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1. PRELIMINARES

Let M # () be a set and C' an arbitrary set of real functions defined on
M. We denote by 7¢ the weakest topology on M such that all functions
belonging to C' are continuous. For any set A contained in M we denote
by C|A the set of functions of the form a|A where a € C'. We denote
by C4 the set of all real functions on A such that for any point p of A
there exists in 7 an open neighbourhood U of p and a function a € C,
such that S|ANU = a|/ANU. It is easy to verify that, for any set
A C M, we have 7¢, = 7¢ja = 7¢|A. In particular 7¢,, = 7. We
denote by scC' the set of all real functions of the form w (ay, ..., ),
where w € &, ai,...,a, € C and n belongs to the set of all positive
integers A and &, is the set of all real C*°-functions on n-dimensional
Euclidean space E™. An ordered pair (M, C) such that C; = C' = scC
is called to be a differential space. The set C is called the differential
structure of this differential space [1], [2], [6].

For a set C' of real functions defined on M, the set (scC),, is the
smallest differential structure on M including the set C. (M, (scC),,)
is called the differential space generated by C'.

If (M,C) is a differential space and A C M, then (A,C4) is also
a differential space called the differential subspace of (M,C) [1]. Tt is
easy to see that Cy = (C|A),.

By a vector tangent to a differential space (M, C) at a point p of
M we mean any linear mapping v : C' — FE which fulfils Leibniz’s
condition at the point p:

vi(af)=v(a)B(p)+alp)v(B) foral «,pe€C.
We shall denote by (M, C') , or M, alinear space of all vectors tangent
to (M, C') at the point p € M.
Any real C'*°-manifold M will be identified with the differential space
(M,C*®(M)), where C* (M) is the set of all smooth real functions
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on M. In particular, we denote C'* (E™) by &, and we call the pair
(E™, &) the n-dimensional Fuclidean differential space.
It is aesy to verify that for ) # M C E™, n € N,

Eunt = (sc {Wi\M;z' =1, ...,n})M

where 7¢ ((z1, 22, ...,2")) = 2* for any (x!,22,...,2") € E™. The topo-
logical space (M, 7¢,,,) is a subspace of the topological space (E", 7¢, ).

In the sequel the symbol 73, will be used instead of 7¢,,,. Using a
partition of unity it may be proved that &, is the set of all functions
of the form «|M, where « is a C*-function on an open set U in E"
including M. The basic result of this paper consists in the following
theorem.

Theorem 1. For any p € M C E™ the integer m = dim (M, 5nM)p
is the smallest one that there exists in Ty an open neighbourhood U of
the point p which is included in an m-dimensional C'*°-surface of E".

2. THE PROOF OF BASIC RESULT
From now on we fix the integer k£ > 0, and the non empty set M C
E*. For brevity we write £ := &, C = &y, M, = (M, 0),, Ey =
(Ek,c‘fk)p.
The mappings Ly : M, — E} and Ly : Ef — E* defined by
(1) (L (v)) (f) :==v (fIM) for ve K, and f €&,

(2) Ly () == (v (r'), ..., 0 (7?’“)) for ve E;f,

are respectively a linear monomorphism and a linear isomorphism of
suitable linear spaces (c.f. [1]).

Let 0;f (p) denote i-th partial derivative of the function f € & at
the point p € E*, i = 1,...,k. If we denote f, (p) := h'd;f (p) where
h= (h',...,h¥) € E*, we have

(3) v(f)=0if (0)v (') = firaw) (p) for v € Ey,

(the sumation convention is used here). Let L := Lyo Ly : M, — E*
and

(4) M, ={L(v) € E*;v € M,}.
It is aesy to see that the mapping L : M, — M, makes these linear

spaces isomorphic to each other. We have

5 L(v)= (v(z'M),..,v (7| M)) for v e M,
(5) v(fIM) = frw for veM and fe€&.
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Lemma 1. Forp € M, h € E*, k € N the following properties are
equivalent:

(a) h € M,

(b) there exists a mapping v : E|{M — E such that

v(f|M) = fin(p) for fek&.

Proof. The implication (a)==(b) follows immediately from (4) and (5)
by putting v := v|(E|M), v € M, and h = L (v) .

In order to prove the implication (b)=-(a) let us suppose that h
fulfils (b) and consider the set of functions E|M. From (b) it follows
that © is the linear mapping of £|M into E fulfilling the Leibniz’s
condition at the point p:

v(af)=v(a)B(p) +a(p)v(B) for «,B€&M.
By using this conditions and linearity of v one can easy verify that
v () = 0 for each function o € £|M equal to 0 at an open neighbour-
hood of the point p. As a consequence of this the mapping v: C' — FE
defined by
v(a):=0(fIM) for aeC,

where f € £ is a function such that f|U = «|U for some set U € 7y,
including the point p, is well defined. The function v is linear and
fulfils Leibniz’s condition so it belongs to M,. For i =1, ...,k we have
v (n|M) =, (p) = v (7'|M) = h', where h = (h',...,h*), so from (5)
we have: L (v) = (h',h?% ...,h¥) = h. The Lemma is proved. O

Lemma 2. For h € E¥ and p € M the following conditions are equiv-
alent:

(a‘) h S Mp;
(b) fin(p) =0 for any f € € equal to 0 on M.

Proof. 1t is easy to see that the conditions (b) in Lemmas 1 and 2 are
equivalent to each other. O

For any f € £ and p € E* we donote grad f (p) := (O1f (p), ..., O f (p)).

Lemma 3. Let p = (0,...,0) € M C E* and ¢; = (0,0, ...,0,1,0,...,0)
(1 in the i-th position), 1 < i < k. Ifm:=dim M,, 1 <m < k-1 and
€1,y €m € My then there exists functions fm+1, o fFecé& equal to 0
on M and such that 0;f7 (p) = 87, where 6! =1 fori = j and §! =0
fori # 7.

Proof. Let the assumptions of the Lemma be satisfied. Then

(6) M, = Lin (ey, ..., €,,)
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where Lin (ey, ..., €,,) is the linear subspace of E* spanned by ey, ..., €.
We put K := {heEk;h:gradf(p), feé’andf:0onM}. K is
a linear subspace of E* and e¢; 1. K with respect to the canonical scalar
product in E* so K C Lin (ey,41, ..., €x) (see Lemma 2). We shall prove
more, namely that K = Lin (e,,11, ..., e;). If the above equality is not
satisfied, then there exists a non-zero vector h € Lin (e, 11, ..., €x), such
that K L h. Hence fj, (p) = grad f(p) - h = 0 for f = 0 on M, and
h € M, (Lemma 2), but this contradicts (6). From above equality we
obtain the existence of functions fy,11, ..., f € & equal to zero on M,
such that grad f; (p) = e; or equivalently d;f7 (p) = ¢/. The Lemma is
proved. U

Proposition 1. Let pe M C E*. If0 < m := dim M,, < k then there
exist non empty sets: U open in Ty and V' open in 7¢, , and reqular
1-1 C*®-mapping ¢ : V — E* such that

peUcC{¢(u) e E"uecV}.

Proof. If m = k, the proposition evidently holds. We suppose that 1
m < k. We can assume, without loss of generality, that p = (0, ..., 0)
E* and M, = Lin (e, ...,en,). We denote ¢ = (:cl, s :z:k) = (u,w)
where u = (2!, ...,2™) and w = (2™, .., 2%). Let f7, j =m+1,..,k,
are functions as in Lemma 3. We define a mapping F : E¥ — E¥™ by

F(q) = (f""(q),...f"(q) for qe E"
This mapping has the following properties:
(a) F'(q) = F (u,w) =0 for ¢ = (u,w) € M,
(b) F'is C*°-mapping,
(c) F is regular at the point p = (u,w).
From the inverse mapping theorem it follows that there exists:
(d) aset U" € 7w such that p € U’,
(e) aset V € 7pm such that u € V|
(f) a C°°-mapping 1 : V — E* ™ such that for any u € V we have
F(u, 1 (u)) =0,
(g) if F(q) =0and ¢ = (u,w) € U' then u € V and w = ¢ (u).
It is evident that U :=U' N M, V and ¢ (u) := (u, ) (u)) for
u € V fulfil conditions of Proposition 1.

<
€

U

Now, we examine the case of dim M, = 0, which was not considered
above.

Proposition 2. Let p € M C E*. If dim M, = 0 then the point p is
1solated in M.
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Proof. Let us set |q| := \/(331)2 + ...+ (xF)* for any ¢ = (z!,...,a") €
EF.

Let us assume the point p is not isolated. Then there exists a se-
quence (p;) of points of M different from p and convergent to p. For

the sequence h,, := @ZIQ, n € N of points of S¥~! we can find a sub-
sequences h,, convergent to a point h € S¥71. One can easy see that
for any f € &

lim ——————= = fi; (p).

It easy to see that left side of this sequence defines mapping v :
EIM — E such that o (f|M) = fin(p). From Lemma 1 h € M, so
dim M,, # 0, which ends of the proof. O

Theorem 1 results easily from Propositions 1 and 2. In that The-
orem an non-empty discrete subset of E™ is called a 0-dimensional
C*>-surface in E™.

3. COROLLARIES

We say, that differential space (N, D) can be diffeomorphically em-
beded into the differential space (L, H) if there exists a subset L' C L
such that (L', Hy/) and (N, D) are diffeomorphic to each other. In the
sequel we shall consider only differential spaces (N, D) such that any
point p € N has a neighbourhood V' such that (V,Dy) can be em-
bedded into (E"®), &) for some n(p) € N. From Theorem 1 we
obtain:

Corollary 1. For a point p of the differential space (N, D) there exist

a set'V € 1p and an n-dimensional C'*°-manifold (N, Cc*> (N)), n:=

dim N,, such thatp € V C N and Dy = C*® (N)V The inequality
dim M, < dim M,,

1s fulfiled for any point ¢ € V.

Corollary 2. If (N, D) is a differential space such that (N, Tp) is sep-
arable and if there exists n € N such that for anyp € N dim (N, D)p <

n, then topological dimension of (N, Tp) does not exceed n.
Proof. This results easily from Corollary 1. 0

Differential spaces which have tangent spaces of constant dimension
are the most interesting. For a differential space (N, D) and 1 = 0,1, ...
we shall denote by N* union of all sets V' € 7 such that dim (N, D) =



6 ADAM KOWALCZYK AND JAN KUBARSKI

for any ¢ € V. If N' is not empty then (N?, Dy:) is a differential
subspace of (N, D) and for any ¢ € N* dim (N%, Dy:) = i. From
Corollary 1 we obtain

Corollary 3. For any differential space (N, D) the set | J;=, N* is open
and dense in the topological space (N, Tp).

Proof. For any subset A C N we denote its closure in (N, 7p) by A.
We shall use mathematical induction. Let p € N. It is easy to see,
that dim (N, D), > 0. If dim (NN, D), = 0 then the point p is isolated
in (N, 7p) and p € N°, see Corollary 1, p € |J;°, N*. Suppose. that for
any ¢ € N such that 0 < dim (N, D), < m — 1 we have ¢ € [J2, N'.
For any point p€ NN such that dim (NN, D), = m there exists an open
neighbourhood V' of p such that dim (N, D) , < m for any point ¢ € V
(Corollary 1). Let U € 7p be a set containing the point p. If for any
q € UNV dim(N,D), = m, then p € N™ and p € [J;Z, N*. If it is
not true then there exists a point ¢ € U NV, such that dim (N, D) <
m — 1. From the induction hypothesis. the point ¢ € [J°, N?, so
UNnUiy N* # 0. This is true for any set U € 7p containing the point

p, so we have p € | J;=, N'. The corollary is proved. [

By virtue of Corollary 1 any point p of differential space (N, D) such
that dim (NN, D), = k has a neighbourhood V' such that (V, Dy) can
be diffeomorphically embedded in (Ek, 5k). Hence it is interesting to
consider the differential subspace (M, &) of (Ek, 5k) for which there
exists a point p € M such that dim (M, C’)p =k.

Corollary 4. Let p € M C E*. dim (M, EkM)p = k if and only if for
any [ € & equal to 0 on M O;f (p) =0 fori=1,2,....m.

Proof. We get this immediately from Lemma 2, as e; € M,, i = 1,..., k.
O

Corollary 5. Let ) # M C E*. Then dim (M, &), = k for any
p € M if and only if for any f € & equal to 0 on M all partial
derivatives of any order are equal to O on M.

Proof. This corollary follows easily, by induction, from Corollary 4. [J

By virtue of above Corollary, any subset M C E* such that (M, Exay)
has the constant dimension £, has the same property, as any open set
of E*: the value of the partial derivatives of a function f € &, at a
point p € m are uniquely determined by the values of the function on
M. For a differential space (N, D) a linear mapping X : D — D such
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that X (af) = X («) f+aX () is called a vector field on (N, D) [1]. Tt
easy to see that for any point p € N the function X, : D — E defined
by X, (@) := (Xa) (p) for @ € D is a vector belonging to (N, D),,.

Corollary 6. Let (N, D) be a differential space. A point p belongs to
Uiso N if and only if there exists vector fields X, ..., Xs on (N, D)

.....

Proof. If X3, ..., X} are such vector fields on (N, D) that Xy, ..., Xk
is a basis of (N, D), then there exists a set V' € 7p such that p € V'
and X, ..., Xj, are lineary independent for any ¢ € V' (cf. [1]). As
there exists an open neighbourhood V" of p such that for any g € V"
dim (N, D), < k (Corollary 1), for any ¢ € V' NV" dim (N, D), = k
and p € N* C U2, N°.

Now we shall prove the other implication. For the point p € N° the
proof is trivial. Let p € N*, k > 0 and U be such an open neighbour-
hood of the point p that (U, Dy) is diffeomorphic to (V, ) for certain
V C E* and dim (V, 5kv)q = k for any ¢ € V. It is sufficient to prove
Corollary for (V, &y ).

For ¢ € V and a € &y there exists an open neighbourhood V; of ¢
and a function f, , € € such that o|V, = f, ,|V,. By virtue of Corollary
5 the functions X; : &y — &y, @ = 1,2, .., k, defined for o € &y, by

(Xia) (9) = 0i (faq) (¢) for qeV

are well defined. It can be easily verified that they are vector fields on
(V,&w) and X, ..., X is the basis of (V, Skv)q for any ¢ € V. O

4. EXAMPLES

Example 1. Let M C E* be dense in E*. Then by Corollary 1 the
dimension of (M, ng)p is k for any p € M.

Example 2. The graph of the function f : E — E which is 2* for
x>0 and 0 for x <0 has the tangent space of dimension 1 at all points
except for the point (0,0), where it has tangent space of dimension 2.
It result easily from Corollary 1.

Example 3. The graph of the function g : E — E of class C* which
is not of class C™ at any point is a differential subspace of (E?, &) of
constant dimension 2. It results easily from Corollary 1.

Example 4. Let M C E*. If topological dimension of any non empty
open subset of M is k then dim (M, ng)p =k for anyp € M. This
follows easily from Corollary 2.
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