Denote by or (M) the orientation bundle with canonical flat structure
∂or. Let F : ξ1 × ξ2 → or (M) be a pairing (i.e. 2-linear homomorphism) of vector
bundles compatible with the flat structures (∇1,∇2, ∂

or), nondegenerate at least
at one point (therefore, at every). From such a pairing one obtains a pairing on
differential forms and the induced pairing in cohomology

Hj
∇1

(M, ξ1)×Hm−j
∇2,c (M, ξ2)

F#−→ Hm
∂or,c (M,or (M))

∫ or,#
M−→ R

is nondegenerate in the sense that

Hj
∇1

(M, ξ1)
∼=→

(
Hm−j
∇2,c (M, ξ2)

)∗
.

The index ”c” means that the compactly supported cohomology are considered.
This theorem generalizes the classical Poincaré duality as well as the one for dω-
cohomologies [G-L].

— Assume that g is an arbitrary n-dimensional Lie algebra and ∇1,∇2 : g→ LR
are two representations of g in R. Denote by∇trad : g→ LR the trace-representation
(∇trad)a = tr (ada)·id. Then the top group of cohomologyHn

trad (g) of g with respect
to ∇trad is nonzero, Hn

trad (g)
∼=→ R, and if the multiplication of reals is compatible

with respect to (∇1,∇2,∇trad) then the exterior multiplication ∧ : Λrg∗×Λn−rg∗ →
Λng∗ ∼= R yields the induced nondegenerate pairing in cohomology

Hi
∇1

(g)×Hn−i
∇2

(g)→ Hn
trad (g) ∼= R,

i.e.
Hi
∇1

(g)
∼=→

(
Hn−i
∇2

(g)
)∗
.

In particular, for (∇1,∇2,∇trad) = (0,∇trad,∇trad) we obtain

Hi (g)
∼=→

(
Hn−i

trad (g)
)∗
.

For unimodular Lie algebra g the usual Poincaré duality is obtained in this way.

— Let A = (A, [[·, ·]],#A) be a Lie algebroid on M and

QA = ΛtopA⊗ ΛtopT ∗M

the line vector bundle with canonical Evens-Lu-Weinstein representation [E-L-W],

Dγ (Y ⊗ ϕ) = Lγ (Y )⊗ ϕ+ Y ⊗ L#A(γ) (ϕ) .

To consider non-oriented manifolds we modify it into

Qor
A = QA ⊗ or (M)

and
Dor = D ⊗ ∂or

A
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tensoring by the orientation bundle and its flat structure ((∂or
A )γ σ = (∂or)#A(γ) σ,

σ ∈ Γ (or (M)), #A : A → TM is the anchor of A). For transitive Lie algebroids
with n-dimensional isotropy Lie algebras and multiplications by reals (M × R) ⊗
Qor

A → Qor
A the induced pairing in cohomology

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Qor

A )→ R

is nondegenerate, i.e. Hm+n
Dor,c (A,Qor

A ) ∼= R and

Hj (A) ∼=
(
Hm+n−j

Dor,c (A,Qor
A )

)∗
.

SECOND CYCLE shows the uniqueness of the representation for which the
top group of compactly supported cohomology is not zero (Theorems 2.10, 3.5,
7.10).

— Hm
∇,c (M, ξ) 6= 0 if and only if (ξ,∇) is, up to isomorphy, the orientation flat

line bundle (or (M) , ∂or) . In particular, for oriented manifold, Hm
∇,c (M, ξ) 6= 0 if

and only if (ξ,∇) is, up to isomorphy, the trivial flat line bundle (M × R, ∂) .

— For an n-dimensional Lie algebra g the trace-representation∇trad is the unique
line representation ∇ for which Hn

∇ (g) 6= 0.

— Let A be a transitive Lie algebroid and ∇ a representation of A in a line
vector bundle ξ. Then Hm+n

∇,c (A, ξ) 6= 0 if and only if (ξ,∇) is, up to isomorphy,
the E-L-W-representation (Qor

A , D
or) .

In conclusion we obtain a full classification of transitive Lie algebroids for which
the algebra of real cohomologies with trivial coefficients satisfies the Poincaré du-
ality.

— If A is a transitive Lie algebroid then the following conditions are equivalent:
• Hm+n

c (A) 6= 0,
• Hm+n

c (A) ∼= R and Hj (A) ∼=
(
Hm+n−j

c (A)
)∗
,

• A is orientable vector bundle and the modular class of A is zero, θA = 0.

In particular,
— For an orientable manifold M we have: Hm+n

c (A) 6= 0 if and only if A is a
TUIO-Lie algebroid [K2], i.e. the adjoint Lie Algebra Bundle ggg = ker#A is oriented
and there is a global nonsingular section ε ∈ Γ (Λnggg) invariant with respect to the
adjoint representaion.

The above theorem for a compact oriented manifold M and 1-rank adjoint LAB
ggg = M × R was proved earlier in [K-K-K-W].

To prove Theorem 7.10 we use Theorem 4.4 concerning a pairing · : 1A× 2A→ 3A
between graded filtered differential R-vector spaces and theirs spectral sequnces.
Roughly speaking, if the second terms rEj,i

2 live in the rectangular 0 ≤ j ≤ m,

0 ≤ i ≤ n, 3E
(m+n)
2 = 3Em,n

2
∼= R and the multiplication of the second terms

〈·, ·〉2 : 1E
(j)
2 × 2E

(m+n−j)
2 → 3Em,n

2
∼= R is nondegenerate in the sense that

1E
(j)
2
∼=

(
2E

(m+n−j)
2

)∗
, then the cohomology pairing for cohomologies of spaces

is nondegenerate as well, i.e. 3Hm+n ∼= R and 1Hj
∼=−→

(
2Hm+n−j

)∗
. We must

stress that the spaces rEj,i
2 may be infinite dimensional.
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2. Non-degenerate pairings for twisted cohomology of a manifold

Many of the facts from this section belong to ”the folklore”. We call 1-dimensional
vector bundles line bundles.

2.1. Twisted cohomology, elementary properties
Let M be an m-dimensional paracompact manifold and ξ a vector bundle of rank

p and ∇Xν, X ∈ X (M) , ν ∈ Γ (ξ) , a flat covariant derivative on M in ξ.
(•) The differerential equation ∇ν = 0 (with respect to the local section ν of

ξ) is locally uniquelly integrable.
The local section ν satisfying ∇ν = 0 is called ∇-constant (or sometimes ∇-

invariant). To set a flat covariant derivative ∇ is equivalent to set local trivializa-
tions {(Uα, ϕα)} relative to which the transitive functions are locally constant which
is, in turn, equivalent to set a homomorphism of Lie algebroids ∇ : TM → A (ξ)
where A (ξ) is the Lie algebroid of ξ. The flat bundles (ξ,∇) form a category with
morphisms F : (ξ1,∇1)→ (ξ2,∇2) being linear isomorphisms F : ξ1 → ξ2 compati-
ble with flat covariant derivatives (∇1,∇2), i.e. for which F (∇1,Xν) = ∇2,X (Fν) .
We write also

(ξ1,∇1)
F∼ (ξ2,∇2)

or briefly ∇1
F∼ ∇2.

Two flat line bundles over a connected manifold are isomorphic if and only if
they have the same holonomy homomorphism h : π1 (M,x) → GL (R, 1) . For a
flat vector bundle (ξ,∇) the differential operator d∇ of the degree 1 for ξ-valued
differential forms Ω∗ (M, ξ) is defined by the standard formula

d∇ (φ) (X0, ..., Xq)

=
∑

i

(−1)i∇Xi (φ (X0, ...̂ı..., Xq)) +
∑
i<j

(−1)i+j
φ ([Xi, Xj ] , X0, ...̂ı...̂..., Xq) .

Let σ1
α, ..., σ

p
α be local sections of ξ over Uα corresponding to the standard basis

e1, ..., ep ∈ Rp under the trivialization ϕα, σ
i
α (x) = ϕα,x

(
ei

)
. The local sections σi

α

are ∇-constant, ∇σi
α = 0. Over Uα a ξ-valued q-form φ can be written as

∑
φi⊗σi

α,
φi ∈ Ωq (Uα) and we have d∇

(∑
φi ⊗ σi

α

)
=

∑
ddR

(
φi

)
⊗ σi

α. The flatness of ∇
implies that d∇ is a differential operator, d2

∇ = 0, therefore Ω∗ (M, ξ) is a differential
complex and the (twisted) cohomology

H∗
∇ (M, ξ) = H (Ω∗ (M, ξ) , d∇)

makes sense. By the definition the 0-group of cohomology can be written as

(2.1) H0
∇ (M, ξ) = {ν ∈ Γ (ξ) ; ∇Xν = 0 for all X ∈ X (M)} .

(••) If (ξ,∇) is a line nontrivial flat vector bundle then according to (•) above
H0
∇ (M, ξ) = 0.

If ∇ is a flat covariant derivative in a vector bundle ξ and ω ∈ Ω1 (M) is a
closed real 1-form, then

(2.2) ∇ω
Xν = ∇Xν + ω (X) · ν

is a flat covariant derivative as well. If ξ is a line bundle and ∇ and ∇1 are two
flat covariant derivatives then there exists a closed 1 -form ω such that ∇1 = ∇ω.

Each flat covariant derivative ∇ in the trivial vector bundle M × R is of the
form ∂ω for some closed 1-form ω (∂ is the standard covariant derivative in the
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trivial vector bundle M ×R defined by differentiation of functions ∂X (f) = X (f)
). Differential operator d∂ω is given directly by

d∂ω (φ) = ddRφ+ ω ∧ φ.

The operator d∂ω is in the literature denoted rather by dω than by d∂ω [G-L], [H-R]
and the cohomology space H∂ω (M,M × R) is denoted by Hω (M). If ω = 0 the
usual de Rham cohomology of M is obtained. It is easy to see that

(2.3) H0
ω (M) =

{
0 ⇐⇒ ω is nonexact,
R ⇐⇒ ω is exact.

The space of ξ-valued q-forms with compact support Ω∗c (M, ξ) is a differential
complex as well and we have the compactly supported cohomology H∗

∇,c (M, ξ) .

If (ξ1,∇1)
F∼ (ξ2,∇2) then F∗ : Ω∗ (M, ξ1) → Ω∗ (M, ξ2) commutes with the dif-

ferential operators d∇1 and d∇2 and gives rise to an isomorphism in cohomology
F# : H∗

∇1
(M, ξ1) → H∗

∇2
(M, ξ2). Analogously, for compact supports, we have an

isomorphism F#,c : H∗
∇1,c (M, ξ1)→ H∗

∇2,c (M, ξ2) .
For an open subset U ⊂ M we have the restricted flat covariant derivative ∇U

on U in the vector bundle ξU and the twisted cohomology H∇ (U, ξ) and H∇,c (U, ξ)
are defined. Similarly as in the case of real coefficients (see for example [B-T]) we
can obtain the short exact Mayer-Vietoris sequences (U1, U2 ⊂M are open subset,
U = U1 ∪ U2, and U12 = U1 ∩ U2)

0→ Ω∗ (U, ξ) α→ Ω∗ (U1, ξ)⊕ Ω∗ (U2, ξ)
β→ Ω∗ (U12, ξ)→ 0

and
0← Ω∗c (U, ξ) αc← Ω∗c (U1, ξ)⊕ Ω∗c (U2, ξ)

βc← Ω∗c (U12, ξ)← 0.
They give rise to long exact sequences in cohomology

→ Hq
∇ (U, ξ)

α#→ Hq
∇ (U1, ξ)⊕Hq

∇ (U2, ξ)
β#→ Hq

∇ (U12, ξ)
∂q

→ Hq+1
∇ (U, ξ)→

and

← Hq
∇,c (U, ξ)

αc#← Hq
∇,c (U1, ξ)⊕Hq

∇,c (U2, ξ)
βc#← Hq

∇,c (U12, ξ)
∂q

c← Hq+1
∇,c (U, ξ)←

Remark 2.1. There is a natural isomorphismH∗
∇ (M, ξ) ∼= H∗

I(∇) (U, ξ) ofH∗
∇ (M, ξ)

with H∗
I(∇) (U, ξ) , the cohomology of M in the sheaf I (∇) of local ∇-constant sec-

tions of ξ. In other words, H∗
∇ (M, ξ) are cohomology of M with local system of

coefficients.

2.2. Orientation flat bundle and its characterization. Let {(Uα, xa)} be a
coordinate open cover for the manifold M, with transition functions gαβ = xα◦x−1

β .

Take the orientation bundle or (M) , i.e. the line bundle on M with a distinguished
system of local trivializations {ϕα} such that the transition functions are equal
to sgnJ (gαβ) [B-T]. Let {eα} be a family of local sections corresponding to 1
under the trivializations {ϕα} , eα (x) = ϕα,x (1) . In the bundle or (M) there exists
exactly one flat covariant derivative ∂or such that eα are ∂or-constant, ∂or (eα) = 0.
The notation eα and ∂or is valid in the whole paper.

The flat orientation bundle (or (M) , ∂or) is characterized by the holonomy homo-
morphism s : π1(M,x0)→ Z2 ⊂ GL (R, 1) that can be identified with monodromy
to the [o co tu chodzi?] group of the local orientations in the fixed point x0 which
also is Z2.
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In the sequel it will be useful to give other characterization of the flat orientation
bundle.

Proposition 2.2. Let (ξ,∇) be a flat line bundle. The following conditions are
equivalent:

(a) (ξ,∇) ∼= (or (M) , ∂or) ,
(b) there exists a collection of local sections {σα} of ξ such that σa are ∇-

constant and the transition functions are equal to sgn J (gαβ) ,
(c) (or (M)⊗ ξ, ∂or ⊗∇) ∼= (M × R, ∂) ,
(d) there exists a global nonsingular section t ∈ Γ (or (M)⊗ ξ) which is ∂or⊗∇-

constant.

Proof. Equivalences (a)⇔(b) and (c)⇔(d) are evident by definition.
(b)⇒(c) The linear homomorphism F : or (M)⊗ξ →M×R defined by F (eα ⊗ σα) =

1 is a well defined linear isomorphism compatible with (∂or ⊗∇, ∂) .
(d)⇒(b) Locally t = eα ⊗ σα for some local nonsingular sections σα of ξ. Since

0 = ∂or ⊗∇ (eα ⊗ σα) = ∂or ⊗ σα + eα ⊗∇σα = eα ⊗∇σα,

it follows that σα are∇-constant and have the same transition functions sgn J (gαβ) .
�

The or (M)-valued m-differential forms are called densities. There exists an
operator ∫ or

M

: Ωm
c (M,or (M))→ R

of the integration of densities and the Stoke’s Theorem for densities holds∫ or

M

d∂or (ω) = 0

for ω ∈ Ωm−1
c (M,or (M)) [B-T]. Hence it produces a linear operator

(2.4)
∫ or,#

M

: Hm
∂or,c (M,or (M))→ R.

2.3. Pairings and cohomology, nondegeneracy. Now let (ξ1,∇1) , (ξ2,∇2) ,
and (ξ3,∇3) be three flat vector bundles. We say that (ξ1,∇1) and (ξ2,∇2) are
paired to (ξ3,∇3) if there is a bilinear homomorphism F : ξ1 × ξ2 → ξ3 compatible
with flat covariant derivatives (∇1,∇2,∇3), i.e. such that, for every X ∈ X (M) ,

(2.5) ∇3,XF (ν1, ν2) = F (∇1,Xν1, ν2) + F (ν1,∇2,Xν2) .

Then we write F : (ξ1,∇1)× (ξ2,∇2)→ (ξ3,∇3) . From such a pairing one obtains
a pairing (φ, ψ) 7→ φ ∧ ψ := F∗ (φ, ψ) of Ωq (M, ξ1) and Ωr (M, ξ2) to Ωq+r (M, ξ3)
fullfilling the equality

d∇3F∗ (φ, ψ) = F∗ (d∇1φ, ψ) + (−1)deg φ
F∗ (φ, d∇2ψ) .

Clearly, φ ∧ ψ := F∗ (φ, ψ) is the usual wedge product of differential forms with
F -multiplication of values, see [G-H-V, Vol.II]. The pairing of differential forms
induces a pairing of cohomology classes

F# : H∗
∇1

(M, ξ1)×H∗
∇2

(M, ξ2)→ H∗
∇3

(M, ξ3)

as well as the pairing for compact supports

F#,c : H∗
∇1

(M, ξ1)×H∗
∇2,c (M, ξ2)→ H∗

∇3,c (M, ξ3) .
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Consider two flat vector bundles (ξ1,∇1) , (ξ2,∇2) and a pairing

(2.6) F : (ξ1,∇1)× (ξ2,∇2)→ (or (M) , ∂or) .

For an open subset U ⊂M we define a pairing∫ or,#

U

◦F# : Hq
∇1

(U, ξ1)×Hm−q
∇2,c (U, ξ2)

F#→ Hm
∂or,c (U, or (M))

∫ or,#
U→ R,

and the Poincaré linear homomorphism

Dq
U : Hq

∇1
(U, ξ1)→

(
Hm−q
∇2,c (U, ξ2)

)∗
, Dq

U ([Φ]) ([Ψ]) =
∫

U

(Φ ∧Ψ) .

Similarly as in the case of real coefficients we check that the family of Poincaré
homomorphisms {Dq

U} induces a map from the long exact sequences in cohomology
to the long exact sequences in compactly supported cohomology (the symbols of
vector bundles ξ1 and ξ2 in the diagram below are ommitted and the sign ± is equal
precisely to (−1)q+1)
(2.7)

Hq
∇ (U)

α#−−−−→ Hq
∇ (U1)⊕Hq

∇ (U2)
β#−−−−→ Hq

∇ (U12)
∂q

−−−−→ Hq+1
∇ (U)yDU

yDU1⊕DU2

yDU12

yDU

Hq
∇,c (U, ξ)∗

α∗c#−−−−→ Hq
∇,c (U1)

∗ ⊕Hq
∇,c (U2)

∗ β∗c#−−−−→ Hq
∇,c (U12)

∗ ±(∂q
c )∗−−−−→ Hq+1

∇,c (U)∗

For an infinite disjoint open subsets U =
∐
Ui we deduce that DU can be

identifying with
∏
DUi

.

Theorem 2.3. Assume that M is connected. If pairing (2.6) is nondegenerate at
least one point then the cohomology pairing∫ or,#

M

◦F# : Hq
∇1

(M, ξ1)×Hm−q
∇2,c (M, ξ2)

F#→ Hm
∂or,c (M,or (M))

∫ or,#
M→ R,

is also nondegenerate in the sense that

Dq
M : Hq

∇1
(M, ξ1)

∼=→
(
Hm−q
∇2,c (M, ξ2)

)∗
is an isomorphism, q ∈ {0, 1, ...,m} .

Proof. We can use the standard method from [G-H-V, Vol.I] (or a slightly modi-
fied method by using Riemannian structure and properties of geodesically convex
neighbourhoods, [B-T], [S]. According to [G-H-V, Vol.I, Prop.II, p.16] and the
commutativity of diagram (2.7) and remark on infinite disjoint open subsets we
need only to prove the theorem for the manifold M = Rm.

Each vector bundle ξ over Rm is trivial, each flat covariant derivative∇ has trivial
holonomy, so the differential equation ∇ν = 0 is globally integrable. Therefore for
an arbitrary point x0 ∈M there exists an isomorphism of flat vector bundles

ϕ : (ξ,∇)→ (Rm × ξx0 , ∂)

where by ∂ is denoted the standard flat covariant derivative ∂Xf = X (f) .
(Remark: for the line bundle ξ the isomorphism ϕ can be given directly as follows.

For ξ = Rm×R any flat covariant derivative∇ is of the form∇Xf = ∂Xf+∂X (α)·f
for some function α. Then ϕ (f) = e−αf is a required isomorphism.)
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The isomorphism ϕ gives rise to an isomorphism in cohomology

ϕ# : H∇ (Rm, ξ)
∼=→ HdR (Rm, ξx0) ,

especially for the zero level

H0
∇ (Rm, ξ)

ϕ0
#→∼= H0

dR (Rm, ξx0)
ρ→∼= ξx0 .

On the other hand, the isomorphism ϕ also gives rise to an isomorphism in com-
pactly supported cohomology ϕ#,c : H∇,c (Rm, ξ)

∼=→ HdR,c (Rm, ξx0) , especially for
the top level

ϕm
#,c : Hm

∇,c (Rm, ξ)
ϕm

#,c→∼= Hm
dR,c (Rm, ξx0)

ρc→∼= ξx0 ,

where ρc is defined by the formula

ρc

([ ∑
i

f i ·∆⊗ vi

])
=

∑
i

( ∫
Rm

f i
)
· ei

where vi is a basis of ξx0 , ∆ is a determinant function on Rm and f i ∈ C∞c (Rm)
are functions with compact support. ρc is independent of the choice of the basis vi

and fulfils the equality ρc ([f ·∆⊗ v]) =
(∫

Rm f
)
· v, f ∈ C∞c (Rm) , v ∈ ξx0 .

Now take flat vector bundles (ξi,∇i) on Rm and linear isomorphisms ϕi : (ξi,∇i)→(
Rm × (ξi)x0

, ∂
)
. For any pairing F : (ξ1,∇1) × (ξ2,∇2) → (ξ3,∇3) we get easily

the commutative diagram

F# : H0
∇1

(Rm, ξ1)×Hm
∇2,c (Rm, ξ2) −−−−→ Hm

∇3,c (Rm, ξ3)yϕ0
1#×ϕm

2#,c

yϕm
3#,c

F̄# : H0
dR

(
Rm, (ξ1)x0

)
×Hm

dR,c

(
Rm, (ξ2)x0

)
−−−−→ Hm

dR,c

(
Rm, (ξ3)x0

)yρ×ρc

yρc

Fx0 : (ξ1)x0
× (ξ2)x0

−−−−→ (ξ3)x0

where the middle pairing comes from the ”constant” pairing

F̄ :
(
Rm, (ξ1)x0

)
×

(
Rm, (ξ2)x0

)
→

(
Rm, (ξ3)x0

)
, Fx = Fx0 .

To prove the theorem take (ξ3,∇3) = (or (M) , ∂or) and choose a point x0 such
that Fx0 is nondegenerate. �

2.4. Applications of the nondegenerate cohomology pairing. Now we give
a number of applications of Theorem 2.3.

Example 2.4. For a connected orientable manifold M and the trivial flat vec-
tor bundles (ξi,∇i) = (M × R, ∂) and the multiplication of reals · : R× R→ R
we obtain the classical Poincaré duality Hj (M) × Hm−j

c (M) → Hm
c (M) → R.

Especially Hm
c (M) = R and Hj (M) ∼=

(
Hm−j

c (M)
)∗
.

Example 2.5. More generally, for arbitrary connected manifoldM taking (ξ1,∇1) =
(M × R, ∂) and (ξ2,∇2) = (or (M) , ∂or) and the multiplication by reals F : (M × R)×
or (M)→ or (M) we get the Poincaré duality also for nonorientable manifold [B-T].
Especially operator (2.4) is an isomorphism, Hm

∂or,c (M,or (M)) ∼= R.

Example 2.6. [G-L], [H-R] Let M be an oriented connected manifold. The fol-
lowing conditions are equivalent:
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(1) Hm
ω,c (M) = 0,

(2) H1 (M) 3 [ω] 6= 0.
If [ω] = 0 then Hm

ω (M) = R. Indeed, consider multiplication by reals F :
(M × R) × (M × R) → M × R. This pairing is nondegererate and compatible
with (∂−ω, ∂ω, ∂) . By Theorem 2.3 we get the nondegenerate pairing Hp

−ω (M) ×
Hm−p

ω,c (M)→ Hm
c (M) ∼= R. In particular, we get H0

−ω (M) =
(
Hm

ω,c (M)
)∗
, so all

follows from (2.3).

Each flat covariant derivative in or (M) is of the form (∂or)ω for a closed 1-form
ω. Concider the multiplications by reals F : (M × R)× or (M)→ or (M). Then we
easily get:

Example 2.7. For any connected manifold M (oriented or not) the following
conditions are equivalent:

(1) Hm
(∂or)ω,c (M,or (M)) = 0,

(2) H1 (M) 3 [ω] 6= 0.
If [ω] = 0 then Hm

(∂or)ω,c (M,or (M)) = R.

The next applications are given in the following propositions.

Proposition 2.8. If M is orientable and ξ is an arbitrary line nonorientable (i.e.
nontrivial) vector bundle then for any flat covariant derivative ∇ in ξ

Hm
∇,c (M, ξ) = 0.

Proof. Indeed, consider the natural nondegenerate pairing

F : (ξ,∇)× (ξ,∇)→ (ξ ⊗ ξ,∇⊗∇) , (ν, µ) 7→ ν ⊗ µ,

and any linear isomorphism ϕ : ξ ⊗ ξ → M × R. The latter transforms the flat
covariant derivative ∇ ⊗ ∇ to the ∂ω for some closed 1-form ω. We recall that
(∇⊗∇)X (ν ⊗ µ) = ∇Xν ⊗µ+ ν ⊗∇Xµ. Then the pairing ϕ ◦F : ξ× ξ →M ×R
is compatible with (∇,∇, ∂ω) and, in consequence, with (∇−ω,∇, ∂) (for ∇−ω see
(2.2)). By Theorem 2.3 we have the nondegenerate pairing

H0
∇−ω (M, ξ)×Hm

∇,c (M, ξ)→ Hm
c (M)

∫
M→ R.

In consequence we obtain by the nontriviality of ξ and observation (•) from section
2.1

0 = H0
∇−ω (M, ξ) =

(
Hm
∇,c (M, ξ)

)∗
which imply Hm

∇,c (M, ξ) = 0. �

Proposition 2.9. If ξ is a line bundle not isomorphic to or (M) then for arbitrary
flat covariant derivative ∇ in ξ we have

Hm
∇,c (M, ξ) = 0.

Proof. Indeed, fix a linear isomorphism

ϕ : ξ ⊗ ξ →M × R.

Such isomorphism ϕ exists since ξ ⊗ ξ is orientable line vector bundle, therefore,
trivial. Let ∇⊗∇ F∼ ∂ω for a closed 1-form ω. Take the multiplication by reals

τ : or (M)⊗ (M × R)→ or (M)
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and notice that τ is compatible with (∂or ⊗ ∂ω, (∂or)ω) . Consider the canonical
nondegenerate pairing F : (or (M)⊗ ξ) × ξ → or (M) ⊗ ξ ⊗ ξ which is compatible
with (∂or ⊗∇,∇, ∂or ⊗∇⊗∇) . The composition

F ′ : (or (M)⊗ ξ)× ξ F→ or (M)⊗ ξ ⊗ ξ id⊗ϕ−→ or (M)⊗ (M × R) τ→ or (M) ,

clearly, is nondegenerate and is compatible with (∂or ⊗∇,∇, (∂or)ω) . Therefore F ′

is compatible with (∂or ⊗∇−ω,∇, ∂or) . According to Theorem 2.3 applied to F ′

we get
H0

∂or⊗∇−ω (M,or (M)⊗ ξ) ∼=
(
Hm
∇,c (M, ξ)

)∗
.

Since ξ is not isomorphic to or (M) the vector bundle or (M) ⊗ ξ is not triv-
ial (indeed, if or (M) ⊗ ξ ∼= M × R then or(M) ∼= ξ∗ ∼= ξ ) which produces
H0

∂or⊗∇−ω (M,or (M)⊗ ξ) = 0 and further Hm
∇,c (M, ξ) = 0. �

Finally we have the main application.

Theorem 2.10. The following conditions are equivalent:
a) Hm

∇,c (M, ξ) 6= 0,
b) Hm

∇,c (M, ξ) = R,
c) (ξ,∇) ∼ (or (M) , ∂or) ,

Proof. For c) =⇒ b) see Example 2.5 or [B-T]; b) =⇒ a) is evident. It remains to
show that

a) =⇒ c). Keep the notation ϕ and ω from the proof of the previous proposition.
By the same reasoning we check

H0
∂or⊗∇−ω (M,or (M)⊗ ξ) 6= 0.

It means that or (M)⊗ξ is trivial and there exists a nonsingular global cros-section
ν ∈ Γ (or (M)⊗ ξ) which is ∂or ⊗ ∇−ω-constant. Express locally ν in the form
ν = eα ⊗ fα for some local sections fα of ξ, for eα see subsection 2.2. It is evident
that {fα} has the transition function equal to sgnJgαβ and that ∇−ωfα = 0, i.e.
∇Xfα = ω (X)·fα. The formula f = ϕ (fα ⊗ fα) determines correctly a nonsingular
function f . Since ∇⊗∇ ϕ∼ ∂ω then ∂Xf + ω (X) · f = ∂ω

Xf = 2 · ω (X) · f , one has

∂Xf = ω (X) · f.

The global cros-section ν′ = 1
f ν is ∂or ⊗∇-constant. The proposition follows now

from Proposition 2.2. �

3. A generalization of the Chern-Hirzebruch-Serre Lemma and
applications to cohomology of Lie algebras

We generalize Lemma 3 from [Ch-H-S] concerning Poincaré differentiation from
algebras to pairings. The assumption on finite dimensionality is superfluous.

Lemma 3.1. Let As =
⊕n

i=0A
i
s, ds : As → As, s = 1, 2, 3, be three graded

differential R-vector spaces such that
(1) ds

[
Ai

s

]
⊂ Ai+1

s ,

(2) d2
s = 0,

(3) d3

[
An−1

3

]
= 0.

(4) An
3
∼= R, Ai

3 = 0 for i > n.
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Let
· : A1 ×A2 → A3

be a pairing such that
(5) Ai

1 ·A
j
2 ⊂ A

i+j
3 ,

(6) d3 (x · y) = d1x · y + (−1)deg x
x · d2y,

(7) · : Ar
1×An−r

2 → An
3
∼= R, r = 0, 1, ..., n are nondegenerate in the sense that

the induced mappings

ir : Ar
1

∼=−→
(
An−r

2

)∗
are linear isomorphisms.

Then the induced homomorphisms in cohomology

· : Hr (A1, d1)×Hn−r (A2, d2)→ Hn (A3, d3) ∼= R

are nondegenerate as well, i.e. the induced linear homomorphism

i′r : Hr (A1, d1)→
(
Hn−r (A2, d2)

)∗
are linear isomorphisms.

Proof. The proof is identical with the original proof by Chern-Hirzebruch-Serre for
an algebra and it is sufficient to check that

i′r : Hr (A1, d1)
(ir)#−→ Hn−r (A∗2, d

∗
2)

∼=−→ Hn−r (A2, d2) ,

where (A∗2, d
∗
2) denotes the dual complex. �

Now we give some applications to the cohomology of Lie algebras with coeffi-
cients. Let g be a real Lie algebra of dimension n and let

∇ : g→ LR = End R ∼= R

be an arbitrary representation in 1 dimensional vector space. We will distinguish
two representations

• ∇0 = 0,
• (∇trad)a = tr (ada) · id .

We see that ∇0 = ∇trad if and only if g is unimodular. Denote the differential
with respect to∇trad by dtrad and the cohomology of g byHtrad (g) . Straightforward
computations show that dn−1

trad = 0. Therefore

Proposition 3.2. Hn
trad (g) = Λng∗ ∼= R for every Lie algebra.

Let us notice the following

Remark 3.3. (1) Each representation ∇ : g → LR is equal to 0 on g2 and,
conversely, each linear homomorphism ∇ : g→ LR such that ∇|g2 = 0 is a
representation.

(2) The zero group of cohomology H0
∇ (g) = 0 if and only if ∇ 6= 0.

(3) The multiplication of reals · : R× R→ R is compatible with (∇1,∇2,∇3)
if and only if ∇3 = ∇1 +∇2.

Point (1) from the remark above implies that any linear combination of repre-
sentations is a representation. Take an arbitrary representation ∇ and put

∇′ = ∇trad −∇.
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Then the multiplication of reals is compatible with (∇′,∇,∇trad) by (3) from the
remark. Therefore, for differential operators d∇′ , d∇, dtrad the condition (6) from
Lemma 3.1 holds. Since the exterior multiplication

∧ : Λrg∗ × Λn−rg∗ → Λng∗ ∼= R

is nondegenerate then according to Lemma 3.1 the multiplication in cohomology

Hr
∇′ (g)×Hn−r

∇ (g)→ Hn
trad (g) ∼= R

is nondegenerate as well, i.e. in particular

H0
∇′ (g) ∼= (Hn

∇ (g))∗ .

Immediately from the above reasoning we obtain the following theorems.

Theorem 3.4. The multiplication of reals is compatible with the representations
(0,∇trad,∇trad) and the induced cohomology pairing

Hn−r (g)×Hr
trad (g)→ Hn

trad (g) ∼= R,

is nondegenerate. In particular we obtain a noncanonical isomorphism

Hr
trad (g) ∼=

(
Hr

trad (g)
)∗ ∼= Hn−r (g) .

Theorem 3.5. ∇trad is the unique representation ∇ for which Hn
∇ (g) 6= 0.

Proof. For any representation ∇ take ∇′ = ∇trad − ∇. By (2) from the remark
above and isomorphism (3) we have

Hn
∇ (g) ∼= H0

∇′ (g) 6= 0 ⇐⇒ ∇′ = 0 ⇐⇒ ∇ = ∇trad.

�

4. Pairings for graded filtered differential R-vector spaces and
spectral sequences

The aim of this chapter is to prove that for any pairing of graded regularly
filtered differential R-vector spaces, if the second terms of spectral sequences gives
the nondegenerate pairing then the same holds for the cohomology algebras of the
spaces. This holds without assumption that dimE2 is finite and generalizes the
suitable theorem for graded filtered differential algebras [K-M].

Given three graded filtered differential R-vector spaces

(4.1)
(
rA =

⊕
i≥0

rAi, rd, rAj

)
, r = 1, 2, 3,

denote for shortness
rH := H (rA, rd) .

Assume
· : 1A× 2A→ 3A

preserves gradations and filtrations

(4.2) 1As · 2At ⊂ 3As+t,

(4.3) 1Aj · 2Ak ⊂ 3Aj+k,

and that the differentials rd satisfy the compatibility condition

(4.4) 3d (x · y) = 1dx · y + (−1)deg x
x · 2dy.
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Clearly, there exists a multiplication of cohomology classes

· : 1Hj × 2Hk → 3Hj+k, ([x] , [y]) 7→ [x · y] .

Let (
rEj,i

s , rds

)
be spectral sequences of graded filtered differential R-vector spaces (4.1).

Lemma 4.1. (1)
1Zj,i

s · 2Zk,l
s ⊂ 3Zj+k,i+l

s , 0 ≤ s ≤ ∞,

(2)
1Zj,i

s · 2Dk,l
s−1 + 1Dj,k

s−1 · 2Zi,l
s ⊂ 3Zj+k+1,i+l−1

s−1 + 3Dj+k,i+l
s−1 , 0 ≤ s <∞,

1Zj,i
∞ · 2Dk,l

∞ + 1Dj,i
∞ · 2Zk,l

∞ ⊂ 3Dj+k,i+l
∞ , (s =∞).

Proof. Straightforward calculations. �

Conclusion 4.2. There exists a multiplication of s-terms of spectral sequences
1Ej,i

s × 2Ek,l
s → 3Ej+k.i+l

s , ([x] , [y]) 7→ [x · y] , 0 ≤ s ≤ ∞.

The differentials 1ds,
2ds,

3ds fulfils the compatibility condition with respect to the
total gradation

3ds (x · y) = 1dsx · y + (−1)total deg x
x · 2dsy.

There exists a multiplication of cohomology classes of s-terms

Hj,i
(
1Es,

1ds

)
×Hk,l

(
2Es,

2ds

)
→ Hj+k,i+l

(
3Es,

3ds

)
, ([x̃] , [ỹ]) 7→ [x̃ · ỹ] .

The linear isomorphisms of bigraded spaces
rσs : rEs+1 → H (rEs,

rds) ,
rσ∞ : rE∞ → E0 (rH)

conserve the multiplications
3σs ([x] · [y]) = 1σs [x] · 2σs [y] ,

3σ∞ (x̄ · ȳ) = 1σ∞ (x̄) · 2σ∞ (ȳ) .

Remark 4.3. For s ≥ i+ 2 we consider the canonical epimorphisms
rγj,i

s : rEj,i
s
∼= rZj,i

∞ /
(
rZj+1,i−1
∞ + rDj,i

s−1

)
� rZj,i

∞ /
(
rZj+1,i−1
∞ + rDj,i

∞
) ∼= rEj,i

∞ .

For s ≥ i + l + 2 the canonical epimorphisms 1γj,i
s , 2γk,l

s , 3γj+k,i+l
s are compatible

with multiplications
3γj+k,i+l

s ([x] · [y]) = 1γj,i
s [x] · 2γk,l

s [y] .

This implies that if spectral sequences (rEs,
rds) collapse at the m̄th term then the

canonical isomorphisms rβm̄ : rEm̄

∼=→ rE∞, see [G-H-V, Vol.III. §1.1.2], conserve
bigradations and are compatible with multiplications. We recall the construction
of rβm̄. For arbitrary (j, i) we select arbitrary s ≥ max (m̄, i+ 2) and put

rβj,i
m̄ : rEj,i

m̄

rσj,i
m̄←−∼=

rEj,i
m̄+1 ←−∼= ...←−∼=

rEj,i
s

rγj,i
s

� rEj,i
∞ .

The following main result of this chapter generalizes Corollary 12 from [K-M].
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Theorem 4.4. Given three graded filtered differential R-vector spaces (4.1) and a
pairing · : 1A× 2A→ 3A satisfying (4.2), (4.3), (4.4), assume that the filtrations are
regular in the sense rA0 = rA and that the second terms rEj,i

2 live in the rectangular
0 ≤ j ≤ m, 0 ≤ i ≤ n and that 3E

(m+n)
2 = 3Em,n

2
∼= R.

If the multiplication in the second terms

〈·, ·〉2 : 1E
(j)
2 × 2E

(m+n−j)
2 → 3Em,n

2
∼= R

is nondegenerate in the sense that
1E

(j)
2

∼=−→
(
2E

(m+n−j)
2

)∗
, x 7→ 〈x, ·〉2,

is a linear isomorphism, then
(a) 3Hm+n ∼= R,
(b) rHt = 0 for t > m+ n,
(c) the multiplication in cohomology classes

(4.5) 〈·, ·〉H : 1Hj × 2Hm+n−j → 3Hm+n ∼= R

is nondegenerate as well, i.e.
1Hj ∼=−→

(
2Hm+n−j

)∗
, [x] 7→ 〈[x] , ·〉H ,

is a linear isomorphism.

Proof. The terms rE3,
rE4, ...,

rE∞ live also in the same rectangular 0 ≤ j ≤ m,
0 ≤ i ≤ n. The bidegree argument of the second differential operator 3d2 implies
(compare with [K-M]) the condition 3d2

[
3E

(m+n−1)
2

]
= 0. By the generalized Chern-

Hirzebruch-Serre Lemma 3.1 we get 3E
(m+n)
2 = 3Em,n

2
∼= R and nondegeneracy of

the multiplication for third terms. Proceeding inductively we get the same for all
finite terms. The bidegree argument for the further differential operators rds im-
plies the colapsing of spectral sequences (rEs,

rds) , say at rm > max (m+ 1, n+ 2)
places. Then 3E

(m+n)
∞ = 3Em,n

∞
∼= R so (a) holds because 3Hm+n ∼= 3E

(m+n)
∞ ∼= R

and next, for m̄ ≥ max
(
1m, 2m, 3m

)
the canonical isomorphisms rβm̄ (see Remark

4.3) are compatible with multiplications. In consequence, the multiplication in the
infinite terms

(4.6) · : 1E(j)
∞ × 2E(m+n−j)

∞ → 3Em,n
∞
∼= R

is nondegenerate as well.
It remains to prove the nondegeneracy of the multiplication of cohomology classes

(4.5). The spaces rH possess a natural graded filtration rHj,i, and thanks to the
regularity of filtrations we have

(4.7) rHt = rH0,t ⊃ rH1,t−1 ⊃ ... ⊃ rHt,0 ⊃ 0

and a noncanonical isomorphism

(4.8) rHt ∼= (rH0,t/ rH1,t−1)⊕ (rH1,t−1/ rH2,t−2)⊕ ...⊕ rHt,0 =
⊕

j+i=t

Ej,i
0 (rH) .

Analogously to the proof of Theorem 11 from [K-M] we assert that

(4.9) E
(m+n)
0 (rH) = Em,n

0 (rH) = rHm,n,

and
rHj,i = rHj+1,i−1 for j > m or i > n.
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Therefore by (4.8) rHt = 0 for t > m+ n which proves (b). As in [K-M] we check
the rule:

• if 1σj,i
∞ (x̄) = [x] for x̄ ∈ 1Ej,i

∞ , x ∈ 1Hj,i, and if 2σm−j,n−i
∞ (ȳ) = [y] for

ȳ ∈ 2Em−j,n−i
∞ , y ∈ 2Hm−j,n−i, then

(4.10) 3σm,n
∞ (x̄ · ȳ) = [x] · [y] = x · y.

We fix generators ξ∞ ∈ 3Em,n
∞ and ξH ∈ 3Hm,n in such a way that 3σm,n

∞ (ξ∞) = ξH .
Consider the pairings, see (4.6),

〈·, ·〉∞ : 1E(j)
∞ × 2E(m+n−j)

∞ → R, 〈x̄, ȳ〉∞ · ξ∞ = x̄ · ȳ,

〈·, ·〉H : 1Hj × 2Hm+n−j → R, 〈x, y〉H · ξH = x · y.
By (4.10) we have

(4.11) 〈x̄, ȳ〉∞ = 〈x, y〉H
where 1σj,i

∞ (x̄) = [x] and 2σm−j,n−i
∞ (ȳ) = [y]. According to (4.6) the pairing 〈·, ·〉∞ is

nondegenerate, that is 1E
(j)
∞ ∼=

(
2E

(m+n−j)
∞

)∗
. Consider the induced linear mapping

κ : 1Hj →
(
2Hm+n−j

)∗
, x 7→ 〈x, ·〉H .

Similarly to [K-M] we easily check the monomorphy of κ. It remains to check that
k is an epimorphism.

Take a linear function 0 6= l : 2Hm+n−j → R and consider the filtration (4.7) for
r = 2 and t = m+ n− j. Let V p ⊂ 2Hp,m+n−j−p be a subspace complementary to
2Hp+1,m+n−j−p−1, p = 0, 1, ...,m+ n− j and

ψp : V p → Ep,m+n−j−p
0

(
2H

)
, x 7→ [x] ,

the induced isomorphism. Put

ψ =
∑

p

ψp : 2Hm+n−j =
⊕

p

V p ∼=
⊕

p

Ep,m+n−j−p
0

(
2H

)
.

The composition l ◦ ψ−1 ∈
( ⊕

pE
p,m+n−j−p
0

(
2H

) )∗ determines a family of linear
functions lp0 ∈

(
Ep,m+n−j−p

0

(
2H

) )∗
. Define

Il = {p; lp0 6= 0} .

For each p ∈ Il we define - through isomorphisms
2σp,m+n−j−p
∞ : 2Ep,m+n−j−p

∞
∼=−→ Ep,m+n−j−p

0

(
2H

)
- a linear nonzero functions

lp∞ ∈
(

2Ep,m+n−j−p
∞

)∗
, lp∞ = lp0 ◦ 2σp,m+n−j−p

∞ .

The nondegenerate pairing 〈·, ·〉∞ : 1Em−p,p+j−m
∞ × 2Ep,m+n−j−p

∞ → R determines
an element 0 6= x̄m−p ∈ 1Em−p,p+j−m

∞ such that 〈x̄m−p, ·〉∞ = lp∞ ∈
(
2Ep,m+n−j−p
∞

)∗
.

Let 1σm−p,p+j−m
∞ (x̄m−p) = [xm−p] ∈ Em−p,p+j−m

0

(
1H

)
, where

xm−p ∈ 1Hm−p,p+j−m and xm−p /∈ 1Hm−p+1,p+j−m−1.

Put
x :=

∑
p∈Il

xm−p.
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We prove the equality

κ (x) = 〈x, ·〉H = l ∈
(
2Hm+n−j

)∗
.

Since 2Hm+n−j =
⊕

p V
p, we need only to prove κ (x) (yp) = 〈x, ·〉H (yp) = l (yp)

for yp ∈ V p ⊂ 2Hp,m+n−j−p. If p /∈ Il, i.e. lp0 = 0, then l (yp) = 0 and for all p′ ∈ Il
by (4.9) and (4.10)

〈xm−p′ , yp〉H · ξH = xm−p′ · yp =
[
xm−p′

]
· [yp] ∈ Em−p+p′,n+p−p′

0

(
3H

)
= 0.

If p ∈ Il and 0 6= yp ∈ V p then

l (yp) = (l|V p) ◦ (ψp)−1 [y] = lp0 [yp] = lp∞ ◦
(
2σp,m+n−j−p
∞

)−1
([yp])

= 〈x̄m−p,
(
2σp,m+n−j−p
∞

)−1
([yp])〉∞

(4.11)
= 〈xm−p, yp〉H

= 〈x, yp〉H .

The last equation holds because for p′ 6= p, p′ ∈ Il, we have

0 6=
[
xm−p′

]
∈ Em−p′,p′+j−m

0

(
1H

)
and by (4.9) and (4.10)

xm−p′ · yp =
[
xm−p′

]
· [yp] ∈ Em−p′,p′+j−m

0

(
3H

)
= 0.

�

5. Hochschild-Serre filtration and the spectral sequence for
transitive Lie algebroids

We fix a transitive Lie algebroid A = (A, [[·, ·]],#A) with the Atiyah sequence

0 → ggg ↪→ A
#A→ TM → 0 and a representation ∇ : A → A (ξ) of a Lie algebroid

A on a vector bundle ξ. ∇ is a homomorphism of Lie algebroids, then ∇ induces a
homomorphism of vector bundles ∇+ : ggg → End (ξ)

ggg
∇+

−−−−→ End (ξ)y y
A

∇−−−−→ A (ξ)

and ∇+
x : gggx → End (ξx) is a representation of the isotropy Lie algebra gggx in the

vector space ξx. We will consider the pair of R-Lie algebras (g, k) where

g = Γ (A) , k = Γ (ggg) .

Below, the elements of g will be denoted by γ, γ1, γ2, ... while elements of k by
σ, σ1, σ2, .... Of course, k is an ideal of g (actually, k is C∞ (M)-Lie algebra but it
is not interesting here). The space Γ (ξ) is a g-modul with respect to the induced
representation denoted by the same letter ∇ : Γ (A) → CDO (ξ) ⊂ LΓ(ξ). Fol-
lowing Hochschild-Serre [H-S] we can consider a graded cochain group of R-linear
alternating functions

AR =
⊕
i≥0

Ai, Ai = Ci (g,Γ (ξ)) ,
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with the R-differential operator of degree 1

d∇ : Ci (g,Γ (ξ))→ Ci+1 (g,Γ (ξ))

defined by the standard formula

(d∇f) (γ0, ..., γt) =
∑

i

(−1)i∇γi
(f (γ0, ...̂ı..., γt))+

∑
i<j

(−1)i+j
f ([[γi, γj ]], ...̂ı...̂...) .

For the trivial representation ∂A : A → A (M × R) , (∂A)γ (f) = ∂#(γ) (f), this
operator is denoted by dA. Clearly, for a real alternating t-cocycle ϕ and σ ∈ Γ (ξ)
we get

d∇ (ϕ⊗ σ) = dAϕ⊗ σ + (−1)t
ϕ ∧ d∇σ.

In the space
⊕

t≥0A
t we have the Hochschild-Serre filtration Aj ⊂ AR as follows:

Aj = AR for j ≤ 0. If j > 0, Aj =
⊕

t≥j A
t
j , A

t
j = Aj ∩At, where At

j consists of all
those t-cochains f for which f (γ1, ..., γt) = 0 whenever t− j + 1 of the arguments
γi belongs to k. In this way we have obtained a graded filtered differential R-vector
space

(5.1)
(
AR =

⊕
t≥0

At, d∇, Aj

)
and we can use its spectral sequence

(5.2)
(
Ej,i

s , ds

)
.

Following K.C.M.Mackenzie [M] (see also V.Itskov, M.Karashev, and Y.Vorobjev
[I-K-V]) we will consider the C∞ (M)-submodule of C∞ (M)-linear altarnating
cochains with values in the vector bundle ξ (i.e. A-differential ξ-valued forms)

Ωt (A, ξ) ⊂ Ct (g,Γ (ξ))

and the induced filtration

Ωj = Ωj (A, ξ) = Aj ∩ Ω (A, ξ)

of C∞ (M)-modules. The differential d∇ of a C∞ (M)-cochain is a C∞ (M)-cochain,
so we get dA,∇ : Ω (A, ξ) → Ω (A, ξ) . We obtain in this way a graded filtered
differential space

(5.3)
(
Ω (A, ξ) =

⊕
t

Ωt (A, ξ) , dA,∇,Ωj

)
and its spectral sequence

(5.4)
(
Ej,i

A,s, dA,∇,s

)
.

Now we consider as well a submodule of C∞ (M)-linear altarnating cochains with
compact support Ωt

c (A, ξ) ⊂ Ωt (A, ξ) and the corresponding filtration

Ωc,j = Ωj ∩ Ωc (A, ξ)

of C∞ (M)-modules. Since supp d∇f ⊂ supp f then we obtain

dAc,∇ : Ωc (A, ξ)→ Ωc (A, ξ)

and we get a graded filtered differential space with compact support

(5.5)
(
Ωc (A, ξ) =

⊕
t

Ωt
c (A, ξ) , dAc,∇,Ωc,j

)
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and its spectral sequence

(5.6)
(
Ej,i

Ac,s, dAc,∇,s

)
.

Sometimes we can deduce directly properties of the last two spectral sequences
(5.4), (5.6) from the suitable properties of (5.2), see [H-S], denoted further by AR ,
sometimes we must use some additional observations.

Lemma 5.1. The homomorphisms ρ0 ρc,0 in the sequence

Ej,i
Ac,0 = Ωj+i

c,s /Ω
j+i
c,s+1

ρc,0
� Ωj+i

s /Ωj+i
s+1 = Ej,i

A,0

ρ0
� Aj+i

s /Aj+i
j+1 = Ej,i

0

are monomorphisms. For differentials dAc,∇, dA,∇, d0 the following diagram is
commutative

Ej,i
Ac,0

ρc,0−−−−→
�

Ej,i
A,0

ρ0−−−−→
�

Ej,i
0ydj,i

Ac,∇,0

ydj,i
A,∇,0

ydj,i
0

Ej,i+1
Ac,0

ρc,0−−−−→
�

Ej,i+1
A,0

ρ0−−−−→
�

Ej,i+1
0 .

From
• AR For R-cochains there exists an isomorphism

aj,i : Ej,i
0 → Cj

(
g/k, Ci (k,Γ (ξ))

)
such that

(5.7) aj,i [f ] ([γ1] , ..., [γj ]) (σ1, ..., σi) = f (σ1, ..., σi, γ1, ..., γj) , .

we can easily obtain the following

Conclusion 5.2. The homomorphisms

aj,i
A : Ej,i

A,0 → Ωj
(
M,Λiggg∗ ⊗ ξ

)
aj,i

Ac
: Ej,i

Ac,0 → Ωj
c

(
M,Λiggg∗ ⊗ ξ

)
defined by the formula

aj,i
A [f ] (X1, ..., Xj) (σ1, ..., σi) = f (σ1, ..., σi, λX1, ..., λXj) ,

Xj′ ∈ X (M) , σi′ ∈ k, (aj,i
Ac

defined by the identical formula) where λ : TM → A
is an arbitrary connection, are correctly defined linear isomorphisms of C∞ (M)-
modules.

Proof. Monomorphy of aj,i
A and aj,i

Ac
follows from the commutativity of the diagram

Ej,i
Ac,0

ρc,0−−−−→
�

Ej,i
A,0

ρ0−−−−→
�

Ej,i
0yaj,i

Ac

yaj,i
A

yaj,i

Ωj
c

(
M,Λiggg∗ ⊗ ξ

) ρ̄c,0−−−−→
↪→

Ωj
(
M,Λiggg∗ ⊗ ξ

) ρ̄0−−−−→
↪→

Cj
(
g/k, Ci (k,Γ (ξ))

)
.

To prove that aj,i
A is an epimorphism it is sufficient to check that if aj,i [f ] is

a C∞ (M)-linear cochain, i.e. aj,i [f ] = ρ̄0

(
f̄
)

for some f̄ ∈ Ωj
(
M,Λiggg∗ ⊗ ξ

)
, i.e.

f̄ (#A (γ1) , ...,#A (γj)) (σ1, ..., σi) = f (σ1, ..., σi, γ1, ..., γj) , then there exists a rep-
resentative f ′ ∈ [f ] ∈ Ej,i

A,0 which is C∞ (M)-linear cochain such that aj,i
A [f ′] = f̄ .
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To this end take a connection form ω0 : A → ggg coresponding to λ and put
f ′

(
γ′1, ..., γ

′
j , γ1, ..., γi

)
= f

(
ω0 (γ′1) , ..., ω0

(
γ′j

)
, γ1, ..., γi

)
. Then f ′ fulfils the de-

sired conditions. �

• AR Through isomorphism aj,i the differential dj,i
0 becomes a differentiation

of values with respect to the differential

(5.8) d∇◦ι : Ci (k,Γ (ξ))→ Ci+1 (k,Γ (ξ))

( ι : k ↪→ g, is the inclusion),

d̃∇◦ι : Cj
(
g/k, Ci (k,Γ (ξ))

)
→ Cj

(
g/k, Ci+1 (k,Γ (ξ))

)
,

d̃∇◦ι (f) ([γ1] , ..., [γj ]) = d∇◦ι (f ([γ1] , ..., [γj ])) .

In conclusion, the differentials dj,i
A,∇,0 and dj,i

Ac,∇,0 becomes (through the isomor-
phisms aj,i

A and aj,i
Ac

) differentials of values with respect to

d∇+ : Λiggg∗ ⊗ ξ → Λi+1ggg∗ ⊗ ξ,

namely

d̃∇+ : Ωj
(
M,Λiggg∗ ⊗ ξ

)
→ Ωj

(
M,Λi+1ggg∗ ⊗ ξ

)
,

d̃∇+ (f) (X1, ..., Xj) = d∇+ (f (X1, ..., Xj)) .

Analogously we obtain a differential d̃c,∇+ for compact supports.

Remark 5.3. According to K.Mackenzie [M, Th.2.5, p.201] the homomorphisms
di
∇+ : Λiggg∗ ⊗ ξ → Λi+1ggg∗ ⊗ ξ are locally of constant rank, and consequently, there

are well-defined vector bundles Zi = ker di
∇+ , Bi = Im di−1

∇+ and Hi (ggg, ξ) = Zi/Bi

such that Γ
(
Hi (ggg, ξ)

)
= Hi (Γ (Λggg∗ ⊗ ξ) , d∇+) . Clearly,

Hi (ggg, ξ)x = Hi
(
Λggg∗x ⊗ ξx, d∇+

x

)
.

Therefore

H
(
Ωj

(
M,Λiggg∗ ⊗ ξ

)
, d̃∇+

) ∼= Ωj
(
M,Hi

∇+ (ggg, ξ)
)
,

H
(
Ωj

c

(
M,Λiggg∗ ⊗ ξ

)
, d̃c,∇+

) ∼= Ωj
c

(
M,Hi

∇+ (ggg, ξ)
)
.

From the above we obtain isomorphisms of C∞ (M)-modules(
aj,i

A

)
#

: Hi
(
Ej,∗

A,0, d
j,∗
A,∇,0

) ∼=→ Ωj
(
M,Λiggg∗ ⊗ ξ

)
,(

aj,i
Ac

)
#

: Hi
(
Ej,∗

Ac,0, d
j,∗
Ac,∇,0

) ∼=→ Ωj
c

(
M,Λiggg∗ ⊗ ξ

)
.

Now we pass to consideration of the modules Zs, Ds, Es and ZA,s, DA,s, EA,s

and ZAc,s, DAc,s, EAc,s for three spectral sequences for graded, filtered, differential
spaces (5.1), (5.3), (5.5), respectively. Immediately by definitions we get

Lemma 5.4. (1) Zj
A,s = Zj

s ∩ Ω (A, ξ) , (2) Dj
A,s = Dj

s ∩ Ω (A, ξ) , (3) Zj
Ac,s =

Zj
A,s ∩ Ωc (A, ξ) .

Fix an auxiliary a connection λ : TM → A and for f ∈ Zj,i
A,1 ⊂ Ωj+i (A, ξ) we

define
f̄j ∈ Ωj

(
M,Λiggg∗ ⊗ ξ

)
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by the formula

f̄j (X1, ..., Xj) (σ1, ..., σi) = f (λX1, ..., λXj , σ1, ..., σi)

= (−1)ji
f (σ1, ..., σi, λX1, ..., λXj) .

Lemma 5.5. If f ∈ Zj,i
A,1 then f̄j (X1, ..., Xj) ∈ Γ

(
Λiggg∗ ⊗ ξ

)
is a d∇+-cocycle,

d∇+

(
f̄j (X1, ..., Xj)

)
= 0, independent of the choice of λ.

Proof. For f ∈ Zj,i
A,1 ⊂ Ωj+i

j (A, ξ) ⊂ Aj+i
s we take a cochain fj ∈ Cj

(
g, Ci (g,Γ (ξ))

)
defined by fj (γ1, , , , γj) (γ′1, ..., γ

′
i) = f (γ1, , , , γj , γ

′
1, ..., γ

′
i) , see [H-S]. From the

equalities

Zj,i
A,1 =

{
f ∈ Ωj+i

j ; d∇f ∈ Ωj+i+1
j+1

}
= Zj,i

1 ∩ Ωj+i (A, ξ)

we get (see [H-S]) that ι∗j (fj (γ1, , , , γj)) ∈ Cj (k,Γ (ξ)), where

ι∗j : Cj (g,Γ (ξ))→ Cj (k,Γ (ξ)) , ι∗j (g) = g|k× ...× k,

is a
(
∇ ◦ ι : k→ LΓ(ξ)

)
-cocycle and that this cocycle depends only on the equiva-

lence class [γj′ ] ∈ g/k ∼= X (M) , i.e. on the anchors of the elements γj′ , i.e. on
#A (γj′) . But ι∗j (fj (γ1, , , , γj)) is C∞ (M)-linear ι∗j (fj (γ1, , , , γj)) ∈ Γ

(
Λiggg∗ ⊗ ξ

)
therefore the condition d∇◦ι

(
ι∗j (fj (γ1, , , , γj))

)
= 0 is equivalent to

d∇+

(
ι∗j (fj (γ1, , , , γj))

)
= 0.

The equality ι∗j (fj (γ1, , , , γj)) = f̄j (#A (γ1) , ...,#A (γj)) proves the lemma. �

We recall that

Ej,i
A,1 = Zj,i

A,1/
(
Zj+1,i−1

A,0 +Dj,i
A,0

)
=

{
f ∈ Ωj+i

j (A, ξ) ; d∇f ∈ Ωj+i+1
j+1

}
/
(
Ωj+i

j+1 + d∇
[
Ωj+i−1

j

])
and analogously for Ej,i

Ac,1.

Lemma 5.6. The homomorphisms

ΨA,1 : Ej,i
A,1 → Ωj

(
M,Hi

∇+ (ggg, ξ)
)
, [f ] 7→ (−1)ji [

f̄j

]
,

ΨAc,1 : Ej,i
Ac,1 → Ωj

c

(
M,Hi

∇+ (ggg, ξ)
)
, [f ] 7→ (−1)ji [

f̄j

]
,

are isomorphisms of C∞ (M)-modules.

Proof. Clearly, we need to notice only that ΨA,1 is a composition of isomorphisms

ΨA,1 : Ej,i
A,1

σj,i
A,0−→∼= Hi

(
Ej,∗

A,0, d
j,∗
A,0

) (aj,i
A )#−→∼= Ωj

(
M,Hi

∇+ (ggg, ξ)
)

and analogously for compact supports. �

From the above lemmas we see that the canonical homomorphism Ej,i
Ac,1 → Ej,i

A,1

is a monomorphism.
• AR There exists a representation [precisely, a Lie derivation]

Li : g→ LCi(k,Γ(ξ))

defined by the formula(
Li

γf
)
(σ1, ..., σi) = ∇γ (f (σ1, ..., σi))−

∑
t

f (σ1, ..., [[γ, σt]], ..., σi) .
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Li
γ commutes with R-differential operator d∇◦ι, see (5.8), induces a repre-

sentation in cohomology

L#,i : g→ LHi
∇◦ι(k,Γ(ξ))

and k ⊂ kerL#,i (because Li
σf = d∇◦ι (ισf) if f is a d∇◦ι-cocycle.). It

produces a representation[
L#,i

]
: g/k→ LHi

∇◦ι(k,Γ(ξ)).

Noticing that a Lie derivation of a C∞ (M)-linear cochain is C∞ (M)-linear too,
we can pass to Γ

(
Λiggg∗ ⊗ ξ

)
. Additionally we observe that Li

γ : Γ
(
Λiggg∗ ⊗ ξ

)
→

Γ
(
Λiggg∗ ⊗ ξ

)
is a covariant derivative operator with the anchor #A (γ) and Li

γ is
C∞ (M)-linear with respect to γ. In conclusion we obtain a representation of the
Lie algebroid A in the vector bundle Λiggg∗ ⊗ ξ

Li
A : A→ A

(
Λiggg∗ ⊗ ξ

)
.

Lemma 5.7. The representation Li
A coincides with the adjoint representaion of A

in Λiggg∗ cross ∇, Li
A = adA ⊗∇.

Proof. The adjoint representation adA : A → A (ggg) , adA (γ) (σ) = [[γ, σ]], induces
the one in the associated bundle Λiggg∗ (denoted also adA) and its tensor product
with ∇ is just equal to Li

A. �

The representation Li
A induces the one in cohomology

L#,i
A : A→ A

(
Hi
∇+ (ggg, ξ)

)
such that ggg ⊂ kerL#,i

A (indeed,
(
Li

A

)
σ

(f) = d∇+ (ισf) for a d∇+ -cocycle f). There-
fore, we obtain a flat covariant derivative

(5.9) ∇i : M → A
(
Hi
∇+ (ggg, ξ)

)
by the formula

∇i
X ([f ]) =

(
L#,i

A

)
λX

([f ]) =
[(
Li

A

)
λX

(f)
]

where for a d∇+ -cocycle f ∈ Λiggg∗ ⊗ ξ(
Li

A

)
λX

(f) (σ1, ..., σi) = ∇λX (f (σ1, ..., σi))−
∑

t

f (σ1, ..., [[λX, σt]], ..., σi) .

Remark 5.8. For the trivial representation ∇ = ∂A we get a flat structure in the
cohomology bundle Hi (ggg). If the structure Lie algebras gggx are unimodular then
Hn (ggg) = Λnggg∗ and the induced flat covariant derivative ∂n

A : M → A (Λnggg∗) is
defined by

((∂n
A)X f) (σ1, ..., σn) = X (f (σ1, ..., σn))−

∑
i

f (σ1, ...[[λX, σi]], σn) .

This flat structure coincides with the flat structure in Λnggg∗ defined in the paper
[K-M] via some system A = {ϕ̃n

U} of local trivializations with locally-constant
transitive functions. We recall that ϕ̃n

U : U × Λng∗ → Λnggg∗ (g is the typical fiber
of ggg) is determined by a local trivialization ϕU : AU → TU × g of the Lie algebroid
A in the following way: ϕU induces a local trivialization ϕ+

U : gggU → U × g of the
adjoint Lie Algebra Bundle ggg and we put (ϕ̃n

U )x = Λn
(
ϕ+

U

)∗
x
.
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Now, we carry over the differentials dj,i
A,1 : Ej,i

A,1 → Ej+1,i
A,1 , dj,i

Ac,1 : Ej,i
Ac,1 →

Ej+1,i
Ac,1 , to the spaces Ωj

(
M,Hi

∇+ (ggg, ξ)
)

and Ωj
c

(
M,Hi

∇+ (ggg, ξ)
)
, respectively, via

the isomorphisms ΨA,1 and ΨAc,1. Since the canonical homomorphism

Γ
(
Hi
∇+ (ggg, ξ)

)
→ Hi

∇◦ι (k,Γ (ξ))

is not a monomorphism unless the Lie algebra bundle ggg is trivial, we can not infer the
form of this differentials immediately from the level of R-cochains and its spectral
sequence (5.2). In comparising of the cohomology classes fromHi

∇◦ι (k,Γ (ξ)) having
representative of C∞ (M)-linear cochains we must see whether these representatives
differ by a C∞ (M)-linear cochain.

Proposition 5.9. The following diagrams are commutative

Ej,i
A,1

dj,i
A,1−−−−→ Ej+1,i

A,1yΨj,i
A,1

yΨj+1,i
A,1

Ωj
(
M,Hi

∇+ (ggg, ξ)
) (−1)id∇i−−−−−−→ Ωj+1

(
M,Hi

∇+ (ggg, ξ)
)

Ej,i
Ac,1

dj,i
Ac,1−−−−→ Ej+1,i

Ac,1yΨj,i
Ac,1

yΨj+1,i
Ac,1

Ωj
c

(
M,Hi

∇+ (ggg, ξ)
) (−1)id∇i−−−−−−→ Ωj+1

c

(
M,Hi

∇+ (ggg, ξ)
)

Proof. The calculations identical as in the R-linear cochains [H-S] yield for f ∈
Zj,i

A,1 ⊂ Z
j,i
1 the following formulae

(−1)i (
d∇i ◦Ψj,i

A,1 [f ]
)
(X1, ..., Xj+1) = (−1)(j+1)i [ρf (X1, ..., Xj+1)] ,

(
Ψj+1,i

A,1 ◦ dj,i
A,1 [f ]

)
(X1, ..., Xj+1)

= (−1)(j+1)i [
ρf (X1, ..., Xj+1)− d∇+

(
(−1)j

f̄j+1 (X1, ..., Xj+1)
)]

where ρf ∈ Ωj+1
(
M,Λiggg∗ ⊗ ξ

)
and ρf (X1, ..., Xj+1) is a d∇+ -cocycle defined by

ρf (X1, ..., Xj+1) (σ1, ..., σi)

=
j+1∑
t=1

(−1)t+1∇λXt

(
f̄j

(
X1, ...t̂..., Xj+1

)
(σ1, ..., σi)

)
+

+
j+1∑
t=1

(−1)t
i∑

s=1

f̄j

(
X1, ...t̂..., Xj+1

)
(σ1, ..., [[λXt, σs]]σi) +

+
∑
r<s

(−1)r+s
f̄j ([Xr, Xs] , X1, ...r̂...ŝ...Xj+1) (σ1, ..., σi) .
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The cochain f̄j+1 (X1, ..., Xj+1) is C∞ (M)-linear, i.e. belongs to the module
Ωj+1

(
M,Λi−1ggg∗ ⊗ ξ

)
. This gives(

(−1)i
d∇i ◦Ψj,i

A,1 −Ψj+1,i
A,1 ◦ dj,i

A,1

)
(f) (X1, ..., Xj+1)

= (−1)(j+1)i [
d∇+

(
(−1)j

f̄j+1 (X1, ..., Xj+1)
)]

= 0.

If f has a compact support, the same hold for ρf and f̄j+1 and we get the
commutativity of the second diagram. �

The next theorem is the main goal of this section. It describes the second terms
of the sepectral sequences (5.4) and (5.6) (see also [M]).

Theorem 5.10. The homomorphisms

ΨA,2 : Ej,i
A,2 → Hj

∇i

(
M,Hi

∇+ (ggg, ξ)
)
, [f ] 7→

[
(−1)ji [

f̄j

] ]
,

ΨAc,2 : Ej,i
Ac,2 → Hj

∇i,c

(
M,Hi

∇+ (ggg, ξ)
)
, [f ] 7→

[
(−1)ji [

f̄j

] ]
,

are isomorphisms of C∞ (M)-modules.

Proof. Clearly, we need to notice only that ΨA,2 is a composition of isomorphisms

ΨA,2 : Ej,i
A,2

σj,i
A,1−→∼= Hj

(
E∗,iA,1, d

∗,i
A,1

) (Ψj,i
A,1)#−→∼= Hj

∇i

(
M,Hi

∇+ (ggg, ξ)
)

and analogously for compact supports. �

6. Algebroids and pairings

Assume that A is a transitive Lie algebroid with three representations

∇r : A→ A (ξr) , r = 1, 2, 3,

and a pairing
F : ξ1 × ξ2 → ξ3

compatible with the representations (∇1,∇2,∇3) , i.e. fulfilling the property anal-
ogous to (2.5) in which we must replace X by γ ∈ Γ (A) . Then the multiplication
of cochains

∧ : Λjggg∗ ⊗ ξ1 × Λiggg∗ ⊗ ξ2 → Λj+iggg∗ ⊗ ξ3
is compatible with

(a) suitable representations Lj
A, Li

A, L
j+i
A

Lj+i
A,γ (f ∧ g) = Lj+i

A,γ (f) ∧ g + f ∧ Lj+i
A,γ (g) ,

f ∈ Γ
(
Λjggg∗ ⊗ ξ1

)
, g ∈ Γ

(
Λiggg∗ ⊗ ξ2

)
,

(b) differentials d∇+
1
, d∇+

2
, d∇+

3

d∇+
3

(f ∧ g) = d∇+
1

(f) ∧ g + (−1)j
f ∧ d∇+

2
(g) ,

f, g as above.
The latter equality gives the pairing of cohomology vector bundles

(6.1) ∧ : Hj

∇+
1

(ggg, ξ1)×Hi
∇+

2
(ggg, ξ2)→ Hj+i

∇+
3

(ggg, ξ3)
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which is compatible with the suitable representations L#,j
A , L#,i

A , L#,j+i
A and finally

with the flat covariant derivatives ∇j , ∇i, ∇j+i

∇j+i
X ([f ] ∧ [g]) = ∇j

X ([f ]) ∧ [g] + [f ] ∧∇i
X [g] .

We assume in the sequel that n = rankggg (and we recall that m = dimM).
Together with three representations ∇r one consider three graded filtered dif-

ferential spaces Ω (A, ξ1) , Ωc (A, ξ2) , Ωc (A, ξ3) (5.3), (5.5), and theirs spectral se-
quences

(
1Ej,i

A,s,
1dA,∇,s

)
,

(
2Ej,i

Ac,s,
2dAc,∇,s

)
,

(
3Ej,i

Ac,s,
3dAc,∇,s

)
. Using monomorphy

of ρ0 and of ρc,0, Lemma 5.1, we see immediately from the case of R-linear cochains
[H-S] that the following diagram commutes.

1Ej,i
A,0 × 2Ej′,i′

Ac,0
∧−−−−→ 3Ej+j′,i+i′

Ac,0yaj,i
A ×aj′,i′

Ac

yaj,i
A ×aj′,i′

Ac

Ωj
(
M,Λiggg∗ ⊗ ξ1

)
× Ωj′

c

(
Λi′ggg∗ ⊗ ξ2

) (−1)i′j ·∧−−−−−−→ Ωj+j′

c

(
Λi+i′ggg∗ ⊗ ξ3

)
.

Passing twice to cohomology and using definitions of suitable homomorphisms we
get the commutativity of the diagram
(6.2)

1Ej,i
A,2 × 2Ej′,i′

Ac,2
∧−−−−→ 3Ej+j′,i+i′

Ac,2y1Ψj,i
A,2×

2Ψj′,i′
Ac,2

y3Ψj+j′,i+i′
Ac,2

Hj
∇i

(
M,Hi

∇+
1

(ggg, ξ1)
)
×Hj′

∇i′ ,c

(
M,Hi′

∇+
2

(ggg, ξ2)
) (−1)i′j ·∧−−−−−−→ Hj+j′

∇i+i′ ,c

(
M,Hi+i′

∇+
3

(ggg, ξ3)
)
.

The main theorem of Chapter 1 one gets the very important

Conclusion 6.1. If ξ3 is a line bundle and
(
Hn
∇+

3
(ggg, ξ3) ,∇n

)
∼ (or (M) , ∂or)

[in particular,
(
∇+

3

)
x

= ∇trad ⊗ id according to Lemma 3.5] and the pairing of
cohomology vector bundles

∧ : Hi
∇+

1
(ggg, ξ1)×Hn−i

∇+
2

(ggg, ξ2)→ Hn
∇+

3
(ggg, ξ3)

is nondegenerate, then the same holds for the pairing
(6.3)

Hj
∇i

(
M,Hi

∇+
1

(ggg, ξ1)
)
×Hm−j

∇n−i,c

(
M,Hn−i

∇+
2

(ggg, ξ2)
)
→ Hm

∇n,c

(
M,Hn

∇+
3

(ggg, ξ3)
) ∫ #

M→ R.

i.e.
Hj
∇i

(
M,Hi

∇+
1

(ggg, ξ1)
) ∼= (

Hm−j
∇n−i,c

(
M,Hn−i

∇+
2

(ggg, ξ2)
))∗

.

Diagram (6.2) assert that the nondegenerate pairing (6.3) is ±equal to the multi-
plication of the second term of the spectral sequences

1Ej,i
A,2 ×

2Em−j,n−i
Ac,2

∧−→ 3Em,n
Ac,2

∼=→ R

so the last is nondegenerate as well,
1Ej,i

A,2
∼=

(
2Em−j,n−i

Ac,2

)∗
,

and the main theorem of Chapter 4 gives that the multiplication of cohomology
classes

〈·, ·〉H : Hj
∇1

(A, ξ1)×Hm+n−j
∇2,c (A, ξ2)→ Hm+n

∇3,c (A, ξ3)
∼=→ R
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is nondegenerate too, i.e.

Hj
∇1

(A, ξ1) ∼=
(
Hm+n−j
∇2,c (A, ξ2)

)∗
.

7. Evens-Lu-Weinstein pairing for transitive Lie algebroids

7.1. Nondegeneracy of Evens-Lu-Weinstein pairing for transitive Lie al-
gebroids. We prove that for transitive Lie algebroid A the duality of Evens-Lu-
Weinstein [E-L-W]

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Qor

A )→ R

is nondegenerate, i.e. Hm+n
Dor,c (A,Qor

A )
∼=→ R and

Hj (A) ∼=
(
Hm+n−j

Dor,c (A,Qor
A )

)∗
.

For arbitrary (nonregular in general) Lie algebroid A on a manifold M the authors
[E-L-W] introduced a vector bundle

QA = ΛtopA⊗ ΛtopT ∗M

(the notation Λtop refers to the highest exterior power). Geometrically, sections of
QA can be thought of as transverse measures to characteristic foliation Im #A to any
Lie algebroid A [E-L-W]. For Poisson manifolds, the Evens-Lu-Weinstein pairings
takes the form of the pairing on the Poisson homology; for more applications see
[E-L-W]. Ibidem, there is an example of nonregular Lie algebroid A over a compact
oriented manifold for which the pairing Hj (A) × Hm+n−j

D,c (A,QA) → R is not
necessarily nondegenerate. J.Huebschmann in [H] has generalized the construction
of the bundle QA and the modular class θA to Lie-Rinehart algebras, an algebraic
generalization of Lie algebroids.

We slightly modify the Weinstein construction to consider nonoriented manifolds:

Qor
A = QA ⊗ or (M) .

For an oriented manifold M we can identify Qor
A = QA.

In [E-L-W] a representation

D : A→ A (QA)

was introduced by

Dγ (Y ⊗ ϕ) = Lγ (Y )⊗ ϕ+ Y ⊗ L#A(γ) (ϕ) ,

Y ∈ Γ (ΛtopA) , ϕ ∈ Γ (ΛtopT ∗M) = Ωm (M) , where Lγ (Y ) = [γ, Y ] ([γ, Y ] denotes
the Schouten bracket) and L#A(γ) (ϕ) is the usual Lie derivative of a differential
form ϕ. We recall that for Y = γ1 ∧ ... ∧ γt

Lγ (Y ) =
∑

i

γ1 ∧ ... ∧ [[γ, γi]] ∧ ... ∧ γt.

There is some interest to consider the representation D in the context of intrinsic
characteristic classes of Lie algebroids [C], [F].

We modify the representation D to

Dor = D ⊗ ∂or
A : A→ A (Qor

A ) .
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In the sequel we will be interested only in the transitive case. A choice of a
connection λ : TM → A enables us to identify

Λm+nA = Λnggg ⊗ ΛmTM,

ε ∧ (Λmλ)(X) = ε⊗ Y,

and

(7.1) Qor
A = Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M ⊗ or (M) = Λnggg ⊗ or (M) .

Lemma 7.1. (a) D+ : ggg → End (QA) is defined by

D+
σ = (∇trad)σ = tr (adσ) · id, σ ∈ Γ (ggg) .

(b) Hn
D+ (ggg,QA) = Λnggg∗ ⊗QA, H

n
Dor+ (ggg,Qor

A ) = Λnggg∗ ⊗Qor
A .

Proof. (a) Consider locally defined nonsingular section of QA of the form εU ⊗
XU ⊗ ϕU , εU ∈ Γ (ΛngggU ) , XU ∈ Γ (ΛmTMU ) , ϕU ∈ Γ (ΛmT ∗MU ) , and assume
that 〈XU , ϕU 〉 = 1. For σ ∈ Γ (ggg) we have #A (σ) = 0 and [[σ, λWi]] ∈ Γ (ggg) .
Therefore if εU = σ1 ∧ ... ∧ σn, XU = W1 ∧ ... ∧Wm, σi ∈ Γ (ggg) , Wi ∈ Γ (TMU ) ,

Dσ (εU ⊗XU ⊗ ϕU )

= Lσ (εU ⊗XU )⊗ ϕU

= Lσ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm)⊗ ϕU

=
∑

i

σ1 ∧ ... ∧ [[σ, σi]] ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗ ϕU

= tr (adσ) · εU ⊗XU ⊗ ϕU .

(b) Follows immediately from Proposition 3.2. �

The vector bundle Λnggg∗ ⊗QA is trivial. Indeed, the classical homomorphism

(7.2)
c : Λnggg∗ ⊗QA = Λnggg∗ ⊗ Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M →M × R

c (ε∗ ⊗ ε⊗X ⊗ ϕ) = 〈ε∗, ε〉 · 〈X,ϕ〉

is an isomorphism. Therefore

(7.3) c⊗ id : Λnggg∗ ⊗Qor
A

∼=−→ or (M) .

Let A (c) : A (Λnggg∗ ⊗QA) → A (M × R) be the induced isomorphism of Lie alge-
broids [K1],

A (c) (u) (f) = c
(
u

(
c−1 ◦ f

))
,

u ∈ Γ (A (Λnggg∗ ⊗QA)) , f ∈ C∞ (M) . Let

∇D : TM → A (Hn
D+ (ggg,QA)) = A (Λnggg∗ ⊗QA)

be the induced flat adjoint covariant derivative (5.9) for D. Analogously we have
∇Dor

: TM → A (Λnggg∗ ⊗Qor
A ) .

Lemma 7.2. The compositions

∇D : TM → A (Λnggg∗ ⊗QA)
A(c)−→∼= A (TM × R) ,

∇Dor

: TM → A (Λnggg∗ ⊗Qor
A )

A(c⊗id)−→∼= A (or (M)) ,
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are trivial representations ∂ and ∂or, respectively, so(
Hn

D+ (ggg,QA) ,∇D
)
∼ (TM × R, ∂) ,(

Hn
Dor+ (ggg,Qor

A ) ,∇Dor)
∼ (or (M) , ∂or) .

Proof. It is necessary to check it locally. Take locally defined nonsingular sec-
tions εU ∈ Γ (ΛngggU ) , XU ∈ Γ (ΛmTMU ) and theirs duals ε∗U ∈ Γ (Λnggg∗U ) , ϕU ∈
Γ (ΛmT ∗MU ) , 〈ε∗U , εU 〉 = 1, 〈XU , ϕU 〉 = 1. On the set U arbitrary section of the
bundle Λnggg∗ ⊗ QA = Λnggg∗ ⊗ Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M is of the form f · ε∗U ⊗
εU ⊗XU ⊗ ϕU , f ∈ C∞ (U) . For X ∈ X (MU ), XU = W1 ∧ ... ∧Wm (W1, ...,Wm

is a base of vector fields on U) and ϕU = W ∗
1 ∧ ... ∧ W ∗

m, W ∗
i is the dual ba-

sis, and εU = σ1 ∧ ... ∧ σn (σi is a base of the vector bundle ggg on U), we write
[[λX, σi]] =

∑
j g

j
i ·σj , [[λX, λWi]] =

∑
k h

k
i ·σk + ak

i ·λk, so [X,Wi] = ak
i ·Wk. Then

DλX (εU ⊗XU ⊗ ϕU )

= LλX (εU ⊗XU )⊗ ϕU + εU ⊗XU ⊗ LXϕU

=
( ∑

i

gi
i · σ ∧ λX

)
⊗ ϕU + σ ∧

( ∑
i

ai
i · λX

)
⊗ ϕU + σ ∧ λX ⊗

∑ (
−ai

i

)
ϕU

=
∑

i

gi
i · εU ⊗XU ⊗ ϕU .

Therefore

∇D
X (f · ε∗U ⊗ εU ⊗XU ⊗ ϕU ) (εU )

= DλX (f · εU ⊗XU ⊗ ϕU )−

−
∑

i

f · ε∗U (σ1 ∧ ... ∧ [[λX, σi]] ∧ ... ∧ σn) · εU ⊗XU ⊗ ϕU

= ∂Xf · εU ⊗XU ⊗ ϕU + f ·DλX (εU ⊗XU ⊗ ϕU )− f ·
∑

i

gi
i · εU ⊗XU ⊗ ϕU

= ∂Xf · εU ⊗XU ⊗ ϕU

= ∂Xf · (ε∗U ⊗ εU ⊗XU ⊗ ϕU ) (εU ) .

Finally (
A (c) ◦ ∇D

X

)
(f) = c

(
∇D

X (f · ε∗U ⊗ εU ⊗XU ⊗ ϕU )
)

= c (∂Xf · (ε∗U ⊗ εU ⊗XU ⊗ ϕU ))
= ∂Xf.

For the proof of the second part we notice that for local ∂or-constant section σ0 of
or (MU ) one has(

A (c⊗ id) ◦ ∇Dor

X

)
(f ⊗ σ0) =

(
A (c) ◦ ∇D

X

)
(f)⊗ σ0

= ∂Xf ⊗ σ0

= ∂or
X (f ⊗ σ0) .

�

Theorem 7.3. For an arbitrary transitive Lie algebroid A

Hm+n
Dor,c (A,Qor

A ) ∼= R,
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and the Evens-Lu-Weinstein cohomology pairing

Hj (A)×Hm+n−j
Dor,c (A,Qor

A )→ Hm+n
Dor,c (A,Qor

A ) ∼= R
is nondegenerate, i.e.

Hj (A) ∼=
(
Hm+n−j

Dor,c (A,Qor
A )

)∗
.

Proof. Conclusion 3.4 and Lemma 7.1 show that the pairing

Hi (ggg)×Hn−i
Dor+ (ggg,Qor

A )→ Hn
Dor+ (ggg,Qor

A )

is nondegenerate. On account of Theorem 2.3 and Conclusion 6.1 we assert that
the pairing

Hj
∇D

(
M,Hi (ggg)

)
×Hm−j

∇or,c

(
M,Hn−i

Dor+ (ggg,Qor
A )

)
→ Hm

∇Dor,c (M,Hn
Dor+ (ggg,Qor

A ))→∼= R,

is nondegenerate. Equivalently, this is a multiplication of the second terms of the
Hochshild-Serre spectral sequences of graded filtered differential spaces Ω (A) with
the trivial differential and Ωc (A,Qor

A ) with the differential Dor. The fundamental
Theorem 4.4, see also mentioned above Conclusion 6.1, completes the proof. �

7.2. Remarks on the top group of cohomology. Analyzing the proof of The-
orem 4.4 and composing isomorphism (7.3) with isomorphism (2.4) we can define
the isomorphism I : Hm+n

Dor,c (A,Qor
A )

∼=−→ R as a composition

I : Hm+n
Dor,c (A,Qor

A ) = Hm,n
Dor,c (A,Qor

A ) = Em,n
0 (HDor,c (A,Qor

A ))
σm,n

Ac,∞←−∼= Em,n
Ac,∞ =

= Em,n
Ac,2

Ψm,n
Ac,2−→∼= Hm

∇Dor ,c (M,Hn
Dor+ (ggg,Qor

A )) =

= Hm
∇Dor ,c (M,Λnggg∗ ⊗Qor

A )
(c⊗id)#−→∼= Hm

∂or,c (M,or (M))
∫ or,#

M−→∼= R.

We compare this isomorphism with the one defined by direct formula in [E-
L-W] resctricting our interest to transitive Lie algebroids. Immediately from the
definition of Ψm,n

Ac,2 (see Theorem 5.10), Ψm,n
Ac,2 [f ] = (−1)mn [

f̄m

]
, and definition of

σm,n
Ac,∞ we observe that

I1 : Hm+n
Dor,c (A,Qor

A ) = Em,n
0

σm,n
Ac,∞←−∼= Em,n

Ac,∞ = Em,n
Ac,2

Ψm,n
Ac,2−→∼= Hm

∇Dor ,c (M,Λnggg∗ ⊗Qor
A )

is given by the formula looking analogously to Ψm,n
Ac,2, I1 [f ] = (−1)mn [

f̄m

]
, or

equivalently (under the identification Λm+nA∗ = ΛmT ∗M ⊗ Λnggg∗ given by the
help of a connection λ : TM → A) by

I1 ((ϕ⊗ ε∗)⊗ q) = (−1)mn [ϕ⊗ (ε∗ ⊗ q)]
where ϕ ∈ Ωm

c (M) , ε∗ ∈ Γ (Λnggg∗) , q ∈ Γ (Qor
A ) . Therefore if q = ε ⊗X ⊗ µ ⊗ e,

ε ∈ Γ (Λnggg) , X ∈ Γ (ΛmTM) , µ ∈ Γ (ΛmT ∗M) = Ωm (M) , e ∈ Γ (or (M)) then

(c⊗ id)# ◦ I1 ((ϕ⊗ ε∗)⊗ ε⊗X ⊗ µ⊗ e) = (−1)mn [ϕ · 〈ε∗, ε〉 · 〈X,µ〉 ⊗ e] .

So, for f = (ϕ⊗ ε∗)⊗ ε⊗X ⊗ µ⊗ e we get

I [f ] = (−1)mn
∫ or

M

〈ε∗, ε〉 · 〈X,µ〉 · ϕ⊗ e = (−1)mn
∫ or

M

〈ε∗, ε〉 · 〈X,ϕ〉 · µ⊗ e

= (−1)mn
∫ or

M

〈ϕ⊗ ε∗, X ⊗ ε〉 · µ⊗ e
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which is concordant up to the sign with the definition of Evens-Lu-Weinstein
[E-L-W] given by them only for oriented compact manifold (but for any Lie al-
gebroid, not necessary transitive).

The fact Hm+n
Dor,c (A,Qor

A )
∼=−→ R for transitive Lie algebroids is not proved in

[E-L-W]. Below we prove this immediately without use of the spectral sequences.
(a) on oriented manifolds. The authors of [E-L-W] introduced an isomorphism

of vector bundles

ρ̃ : ΛtopA∗ ⊗ ΛtopA⊗ ΛtopT ∗M → ΛtopT ∗M,

ρ̃ (Ψ⊗ Y ⊗ µ) = 〈Ψ, Y 〉 · µ
and proved a version of Stokes Theorem (to be sure for compact manifold but
without troubles we can extend it to differential forms with compact support on
arbitrary oriented manifold).

Theorem 7.4 (Stokes Theorem [E-L-W]). Let rankA = r. For r − 1-form Ψ′ ∈
Γ

(
Λr−1A∗

)
we have

ρ̃ (dD (Ψ′ ⊗ Y ⊗ µ)) = (−1)r−1
ddR

(
ι#A(Ψ′yY )µ

)
.

Consequently, if the form Ψ′ ⊗ Y ⊗ µ has compact support then∫
M

ρ̃ (dD (Ψ′ ⊗ Y ⊗ µ)) = 0.

Put

ρ̃r−1 : Λr−1A∗ ⊗QA → Λm−1T ∗M, (Ψ′ ⊗ Y ⊗ µ) 7→ (−1)r−1
ι#A(Ψ′yY )µ,

and notice the commutativity of the diagram

Ωr−1
c (A,QA)

ρ̃r−1
c−−−−→ Ωm−1

c (M)ydD

yddR

Ωr
c (A,QA)

ρ̃c−−−−→ Ωm
c (M) .

From this we deduce that ρ̃c induces an R-linear homomorphism in cohomology

ρ̃c,# : Hr
D,c (A,QA)→ Hr

c (M) .

Since ρ̃ is an isomorphism ρ̃c,# is an epimorphism.

Lemma 7.5. If A is transitive Lie algebroid, then ρ̃c,# is an isomorphism.

Proof. One can easily see the lemma provided that ρ̃r−1 is an epimorphism. It is
a simple matter to show that ρ̃r−1

x is an epimorphism at every point x ∈ M using
transitivity of the Lie algebroid A i.e. using the fact that the anchor (#A)x : Ax →
TxM is an epimorphism. This finishes the proof that

ρ̃c,# : Hr
D,c (A,QA)→ Hr

c (M)
∫ #

M−→∼= R

is an isomorphism. �

(b) on nonoriented manifolds. We prove this analogously multiplying the vector
bundles by or (M) and use the Stokes theorem for densities [B-T].
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7.3. Exceptional property of the Evens-Lu-Weinstein representation. As-
sume A is a transitive Lie algebroid. Before the next theorems we must give
algebroid’s equivalent of some lemmas from Chapter 1. For any A-connection
∇ : A→ A (ξ) and a 1-form ω ∈ Ω1 (A) we define a new A-connection

∇ω : A→ A (ξ) , ∇ω
γ ν = ∇γν + ω (γ) · ν.

The curvature tensors R∇
ω

, R∇ ∈ Ω2 (A, ξ) of the connections∇ω and∇ are related
via the formula

R∇
ω

= R∇ + dAω ⊗ id.

Therefore, if ∇ is flat (it means, ∇ is a representation) then ∇ω is flat if and only
if ω is closed. Each A-connection ∇ : A → A (M × R) in the trivial vector bundle
M × R is of the form ∂ω

A, indeed, we need to put ω (γ) = ∇γ (1) .
For a line bundle ξ and a representation ∇ : A→ A (ξ) the differential equation

∇ν = 0 is locally uniquelly integrable provided that it is locally integrable.

Lemma 7.6. For a line bundle ξ and a representation ∇ : A→ A (ξ) the differen-
tial equation ∇ν = 0 is locally integrable if and only if ∇+ = 0. This last condition
is equivalent to the projectability of ∇, i.e. that ∇ = ∇̃ ◦ #A for some usual flat
covariant derivative ∇̃ on M in the vector bundle ξ.

Proof. ”=⇒” Assume that ∇ν = 0 is locally integrable. If ν is locally defined
nonsingular ∇-constant section of ξ then arbitrary section is equal to ν1 = f · ν for
a smooth function f and for σ ∈ Γ (ggg)

∇+
σ (f · ν) = ∂#A(σ)f · ν + f · ∇σν = 0.

”⇐=” Assume that ∇+ = 0. Take x0 ∈M and u ∈ ξx0 . Locally (x0 ∈ U ∼= Rm)
∇U = ∂ω

AU
: AU → A (ξU ) = A (U × R) for a closed 1-form ω ∈ Ω1 (AU ) . By

assumption ∇+ = 0, ω (σ) · ν = 0 for all σ ∈ Γ (ggg) and ν ∈ Γ (ξ) , so ω (σ) = 0
and ω is projectable on U, ω = #∗

A (ω̄) for some ω̄ ∈ Ω1 (U) . Since the anchor #A

is an epimorphism, the pullback of the differential forms #∗
A is a monomorphism.

Therefore, since 0 = dAω = dA (#∗
A (ω̄)) = #∗

A (ddRω̄) we get ddRω̄ = 0. Clearly,
then ω̄ = df for some function f ∈ C∞ (U) . It is easy to see that the section
σ = e−f of the bundle U × R ∼= ξU is ∇U -constant. �

Similar considerations show that for trivial vector bundle ξ = M × R and a
representation ∂ω

A the following conditions are equivalent (1) ∇+ = 0, (2) ω is
projectable (i.e. ω = #∗

A (ω̄) for some ω̄ ∈ Ω1 (M) . On the other hand, if ω is
exact, i.e. 0 = [ω]A ∈ H1 (A) , then ∇+ = 0, which impies that the differential
equation ∇ν = 0 is locally uniquelly integrable.

By the definition the 0-group of cohomology can be written similarly to (2.1).

H0
∇ (A, ξ) = {ν ∈ Γ (ξ) ; ∇ν = 0} .

Proposition 7.7. (1) H0
∇ (A, ξ) = 0 if ξ is nontrivial.

(2) For the trivial vector bundle ξ = M × R and ∇ = ∂ω
A for closed 1-form

ω ∈ Ω1 (A) we have

H0
∇ (A, ξ) 6= 0 ⇐⇒ [ω]A = 0.

In particular, if H0
∇ (A, ξ) 6= 0 then ∇+ = 0.
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Proof. (1) Evidently, since each section of nontrivial line bundle ξ is singular and
by Lemma 7.6 the set {x; ∇ν = 0} is open-closed.

(2) This result may be proved in the same way as in the case of A = TM, i.e. as
the formula (2.3), see also Example 2.6 from Chapter 1. �

Proposition 7.7(1) generalizes observation (••) from section 2.1.

Proposition 7.8. Let ξ be a line bundle and fix an isomorphism ϕ : ξ ⊗ ξ →
M × R. Let us assume that ϕ transforms a given A-representation ∇ : A → A (ξ)
to A-representation ∂ω

A for a closed 1-form ω ∈ Ω1 (A) . Then there exists a linear
isomorphism

Hj
Dor⊗∇−ω (A,Qor

A ⊗ ξ) ∼= Hm+n−j
∇,c (A, ξ)∗ .

In particular
H0

Dor⊗∇−ω (A,Qor
A ⊗ ξ) ∼= Hm+n

∇,c (A, ξ)∗ .

Proof. Consider the multiplication by reals

ρ : Qor
A × (M × R)→ Qor

A .

ρ is compatible with (Dor, ∂ω
A, (D

or)ω) . The canonical nondegenerate pairing

F : Qor
A ⊗ ξ × ξ → Qor

A ⊗ ξ ⊗ ξ

is compatible with (Dor ⊗∇,∇, Dor ⊗∇⊗∇) , so the composition

F̃ : Qor
A ⊗ ξ × ξ

F→ Qor
A ⊗ ξ ⊗ ξ

id⊗ϕ−→ Qor
A ⊗ (M × R)

ρ→ Qor
A

is compatible with (Dor ⊗∇,∇, (Dor)ω) which implies that it is also compatible
with (Dor ⊗∇−ω,∇, Dor) . Therefore, for each point x ∈M, the pairing F̃x : Qor

A,x⊗
ξx×ξx → Qor

A,x is compatible with the representations
(
(Dor ⊗∇−ω)+x ,∇+

x , D
or+
x

)
of the isotropy Lie algebra gggx in the vector spaces Qor

A,x⊗ ξx, ξx, Qor
A,x, respectively.

From this it follows that the differentials d(Dor⊗∇−ω)+x
, d∇+

x
, d(Dor)+x

fulfil condition
(6) from Lemma 3.1. Of course, d(Dor)+x

= dtrad ⊗ id satisfies condition (3) from
the mentioned lemma. Since

∧ : Λiggg∗x ⊗
(
Qor

A,x ⊗ ξx
)
× Λn−iggg∗x ⊗ ξx → Λnggg∗x ⊗Qor

A,x

is nondegenerate, the generalized Chern-Hirzebruch-Serre Lemma 3.1 asserts that
induced pairing in cohomology

Hi
(Dor⊗∇−ω)+

(ggg,Qor
A ⊗ ξ)×Hn−i

∇+ (ggg, ξ)→ Hn
Dor+ (ggg,Qor

A )
l.(7.2)→ or (M)

is nondegenerate at every point x ∈ M . The fundamental Theorem 4.4, see also
Conclusion 6.1, shows that the pairing

Hj
Dor⊗∇−ω (A,Qor

A ⊗ ξ)×H
m+n−j
∇,c (A, ξ)→ Hm+n

Dor,c (A,Qor
A )

is nondegenerate. This ends the proof. �

Conclusion 7.9. If ξ is not isomorphic to Qor
A (i.e. ξ is not isomorphic to

Λnggg ⊗ or (M) , see (7.1), then for an arbitrary connection ∇ : A → A (ξ) we have
Hm+n
∇,c (A, ξ) = 0.

Proof. If ξ is not isomorphic to Qor
A the vector bundle Qor

A ⊗ ξ is not trivial so
Proposition 7.7 gives H0

Dor⊗∇−ω (A,Qor
A ⊗ ξ) = 0. Proposition 7.8 proves our theo-

rem. �
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The next theorem is one of the importest theorems of the paper. Compare this
theorem and Theorem 7.3 with Theorem 5.4 form [H].

Theorem 7.10. For a line bundle ξ and a representation ∇ : A → A (ξ) the
following conditions are equaivalent:

(a) Hm+n
∇,c (A, ξ) 6= 0,

(b) Hm+n
∇,c (A, ξ) = R and the pairing Hj (A)×Hm+n−j

∇,c (A, ξ)→ Hm+n
∇,c (A, ξ) ∼=

R is nondegenerate, i.e. Hj (A) ∼=
(
Hm+n−j
∇,c (A, ξ)

)∗
,

(c) (ξ,∇) ∼ (Qor
A , D

or) .

Proof. (c) =⇒ (b) by Lemma 7.2, (b) =⇒ (a) is evident.
(a) =⇒ (c). Let Hm+n

∇,c (A, ξ) 6= 0. By Conclusion 7.9 ξ ∼= Qor
A . It remains to

compare the representations. Consider then a flat bundle (ξ = Qor
A ,∇) and any

linear isomorphism

Qor
A ⊗Qor

A →∼= M × R, ∇⊗∇ ∼ ∂ω
A.

By Proposition 7.8

H0
Dor⊗∇−ω (A,Qor

A ⊗Qor
A ) ∼= Hm+n

∇,c (A,Qor
A ) 6= 0,

therefore there exists a nonsingular global section ν ∈ Γ (Qor
A ⊗Qor

A ) which is Dor⊗
∇−ω-constant. Additionally, ∇⊗∇ ∼ ∂ω

A implies ∇⊗∇−ω ∼ ∂A which means that
there exists a second nonsingular section ν′ ∈ Γ (Qor

A ⊗Qor
A ) which is ∇ ⊗ ∇−ω-

constant. The bundle Qor
A ⊗ Qor

A is 1-dimensional, so ν′ = f · ν for a nonsingular
function f ∈ C∞ (M) . Write locally ν = ν′α ⊗ να for nonsingular sections ν′α, να of
Qor

A . Then

0 =
(
Dor ⊗∇−ω

)
γ

(ν) = Dor
γ (ν′α)⊗ να + ν′α ⊗∇−ω

γ (να) ,

0 =
(
∇⊗∇−ω

)
γ

(f · ν) = ∇γ (f · ν′α)⊗ να + f · ν′α ⊗∇−ω
γ (να) .

Multiplying first equation by f and then substracting the second we get(
f ·Dor

γ (ν′α)−∇γ (f · ν′α)
)
⊗ να = 0.

The nonsingularity of να yields the equation f ·Dor
γ (ν′α) = ∇γ (f · ν′α) . The bundle

Qor
A is 1-dimensional, so

(7.4) f ·Dor
γ (ν̄) = ∇γ (f · ν̄)

for all ν̄ ∈ Γ (Qor
A ) . Define a linear isomorphism

ϕ : Qor
A → Qor

A , ν̄ 7→ f · ν̄.

By (7.4) one has that (Qor
A ,∇) ∼ (Qor

A , D
or) . �

7.4. Characterization of transitive Lie algebroids with Poincaré duality.
The last aim is to characterize two classes of transitive Lie algebroids.

(1) Hm+n
∂A,c (A) 6= 0 - the top group of real compact cohomology is not trivial.

This condition is equivalent to (Qor
A , D

or) ∼ (M × R, ∂A) . These classes fulfil
the Poincaré duality: the pairing

Hj (A)×Hm+n−j
c (A)→ Hm+n

c (A) ∼= R

is not degenerate, see Theorem 7.3, i.e. Hj (A) ∼=
(
Hm+n−j

c (A)
)∗
.
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(2) Hm+n
∂or

A ,c (A, or (M)) 6= 0 - the top group of or (M)-valued compact cohomology
is not trivial.

This condition is equivalent to (Qor
A , D

or) ∼ (or (M) , ∂or
A ) . In this class the

multiplication of cohomology classes

Hj (A)×Hm+n−j
∂or

A ,c (A, or (M))→ Hm+n
∂or

A ,c (A, or (M)) ∼= R

is not degenerate, see Theorem 7.3, i.e. Hj (A) ∼=
(
Hm+n−j

∂or
A ,c (A)

)∗
.

Before the characterization of these classes we reduce the Evens-Lu-Weinstein
representation (Qor

A , D
or) to equivalent simple form (only for transitive Lie alge-

broids of course). We recall that the adjoint representation adA : A→ A (ggg) induces
a top-power representaion adtop

A : A→ A (Λtopggg) by(
adtop

A

)
γ

(σ1 ∧ ... ∧ σn) =
∑

i

σ1 ∧ ... ∧ [[γ, σi]] ∧ ... ∧ σn =
∑

i

ai
i · σ1 ∧ ... ∧ σn

where [[γ, σi]] =
∑

j a
j
i · σj .

Lemma 7.11. There exist isomorphisms of flat vector bundles

(QA, D) ∼=
(
Λtopggg, adtop

A

)
,

(Qor
A , D

or) ∼=
(
Λtopggg ⊗ or (M) , adtop

A ⊗ ∂or
A

)
.

Proof. It is necessary to show the first assertion, because the second follows from
first by tensor product with or (M). Fix arbitrary a connection λ : TM → A and
a linear isomorphism

K̄ : Λm+nA⊗ ΛmT ∗M
ϕλ←−∼= Λnggg ⊗ ΛmTM ⊗ ΛmT ∗M

K−→∼= Λnggg
ε ∧ λX ⊗ ϕ←−p ε⊗X ⊗ ϕ 7−→ ε · 〈X,ϕ〉.

Taking a local basis σ1, ..., σn of ggg, W1, ...,Wm of TM and the duals W ∗
1 , ...,W

∗
m

we see that K̄ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m) = σ1 ∧ ... ∧ σn.

To prove our lemma it is necessary to show the compatibility D
K̄∼ adn

A on these
nonsingular sections only, i.e.

(adn
A)γ (σ1 ∧ ... ∧ σn) = K̄ (Dγ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m))

Let [[γ, σi]] =
∑

j a
j
i ·σj , [[γ, λWj ]] =

∑
k ã

k
j ·σk +

∑
r b

r
j ·λWr, then [#A (γ) ,Wj ] =∑

r b
r
j · λWr. The right side of the above equation is equal to

K̄
(∑

ai
i · σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m+

+ σ1 ∧ ... ∧ σn ∧
∑

bjj ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m+

+σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗
(
−

∑
bjj

)
W ∗

1 ∧ ... ∧W ∗
m

)
= K̄

(∑
ai

i · σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗
1 ∧ ... ∧W ∗

m

)
=

∑
ai

i ·
(
K̄ (σ1 ∧ ... ∧ σn ∧ λW1 ∧ ... ∧ λWm ⊗W ∗

1 ∧ ... ∧W ∗
m)

)
= (adn

A)γ · σ1 ∧ ... ∧ σn.

�
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Conclusion 7.12. (1)

Hm+n
∂A,c (A) 6= 0 ⇐⇒ (Λnggg ⊗ or (M) , adn

A ⊗ ∂or
A ) ∼ (M × R, ∂A) ,

(2)

Hm+n
∂or

A ,c (A, or (M)) 6= 0 ⇐⇒ (Λnggg ⊗ or (M) , adn
A ⊗ ∂or

A ) ∼ (or (M) , ∂or
A ) .

The following proposition generalizes Proposition 2.2. The proof is analogous.

Proposition 7.13. For a representation ∇ : A → A (ξ) in a line vector bundle ξ
the following conditions are equivalent:

(a) (ξ,∇) ∼ (or (M) , ∂or
A ) ,

(b) (ξ ⊗ or (M) ,∇⊗ ∂or
A ) ∼ (M × R, ∂A) .

In the sequel we need the notion of a modular class of a Lie algebroid [W],
[E-L-W]. Firstly, we recall the characteristic classes of a representation ∇ : A →
A (ξ) in a line vector bundle ξ. If ξ is trivial as a line bundle and s ∈ Γ (ξ) is a
nonsingular section of ξ we define a 1-cocycle θ ∈ Ω1 (A) with respect to dA defined
by ∇γν = θs (γ) · s. The class θ∇ = [θ] ∈ H1 (A) is independent on the choice of
s and is called characteristic class of A associated to the representation ∇. For a
general ξ, we define θ∇ = 1

2θ∇⊗∇ (∇ ⊗ ∇ is a flat representation in trivial line
bundle ξ ⊗ ξ). We add that if ξ is trivial, the last equation holds.

For next propositions and theorems we need the following lemma.

Lemma 7.14. If ξ is a line bundle and {ϕα} is a collection of local trivialiations
with the transition functions λαβ : Uα × Uβ → R, ϕβ = ϕα · λαβ , then there exist
functions fα > 0 such that the local trivializations

ϕ̄α = ϕα · fα

(ϕ̄α,x = ϕα,x · fα (x)) have transition functions λ̄αβ = sgnλαβ .
In conclusion, each line bundle ξ possesses a system of local trivializations with

transition functions equaling to ±1 and then a family {sα} of nonsingular ±1sections
i.e. with transition functions equaling just to ±1.

Proof. Consider a line bundle ξ with a collection of local trivialiations {ϕα} and
transition functions λαβ . The tensor product ξ ⊗ ξ is a trivializable vector bundle
with local system of trivializations {ϕα ⊗ ϕα} . Choice a global trivialization ρ :
ξ ⊗ ξ →M × R such that ρα := ρ (ϕα ⊗ ϕα (1⊗ 1)) > 0. We put

fα =
1
√
ρα

> 0.

We show that {fα} is a required family. The transition functions λ̄αβ for the
collection of new local trivializations {ϕ̄α := ϕα · fα} are equl to λ̄αβ = λαβ · fβ

fα
so

that sgn λ̄αβ = sgnλαβ . On the other hand, ρβ = ρ (ϕβ ⊗ ϕβ (1⊗ 1)) = λ2
αβ · ρα so

λ̄2
αβ =

(
λαβ · fβ

fα

)2

= λ2
αβ ·

ρa

ρβ
= 1 and next

∣∣λ̄αβ

∣∣ = 1. Finally λ̄αβ = sgn λ̄αβ =
sgnλαβ . �

Lemma 7.15. For an arbitrary line bundle ξ the characteristic class θ∇ of a rep-
resentation ∇ : A → A (ξ) can be computed via any family of local nonsingular
±sections {sα} (see Lemma 7.14) of ξ in the following way: the 1-differential A-
form θ ∈ Ω1 (A) defined by

θ (γ)|Uα
sα = ∇γ (sα)
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is a correctly defined dA-cocycle and its cohomology class is equal to θ∇. θ∇ = 0 if
and only if there exists a family of local nonsingular ∇-constant ±sections {sα} ,
∇sα = 0. For transitive Lie algebroid A if θ∇ = 0 then ∇+ = 0, so the isotropy
Lie algebras gggx are unimodular.

The simple proof will be omitted.
We have θ∂or

A
= 0. The modular class of a Lie algebroid A is by definition the

characteristic class θA of the associated representation D : A→ A (QA) . According
to Lemma 7.11 for a transitive Lia algebroid A we have θA = θadn

A
where adn

A :
A→ A (Λnggg) is the representation induced by the adjoint one adA : A→ A (ggg) .

For real coefficients we have the following characterization of Lie algebroids in
the case of the nontriviality of the top group of cohomology. Let {(Uα, xa)} be a
coordinate open cover for the manifold M, with transition functions gαβ = xα◦x−1

β .
Each map xa determines canonically a local trivialization x̄α of the line bundle
ΛmTM and the family {x̄α} has the transition functions J (gαβ) .

Theorem 7.16. The following conditions are equivalent
(a) Hm+n

∂A,c (A) 6= 0,
(b) Hm+n

∂A,c (A) ∼= R and H (A) is an Poincaré algebra, i.e. the pairing Hj (A)×
Hm+n−j

c (A)→ Hm+n
c (A) ∼= R is nondegenerate, Hj (A) ∼=

(
Hm+n−j

c (A)
)∗
,

(c) (Qor
A , D

or) ∼ (M × R, ∂A) ,
(d) (Λnggg ⊗ or (M) , adn

A ⊗ ∂or
A ) ∼ (M × R, ∂A) ,

(e) (Λnggg, adn
A) ∼ (or (M) , ∂or

A ) , that is the holonomy homomorphism of (Λnggg, adn
A)

is the same as for the orientation bundle (or (M) , ∂or
A ) .

(f) A is orientable vector bundle and θA = 0. (in particular, gggx are unimodu-
lar).

Proof. (a) ⇐⇒ (b) ⇐⇒ (c) follows immediately from Theorem 7.10 for (ξ,∇) =
(M × R, ∂A) ,

(c) ⇐⇒ (d) by Lemma 7.11,
(d) ⇐⇒ (e) see Proposition 7.13,
(e) =⇒ (f) indeed, θA = θadn

A
= θ∂or

A
= 0. The bundle Λm+nA ∼= Λnggg⊗ΛmTM ∼=

or (M) ⊗ ΛmTM is trivial line bundle because it possesses a local system of trivi-
alizations with positive transition functions |J (gαβ)| .

(f) =⇒ (a) It is necessary to find a local system of nonsingular adn
A-constant

sections {σα} of Λnggg with transition functions sgnJ (gαβ) .
Fix a system of local trivializations {ψα} of Λm+nA with positive transition

functions γαβ > 0. We can choose a system of local trivializations {ϕα} of the line
bundle Λnggg in such a way that ϕα⊗ x̄α form a system of local trivializations of the
line bundle Λm+nA ∼= Λnggg ⊗ ΛmTM compatible with {ψα} , i.e. such that

ϕα ⊗ x̄α = gα · ψα, gα > 0.

This implies that the transition functions λαβ of the system {ϕα} have the sign of
J (gαβ) . Indeed,

ϕβ ⊗ x̄β =
{
ϕα ⊗ x̄α · λαβ · J (gαβ) = ψα · gα · λαβ · J (gαβ) ,
ψβ · gβ = ψα · γαβ · gβ .

Therefore, since gα, gβ and γαβ are positive we have λαβ · J (gαβ) > 0, i.e.

sgnλαβ = sgnJ (gαβ) .
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By Lemma 7.14 there exists functions fα > 0 such that the local trivializations

ϕ̄α = ϕα · fα

(ϕ̄α,x = ϕα,x · fα (x)) have transition functions λ̄αβ = sgnλαβ = sgnJ (gαβ) . The
family of±sections σ̄α = ϕ̄α (1) determine a 1-cocycle θ ∈ Ω1 (A) with respect do dA

defined by θ (γ)|Uα
· σ̄α = (adn

A)γ (σ̄α) whose cohomology class is the characteristic
class of the adjoint representation adn

A, [θ] = θadn
A
. Since θadn

A
= θA = 0 one has

θ = dAf for some function f ∈ C∞ (M) , i.e.

θ (γ) = (dAf) (γ) = ∂#A(γ)f.

Put σα = e−f · σ̄α. Then the transition functions of {σα} are equal to sgn J (gαβ)
and the sections σα are adn

A-constant. �

In case of oriented manifold the above theorem yields:

Theorem 7.17. If M is a oriented manifold then the following conditions are
equivalent

(a) Hm+n
∂A,c (A) 6= 0,

(b) Hm+n
∂A,c (A) ∼= R and H (A) is an Poincaré algebra, i.e. the pairing Hj (A)×

Hm+n−j
c (A)→ Hm+n

c (A) ∼= R is nondegenerate, Hj (A) ∼=
(
Hm+n−j

c (A)
)∗
,

(c) (Λnggg, adn
A) ∼ (M × R, ∂A) , i.e. there exists a global nonsingular section

ε ∈ Γ (Λnggg) which is adn
A-constant, that is, A is a TUIO-Lie algebroid, see

[K2],
(d) ggg is orientable and θA = 0.

The independent proof of the implication (c) =⇒ (b) one can be found in [K2].
Finally we give a characterization of Lie algebroids whose the top group of co-

homology with coefficients in the orientation bundle or (M) is not trivial.

Theorem 7.18. The following conditions are equivalent:
(a) Hm+n

∂or
A ,c (A, or (M)) 6= 0,

(b) Hm+n
∂or

A ,c (A, or (M)) ∼= R and the pairing

Hj (A)×Hm+n−j
∂or

A ,c (A, or (M))→ Hm+n
∂or

A ,c (A, or (M)) ∼= R

is not degenerate, i.e. Hj (A) ∼=
(
Hm+n−j

∂or
A ,c (A, or (M))

)∗
,

(c) (Qor
A , D

or) ∼ (or (M) , ∂or
A ) ,

(d) (Λnggg ⊗ or (M) , adn
A ⊗ ∂or

A ) ∼ (or (M) , ∂or
A ) ,

(e) (Λnggg, adn
A) ∼ (M × R, ∂A) ,

(f) ggg is orientable and there exists a global nonsingular section ε ∈ Γ (ξ) which
is adn

A-constant (i.e. A is a TUIO-Lie algebroid, see [K2]),
(g) ggg is orientable and θA = 0.

Proof. Only the implication (d) =⇒ (e) needs a proof. Since

(or (M)⊗ or (M) , ∂or
A ⊗ ∂or

A ) ∼ (M × R, ∂A)

one has

(Λnggg, adn
A) ∼ (Λnggg ⊗ or (M)⊗ or (M) , adn

A ⊗ ∂or
A ⊗ ∂or

A )
(d)∼ (or (M)⊗ or (M) , ∂or

A ⊗ ∂or
A )

∼ (M × R, ∂A) .
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�

For an orientable manifold we get Conclusion 7.17.

7.5. Remarks on Example 5.3 from [E-L-W]. In the cited paper there is an
example of nonregular Lie algebroid for which the E-L-W cohomological pairing is
not necessary nondegenerate. In the text of Example 5.3 from [E-L-W] there are
some inaccuracies which we remove here. We prove additionally that there is no
line representation for which the cohomological pairing is nondegenerate and we
prove that the E-L-W representation is not exceptional. The example is the Lie
transformation algebroid A = g×M →M associated with the infinitesimal action
γ : g→ X (M) of a finitely dimensional Lie algebra g on a manifold M. The anchor
is given by ρ (v, x) = γ (v)x , and Lie bracket by

[[a, b]] (x) = [a (x) , b (x)] + γ (a (x))x (b)− γ (b (x))x (η) ,

a, b ∈ C∞ (M, g) ∼= Γ (g×M) and x ∈ M. The vector field X = xN d
dx on R

(N ∈ N) defines an action of the 1-dimensional Lie algebra g = R on M = R by
γ : R→ X (R) , γ (t) = t ·X. Let A be the transformation Lie algebroid associated
with γ. Then Γ (A) = C∞ (R) , #x : Ax = R → TxM, t 7→ t · xN · d

dx , [[a, b]] =
xN · (a · b′ − b · a′) , Ω0 (A) = C∞ (R) ,

(7.5) Ω1 (A) = Γ (A∗) = C∞ (R,R∗) = Ω1 (R) ∼= C∞ (R) , fdx 7→ f,

and, clearly, Ω2 (A) = 0.

Lemma 7.19. H1 (A) ∼= RN .

Proof. By definition dA : C∞ (R) → Ω1 (A) ∼= C∞ (R) , dA (f) (a) = # (a) (f) =
a · xN · f ′, and therefore dA (f) = xN · f ′ and

H1 (A) = C∞ (R)/{xN ·f ′, f∈C∞(R)} = C∞ (R)/xN ·C∞(R)
∼= RN .

Indeed, the classes of functions x0, x1, ..., xN−1 form a basis of C∞ (R)/xN ·C∞(R)

because the classes are linearly independent and for any f ∈ C∞ (R) the equality
[f ] =

∑N−1
i=0 ak

[
xk

]
holds where ak = f(k)(0)

k! . �

Proposition 7.20. For each linear representation ∇ : A → A (ξ) we have (1)
H0
∇,c (A, ξ) = 0, (2) H1

∇,c (A, ξ) 6= 0.
Therefore, for each representation ∇ of A in a line bundle ξ the cohomological

pairing H1 (A) × H0
∇,c (A, ξ) → H1

∇,c (A, ξ) is not nondegenerate even in a weak
manner1.

Proof. (1): The line bundle ξ over R is trivial ξ = M × R (M = R) so each
representation∇ : A→ A (ξ) is of the form∇ = ∂ω

A for some 1-form ω ∈ Ω1 (A). Let
ω (a) = g·a for g ∈ C∞ (R) . Then (∂ω

A)a (f) = (∂A)a (f)+ω (a)·f = a·xN ·f ′+a·g·f
and

H0
∇,c (A, ξ) =

{
f ∈ C∞c (R) ; xN · f ′ + g · f = 0

}
= 0.

by the uniqueness of the Cauchy problem for the differential equation y′ = − g(x)
xN ·y.

1A pairing F : V × W → U is called weakly non-degenerated if both null spaces N1 =

{v ∈ V ; F (v, ·)} and N2 = {w ∈ W ; F (·, w)} are zero.
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(2) H1
∇,c (A, ξ) = C∞c (R)/{xN ·f ′+g·f ; f∈C∞c (R)} 6= 0. To prove this we find a com-

pactly supported function h ∈ C∞c (R) . such that the differential equation

(7.6) xN · y′ + g · y = h

has no global solution y ∈ C∞c (R) .
Case g (0) = 0. For any h such that h (0) 6= 0 there is no solution of (7.6).
Case g (0) 6= 0. Let |g (x)| ≥ δ > 0 for |x| ≤ ε, ε > 0. Take any function

h ∈ C∞c (R) such that h ≥ 0, h 6= 0 and supph ⊂ [α, β] ⊂ (ε,∞) . The elementary
theory of linear differential equations [the formula solving the Cauchy problem in
the form of denoted integrals] yields easily that no global compactly supported
solution of (7.6) exists. �

Consider the E-L-W representation D : A → A (QA) . We see that QA = A ⊗
T ∗R ∼= M × R [M = R] so Γ (QA) = Γ (A) ⊗ Ω1 (R) ∼= C∞ (M) by 1 ⊗ fdx 7→ f

and that D is equivalent to ∂ω
A for ω ∼=

(
xN

)′ (with respect to isomorphism (7.5)).
According to Proposition (7.20) the top group of cohomology of A for trivial and
for E-L-W representations are nontrivial. We prove that this representations are
not isomorphic so the E-L-W representation is not exceptional.

Proposition 7.21. The A-flat line bundles (M × R, ∂A) and (QA, D) [M = R]
are not isomorphic.

Proof. Let ϕ : M × R→QA be a linear homomorphism compatible with ∂A and
D. ϕ is of the form ϕ (f) = 1 ⊗ g · f · dx for some g ∈ C∞ (M) . The equality
Da (ϕ (f)) = ϕ ((∂A)a f) yields a ·

(
xN · fg

)′ = a · xN · f ′ · g, therefore
(
xN · g

)′ = 0
which produces g ≡ 0 and that ϕ is not an isomorphism. �
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