A LOCAL PROPERTY OF THE SUBSPACES OF EUCLIDEAN SPACES

ADAM KOWALCZYK AND JAN KUBARSKI

1. Preliminares

Let $M \neq \emptyset$ be a set and C an arbitrary set of real functions defined on M. We denote by τ_C the weakest topology on M such that all functions belonging to C are continuous. For any set A contained in M we denote by C|A the set of functions of the form $\alpha|A$ where $\alpha \in C$. We denote by C_A the set of all real functions on A such that for any point p of Athere exists in τ_C an open neighbourhood U of p and a function $\alpha \in C$, such that $\beta|A \cap U = \alpha|A \cap U$. It is easy to verify that, for any set $A \subset M$, we have $\tau_{C_A} = \tau_{C|A} = \tau_C|A$. In particular $\tau_{C_M} = \tau_C$. We denote by scC the set of all real functions of the form $\omega(\alpha_1, ..., \alpha_n)$, where $\omega \in \mathcal{E}_n, \alpha_1, ..., \alpha_n \in C$ and n belongs to the set of all positive integers \mathcal{N} and \mathcal{E}_n is the set of all real C^{∞} -functions on n-dimensional Euclidean space E^n . An ordered pair (M, C) such that $C_M = C = scC$ is called to be a differential space. The set C is called the differential structure of this differential space [1], [2], [6].

For a set C of real functions defined on M, the set $(scC)_M$ is the smallest differential structure on M including the set C. $(M, (scC)_M)$ is called the *differential space generated* by C.

If (M, C) is a differential space and $A \subset M$, then (A, C_A) is also a differential space called the *differential subspace* of (M, C) [1]. It is easy to see that $C_A = (C|A)_A$.

By a vector tangent to a differential space (M, C) at a point p of M we mean any linear mapping $v : C \to E$ which fulfils Leibniz's condition at the point p:

$$v(\alpha\beta) = v(\alpha)\beta(p) + \alpha(p)v(\beta)$$
 for all $\alpha, \beta \in C$.

We shall denote by $(M, C)_p$ or M_p a linear space of all vectors tangent to (M, C) at the point $p \in M$.

Any real C^{∞} -manifold M will be identified with the differential space $(M, C^{\infty}(M))$, where $C^{\infty}(M)$ is the set of all smooth real functions

Date: May 3, 1976.

on M. In particular, we denote $C^{\infty}(E^n)$ by \mathcal{E}_n and we call the pair (E^n, \mathcal{E}_n) the *n*-dimensional Euclidean differential space. It is possible to write that for $\emptyset \neq M \subset E^n$ is ζN

It is also to verify that for $\emptyset \neq M \subset E^n$, $n \in \mathcal{N}$,

$$\mathcal{E}_{nM} = \left(sc \left\{ \pi^i | M; i = 1, ..., n \right\} \right)_M$$

where $\pi^i((x^1, x^2, ..., x^n)) = x^i$ for any $(x^1, x^2, ..., x^n) \in E^n$. The topological space $(M, \tau_{\mathcal{E}_{nM}})$ is a subspace of the topological space $(E^n, \tau_{\mathcal{E}_n})$.

In the sequel the symbol τ_M will be used instead of $\tau_{\mathcal{E}_{nM}}$. Using a partition of unity it may be proved that \mathcal{E}_{nM} is the set of all functions of the form $\alpha | M$, where α is a C^{∞} -function on an open set U in E^n including M. The basic result of this paper consists in the following theorem.

Theorem 1. For any $p \in M \subset E^n$ the integer $m = \dim (M, \mathcal{E}_{nM})_p$ is the smallest one that there exists in τ_M an open neighbourhood U of the point p which is included in an m-dimensional C^{∞} -surface of E^n .

2. The proof of basic result

From now on we fix the integer k > 0, and the non empty set $M \subset E^k$. For brevity we write $\mathcal{E} := \mathcal{E}_k, C := \mathcal{E}_M, M_p := (M, C)_p, E_p^k := (E^k, \mathcal{E}_k)_p$.

The mappings $L_1: M_p \to E_p^k$ and $L_2: E_p^k \to E^k$ defined by

(1)
$$(L_1(v))(f) := v(f|M) \text{ for } v \in K_p \text{ and } f \in \mathcal{E},$$

(2)
$$L_2(\bar{v}) := \left(\bar{v}\left(\pi^1\right), ..., \bar{v}\left(\pi^k\right)\right) \text{ for } \bar{v} \in E_p^k,$$

are respectively a linear monomorphism and a linear isomorphism of suitable linear spaces (c.f. [1]).

Let $\partial_i f(p)$ denote *i*-th partial derivative of the function $f \in \mathcal{E}$ at the point $p \in E^k$, i = 1, ..., k. If we denote $f_{|h}(p) := h^i \partial_i f(p)$ where $h = (h^1, ..., h^k) \in E^k$, we have

(3)
$$\bar{v}(f) = \partial_i f(p) \bar{v}(\pi^i) = f_{|L_2(\bar{v})}(p) \text{ for } \bar{v} \in E_p^k,$$

(the sumation convention is used here). Let $L := L_2 \circ L_1 : M_p \to E^k$ and

(4)
$$\bar{M}_p = \left\{ L\left(\bar{v}\right) \in E^k; \bar{v} \in M_p \right\}.$$

It is also to see that the mapping $L: M_p \to \overline{M}_p$ makes these linear spaces isomorphic to each other. We have

(5)
$$\begin{cases} L(v) = \left(v\left(\pi^{1}|M\right), ..., v\left(\pi^{k}|M\right)\right) & \text{for } v \in M_{p}, \\ v\left(f|M\right) = f_{L(v)} & \text{for } v \in M & \text{and } f \in \mathcal{E}_{k}. \end{cases}$$

Lemma 1. For $p \in M$, $h \in E^k$, $k \in \mathcal{N}$ the following properties are equivalent:

- (a) $h \in \overline{M}_p$,
- (b) there exists a mapping $\bar{v}: \mathcal{E}|M \to E$ such that

$$\bar{v}(f|M) = f_{|h}(p) \quad for \quad f \in \mathcal{E}.$$

Proof. The implication (a) \Longrightarrow (b) follows immediately from (4) and (5) by putting $\bar{v} := v | (\mathcal{E}|M), v \in M_p$ and h = L(v).

In order to prove the implication (b) \Longrightarrow (a) let us suppose that h fulfils (b) and consider the set of functions $\mathcal{E}|M$. From (b) it follows that \bar{v} is the linear mapping of $\mathcal{E}|M$ into E fulfilling the Leibniz's condition at the point p:

$$\bar{v}(\alpha\beta) = \bar{v}(\alpha)\beta(p) + \alpha(p)\bar{v}(\beta) \text{ for } \alpha, \beta \in \mathcal{E}|M.$$

By using this conditions and linearity of \bar{v} one can easy verify that $\bar{v}(\alpha) = 0$ for each function $\alpha \in \mathcal{E}|M$ equal to 0 at an open neighbourhood of the point p. As a consequence of this the mapping $v: C \to E$ defined by

$$v(\alpha) := \bar{v}(f|M) \quad \text{for} \quad \alpha \in C,$$

where $f \in \mathcal{E}$ is a function such that $f|U = \alpha|U$ for some set $U \in \tau_M$ including the point p, is well defined. The function v is linear and fulfils Leibniz's condition so it belongs to M_p . For i = 1, ..., k we have $v(\pi^i|M) = \pi^i_{|h|}(p) = \bar{v}(\pi^i|M) = h^i$, where $h = (h^1, ..., h^k)$, so from (5) we have: $L(v) = (h^1, h^2, ..., h^k) = h$. The Lemma is proved. \Box

Lemma 2. For $h \in E^k$ and $p \in M$ the following conditions are equivalent:

- (a) $h \in \overline{M}_p$,
- (b) $f_{|h|}(p) = 0$ for any $f \in \mathcal{E}$ equal to 0 on M.

Proof. It is easy to see that the conditions (b) in Lemmas 1 and 2 are equivalent to each other. \Box

For any $f \in \mathcal{E}$ and $p \in E^k$ we donote grad $f(p) := (\partial_1 f(p), ..., \partial_k f(p)).$

Lemma 3. Let $p = (0, ..., 0) \in M \subset E^k$ and $e_i = (0, 0, ..., 0, 1, 0, ..., 0)$ (1 in the *i*-th position), $1 \leq i \leq k$. If $m := \dim M_p$, $1 \leq m \leq k-1$ and $e_1, ..., e_m \in \overline{M_p}$ then there exists functions $f^{m+1}, ..., f^k \in \mathcal{E}$ equal to 0 on M and such that $\partial_i f^j(p) = \delta_i^j$, where $\delta_i^j = 1$ for i = j and $\delta_i^j = 0$ for $i \neq j$.

Proof. Let the assumptions of the Lemma be satisfied. Then

(6)
$$M_p = \text{Lin}(e_1, ..., e_m),$$

where $\operatorname{Lin}(e_1, ..., e_m)$ is the linear subspace of E^k spanned by $e_1, ..., e_m$. We put $K := \{h \in E^k; h = \operatorname{grad} f(p), f \in \mathcal{E} \text{ and } f = 0 \text{ on } M\}$. K is a linear subspace of E^k and $e_i \perp K$ with respect to the canonical scalar product in E^k so $K \subset \operatorname{Lin}(e_{m+1}, ..., e_k)$ (see Lemma 2). We shall prove more, namely that $K = \operatorname{Lin}(e_{m+1}, ..., e_k)$. If the above equality is not satisfied, then there exists a non-zero vector $h \in \operatorname{Lin}(e_{m+1}, ..., e_k)$, such that $K \perp h$. Hence $f_{\mid h}(p) = \operatorname{grad} f(p) \cdot h = 0$ for f = 0 on M, and $h \in \overline{M}_p$ (Lemma 2), but this contradicts (6). From above equality we obtain the existence of functions $f_{m+1}, ..., f_k \in \mathcal{E}_k$ equal to zero on M, such that $\operatorname{grad} f_j(p) = e_j$ or equivalently $\partial_i f^j(p) = \delta_i^j$. The Lemma is proved. \Box

Proposition 1. Let $p \in M \subset E^k$. If $0 < m := \dim M_p \leq k$ then there exist non empty sets: U open in τ_M and V open in $\tau_{\mathcal{E}_m}$, and regular 1-1 C^{∞} -mapping $\phi: V \to E^k$ such that

$$p \in U \subset \left\{ \phi\left(u\right) \in E^{k}; u \in V \right\}.$$

Proof. If m = k, the proposition evidently holds. We suppose that $1 \leq m < k$. We can assume, without loss of generality, that $p = (0, ..., 0) \in E^k$ and $\overline{M}_p = \text{Lin}(e_1, ..., e_m)$. We denote $q = (x^1, ..., x^k) = (u, w)$ where $u = (x^1, ..., x^m)$ and $w = (x^{m+1}, ..., x^k)$. Let $f^j, j = m + 1, ..., k$, are functions as in Lemma 3. We define a mapping $F : E^k \to E^{k-m}$ by

$$F(q) := (f^{m+1}(q), ..., f^k(q)) \text{ for } q \in E^k.$$

This mapping has the following properties:

- (a) F(q) = F(u, w) = 0 for $q = (u, w) \in M$,
- (b) F is C^{∞} -mapping,
- (c) F is regular at the point $p = (\bar{u}, \bar{w})$. From the inverse mapping theorem it follows that there exists:
- (d) a set $U' \in \tau_{E^k}$ such that $p \in U'$,
- (e) a set $V \in \tau_{R^m}$ such that $\bar{u} \in V$,
- (f) a C^{∞} -mapping $\psi: V \to E^{k-m}$ such that for any $u \in V$ we have $F(u, \psi(u)) = 0$,
- (g) if F(q) = 0 and $q = (u, w) \in U'$ then $u \in V$ and $w = \psi(u)$. It is evident that $U := U' \cap M$, V and $\phi(u) := (u, \psi(u))$ for $u \in V$ fulfil conditions of Proposition 1.

Now, we examine the case of dim $M_p = 0$, which was not considered above.

Proposition 2. Let $p \in M \subset E^k$. If dim $M_p = 0$ then the point p is isolated in M.

Proof. Let us set $|q| := \sqrt{(x^1)^2 + ... + (x^k)^2}$ for any $q = (x^1, ..., x^k) \in E^k$.

Let us assume the point p is not isolated. Then there exists a sequence (p_i) of points of M different from p and convergent to p. For the sequence $h_n := \frac{p_n - p}{|p_n - p|}, n \in \mathcal{N}$ of points of S^{k-1} we can find a subsequences h_{n_i} convergent to a point $h \in S^{k-1}$. One can easy see that for any $f \in \mathcal{E}$

$$\lim_{i \to \infty} \frac{f(p_{n_i}) - f(p)}{|p_{n_i} - p|} = f_{|h}(p) \,.$$

It easy to see that left side of this sequence defines mapping \bar{v} : $\mathcal{E}|M \to E$ such that $\bar{v}(f|M) = f_{|h}(p)$. From Lemma 1 $h \in \overline{M}_p$ so $\dim M_p \neq 0$, which ends of the proof.

Theorem 1 results easily from Propositions 1 and 2. In that Theorem an non-empty discrete subset of E^n is called a 0-dimensional C^{∞} -surface in E^n .

3. Corollaries

We say, that differential space (N, D) can be diffeomorphically embeded into the differential space (L, H) if there exists a subset $L' \subset L$ such that $(L', H_{L'})$ and (N, D) are diffeomorphic to each other. In the sequel we shall consider only differential spaces (N, D) such that any point $p \in N$ has a neighbourhood V such that (V, D_V) can be embedded into $(E^{n(p)}, \mathcal{E}_{n(p)})$ for some $n(p) \in \mathcal{N}$. From Theorem 1 we obtain:

Corollary 1. For a point p of the differential space (N, D) there exist a set $V \in \tau_D$ and an n-dimensional C^{∞} -manifold $\left(\tilde{N}, C^{\infty}\left(\tilde{N}\right)\right)$, n :=dim N_p , such that $p \in V \subset \tilde{N}$ and $D_V = C^{\infty}\left(\tilde{N}\right)_V$. The inequality dim $M_q \leq \dim M_p$

is fulfiled for any point $q \in V$.

Corollary 2. If (N, D) is a differential space such that (N, τ_D) is separable and if there exists $n \in \mathcal{N}$ such that for any $p \in N \dim (N, D)_p \leq n$, then topological dimension of (N, τ_D) does not exceed n.

Proof. This results easily from Corollary 1.

Differential spaces which have tangent spaces of constant dimension are the most interesting. For a differential space (N, D) and i = 0, 1, ...we shall denote by N^i union of all sets $V \in \tau_D$ such that dim (N, D) = i for any $q \in V$. If N^i is not empty then (N^i, D_{N^i}) is a differential subspace of (N, D) and for any $q \in N^i \dim(N^i, D_{N^i}) = i$. From Corollary 1 we obtain

Corollary 3. For any differential space (N, D) the set $\bigcup_{i=0}^{\infty} N^i$ is open and dense in the topological space (N, τ_D) .

Proof. For any subset $A \,\subset N$ we denote its closure in (N, τ_D) by \overline{A} . We shall use mathematical induction. Let $p \in N$. It is easy to see, that $\dim(N, D)_p \geq 0$. If $\dim(N, D)_p = 0$ then the point p is isolated in (N, τ_D) and $p \in N^0$, see Corollary 1, $p \in \overline{\bigcup_{i=0}^{\infty} N^i}$. Suppose, that for any $q \in N$ such that $0 \leq \dim(N, D)_q \leq m - 1$ we have $q \in \overline{\bigcup_{i=0}^{\infty} N^i}$. For any point $p \in N$ such that $\dim(N, D)_p = m$ there exists an open neighbourhood V of p such that $\dim(N, D)_q \leq m$ for any point $q \in V$ (Corollary 1). Let $U \in \tau_D$ be a set containing the point p. If for any $q \in U \cap V \dim(N, D)_q = m$, then $p \in N^m$ and $p \in \overline{\bigcup_{i=0}^{\infty} N^i}$. If it is not true then there exists a point $q \in U \cap V$, such that $\dim(N, D) \leq m - 1$. From the induction hypothesis. the point $q \in \overline{\bigcup_{i=0}^{\infty} N^i}$, so $U \cap \bigcup_{i=0}^{\infty} N^i \neq \emptyset$. This is true for any set $U \in \tau_D$ containing the point p, so we have $p \in \overline{\bigcup_{i=0}^{\infty} N^i}$. The corollary is proved.

By virtue of Corollary 1 any point p of differential space (N, D) such that dim $(N, D)_p = k$ has a neighbourhood V such that (V, D_V) can be diffeomorphically embedded in (E^k, \mathcal{E}_k) . Hence it is interesting to consider the differential subspace (M, \mathcal{E}_{kM}) of (E^k, \mathcal{E}_k) for which there exists a point $p \in M$ such that dim $(M, C)_p = k$.

Corollary 4. Let $p \in M \subset E^k$. dim $(M, \mathcal{E}_{kM})_p = k$ if and only if for any $f \in \mathcal{E}_k$ equal to 0 on $M \partial_i f(p) = 0$ for i = 1, 2, ..., m.

Proof. We get this immediately from Lemma 2, as $e_i \in \overline{M}_p$, i = 1, ..., k.

Corollary 5. Let $\emptyset \neq M \subset E^k$. Then dim $(M, \mathcal{E}_{kM})_p = k$ for any $p \in M$ if and only if for any $f \in \mathcal{E}_k$ equal to 0 on M all partial derivatives of any order are equal to 0 on M.

Proof. This corollary follows easily, by induction, from Corollary 4. \Box

By virtue of above Corollary, any subset $M \subset E^k$ such that (M, \mathcal{E}_{kM}) has the constant dimension k, has the same property, as any open set of E^k : the value of the partial derivatives of a function $f \in \mathcal{E}_k$ at a point $p \in m$ are uniquely determined by the values of the function on M. For a differential space (N, D) a linear mapping $X : D \to D$ such that $X(\alpha\beta) = X(\alpha)\beta + \alpha X(\beta)$ is called a *vector field* on (N, D) [1]. It easy to see that for any point $p \in N$ the function $X_p : D \to E$ defined by $X_p(\alpha) := (X\alpha)(p)$ for $\alpha \in D$ is a vector belonging to $(N, D)_p$.

Corollary 6. Let (N, D) be a differential space. A point p belongs to $\bigcup_{i=0}^{\infty} N^i$ if and only if there exists vector fields $X_1, ..., X_s$ on (N, D) such that $\{X_{1p,...,X_{sp}}\}$ is the basis of $(N, D)_p$.

Proof. If $X_1, ..., X_k$ are such vector fields on (N, D) that $X_{1p}, ..., X_{kp}$ is a basis of $(N, D)_p$ then there exists a set $V \in \tau_D$ such that $p \in V'$ and $X_{1q}, ..., X_{kq}$ are lineary independent for any $q \in V'$ (cf. [1]). As there exists an open neighbourhood V'' of p such that for any $q \in V'$ $\dim (N, D)_q \leq k$ (Corollary 1), for any $q \in V' \cap V'' \dim (N, D)_q = k$ and $p \in N^k \subset \bigcup_{i=0}^{\infty} N^i$.

Now we shall prove the other implication. For the point $p \in N^0$ the proof is trivial. Let $p \in N^k$, k > 0 and U be such an open neighbourhood of the point p that (U, D_U) is diffeomorphic to (V, \mathcal{E}_{kV}) for certain $V \subset E^k$ and dim $(V, \mathcal{E}_{kV})_q = k$ for any $q \in V$. It is sufficient to prove Corollary for (V, \mathcal{E}_{kV}) .

For $q \in V$ and $\alpha \in \mathcal{E}_{kV}$ there exists an open neighbourhood V_q of qand a function $f_{\alpha,q} \in \mathcal{E}$ such that $\alpha | V_q = f_{\alpha,q} | V_q$. By virtue of Corollary 5 the functions $X_i : \mathcal{E}_{kV} \to \mathcal{E}_{kV}, i = 1, 2, ..., k$, defined for $\alpha \in \mathcal{E}_{kV}$, by

$$(X_i \alpha)(q) = \partial_i (f_{\alpha,q})(q) \text{ for } q \in V$$

are well defined. It can be easily verified that they are vector fields on (V, \mathcal{E}_{kV}) and $X_{1q}, ..., X_{kq}$ is the basis of $(V, \mathcal{E}_{kV})_q$ for any $q \in V$. \Box

4. Examples

Example 1. Let $M \subset E^k$ be dense in E^k . Then by Corollary 1 the dimension of $(M, \mathcal{E}_{kM})_p$ is k for any $p \in M$.

Example 2. The graph of the function $f : E \to E$ which is x^2 for x > 0 and 0 for $x \le 0$ has the tangent space of dimension 1 at all points except for the point (0,0), where it has tangent space of dimension 2. It result easily from Corollary 1.

Example 3. The graph of the function $g: E \to E$ of class C^1 which is not of class C^{∞} at any point is a differential subspace of (E^2, \mathcal{E}_2) of constant dimension 2. It results easily from Corollary 1.

Example 4. Let $M \subset E^k$. If topological dimension of any non empty open subset of M is k then dim $(M, \mathcal{E}_{kM})_p = k$ for any $p \in M$. This follows easily from Corollary 2.

ADAM KOWALCZYK AND JAN KUBARSKI

References

- [1] R. S i k o r s k i: Wstęp do geometrii różniczkowej. Warszawa 1972.
- [2] R. Sikorski: Abstract covariant derivative, Colloq. Math. 18 (1967) 251-272.
- [3] R. Sikorski: Differential modules, Colloq. Math. 24 (1971) 45-79.
- [4] P. Walczak: A theorem on diffeomorphism in category of differential spaces, Bull. Acad. Sci., Ser. Sci. Math., Astr., Phys., 21 (1973) 325-329.
- [5] P. Walczak: On a class of differential spaces satisfying the theorem on diffeomorphisms, Bull. Acad. Sci., Ser. Sci. Math., Astr., Phys., 22 (1974) 805-814.
- [6] W. Waliszewski: Regular and coregular mappings of differential spaces. Ann. Polon. Math., 30 (1975) 263-281.

INSTITUTE OF MATHEMATICS, TECHNICAL UNIVERSITY OF WARSAW

INSTITUTE OF MATHEMATICS TECHNICAL UNIVERSITY OF ŁÓDŹ