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Abstract

Moore and Schochet gave the Chern-Weil homomorphism of a vector bundle
f over a foliated space (M,F), measuring the nonexistence of partially flat
covariant derivatives. We look at this problem (restricting our interest to vector
bundles over foliated manifolds) from the point of view of nontransitive Lie
algebroids. We use — for our problem — the Chern-Weil homomorphism of the
regular Lie algebroid coming from the Lie algebroid A(f) of f by restricting it
to the elements whose anchors are tangent to the foliation F . Our observations
lead to the conjecture that we can sometimes obtain some essentially new kinds
of characteristic classes (with respect to the construction of Moore-Schochet)
called singular.

1 Introduction

1.1 Category of regular Lie algebroids

Let F be a C∞ constant dimensional and involutive distribution on a C∞ Haus-
dorff paracompact connected manifold M . By a regular Lie algebroid over a foliated
manifold (M,F ) [5] (see also [3], [4], [7]) we mean a system

(A, [[·, ·]], γ)

consisting of a vector bundle A over M and mappings

[[·, ·]] : SecA× SecA→ SecA, γ : A→ TM,

such that:

*This paper is in final form and no version of it will be submitted for publications elsewhere
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1) (SecA, [[·, ·]]) is a real Lie algebra;

2) γ, called by K.Mackenzie [7] an anchor, is a homomorphism of vector bundles,
and Imγ = F ;

3) Secγ :SecA→ X (M), ξ �→ γ ◦ ξ, is a homomorphism of Lie algebras;

4) [[ξ, f · η]] = f · [[ξ, η]] + (γ ◦ ξ)(f) · η, ξ, η ∈SecA, f ∈ C∞(M).

A Lie algebroid (A, [[·, ·]], γ) is called transitive if F = TM .
Let (A, [[·, ·]], γ) and (A′, [[·, ·]]′, γ′) be two Lie algebroids on the same manifold M .

By a homomorphism
H : (A, [[·, ·]], γ)→ (A′, [[·, ·]]′, γ′)

between them we mean a homomorphism H : A → A′ of vector bundles over idM :
M →M such that:

1) γ′ ◦H = γ;

2) SecH : SecA′ → SecA, ξ �→ H ◦ ξ, is a homomorphism of Lie algebras.

A homomorphism H of Lie algebroids induces a homomorphism of the associated
exact Atiyah sequences

0 −→ ggg →֒ A
γ
−→ F −→ 0

↓ H+ ↓ H ↓

0 −→ ggg′ →֒ A′
γ′

−→ F ′ −→ 0 .

A trivial Lie algebroid is defined to be one isomorphic to (TM×g, [[·, ·]], pr1) where
g is a finite-dimensional Lie algebra and the bracket is given by the formula

[[(X,σ), (Y, η)]] = ([X, Y ],LXη − LY σ − [σ, η]),

X, Y ∈ X (M), σ, η ∈ C∞(M ; g). Every transitive Lie algebroid over a manifold
diffeomorphic to R⋉ is trivial [6], [7].

1.2 Sources of Lie algebroids

Differential Geometry has discovered many objects which determine Lie algebroids,
such as, for example, differential groupoids, principal bundles, vector bundles, transver-
sally complete foliations, nonclosed Lie subgroups, Poisson manifolds, some complete
closed pseudogroups, and actions of Lie groups on manifolds.

On the other hand, if (A, [[·, ·]], γ) is a transitive Lie algebroid on M and (M,F ) is
a foliated manifold, then AF := γ−1[F ] ⊂ A forms, in an evident manner, a regular
Lie algebroid over (M,F ). For example, a principal bundle or a vector bundle over
a foliated manifold determines an object which is the fundamental tool serving our
problem. For the other examples, see ”Characteristic homomorphisms of regular Lie
algebroids”, Poster, European Congress of Mathematics, Paris, 1992, contained in [6].
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1.3 Representations and invariant cross-sections

Let f be a vector bundle over M . We recall [5] (see also [7]) that the fibre A(f)|x of
the Lie algebroid A(f) of f over x consists of all linear homomorphisms l :Secf→ f|x,
called f-vectors, for which there exists a vector u ∈ TxM such that

l(f · ν) = f(x) · l(ν) + u(f) · ν(x), f ∈ C∞(M), ν ∈ Secf.

u is the anchor of l and is denoted by q(l). A cross-section ξ ∈ SecA(f) defines
a covariant differential operator Lξ : Sec f → Sec f, Lξ(ν)(x) = ξx(ν), x ∈ M ;
L[[ξ,η]] = [Lξ,Lη] = Lξ ◦ Lη −Lη ◦ Lξ [7].

The Lie algebroid A(f) is (locally) described in the following:

Theorem 1.3.1 [5; 5.4.4] Let ψ : U × V → p−1[U ] be a local trivialization of a
vector bundle f (with V as a typical fibre). For ν ∈ Sec f, denote by νψ the function
U ∋ x �→ ψ−1|x (νx) ∈ V. Then the mapping

ψ̄ : TU × End(V ) −→ A(f)|U

such that
ψ̄(v, a)(ν) = ψ|x(∂v(νψ) + a(νψ(x)))

when v ∈ TxU and a ∈ End(V ), is an isomorphism of Lie algebroids. �

By a representation of a Lie algebroid A on f [5], [7] we mean a homomorphism
T : A→ A(f) of Lie algebroids. A cross-section ν ∈ Sec f is called T—invariant if

T (v)(ν) = 0 for all v ∈ A.

Denote by (Sec f)I◦(T ) (or (Sec f)I◦ when there is no misunderstanding) the space of
all T -invariant cross-sections of f.

1.4 Connections, curvature and the Chern-Weil homomor-

phism of regular Lie algebroids

Let A be any regular Lie algebroid over a foliated manifold (M,F ). Any splitting
λ : F → A of the exact Atiyah sequence

0 −→ ggg →֒ A
γ
−→ F −→ 0
λ
←−

is called a connection in A. The tangential differential form

Ω ∈ Ω2F (M,ggg) = Sec(
2∧
F ⋆

⊗
ggg)
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defined by
Ω(X, Y ) = λ◦[X, Y ]− [[λ◦X,λ◦Y ]], X, Y ∈ SecF,

is called the curvature tensor of λ. If A = A(P )F , P being a principal bundle and
A(P ) = TP/G — its Lie algebroid [4], [7], then there is a bijection between connections
in A and partial connections in P over F .

By the adjoint representation adA : A → A(ggg) of a regular Lie algebroid A we
mean the one defined by adA(v)(σ) = [[ξ, σ]](x) where ξ is an arbitrarily taken
cross-section of A such that ξ(x) = v ∈ A|x and σ ∈ Secggg. The mapping adA induces

canonically a representation
∨k ad♮A of A on the symmetric power

∨k ggg⋆ denoted, for
short, also by adA. Let I◦k(A) := (Sec(

∨k ggg⋆))I◦ be the space of invariant elements
with respect to this representation. I◦(A) :=

⊕k≥0 I◦k(A) forms an algebra. We
recall that Γ ∈ I◦k(A) if and only Γ ∈ Sec(

∨k ggg∗) and

∀ξ∈SecA ∀σ1,... ,σk∈Secggg ( (γ◦ξ)〈Γ, σ1 ∨ . . . ∨ σk〉

=
k∑

i=1

〈Γ, σ1 ∨ . . . ∨ [[ξ, σi]] ∨ . . . ∨ σk〉 )

Theorem 1.4.1 [5] For Γ ∈ I◦k(A) and the curvature tensor Ω of a connection in
A, the real tangential form

β(Γ) = 1
k!
〈Γ,Ω ∨ · · · ∨ Ω︸ ︷︷ ︸

k times

〉 ∈ Ω2kF (M)

is closed. The mapping

hA : I◦(A)→ HF (M), Γ �→ [β(Γ)], (1.4.1)

called the Chern-Weil homomorphism of A, is a homomorphism of algebras indepen-
dent of the choice of a connection. �

Remark 1.4.2 HF (M) in the above theorem denotes the tangential cohomology space
of (M,F ) being the cohomology space of the complex (ΩF (M), dF ) of real tangential
differential forms, where dF is the standard differentiation defined in an elementary
way in terms of local coordinates [8] or, equivalently, by the global formula, the same
as for usual real differential forms.

Remark 1.4.3 Homomorphism (1.4.1) for the Lie algebroid A(P ) of a connected prin-
cipal bundle P = P (M,G) agrees with the classical Chern-Weil homomorphism
hP : I(G) → HdR(M) of P [2] in the sense that there exists a natural isomorphism
α : I(G)→ I◦(A) of algebras such that

hA(P ) ◦ α = hP

We pay our attention to the fact that this holds although in the Lie algebroid A(P )
there is no direct information about the structure Lie group G of P which may be
disconnected !
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Remark 1.4.4 There are transitive Lie algebroids which do not come from princi-
pal bundles but have nontrivial Chern-Weil homomorphisms (Lie algebroids of some
transversally complete foliations have this property [5] ).

1.5 The inverse image of a regular Lie algebroid and of a
representation

In [5] there is a construction of some important (from the technical point of view)
notion of the inverse image f∧A of a regular Lie algebroid A over (M,F ) by a mor-
phism f : (M ′, F ′) → (M,F ) of the category of foliated manifolds (i.e. a smooth
mapping f : M ′ → M such that f⋆[F

′] ⊂ F ). In this paper we shall only take the
above notion for the inclusion iL : (L, TL) →֒ (M,F ) where L is a leaf of the foliation
F . Then i∧L(A) is the transitive Lie algebroid for which

1) the total space is equal to TL×iL⋆,γ A = {(v, w) ∈ TL× A; v = γw};

2) the projection pr1 : TL×iL⋆,γ A→ TL is the anchor;

3) the Lie bracket in Sec(i∧LA) is defined uniquely by demanding that, for ξ, η ∈
SecA,

[[(γ ◦ ξ | L, ξ | L), (γ ◦ η | L, η | L)]] = ([γ ◦ ξ, γ ◦ η] | L, [[ξ, η]] | L).

Clearly, the total space of the Lie algebroid i∧L(A) is isomorphic to the restriction
A|L via the linear isomorphism A|L ∋ w �→ (γw,w) ∈ i∧L(A). Therefore we can identify
i∧L(A) with A|L to obtain a transitive Lie algebroid on L. The bracket in Sec(A|L)
satisfies the condition

[[ξ|L, η|L]] = [[ξ, η]]|L, ξ, η ∈ SecA.

We shall call A|L the restriction of A to the leaf L.
The second important ”technical” notion is the inverse image f ⋆T of a represen-

tation T : A → A(f) over f : (M ′, F ′) → (M,F ); see [5]. For the inclusion iL, we
obtain in this way the restriction T|L : A|L → A(f|L) of T to L as a representation
such that

T|L(v)(ν|L) = T (v)(ν) for ν ∈ Sec f.

1.6 Representation of principal bundles on vector bundles

Denote by Lf the GL(V )-principal bundle of all frames z : V
∼=−→f|x, x ∈M (V being

the typical fibre of f). Let µ : G→ GL(V ) be a homomorphism of Lie groups.
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Definition 1.6.1 By a µ-representation of a principal bundle P = P (M,G) on f we
mean [5] a µ-homomorphism H : P → Lf between principal bundles. The homo-
morphism H after its differentiation gives a homomorphism dH : A(P ) → A(Lf) of
Lie algebroids [4], [7]; on the other hand, A(Lf) is canonically isomorphic to the Lie
algebroid A(f) via some isomorphism Φf : A(Lf)→ A(f) defined by

Φf([v])(ν) = u(∂v(ν̃)),

where v ∈ Tu(Lf), u ∈ Lf, ν ∈ Sec f, whereas

ν̃ : Lf→ V, w �→ w−1(ν(πw)),

see [5]. The superposition H ′ = Φf ◦dH : A(P )→ A(f) is called the differential of H.

Let H : P → Lf be a µ-representation of P on f. A cross-section ν ∈ Sec f is
called H-invariant if there exists a vector v ∈ V such that H(z)(v) = νπ(z) for all
z ∈ P . Let (Sec f)I(H) denote the space of allH-invariant cross-sections of f. The space
(Sec f)I(H) is isomorphic to the space of µ-invariant elements VI(µ) via the isomorphism
VI(µ) → (Sec f)I(H) given by v �→ νv where νv(x) = F (z)(v) for all z ∈ P|x, x ∈ M
[5; 5.5.2].

The crucial role in the sequel of the theory is played by the following

Theorem 1.6.2 [5; 5.5.3] The spaces of invariant cross-sections (Sec f)I(H) and (Sec f)I◦(H′)

under a representation H : P → Lf and its differential H ′ : A(P ) → A(f) are re-
lated by (Sec f)I(H) ⊂ (Sec f)I◦(H′). If P is connected (nothing is assumed about the
connectedness of G !), then

(Sec f)I(H) = (Sec f)I◦(H′). �

Let ggg be the LAB adjoint of A(P ). By the adjoint representation of P we mean
the (AdG : G→ GL(V ))-representation AdP : P → Lggg defined by AdP (z) = ẑ where
ẑ : g → ggg|π(z) is an isomorphism of Lie algebras defined by ẑ(v) = [(Az)⋆e(v)], where
Az : G→ P, a �→ za, (g denotes here the right! Lie algebra of G). According to [5],
we have

(AdP )
′ = adA(P ).

2 Partially invariant cross-sections

Let (A, [[·, ·]], γ) and f be a transitive Lie algebroid and a vector bundle on a manifold
M , respectively. Assume that F ⊂ TM is a C∞ constant dimensional involutive
distribution and F — the foliation determined by F . We recall that A and F give
rise to the regular Lie algebroid over (M,F ) where we put AF := γ−1[F ] ⊂ A; see
[5; 1.1.3]. Its Atiyah sequence is

0 −→ ggg →֒ AF γF

−→ F −→ 0 ,
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where ggg is the Lie algebra bundle adjoint of A, and γF := γ|AF . Any representation
T : A→ A(f) of A on f [5; 2.1.1] restricts to the representation

T F = T |AF : AF −→ A(f)

of AF on f. Any TF—invariant cross-section ν ∈ Sec f will be called a partially invariant
cross-section with respect to T over F .

For any leaf L ⊂M of the foliation F , we have the restriction AF
|L of AF and the

inverse image
T F
|L : AF

|L −→ A(f|L)

of T F .
According to this, the following lemma is obvious.

Lemma 2.1 A cross-section ν ∈ Sec f is T F -invariant if and only if, for each leaf L
of F , the restriction ν|L ∈ Sec f|L is T F

|L -invariant. �

Lemma 2.2 For finitely many F-basic functions f i ∈ Ω◦b(M,F) and T -invariant
cross-sections νi ∈ Sec f,

∑
i f

i · νi is a TF -invariant cross-section, in other words,

Ω◦b(M,F) · (Sec f)I◦(T ) ⊂ (Sec f)I◦(TF ) . (2.1)

Proof. For ξ ∈ SecAF , we obtain

LTF ◦ ξ(
∑

i

f i · νi) =
∑

i

f i · LTF ◦ ξ(νi) + (γ◦ ξ)(f i) · νi = 0

because LTF ◦ ξ(νi) = LT◦ ξ(νi) = 0 by the T -invariance of νi, and (γ◦ ξ)(f i) = 0 by
the fact that f i ia basic and γ◦ ξ ∈ SecF . �

Inclusion (2.1) can not always be replaced by the equality, which means that,
in general, not every TF -invariant cross-section is of the form

∑
i f

i · νi for F -basic
functions f i and T -invariant cross-sections νi, see example (2.4) below.

An important class of examples in which (2.1) is the equality is described later in
Th.3.2.2.

Definition 2.3 Each T F -invariant cross-section ν ∈ (Sec f)I◦(TF ) not belonging to
Ω◦b(M,F) · (Sec f)I◦(T ) will be called singular. The characteristic class corresponding
to any singular cross-section will be also called singular.

Example 2.4 Consider the Möbius band M with the foliation F by ”meridians”, see
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the Fig. 1.

Fig. 1

Let F denote the tangent bundle to F . EquipM with a flat Riemannian structure
for which the fields e1 =

∂
∂x

and e2 =
∂
∂y

form an orthonormal base. The vector field
e1 on M is not continuous at points of the segment AB.

Let P be the O(2,R)-principal bundle of orthonormal frames of the tangent bundle
TM . P is connected becauseM is not orientable [2] (therefore the structure Lie group
O(2,R) cannot be reduced to SO(2,R)).

Consider the Atiyah sequence of the Lie algebroid (A(P ), [[·, ·]], γ) of the principal
bundle P :

0 −→ ggg →֒ A(P )
γ
−→ TM −→ 0 ,

where ggg ∼= EndSk(TM, TM) is the vector bundle of skew-symmetric endomorphisms

( each element σ ∈ ggg|x with respect to the base e1x, e2x has a matrix of the form
[
0 c
−c 0

]

for some real c ).
Denote by A(ggg) the Lie algebroid of the vector bundle ggg. Consider the adjoint

representation adA(P ) : A(P )→ A(ggg) and the one adFA(P ) : A(P )
F → A(ggg) determined

by adA(P ).
For a real c ∈ R, ˜ denotes the cross-section of ggg whose value at x ∈ M is

an endomorphism TxM −→ TxM with the matrix
[
0 c
−c 0

]
. The cross-section c̃ is

continuous except at points of the segment AB, and c̃ restricted to any leaf L of the
foliation F , c̃|L, is:

1) smooth,

2) invariant with respect to the restricted representation ad(L) : A(P )F|L −→
A(ggg)|L (equal to the adjoint representation of the Lie algebroid of the principal
bundle P|L).
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It is evident to see the property 1) holds. As for 2), leaves of F are diffeomorphic to the
segment (0, 1) ⊂ R, therefore the transitive Lie algebroid A(P )F|L is trivial: A(P )F|L

∼=
TI × Sk(2,R), I = (�,�) ⊂ R, see 1.1. In this identification, c̃ is a constant cross-

section (0,
[
0 c
−c 0

]
). The equality [[ξ, c̃]] = 0 for any ξ ∈ Sec(TI × Sk(2,R)) now follows

trivially from the definition of the bracket in the Lie algebra Sec(TI × Sk(2,R))
for the trivial Lie algebroid TI × Sk(2,R). The property 2) can be also noticed in
another way by using Proposition 5.5.2 in [5]: L is contractible, so P|L has a reduction
to SO(2,R), say, P ′L. On the other hand, Sk(2,R) is abelian, therefore each of its
elements is invariant with respect to the adjoint representation of Sk(2,R) [2], and c̃
corresponds (via the isomorphism described in Prop. 5.6.2 [5], applied to P ′L) to the

invariant element
[
0 c
−c 0

]
.

Define a cross-section Pf ∈ Secggg∗ by the formula Pf(
[
0 c
−c 0

]
) = c. Of course,

Pf is continuous except at points of the segment AB. Besides, Pf has properties
analogous to 1) and 2) above (we only need to change the representation adA(P ) by
its contragredient). Notice that Pf restricted to L corresponds to the Pfaffian [1] for
the principal bundle P ′L.

The last step of our construction will be the smoothing of Pf which consists in
multiplying it by a suitable basic function g. First, we notice that the space of leaves
of F is the circle S1 with a base point x0 corresponding to the segment AB. Next, g is
defined in such a way that it is C∞ and has only one zero at x0 and all the derivatives
are also zero at x0. Clearly, Pf · g is the sought-for partially invariant cross-section.

3 The tangential Chern-Weil homomorphism

3.1 The tangential Chern-Weil homomorphism of a transi-

tive Lie algebroid

Definition 3.1.1 By the tangential Chern-Weil homomorphism of a transitive Lie
algebroid A, over a foliated manifold (M,F ), we mean the Chern-Weil homomorphism

hAF : I◦(AF ) −→ HF (M)

of the regular Lie algebroid AF .

Clearly, hAF measures the nonexistence of flat connections in AF .
For any leaf L of the foliation F , the Atiyah sequence of the transitive Lie algebroid

AF
|L is

0 −→ ggg|L →֒ AF
|L

γ|L
−→TL −→ 0 .

Without any difficulties we can verify the following
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Proposition 3.1.2 The Chern-Weil homomorphisms hA of A, hAF of AF and hAF
|L

of AF
|L are connected with one another via the commuting diagram

I◦(A)
hA−−−→ H(M)

Γ

↓
1·Γ

�

�

α

↓
αF

Ω◦b(M,F)·I◦(A)
i

−−−→ I◦(AF )
h
AF−−−→ HF (M)

Γ

↓
Γ|L

�

�

θ

↓
θ|L

I◦(AF
|L)

h
AF

|L
−−−→ HdR(L)

where αF is the tangential cohomology class whose representantive comes from some
representantive of α by restricting it to vectors from the distribution F . �

Notice that the triviality of hA implies the same assertion for hAF ◦ i :

hAF ◦ i(
∑

i

f i · Γi) =
∑

i

f i · (hA(Γi)) = 0.

3.2 The tangential Chern-Weil homomorphism of a principal
bundle

Let P be a G-principal bundle on M , whereas F ⊂ TM and F are as above.

Definition 3.2.1 By the tangential Chern-Weil homomorphism of P over (M,F )
we mean the Chern-Weil homomorphism hA(P )F of the regular Lie algebroid A(P )F .

Let g be the right Lie algebra of G and (
∨
g⋆)I(G) – the algebra of G-invariant

elements [2].

Theorem 3.2.2 Let G◦ be the connected component containing the unit of G. If each
G◦-invariant element of

∨
g⋆ is G-invariant, then the domain of the homomorphism

hA(P )F is equal to Ω◦b(M,F)·I◦(A(P )) (∼= Ω◦b(M,F)·(
∨
g⋆)I(G) when P is connected).

Remark 3.2.3 The assumptions of the above theorem are satisfied, for example, when
G is connected or when G = GL(V ).

Proof of Theorem 3.2.2. Since the representation adA(P ) is the differential of the
representation AdP and the same holds for the symmetric powers of their contragredi-
ents (see Th. 5.4.3 in [5]), the theorem clearly follows from the following Proposition.
�
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Proposition 3.2.4 Let A = A(P ) for a G-principal bundle P on a manifold M , and
let f be a vector bundle on M with a typical fibre V . Assume that T : A(P ) → A(f)
is the differential of some (µ : G → GL(V ))-representation H : P → L(f) of P on f
(see 1.6). If each (µ|G◦ : G◦ → GL(V ))-invariant vector v ∈ V is µ-invariant, then,
for any involutive distribution F on M , each T F -invariant cross-section of f is of the
form of a finite sum

∑
i f

i ·Ψi for F-basic functions f i and T -invariant cross-sections
Ψi.

Proof. According to Propositions 5.5.2—3 in [5] we have

VI ∼= (Sec f)I(H) ⊂ (Sec f)I◦(T )

where VI is the space of µ-invariant vectors, whereas (Sec f)I(H) and (Sec f)I◦(T ) are
the spaces of invariant cross-sections with respect to H and T , respectively.

Let ν ∈ Sec f be T F -invariant. In particular, νx ∈ f|x is (T F )+|x (= T+|x )-invariant
(for the index ”+”, see section 1.1). We recall, see section 1.2 in [5], that the LAB
adjoint of A(f) is isomorphic to End f. Via this isomorphism, the following diagram

g
dµ

−−−→ End(V )

ẑ

�

�

a

↓
H(z)◦a◦H(z)−1

ggg|x
T+
|x

−−−→ End (f|x)

commutes for each z ∈ P (ẑ is defined in section 1.6). This easily implies that, for
z ∈ P , the vector wx := H(z)−1(νx) ∈ V is dµ-invariant. By the assumption with G,
wx is µ-invariant [2]. Let (w1, . . . , wk) be a base of the space VI of µ-invariant vectors.
Then there exists real numbers f 1(x), . . . , fk(x) such that wx =

∑
i f

i(x) · wi; on the
other hand, we have the equality ν =

∑
i f

i · νwi where νwi are H-invariant (therefore
T -invariant) cross-sections defined in 1.6. The linear independence of νwi proves the
smoothness of f i. Finally, we prove that f i ∈ Ω◦b(M,F). Let X ∈ SecF . There exists
ξ ∈ SecA(P )F such that γ ◦ ξ = X. Therefore we obtain

0 = LTF ◦ξ(
∑

i

f i · νwi) =
∑

i

(f ı · LT◦ξ(νwi) + (γ ◦ ξ)(f i) · νwi) =
∑

i

X(f i) · νwi,

which implies X(f i) = 0. The free choice of X proves that f i are basic. �

3.3 The tangential Chern-Weil homomorphism of a vector
bundle

Let f
p
−→ M be a vector bundle with typical fibre V and let G ⊂ GL(V ) be a Lie

subgroup of GL(V ). Assume that A is any maximal family of distinguished local
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trivializations ψ : Uψ×V −→ p−1[Uψ], Uψ being an open subset of M and
⋃
Uψ =M

such that the transition functions have values in G. The pair (f,A), called a vector
bundle with the structure Lie group G (or in the sequel, briefly, a G-vector bundle),
determines

a) the G-principal bundle L(f,A) of distinguished frames

L(f,A) = {ψ|x : V −→ f|x ; ψ ∈ A, x ∈ Uψ},

b) the transitive Lie algebroid denoted by A(f,A) (being a Lie subalgebroid of A(f)),
putting

A(f,A) = Φf[A(L(f,A))]

(we recall that Φf : A(Lf) −→ A(f) is the canonical isomorphism of transitive
Lie algebroids, see section 1.6).

Definition 3.3.1 By the tangential Chern-Weil homomorphism of a G-vector bundle
(f,A), over a foliated manifold (M,F ), we mean the Chern-Weil homomorphism

hA(f,A)F : I◦(A(f,A)F) −→ HF(M)

of the regular Lie algebroid A(f,A)F .

Now, we describe elements of the Lie algebroids A(f,A) in terms of the vector
bundle (f,A).

Theorem 3.3.2 Let l ∈ A(f)|x , x ∈ M , then l ∈ A(f,A)|x if and only if, for any
ψ ∈ A such that x ∈ Uψ, the endomorphism

V ∋ u �−→ ψ−1|x (l(ψ(·, u))) ∈ V

belongs to the Lie algebra of G.

We begin with the following lemma.

Lemma 3.3.3 For an arbitrary local trivialization ψ : U × V −→ p−1[U ] of a vector
bundle f, the following diagram

A(Lf)
Φf

−−−→ A(f)

ψ̂A

�

�ψ̄

T (U)× Tid(GL(V ))
id×ρV−−−→ T (U)× End(V )

is commutative when

1) ψ̂A is a local trivialization determined by ψ̂ : U×GL(V )→ Lf, (x, a) �→ ψ(x, ·)◦
a, via the formula (see [4; 1.1]) ψ̂A(v,w) = [(ψ̂)⋆(x,e)(v, w)],

12



2) ψ̄ is described in Th. 1.3.1,

3) ρV : Tid(GL(V )) → End (V ) is an isomorphism of Lie algebras (Tid(GL(V )) is
meant as a right Lie algebra), defined by [5; 5.2.1]

ρV (w) : V −→ V, u �→ ∂v(ũ),

where ũ : GL(V )→ V, a �→ a−1(u).

Proof. For v ∈ TxU, w ∈ Tid(GL(V )) and ν ∈ Sec f, we obtain (see 1.6)

Φf◦ψ̂
A(v, w)(ν) = Φf([ψ̂∗(v, w)])(ν)

= ψ(x, e)(∂ψ̂∗(v,w)(ν̃))

= ψ|x(∂(v,w)(ν̃◦ψ̂))

= ψ|x(∂v(ν̃◦ψ̂(·, e)) + ∂w(ν̃◦ψ̂(x, ·)))

= ψ|x(∂v(νψ)) + ψ|x(ρV (w)(νψ(x)))

= ψ̄(v, ρV (w))(ν)

= ψ̄(id× ρV )(v, w)(ν). �

Proof of Theorem 3.3.2. Suppose that x ∈M and take an arbitrary local trivial-
ization ψ ∈ A such that x ∈ Uψ. Clearly, the restriction ψ̂G of ψ̂ to U ×G,

ψ̂G : U ×G −→ L(f,A), (y, a) �−→ ψ(y, ·)◦a ,

is a local trivialization of the G-principal bundle L(f,A). Passing to algebroids, we
have the following diagram:

A(L(f,A)) →֒ A(Lf)
Φf
−→ A(f)

↑ ψ̂A
G

↑ ψ̂A ↑ ψ̄

TU × TidG →֒ TU × Tid(GL(V ))
id×ρV−→ TU × End(V ) .

Understanding GL(V ) as an open subset of End(V ), we have the canonical isomor-
phism Tid(GL(V )) ∼= End(V ); then ̺V = −id (see 5.2.1 in [5]). Let g ⊂ End(V) be
the Lie algebra ofG. Clearly, ̺V [TidG] = g, therefore, according to the above diagram,
the restriction ψ̄g of ψ̄ to TU × g has values in A(f,A) and ψ̄g : TU × g→ A(f,A) is
a local trivialization of the Lie algebroid A(f,A).

Take l ∈ A(f)|x. From the above we obtain:

l ∈ A(f,A)|x ⇐⇒ ψ̄−1|x (l) ∈ TU × g.

To prove the ” =⇒ ” part of our theorem, assume that l ∈ A(f,A)|x and write
l = ψ̄|x(q(l), a) for a ∈ g (q(l) is the anchor of l, see 1.3) and notice that we must
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show the relation a(u) = ψ−1|x (l(ψ(·, u))), i.e. equivalently, that ψ|x(a(u)) = l(ψ(·, u)).
But from the fact νψ(·,u) ≡ u, we obtain

ψ|x(a(u)) = ψ|x(∂q(l)(νψ(·,u)) + a(νψ(·,u)(x)))

= ψ̄(q(l), a)(ψ(·, u))

= l(ψ(·, u)).

To prove the ” ⇐= ” part, assume that a := (u �→ ψ−1|x (l(ψ(·, u)))) belongs to g.

It only remains to notice that l = ψ̄|x(q(l), a). However, l and ψ̄|x(q(l), a) are f-
vectors with the same anchors, so, to show their identity, it is sufficient to check their
behaviour on the cross-sections generating the module Sec f near x, for example, on
ψ(·, u), u ∈ V :

ψ̄|x(q(l), a)(ψ(·, u)) = ψ|x(∂q(l)(ψ(·, u)ψ) + ψ−1|x (l(ψ(·, ψ(·, u)ψ(x))))

= l(ψ(·, u)). �

If ∇ is a covariant derivative in f, then, for v ∈ TxM , x ∈M , the linear mapping

∇v : Sec f −→ f|x, ν �−→ ∇vν,

is clearly an f-vector, i.e. ∇v ∈ A(f)|x. Besides, the mappimg

TM ∋ v �−→ ∇v ∈ A(f)

is a connection in A(f). Conversely, any connection λ : TM → A(f) determines a
covariant derivative ∇ in f by the formula

∇v(ν) = λ(v)(ν), v ∈ TM, ν ∈ Sec f.

Lemma 3.3.4 If ∇ is the covariant derivative in f corresponding to a connection λ
in A(f), then the curvature tensor R ∈ Ω2(M ; End f) of ∇ is equal to the curvature
tensor Ω of λ multiplied by -1.

Proof. For X, Y ∈ X (M) and ν ∈ Sec f, we have (see 1.3):

Ω(X, Y )(ν) = Lλ◦[X,Y ](ν)− L[[λ◦X,λ◦Y ]](ν)

= ∇[X,Y ](ν)− [∇X ,∇Y ](ν)

= −RX,Y (ν). �

Corollary 3.3.5 A connection λ in A(f) is flat over an involutive distribution F ⊂
TM if and only if the corresponding covariant derivative in f is flat over F . �

Definition 3.3.6 A covariant derivative ∇ in f will be called a covariant derivative
in the G-vector bundle (f,A) if the corresponding connection ∇ in A(f) has values in
A(f,A).
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Clearly, the correspondence (described above) between connections in A(f,A) and
covariant derivatives in (f,A) is one-to-one.

According to Th. 3.3.2, ∇ is a covariant derivative in (f,A) if and only if, for any
ψ ∈ A, x ∈ Uψ and v ∈ TxM , the endomorphism

V ∋ u �−→ ψ−1|x (∇v(ψ(·, u))) ∈ V

belongs to the Lie algebra g of G.

Remark 3.3.7 Important examples of a reduction of the structure Lie group GL(V ) in
f can be obtained via the so-called Σ-bundles [2; Ch.VIII]. Let (f,Σf) be an arbitrary
Σ-bundle, Σf being a finite ordered set of cross-sections νi of f

pi,qi (:= ⊗pif⋆
⊗
⊗qif),

i ≤ m, subject to the following condition:

there is a finite ordered system ΣV = {v1, . . . , vm} of tensors vi ∈ V pi,qi (V is
the typical fibre of f) and there is a system of local trivializations A of f such
that, for each ψ ∈ A, ψpi,qi

|x (vi) = νi(x), i ≤ m, x ∈ Uψ.

The pair (f,A) is then a vector bundle with a reduction to the closed Lie subgroup
G ⊂ GL(V ) consisting of those and only those linear isomorphisms ϕ : V → V for
which ϕpi,qi(vi) = vi, i ≤ m. The Lie algebra g of G is the subalgebra of End(V )
consisting of the linear transformations ϕ of V which satisfy θpi,qiϕ (vi) = 0, i ≤ m,
where θpi,qi is the canonical representation of the Lie algebra End(V ) on V pi,qi [2].
Denote also by θpi,qi the canonical representation of the Lie algebroid A(f) on fpi,qi ,
generated by the identical one idA(f) : A(f)→ A(f); see [5; 2.2].

By the above, there are no essential difficulties to prove

Proposition 3.3.8 Let l ∈ A(f)|x, x ∈M ; then l ∈ A(f,Σf)|x if and only if θpi,qi(l)(νi) =
0, i ≤ m. �

A covariant derivative ∇ in f detrmines, in the standard way, the covariant deriva-
tive ∇pi,qi in fpi,qi . Clearly, we have ∇pi,qi = θpi,qi ◦ ∇. According to this and the last
proposition, we obtain

Corollary 3.3.9 A covariant derivative ∇ is in (f,Σf) if and only if ∇pi,qi(νi) =
0, i ≤ m, i.e. if and only if ∇ is a Σ-connection. �

As an example consider a Riemannian bundle (f, {G}), G being a Riemannian
tensor in f. In this case, covariant derivatives in (f, {G}) are simply Riemannian
connections.

Now on the base M let us define a foliation F having F ⊂ TM as its tangent
bundle. If λ is a connection in the G-vector bundle (f,A), then the operator ∇
defined by ∇v(ν) = λ(v)(ν), v ∈ F, ν ∈ Sec f, is a partial covariant derivative in f
over F in the sense of [3]. Conversely, a partial covariant derivative in f over F such
that ∇v ∈ A(f,A) for v ∈ F (called a partial covariant derivative in (f,A) over F )
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determines a connection F ∋ v �→ ∇v ∈ A(f,A) in A(f,A)F . This correspondence is
one-to-one. Clearly, in the case of a Σ-bundle (f,Σf), a partial covariant derivative ∇
in f over F is in the bundle (f,Σf) if and only if ∇ν = 0 for ν ∈ Σf.

Now, pass to the investigation of the Chern-Weil homomorphism of the regular
Lie algebroid A(f,A)F . According to the above, its nontriviality means that in (f,A)
there is no flat partial covariant derivative over F .

3.4 Open problem

– Find some G-vector bundle (f,A) over a foliated manifold, possessing nontrivial
singular characteristic classes.

Let Pont(A) := Im(hA) be the Pontryagin algebra of a regular Lie algebroid A.
Consider a nonorientable Riemannian vector bundle f of rank 2m and a connected
O(2m;R)-principal bundle P of orthonormal frames of f, and the transitive Lie alge-
broid A = A(P ). We have Pont2m(P ) = Pont2m(A) = 0 (and, of course, Pontk(P ) = 0
for k > 2m).

Conjecture 3.4.1 There exists an example of a nonorientable Riemannian vector
bundle f and an involutive distribution F with orientable leaves on the base M of f,
for which

Pont2m(AF ) != 0.

(Stronger conjecture: f can be taken as the tangent bundle TM to some manifold
M).

Singular partial invariant cross-sections from the domain of h2m(AF ) can be ob-
tained by ”gluing” and ”smoothing” the cross-sections (defined on leaves) coming
from the Pfaffians (as in Example 2.1).
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