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1. Preliminares

Let M �= ∅ be a set and C an arbitrary set of real functions defined on
M. We denote by τC the weakest topology on M such that all functions
belonging to C are continuous. For any set A contained in M we denote
by C|A the set of functions of the form α|A where α ∈ C. We denote
by CA the set of all real functions on A such that for any point p of A
there exists in τC an open neighbourhood U of p and a function α ∈ C,

such that β|A ∩ U = α|A ∩ U. It is easy to verify that, for any set
A ⊂ M, we have τCA = τC|A = τC |A. In particular τCM = τC . We
denote by scC the set of all real functions of the form ω (α1, ..., αn),
where ω ∈ En, α1, ..., αn ∈ C and n belongs to the set of all positive
integers N and En is the set of all real C∞-functions on n-dimensional
Euclidean space En. An ordered pair (M,C) such that CM = C = scC

is called to be a differential space. The set C is called the differential
structure of this differential space [1], [2], [6].

For a set C of real functions defined on M , the set (scC)M is the
smallest differential structure on M including the set C. (M, (scC)M)
is called the differential space generated by C.

If (M,C) is a differential space and A ⊂ M , then (A,CA) is also
a differential space called the differential subspace of (M,C) [1]. It is
easy to see that CA = (C|A)A.

By a vector tangent to a differential space (M,C) at a point p of
M we mean any linear mapping v : C → E which fulfils Leibniz’s
condition at the point p:

v (αβ) = v (α) β (p) + α (p) v (β) for all α, β ∈ C.

We shall denote by (M,C)p or Mp a linear space of all vectors tangent
to (M,C) at the point p ∈M .

Any real C∞-manifold M will be identified with the differential space
(M,C∞ (M)), where C∞ (M) is the set of all smooth real functions
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on M . In particular, we denote C∞ (En) by En and we call the pair
(En,En) the n-dimensional Euclidean differential space.

It is aesy to verify that for ∅ �= M ⊂ En, n ∈ N ,

EnM =
(
sc
{
πi|M ; i = 1, ..., n

})
M

where πi ((x1, x2, ..., xn)) = xi for any (x1, x2, ..., xn) ∈ En. The topo-
logical space (M, τEnM ) is a subspace of the topological space (En, τEn).

In the sequel the symbol τM will be used instead of τEnM . Using a
partition of unity it may be proved that EnM is the set of all functions
of the form α|M , where α is a C∞-function on an open set U in En

including M . The basic result of this paper consists in the following
theorem.

Theorem 1. For any p ∈ M ⊂ En the integer m = dim (M,EnM)p
is the smallest one that there exists in τM an open neighbourhood U of
the point p which is included in an m-dimensional C∞-surface of En.

2. The proof of basic result

From now on we fix the integer k > 0, and the non empty set M ⊂
Ek. For brevity we write E := Ek, C := EM , Mp := (M,C)p, E

k
p :=(

Ek, Ek
)
p
.

The mappings L1 : Mp → Ek
p and L2 : Ek

p → Ek defined by

(1) (L1 (v)) (f) := v (f |M) for v ∈ Kp and f ∈ E ,

(2) L2 (v̄) :=
(
v̄
(
π1
)
, ..., v̄

(
πk
))

for v̄ ∈ Ek
p ,

are respectively a linear monomorphism and a linear isomorphism of
suitable linear spaces (c.f. [1]).

Let ∂if (p) denote i-th partial derivative of the function f ∈ E at
the point p ∈ Ek, i = 1, ..., k. If we denote f|h (p) := hi∂if (p) where
h =

(
h1, ..., hk

)
∈ Ek, we have

(3) v̄ (f) = ∂if (p) v̄
(
πi
)

= f|L2(v̄) (p) for v̄ ∈ Ek
p ,

(the sumation convention is used here). Let L := L2 ◦ L1 : Mp → Ek

and

(4) M̄p =
{
L (v̄) ∈ Ek; v̄ ∈Mp

}
.

It is aesy to see that the mapping L : Mp → M̄p makes these linear
spaces isomorphic to each other. We have

(5)

{
L (v) =

(
v (π1|M) , ..., v

(
πk|M

))
for v ∈Mp,

v (f |M) = fL(v) for v ∈M and f ∈ Ek.
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Lemma 1. For p ∈ M , h ∈ Ek, k ∈ N the following properties are
equivalent:

(a) h ∈ M̄p,
(b) there exists a mapping v̄ : E|M → E such that

v̄ (f |M) = f|h (p) for f ∈ E.

Proof. The implication (a)=⇒(b) follows immediately from (4) and (5)
by putting v̄ := v| (E|M), v ∈Mp and h = L (v) .

In order to prove the implication (b)=⇒(a) let us suppose that h

fulfils (b) and consider the set of functions E|M . From (b) it follows
that v̄ is the linear mapping of E|M into E fulfilling the Leibniz’s
condition at the point p:

v̄ (αβ) = v̄ (α) β (p) + α (p) v̄ (β) for α, β ∈ E|M .

By using this conditions and linearity of v̄ one can easy verify that
v̄ (α) = 0 for each function α ∈ E|M equal to 0 at an open neighbour-
hood of the point p. As a consequence of this the mapping v : C → E

defined by
v (α) := v̄ (f |M) for α ∈ C,

where f ∈ E is a function such that f |U = α|U for some set U ∈ τM
including the point p, is well defined. The function v is linear and
fulfils Leibniz’s condition so it belongs to Mp. For i = 1, ..., k we have
v (πi|M) = πi|h (p) = v̄ (πi|M) = hi, where h =

(
h1, ..., hk

)
, so from (5)

we have: L (v) =
(
h1, h2, ..., hk

)
= h. The Lemma is proved. �

Lemma 2. For h ∈ Ek and p ∈M the following conditions are equiv-
alent:

(a) h ∈ M̄p,
(b) f|h (p) = 0 for any f ∈ E equal to 0 on M .

Proof. It is easy to see that the conditions (b) in Lemmas 1 and 2 are
equivalent to each other. �

For any f ∈ E and p ∈ Ek we donote grad f (p) := (∂1f (p) , ..., ∂kf (p)).

Lemma 3. Let p = (0, ..., 0) ∈ M ⊂ Ek and ei = (0, 0, ..., 0, 1, 0, ..., 0)
(1 in the i-th position), 1 ≤ i ≤ k. If m := dimMp, 1 ≤ m ≤ k−1 and
e1, ..., em ∈ M̄p then there exists functions fm+1, ..., fk ∈ E equal to 0

on M and such that ∂if
j (p) = δ

j
i , where δ

j
i = 1 for i = j and δ

j
i = 0

for i �= j.

Proof. Let the assumptions of the Lemma be satisfied. Then

(6) M̄p = Lin (e1, ..., em) ,
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where Lin (e1, ..., em) is the linear subspace of Ek spanned by e1, ..., em.
We put K :=

{
h ∈ Ek;h = grad f (p) , f ∈ E and f = 0 on M

}
. K is

a linear subspace of Ek and ei ⊥ K with respect to the canonical scalar
product in Ek so K ⊂ Lin (em+1, ..., ek) (see Lemma 2). We shall prove
more, namely that K = Lin (em+1, ..., ek). If the above equality is not
satisfied, then there exists a non-zero vector h ∈ Lin (em+1, ..., ek), such
that K ⊥ h. Hence f|h (p) = grad f (p) · h = 0 for f = 0 on M , and
h ∈ M̄p (Lemma 2), but this contradicts (6). From above equality we
obtain the existence of functions fm+1, ..., fk ∈ Ek equal to zero on M ,
such that grad fj (p) = ej or equivalently ∂if

j (p) = δ
j
i . The Lemma is

proved. �

Proposition 1. Let p ∈M ⊂ Ek. If 0 < m := dimMp ≤ k then there
exist non empty sets: U open in τM and V open in τEm, and regular
1-1 C∞-mapping φ : V → Ek such that

p ∈ U ⊂
{
φ (u) ∈ Ek; u ∈ V

}
.

Proof. If m = k, the proposition evidently holds. We suppose that 1 ≤
m < k. We can assume, without loss of generality, that p = (0, ..., 0) ∈
Ek and M̄p = Lin (e1, ..., em). We denote q =

(
x1, ..., xk

)
= (u, w)

where u = (x1, ..., xm) and w =
(
xm+1, ..., xk

)
. Let f j, j = m+ 1, ..., k,

are functions as in Lemma 3. We define a mapping F : Ek → Ek−m by

F (q) :=
(
fm+1 (q) , ..., fk (q)

)
for q ∈ Ek.

This mapping has the following properties:

(a) F (q) = F (u, w) = 0 for q = (u, w) ∈M ,
(b) F is C∞-mapping,
(c) F is regular at the point p = (ū, w̄) .

From the inverse mapping theorem it follows that there exists:
(d) a set U ′ ∈ τEk such that p ∈ U ′,
(e) a set V ∈ τRm such that ū ∈ V ,
(f) a C∞-mapping ψ : V → Ek−m such that for any u ∈ V we have

F (u, ψ (u)) = 0,
(g) if F (q) = 0 and q = (u, w) ∈ U ′ then u ∈ V and w = ψ (u).

It is evident that U := U ′ ∩M , V and φ (u) := (u, ψ (u)) for
u ∈ V fulfil conditions of Proposition 1.

�

Now, we examine the case of dimMp = 0, which was not considered
above.

Proposition 2. Let p ∈ M ⊂ Ek. If dimMp = 0 then the point p is
isolated in M .
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Proof. Let us set |q| :=
√

(x1)2 + ... + (xk)2 for any q =
(
x1, ..., xk

)
∈

Ek.
Let us assume the point p is not isolated. Then there exists a se-

quence (pi) of points of M different from p and convergent to p. For
the sequence hn := pn−p

|pn−p|
, n ∈ N of points of Sk−1 we can find a sub-

sequences hni convergent to a point h ∈ Sk−1. One can easy see that
for any f ∈ E

lim
i→∞

f (pni)− f (p)

|pni − p|
= f|h (p) .

It easy to see that left side of this sequence defines mapping v̄ :
E|M → E such that v̄ (f |M) = f|h (p). From Lemma 1 h ∈ M̄p so
dimMp �= 0, which ends of the proof. �

Theorem 1 results easily from Propositions 1 and 2. In that The-
orem an non-empty discrete subset of En is called a 0-dimensional
C∞-surface in En.

3. Corollaries

We say, that differential space (N,D) can be diffeomorphically em-
beded into the differential space (L,H) if there exists a subset L′ ⊂ L

such that (L′,HL′) and (N,D) are diffeomorphic to each other. In the
sequel we shall consider only differential spaces (N,D) such that any
point p ∈ N has a neighbourhood V such that (V,DV ) can be em-
bedded into

(
En(p), En(p)

)
for some n (p) ∈ N . From Theorem 1 we

obtain:

Corollary 1. For a point p of the differential space (N,D) there exist

a set V ∈ τD and an n-dimensional C∞-manifold
(
Ñ, C∞

(
Ñ
))
, n :=

dimNp, such that p ∈ V ⊂ Ñ and DV = C∞
(
Ñ
)

V
. The inequality

dimMq ≤ dimMp

is fulfiled for any point q ∈ V .

Corollary 2. If (N,D) is a differential space such that (N, τD) is sep-
arable and if there exists n ∈ N such that for any p ∈ N dim (N,D)p ≤
n, then topological dimension of (N, τD) does not exceed n.

Proof. This results easily from Corollary 1. �

Differential spaces which have tangent spaces of constant dimension
are the most interesting. For a differential space (N,D) and i = 0, 1, ...
we shall denote by N i union of all sets V ∈ τD such that dim (N,D) = i
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for any q ∈ V . If N i is not empty then (N i, DNi) is a differential
subspace of (N,D) and for any q ∈ N i dim (N i, DNi) = i. From
Corollary 1 we obtain

Corollary 3. For any differential space (N,D) the set
⋃∞
i=0N

i is open
and dense in the topological space (N, τD).

Proof. For any subset A ⊂ N we denote its closure in (N, τD) by Ā.
We shall use mathematical induction. Let p ∈ N . It is easy to see,
that dim (N,D)p ≥ 0. If dim (N,D)p = 0 then the point p is isolated

in (N, τD) and p ∈ N0, see Corollary 1, p ∈
⋃∞
i=0N

i. Suppose. that for

any q ∈ N such that 0 ≤ dim (N,D)q ≤ m − 1 we have q ∈
⋃∞
i=0N

i.
For any point p∈ N such that dim (N,D)p = m there exists an open
neighbourhood V of p such that dim (N,D)q ≤ m for any point q ∈ V

(Corollary 1). Let U ∈ τD be a set containing the point p. If for any

q ∈ U ∩ V dim (N,D)q = m, then p ∈ Nm and p ∈
⋃∞
i=0N

i. If it is
not true then there exists a point q ∈ U ∩ V , such that dim (N,D) ≤

m − 1. From the induction hypothesis. the point q ∈
⋃∞
i=0N

i, so
U ∩

⋃∞
i=0N

i �= ∅. This is true for any set U ∈ τD containing the point

p, so we have p ∈
⋃∞
i=0N

i. The corollary is proved. �

By virtue of Corollary 1 any point p of differential space (N,D) such
that dim (N,D)p = k has a neighbourhood V such that (V,DV ) can

be diffeomorphically embedded in
(
Ek, Ek

)
. Hence it is interesting to

consider the differential subspace (M, EkM) of
(
Ek,Ek

)
for which there

exists a point p ∈M such that dim (M,C)p = k.

Corollary 4. Let p ∈ M ⊂ Ek. dim (M, EkM)p = k if and only if for
any f ∈ Ek equal to 0 on M ∂if (p) = 0 for i = 1, 2, ...,m.

Proof. We get this immediately from Lemma 2, as ei ∈ M̄p, i = 1, ..., k.
�

Corollary 5. Let ∅ �= M ⊂ Ek. Then dim (M, EkM)p = k for any
p ∈ M if and only if for any f ∈ Ek equal to 0 on M all partial
derivatives of any order are equal to 0 on M.

Proof. This corollary follows easily, by induction, from Corollary 4. �

By virtue of above Corollary, any subset M ⊂ Ek such that (M,EkM)
has the constant dimension k, has the same property, as any open set
of Ek: the value of the partial derivatives of a function f ∈ Ek at a
point p ∈ m are uniquely determined by the values of the function on
M . For a differential space (N,D) a linear mapping X : D → D such
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that X (αβ) = X (α) β+αX (β) is called a vector field on (N,D) [1]. It
easy to see that for any point p ∈ N the function Xp : D→ E defined
by Xp (α) := (Xα) (p) for α ∈ D is a vector belonging to (N,D)p.

Corollary 6. Let (N,D) be a differential space. A point p belongs to⋃∞
i=0N

i if and only if there exists vector fields X1, ..., Xs on (N,D)
such that

{
X1p,...,Xsp

}
is the basis of (N,D)p.

Proof. If X1, ...,Xk are such vector fields on (N,D) that X1p, ...,Xkp

is a basis of (N,D)p then there exists a set V ∈ τD such that p ∈ V ′

and X1q, ...,Xkq are lineary independent for any q ∈ V ′ (cf. [1]). As
there exists an open neighbourhood V ′′ of p such that for any q ∈ V ′′

dim (N,D)q ≤ k (Corollary 1), for any q ∈ V ′ ∩ V ′′ dim (N,D)q = k

and p ∈ Nk ⊂
⋃∞
i=0N

i.
Now we shall prove the other implication. For the point p ∈ N0 the

proof is trivial. Let p ∈ Nk, k > 0 and U be such an open neighbour-
hood of the point p that (U,DU) is diffeomorphic to (V, EkV ) for certain
V ⊂ Ek and dim (V, EkV )q = k for any q ∈ V . It is sufficient to prove
Corollary for (V,EkV ).

For q ∈ V and α ∈ EkV there exists an open neighbourhood Vq of q
and a function fα,q ∈ E such that α|Vq = fα,q|Vq. By virtue of Corollary
5 the functions Xi : EkV → EkV , i = 1, 2, .., k, defined for α ∈ EkV , by

(Xiα) (q) = ∂i (fα,q) (q) for q ∈ V

are well defined. It can be easily verified that they are vector fields on
(V, EkV ) and X1q, ..., Xkq is the basis of (V,EkV )q for any q ∈ V . �

4. Examples

Example 1. Let M ⊂ Ek be dense in Ek. Then by Corollary 1 the
dimension of (M,EkM)p is k for any p ∈M .

Example 2. The graph of the function f : E → E which is x2 for
x > 0 and 0 for x ≤ 0 has the tangent space of dimension 1 at all points
except for the point (0, 0), where it has tangent space of dimension 2.
It result easily from Corollary 1.

Example 3. The graph of the function g : E → E of class C1 which
is not of class C∞ at any point is a differential subspace of (E2, E2) of
constant dimension 2. It results easily from Corollary 1.

Example 4. Let M ⊂ Ek. If topological dimension of any non empty
open subset of M is k then dim (M,EkM)p = k for any p ∈ M . This
follows easily from Corollary 2.
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