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Abstract

The aim of this paper is to construct the Chern-Weil homomorphism
for regular Lie algebroids. This homomorphism, in the case of an arbitrary
integrable transitive Lie algebroid A, agrees with the one for any connected
principal bundle for which A is its Lie algebroid. Next, it is proved that
there exist nonintegrable transitive Lie algebroids having the nontrivial
Chern-Weil homomorphism. Lie algebroids of some transversally com-
plete foliations have this property. Some applications to nonclosed Lie
subgroups and to vector bundles over foliated manifolds are given.,
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0.1 INTRODUCTION

1. In [24] K.Mackenzie gives the first general and abstract treatment of the al-
gebraic properties of Lie algebroids. The present work belongs to this direction.
It is based on:

(a) the observation by the author that the Chern-W eil homomorphism of
a connected principal bundle is an invariant of the Lie algebroid of this
bundle,

(b) the construction of an equivalent of this homomorphism in a large class of
regular (thus, nontransitive in general) Lie algebroids,

(c) the discovery of a class of Lie algebroids which are not integrable, i.e.
which do not come from principal bundles, but have nontrivial Chern-
Weil homomorphisms.

[Analogous observations, which will be the topic of the next work by the
author, concern the characteristic classes of flat (and partially flat) principal
bundles]. This enables one to apply this technique to the investigation of some
geometric structures defined on objects not being principal bundles but pos-
sessing Lie algebroids, such as transversally complete foliations, nonclosed Lie
subgroups, vector bundles over foliated manifolds, Poisson manifolds or some
complete closed pseudogroups.

This work concerns the Chern-Weil homomorphism and transversally com-
plete foliations, chiefly, foliations of left cosets of Lie groups by nonclosed con-
nected Lie subgroups.

2. The notion of a Lie algebroid comes from J.Pradines [29], [30]. Originally,
this notion was invented in connection with the study of differential groupoids
(J.Pradines in [29] introduced the so-called Lie functor which assigns a Lie alge-
broid to any differential groupoid). Since each principal bundle P determines a
differential groupoid (the so-called Lie groupoid PP~ of Ehresmann [6]), there-
fore each principal bundle P defines - in an indirect manner - a Lie algebroid
A (P). P.Libermann noticed [21] that the vector bundle of this Lie algebroid is
canonically isomorphic to the vector bundle TP/G (G is the structure

Lie group of P). The construction of the Lie functor for principal bun-
dles with the omission of the indirect step of differential groupoids was made
independently by K.Mackenzie [23] and by the author [16].

The Chern-Weil homomorphism hp of a principal bundle P has been known
for some forty years [3]. One can ask the question whether this homomorphism is
an invariant of the Lie algebroid A (P) of a given principal bundle P. In [17] (see
also [19]) the author proved that it is so under the assumption that the structure
Lie group G of P is connected. It turns out that this condition can be eliminated
entirely (see Chapter 5). More precisely, the Chern-Weil homomorphism of
a principal bundle P appears as a characteristic feature of the Lie algebroid
A(P) of P in every case (provided only that P is connected). This means



that, knowing only the Lie algebroid A (P) of P, one can uniquely reproduce
the ring of invariant polynomials (\/ g*), and the Chern-Weil homomorphism
hp: (\Vg*); — Har (M) (g denotes the Lie algebra of G).

We pay our attention to the fact that this holds although in the Lie algebroid
A (P) there is no direct information about the structure Lie group of P (which
may be disconnected !).

In addition, we must point out two things:

1) A Lie algebroid is - in some sense - a simpler structure than a principal
bundle. Namely, nonisomorphic principal bundles can possess isomorphic
Lie algebroids. For example, there exists a nontrivial principal bundle for
which the Lie algebroid is trivial (the nontrivial Spin (3)-structure of the
trivial principal bundle RP (5) x SO (3) [18], [19]).

2) There exist other sources of Lie algebroids than principal bundles, for
example, transversally complete foliations [26], [27], Poisson manifolds
[4], [5], or some complete closed pseudogroups [31]. Among them there
are ones which give "nonintegrable” Lie algebroids, i.e. those which are
transitive and cannot be realized as the Lie algebroids of principal bundles
. Namely, according to Almeida-Molino theorem [1], [27], Lie algebroids
of nondevelopable (and only such) transversally complete foliations have
this property. An example of such a foliation is any transversally complete
foliation with nonclosed leaves on a simply connected manifold. A more
concrete example is any foliation of left cosets of any connected and simply
connected Lie group by a Lie subgroup connected and dense in some torus.

3. In connection with the above, it seems important to construct the Chern-
Weil homomorphism in some category of Lie algebroids, being a generalization
of that for principal bundles. This problem is solved in our paper (chapter 4)
in the category of regular Lie algebroids, i.e. of such ones in which the anchor
is of constant rank. Namely,

k>0 k
ha: EP (Sec g*) — Hp (M)
IO
1
I'— |:]€'<F7Qb V..V Qb>:|

serves as this homomorphism for the regular Lie algebroid A ( with the
adjoint bundle of Lie algebras g), where Q, € Q% (M;g) is the curvature tensor

. . k . . .
of any connection in A, whereas (Sec\/ g*) , 18 the space of invariant cross-
I

*

sections of \/k g* with respect to the adjoint representation of A on \/k g*, ie.
e (Sec \/kg*) . if and only if
I

k
Veesee AVory,....oncSecg <(’y o&)(Tyo1V...Vop) = Z<F,O’1 V..V o] V...V O’k>>

i=1



The nontriviality of h 4 means, of course, that in A there is no flat connection.
The existence of a natural isomorphism of algebras v such that

k>0 ko
o ('),
=T v Har (M)

Vo),

for the Lie algebroid A (P) of a principal bundle P ( provided only that P is
connected ) means that the Chern-Weil homomorphism of a Lie algebroid is
some generalization of this notion known on the ground of principal bundles.
On the other hand, this also means that the Chern-Weil homomorphism of a
principal bundle is a characteristic feature of its Lie algebroid (for connected
principal bundles).

We give two applications of the homomorphism obtained:

e the transitive case is used for TC-foliations, especialy, for the foliations of
left cosets of Lie groups by nonclosed connected Lie subgroups (chapters
6 and 7),

e the nontransitive case - for vector bundles over foliated manifolds (section
5.7).

4. Chapters 6 and 7 concern transversally complete foliations. We start
with giving a precise construction of the Lie algebroid A (M; F) of a TC-foliation
(M; F). Next, we explain the geometric signification of connections in A (M; F):

Let E and Ej be the distributions tangent to the foliation F and to the basic
foliation Fyp, respectively. Connections in A are in the correspondence to the
C* distributions C C TM satisfying the conditions : (1) C + E, = TM, (2)
CNE, = E, (3) an arbitrarily taken vector belonging to C is the value of some
foliate vector field having all values in C [in the case of left cosets of a connected
Lie group G by a connected Lie subgroup H C G, condition (3) is equivalent to
: (3") C is H-right-invariant)].

In particular, such a distribution C always exists. A connection in A is flat
if and only if the corresponding distribution in 7'M is completely integrable.
Thus the nontriviality of the Chern-Weil homomorphism of A (M;F) means
that then there exists no completely integrable distribution C' C T'M satisfying
conditions (1)-(3) above. In chapter 7 we give a wide class of transversally com-
plete foliations for which the Chern-Weil homomorphisms of the corresponding
Lie algebroids are nontrivial. It will be some class of foliations of left cosets
of Lie groups by nonclosed connected Lie subgroups. As a preparation in this
direction we give (Th.7.4.2 ):

Let H C G be any connected Lie subgroup of G and let h, h and g be the
Lie algebras of H, of its closure H and of G, respectively. Let A(G; H)
be the Lie algebroid of the foliation of left cosets of G by H. Denote by



hp : (\/ 6*)1 — Hygp (G/H) the Chern-Weil homomorphism of the H-
principal bundle P = (G — G/H)- Then there exists an isomorphism of
algebras p such that the following diagram commutes:

& (SecVhg) | "y (G))

J0

=lp T hp
(Vo)) - (V)

Because of the well-known fact that, under the assumption that G is a con-
nected, compact and semisimple Lie group,

(hp)?: (07), — Hip (G )

is an isomorphism, we assert, thanks to the diagram above, that hg;m) is
nontrivial. This means that then there exists no C°° completely integrable
distribution C' C T'G such that (1) C+ E, = TG, (2) CNE, = E, (3) C is
H-right-invariant.

As a corollary we also obtain that ( Cor.7.4.8 ) :

No Lie subalgebra ¢ C g satisfying (1) c+h = g, (2) cN\h = h exists.
(Such a Lie subalgebra determines some flat connection in A(G; H)).

Adding the simple connectedness to the assumption about G, we get, accord-
ing to the Almeida-Molino theorem, some nonintegrable transitive Lie algebroid
having the nontrivial Chern-Weil homomorphism.

0.2 PRELIMINARIES

We assume that in our work all the manifolds considered, are of the C'°°-class
and Hausdorff, and that the manifolds M, M’, ... over which we have Lie
algebroids are, in addition, connected. By QY (M) we denote the ring of C>°
functions on a manifold M, by X (M) the Lie algebra of C* vector fields on
M, and by Sec A the Q° (M)-module of all C*° global cross-sections of a given
vector bundle A (over M).

Denote by § the category of couples (M, F) consisting of a manifold M and
a C*° constant dimensional and involutive distribution £ C TM. A morphism
f:(M',E") — (M,E)in § from (M',E’) to (M, E) is a C*> mapping f : M’ —
M such that f. [E'] C E.

Let (M, E) be an object of the category §, and f any vector bundle on M.
Each element of

k>0

Qg (M;f) :@Q%(M;f), where Q% (M;f) := Sec/\kE*®f



is called a (C'*°) tangential differential form on (M, E) with values in f, while,
for the trivial vector bundle f = M xR, briefly a (C° real) tangential differential
form on (M, E) (for that, see [28]). The space of tangential differential forms
on (M, E) will be denoted by Q° (M).

There is an obvious differential d¥ of degree +1 in QY% (M) which can be
defined in an elementary way in terms of local coordinates [28] or, equivalently,
by the global formula:

J

¥ () (Xo, ..., Xp) = Y (-1) X; (@ (Xo, ﬁxk» +

+> (-)e ([Xi,xj] , Xo, ... 9Xk>

1<j

(for © € Ok (M;f)). We evidently have (dE)2 = 0. The tangential coho-
mology space Hg(M) of (M, E) is, by definition, the cohomology space of the
complex (Q°(M),d). If E = TM, then Hg(M) is the de Rham cohomology
space Hgr(M) of M.

For a morphism f : (M',E’) — (M, E) of § and a vector bundle f on M,
we can define, in a standard way, the pullback of forms f* : Qg (M;f) —
Qs (M'; 7).

The usual law of the commuting of f* with the differentiation of real-valued
forms holds:

f*OdE:dElOf*.

Let f1,...,f*,§ be vector bundles over M. An arbitrary k-linear homomorphism
of vector bundles ¢ : f' x ... x ¥ — § determines the mapping

0i 1 Qp (M;§) x .. x Qp (M;§) — Qg (M;1)
defined by the standard formula

©x (O1,...,0) (T;01 A oo Augy)
1
= ngna ) (@1 (Jc;va(l) A ) s ey Op (m; ...va(m)))
! ge! <
in which m = ¢; where g; is the degree of ©; € Qg (M; fi).
Sometimes, the form @, (01, ...,0f) will be denoted in other ways:

(a) for forms of degree 0 (i.e. for cross-sections of the vector bundles f*), by
"2 (@1, ceey @k)

(b) for the standard homomorphisms @ : §x ... xf = ®"f, V" : fx ... xf —
\/kf by ©1 ®...® O and ©1 V ... V O respectively;

(c) for the duality (-,-) : V¥ x \/*§ — R, [8], by (81, 0,), etc.



1 THE CATEGORY OF REGULAR LIE AL-
GEBROIDS

1.1 The category of regular Lie algebroids.

Definition 1.1.1 (see [29], [30]). By a Lie algebroid on a manifold M we mean
a system

A= (A’ [['»']]’7) (1'1)

consisting of a vector bundle A (over M) and mappings
[,] : SecA x SecA— SecA, ~v:A—TM,
such that
(i) ((Sec A,[-,-])) is an R-Lie algebra,

(ii) vy, called by K.Mackenzie [23] an A nchor, is a homomorphism of vector
bundles,

(iii) Secy:Secy — X (M), £ — v o0&, is a homomorphism of Lie algebras,
(i) [& f-nl=f-[&n]+ (vo &) (f) - n for f € Q0 (M), &n € Sec A.

Lie algebroid 1.1 is called

(a) regular if 7 is a constant rank; then E := Im~ is, of course, C*° constant
dimensional and completely integrable distribution, 1.1 is then also called a Lie
algebroid over (M, FE). g =ker+ is a vector bundle, called the adjoint of 1.1,
and the short exact sequence

0—g—A-1FE—0 (1.2)

is called the Atiyah sequence of 1.1;

(b) transitive if « is an epimorphism.

The concept of a Lie algebroid enables one to make many generalizations
[15], [22].

Let 1.1 be a regular Lie algebroid. In each vector space 9 (= kerv),
x € M, some Lie algebra structure is defined by

[v,w] :==[&n] (x), &mne€Secd, {(z)=v, n(z)=w, v,v € g,

9|, is called the isotropy Lie algebra of 1.1 at z. For transitive Lie algebroid 1.1,
g is a Lie algebra bundle [2], [19], [23].

Example 1.1.2 The following are important examples of transitive Lie alge-
broids:

(1°) the Lie algebroid A(P) = TP, of a G-principal bundle P, see [16], [19],
(23],

10



(L) the Lie algebroid CDO (§) of covariant differential operators on a vector
bundle | , see [25],

() the Lie algebroid i* (T*®) of a Lie groupoid ®, see [15], [30],

(4°) the Lie algebroid A (M;F) of a transversally complete foliation (M;F),
see [26], [27]; in particular,

(5°) the Lie algebroid A(G; H) of the foliation of left cosets of a Lie group G
by a nonclosed connected Lie subgroup H C G, see [20], [27],

(6°) the Lie algebroid of some pseudogroups, see [31].

The following are examples of nontransitive (in general) Lie algebroids:
(1°) the Lie algebroid i* (T*®) of a differential groupoid ®, see [12], [29], [30],
(2°) the Lie algebroid of a Poisson manifold, see [4], [5],

(3%) the regular Lie algebroid A¥ = y~1[E] C A defined by transitive Lie
algebroid 1.1 and an involutive distribution £ C T'M (for example, a Lie
groupoid (or a vector bundle) over a foliated manifold determines such an
object).

Definition 1.1.3 (24) Let 1.1 and A" = (A',[-,-],7) be two Lie algebroids
(even not necessarily regular) on manifolds M and M', respectively. By a ho-
momorphism

H: (Al7 [['7 ']]/7’}/) - (A7 [['7 ]]77) (13)
between them we mean a homomorphism of vector bundles H : A’ — A, say,
over f: M' — M, such that,

(a) yoH = fio®,

(b) for arbitrary cross-sections £,& € Sec A with H-decompositions
Ho&=> f'-(mof), Ho& => 7 -(njof),
i J
[ 7 e Q0 (M), ni,n); € Sec A, we have
Hol&,&)V =Y f' 17 -Inomslof+> (o8& (f7)-njo f-
ij i

fZ(v'ow (f)omiof.

In the case of Lie algebroids A and A’ on the same manifold M, a strong ho-
momorphism H : A’ — A of vector bundles is a homomorphism of Lie algebroids
if and only if

11



(1) yo H =4/,
(2’) Sec H : Sec A’ — Sec A, £ — H o¢&, is a homomorphism of Lie algebras.

Indeed, ” = 7 is trivial.
"7 Let Ho&=Y, fl-mand Ho& = > I -n); be H-decompositions
of £,& € Sec A’. Then

Holg T
=[Hot, Hog] = [[Z_f" ~m,Zf'j 5]

fzfz 77 sy +Zfz 'yon)(f'j)'n;*Zf/j'('YOn;)(fi)'m
4,3
7Zfz £ Ty +Z ¥ 0 €) (f7) n Z(»y’og/) (f") oms.

J

If homomorphism 1.3 is a bijection, then H~! is also a homomorphism of
Lie algebroids; then H is called an isomorphism of Lie algebroids.

Below, we represent each nonstrong homomorphism 1.3 of regular Lie alge-
broids over f : (M’, E') — (M, E) as a superposition of some strong homomor-
phism H : A" — f A with the canonical nonstrong one » : f A — A where
f A is the so-called inverse-image of A over f. The term ”inverse-image of A
over f” appears in work [24] by K.Mackenzie, but in the sense not quite helpful
here (for example, Mackenzie’s definition, although it is general enough, ensures
neither the existence of the inverse-image of A nor its regularity for a regular
Lie algebroid A). For the sake of completness, we add that the two definitions,
1.1.4 below and 1.4 from [24], are equivalent on the ground of transitive Lie
algebroids.

Definition 1.1.4 Let 1.1 be a regular Lie algebroid over (M, E) and let f :
(M',E") — (M, E) be a morphism of the category §. The inverse-image of A
by f is a regular Lie algebroid over (M',E")

(fAA7 [[-,-]],prl) (1.4)
in which
(i)
fA=E g pA={(v,w) € E x A; f.(v) =y (w)} CE'EPfA

(f A is a submanifold of E' @ f*A because f. x v: E' x A — E x E is
transverse to the diagonal A C E x E, and f A= (f.,7) " [A],

(i) the bracket [-,-] in Sec f* A is defined in the following way: Let (X;,&) €
Secf A, i =1,2 (where X; € SecE', & € Secf A). Then, locally (say

12



onU C M'), & is of the form ngf §f o f for some g{ € Qo (M) and
53 € Sec A, and we put
[(X1,&), (X2,&)]v
= (X1, Xo], ) gl g5 - 16,810 f+ ) Xi(95) &5 o f~
3.k k

- ZXQ (9{) € o fiu-

The correctness of this definition. By antisymmetry, it is sufficient to show
that 30, g1 - g5 - [&,&5] 0 f + 20, X1 (g5) - &5 o f i

is independent of the choice of the decomposition for ;. Consider simulta-
neously the 2-linear function F : Q° (M’) x Sec A — Sec f A given by

F(9,9=> gl g [&.6]lof+X1(9)-(of, g€’ (M), € €SecA.
J

Clearly 3, g1 - 95 - [€], €51 0 f + 30, X1 (g8) & o f = X0, F (gh - &) . For t €
Q9 (M), by standard calculations and thanks to the assumption that f, (X; (z)) =

v (& (f (%)) , one can easily notice that (cf. Lemma 1.4 from [24])

To prove the examined independence, take two decompositions &, = & g5
of= > 05 é; o f. For a point z € M’, let v, be a local basis of the module
Sec A around f(z) and let & = S hi - vs, & = S, hé - v, (around f (x)),
hi, he € QO (M) ; then, around = we have 3, g5 -hio f =3 g5 -hio f for each
s. Therefore, in the end, we obtain

;F (95 - &5)
= gF <9§’Zhi'l’s> =) F (;gé“ ZOf%)
_ ZF (Zg;.i}jof,ys> - ZF (gg,Z;}g.%)
=S F(.8).

The Atiyah s;quence of the inverse-image f A of A is

O—)f*g—>fAA&>El—>O

(identify f*g with 0€D f*g).
Clearly, A
w=pry:f A— A

is a homomorphism of regular Lie algebroids.

13



Proposition 1.1.5 Let A and A’ be regular Lie algebroids over (M, E) and
(M, E"), respectively. Let H : A’ — A be a homomorphism of vector bundles
over f: (M',E") — (M,E). Then H is a homomorphism of Lie algebroids if
and only if

(1) yoH = fuo,
(2) H: A — fA ve (Y (v),H((v)), is a strong homomorphism of Lie
algebroids.

Proof. The very easy proof will be omitted. =
According to this proposition, each nonstrong homomorphism of regular Lie
algebroids is canonically represented as the superposition

H:A a2 a (1.5)

In the case of regular Lie algebroids, each homomorphism 1.3 determines a
homomorphism of the associated Atiyah sequences

’

0 — ¢ <= A& L E — 0
LH* 1 H L fs
0 — g - A L E — 0

(H™ is the restricted homomorphism of the adjoint vector bundles and H |',: :
g?x — 9|f(z)» © € M, is a homomorphism of Lie algebras).

An example of a nonstrong (in general) homomorphism of regular Lie alge-
broids is the tangent mapping f. : £/ — E to any C° morphism f : (M', E') —
(M, E) of the category §, cf. [24].

All regular Lie algebroids and all homomorphisms between them form a
category fundamental in our considerations.

Lemma 1.1.6 Let A and B be two regular Lie algebroids over (M, E), H :
A — B a strong homomorphism, and f : (M',E') — (M, E) any morphism
of . Then the mapping f H : f A — f B, (u,v) — (u, H (v)), is a strong
homomorphism of reqular Lie algebroids.

Proof. Of course, pr; of H = pr;. To prove that Sec f H is a homomor-
phism of Lie algebras, take two cross-sections {,n € Sec f A, & = (X, Y, f- & o f)

n= (Y, 3,9 o f) , and calculate
fHo[gn]
=fHo (XY f &0 ) (VD g7 &0 )

=<[X,Y],Zf"-gf[[Hoa,Ho&j]]oHZ(X (¢) =Y (f)-Ho&of)

= [[(XZfi-Ho@of),(KZgj~Ho£jof>]]

=[f Ho& [ Honl

14



(]
f H is called the inverse-image of H over f.

1.2 The Lie algebroid A (f) of a vector bundle f

Definition 1.2.1 Let f be any vector bundle on a manifold M, with a vector
space V' as the typical fibre. A linear homomorphism I : Secf — f|, is called an
f-vector tangent at x if and only if there exists a vector u € T, M such that

Hf-v)=f (@) 1) +ulf)-v(e)
for all f € Q° (M) and v € Secf.

The vector v determined uniquely by [, is called the anchor of [ and denoted
by ¢ (I). All j-vectors tangent at x form a vector space A(f),. Put A(f) =
[L.en A(f)), (adisjoint sum) and let p : A (f) — M be the canonical projection.

Clearly, each f-vector [ is factorized by some linear mapping [ from the space of
1-jets at x:
Secf — (Jlf)lw
N LT
f|xa

and the mapping just obtained A (f) — Hom (J'f;), I + [, is a monomorphism
on each fibre. One can prove [23] that the image of this mapping, equalling
CDO, is a vector subbundle of Hom (J L, f). Via this mapping we shall identify
A (f) with CDOf to obtain a transitive Lie algebroid with ¢ : A(f) — TM,
I — q(l), as the anchor. A cross-section & € Sec A(F) defines a differential
operator L¢ in § by the formula:

,Cg(l/)(m')zgx(l/), v € Secf, v € M,

being a covariant differential operator in f. Besides, each covariant differential
operator in f is of the form L for exactly one cross-section £ € Sec A (f). The
bracket [-,-] of cross-sections of A (f) is defined in the classical - for differential
operators - manner, i.e. for £, n € Sec A (f), [€,n] is a cross-section of A (f) such
that Lpe,j = Le o L) — Ly o L¢. The Atiyah sequence of A (f) is

0 — Endf<s A()) % TM — 0

(and Liog (v) = &(v) for €€ (f), where {(v)€ Secf is defined by &(v)(x) = & (v),
reM).

Take now a vector bundle f on M and a mapping f : M’ — M. Consider
the inverse-image f (A (f)) (= TM(;, »A(f) ) of A(F).

Lemma 1.2.2 For x € M’ and (u,l) € f (A(f)), there exists exactly one
element w € A(f),, with the anchor u, such that w(vo f) =l (v), v€Secf. The
correspondence (u,l) — w establishes a strong isomorphism

e f(A(F) — A(f)
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of transitive Lie algebroids.

Proof. Let x € M’ and (u,l) € f (A(f))
and

|z

fe(u) =q(1). (1.6)

The uniqueness of an element w € A(f)‘w with the anchor u, such that
w(vo f) =1(v), v € Secf, is evident. As to the existence of such an element,
we notice that any cross-section 7 € Sec f*f can be represented (not uniquely)

in the form 7 =Y, fi-v;0 f, f1 € Q° (M), v; € Secf. Put

B(r) =3 @) L) +u () - vio f (@),

The correctness of this definition: Let 7 =Y, fi-v;0f = > g/ -7jo f (locally in
some neighbourhood of x). Take an arbitrary basis p, ..., tt,, of cross-sections
of f around f (x) and let v; = > @] - ps, 75 = > 5 - ps. Therefore in a
neighbourhood of z

D flpiof=) ¢ Wjof s=1..n (17)
i i
Equalities 1.6 and 1.7 yield

Zfi(x)~l(Vi)+U(fi) ~vio f(x)

:Z<Zfi($)~<pf°f(x)> 'M%HZU(ZJ”@?OJ‘) s o f (z)
=29 @) Um) +uly’) 7o f (@),

[It is easy to see that w is an f*f-vector tangent at x (with the anchor wu).
Clearly, the mapping obtained ¢; : f (A (f)) — A(f*f), (u,l) — w, is a strong
homomorphism of vector bundles. The smoothness of ¢; follows from the fact
that ¢; maps a smooth cross-section to a smooth one: namely, (X7 > fi-&o f)
is carried over to a cross-section n such that L,(vo f) = Y. f* - Le,(v) o f,
v € Secf.

It remains to show that ¢; is a homomorphism of transitive Lie algebroids.
Of course, g oc¢; = pry. To see that Sec (¢s) is a homomorphism of Lie algebras,
take two cross-sections &, € Secf (A(f)). They are (locally) of the form

§= (XX frqof) = (V5,9 gof) for figh € Q0 (M) and € &
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Sec A (). We calculate (for v € Secf)
L[[c,of,c,o’r/]] (V o f)
= Lo 0 chon(u 0 f) = LeonoLeoc(vof)
=D Lpgma W o f+) (X (¢) =Y (f) - Lew)of
i i

= Lejofeny (Vo f).

2 REPRESENTATIONS OF LIE ALGEBROIDS
ON VECTOR BUNDLES

2.1 Definition and fundamental examples.

Definition 2.1.1 (cf. [23, p.106]) Let f and (1) be any vector bundle and Lie
algebroid (both over M ), respectively. By a representation of A on f we mean a
strong homomorphism of Lie algebroids

T:A— A(f). (2.1)
2.1.1 Adjoint representation (defined by Mackenzie [23] for the tran-
sitive case)

One can trivially notice that if v € Secg, then, for £ € Sec A, the value of [, V]
at x depends only on the value of £ at z and belongs to 9),- In this way, it is
the correctly defined element [v,v] € g|, for v € A and v € Secg.
A very important representation is the so-called adjoint representation of a
regular Lie algebroid A
adg: A— A(g)

defined uniquely by the following property:
ada (v) (v) =[v,v], ve A, ve Secg.

To see the existence of ad 4, we only need to notice that Secg > v —[v,v] € g|,
is a g-vector. The smoothness of ad 4 is evident.

2.1.2 Contragredient representation
The contragredient representation of 2.1 is, by definition,
T : A — A(f)
such that (Lriee (), ) = (Y0&) (p,v) — (@, Lrog(v)), & € Sec A, ¢ € Secf”,

v € Secf.
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2.1.3 Representations induced by a single one

A single representation T : A — A(f) determines (as in the case of a represen-
tation of a Lie algebra in a vector space) a number of new ones. Among them
we shall need the following ones:

e The symmetric product \/k T of A on \/*f as the one for which
Lk poe (V' V.V I)
= Zul V.oV Lrog (ul) V..VF, vt e Sec], € € Sec A.

e The representation Hom* (T") of A on the space of k-linear homomorphisms
Hom"(f; R) as the one for which
‘CHomk(T)oE (%0) (Vla ) I/k)
=08 (¢ (..., Vk)) - Z @ (V' Lroe (V1) ., uk) ,

for any k-linear homomorphism ¢ : f x ... Xx f — R and for v € Secf,
& € Sec A.

Via the above, the given representation 2.1 determines \/k T" of A on the
space \/lC I*.

Lemma 2.1.2 The representation \/k T% is defined by the following formula:
<£Vk Thogl‘, v V..V l/k>
= (’y (e} §) <F7 %1 V..V Uk,> - Z<F, %1 V..V ‘CTof (Vz> V..V I/k>

for T' € Sec (\/k f*) and v € Secf.

Proof. We need the following .

Sublemma. Let, for a given matrix B, the symbol perm? (B) denote the
permanent of the matrix which arises from B by the eliminating of the 7"
row and j* column (for the definition of a permanent, see [8]). The following

properties of the permanent of the matrix B = { fij 16,7 < k} hold:

e The expansion formula with respect to the il row or j* column:

k k
perm B =Y f! .perm! (B) =Y f-perm!* (B),

j=1 i=1
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e the law of differentiation :

X (perm B) = ZX(f]) perm( )

where fj and X are C* functions and a vector field on a given manifold,
respectively.

The very easy proof will be omitted.

Proof of Lemma (2.1.2). It is sufficient to show the equality for a cross-
section I' of the form I' = w*! V...Vu**, u* € Secg. Using the above sublemma,
we obtain, for v € Secf,

(L Tho§U*1 Voo Vut o Vv i)
= ut VoV Lpsgeu Vo VUt VLV )

j
[ (wtvn) o (Lpsogu™ vr) o (W)
= Zperm : : :
J i (wt vg) .. <£Tho£u*j,1/k) e {uk )
[ (wtvy) o (o &) (wv) o (uF )
= Zperm :
Y L (wt ) (*yo&)( k) e {(uk )
() o W Lreerr) o (uwF vy)
— ) perm : : :
i (whve) oo (W Lrogvr) .. (R ug)
=Y (vo&) (u,vi) - perm] — 3~ (u, Lyegvs) - perm]
ij i
<U*1,V1> <u*k,1/1>
= (y0 &) perm : :
<u*1,Vk> <u*k71/k>
—Zperm (Wt Lrogri) oo (W*k, Loroery)
<U*171/k> <u*k71/k>

=(yob)(wtv. .. vur v v.. Vi)
- Z(u*l Vo VU VLV Lroevi VoV ).
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2.2 The inverse-image of a representation

Definition 2.2.1 Let A be any regular Lie algebroid over (M, E), and § any
vector bundle over M, whereas f : (M',E') — (M, E) — any morphism of the
category §. By the inverse-image of a representation

T:A— A(f)

over f we mean the representation f*T : f (A) — A(f*f) defined as the super-
position

P A LS F A S A

where c; is the isomorphism described in Lemma 1.2.2 whereas f T is the
inverse-image of T over f, see Lemma 1.1.6.

Lemma 2.2.2 The inverse-image of the adjoint representation is adjoint, i.e.
[ (ada) =ady 4.
Proof. It is enough to check the equality
£* (ada) (u) (v o f) = ady 4 (u) (v o f)

for v € Secg and u € f A. Write u = (v,w) for v € E' and w € A, see Def.
1.1.4. Then

" (ada) (u) (vo f) = cro f ada (v,w) (vo f)
= ¢i(v,ada (w)) (v o f) = (ada (w)) (v)
= [w,v] = [(v,w),(0,v0 f)] =adf 4 (u) (vo f).
]

Lemma 2.2.3 Under the canonical identifications f* (f*) = (f*f)", f* (\/k f) =
\/k (f*f), the following equalities of representations hold:

(a) J7(T%) = (f°T)",
) 1 (VET) = VF ().

Proof. (a): Let z € M’ and (v,w) € (fAA)‘I7 ie.ve B, we Ay and

|
f« (v) = v (w). Of course (by the uniqueness considered in Lemma 1.2.2), it is
sufficient to show the equality

F(T%) (v,w) (v 0 f) = (f*T)* (v,w) (v* o f)
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for v* € Secf*. Both sides of the equality are elements of the space f[;c(z)
(= (f*f*)lx), therefore, to show this, take arbitrary v € f and a cross-section
v € Secf, such that v (f (z)) = u.

(f(T%) (v,w) (v o f) )
= (f (T%) (v,w) (V" o f) v (f (2)))
= (c(f*) (v Th( )) (v*o f),vo f(x))
= (T* (w) (V") ,v o f (2))
= (y () (v*,v) = (" (f (2)), T (w) (v))
= fo () (", v) = (" (f (2)) ¢ (0, T (w)) (v o )
v<<v*of,uof>> (W (f (2)), f*T (v,w) (v o f))
(f D) (v, w) (v o f) v o f (x))
(f*T)F (v, w) (v o f) ,u).

(b): Under the canonical identification f* (\/k f) = \/* (f*f), we have vy 0 fV

C

~Vygof =(v1 V..Vyg)offor v, € Secf. Since a cross-section v € Sec \/k fis
(locally) a linear combination of cross-sections of the form v4 V...V, v; € Secf,
we see ( by the same argument as in (a) above) that it is sufficient to notice the
following:

f (\/kT) (0,w) (1 V oV 1) © f)

:\/kTw )(¥1 V... Vi)
fzyz YV VT (w) (1) Vo Vg (f (2))

:\/ (f*T) (v,w) (r1o0 fV..Vygof).

2.3 Invariant cross-sections ( cf. Mackenzie, [23, p.195])

Definition 2.3.1 Let 2.1 be any representation of a reqular Lie algebroid A
over (M, E) on §f. A cross-section v € Secf will be called invariant (or, more
precisely, T-invariant , or, after Mackenzie, A-parallel) if T (v) (v) = 0 for all
v € A and v € Secf.

Denote by (Secf)o(ry ( or briefly by (Secf) if it does not lead to confusion)
the space of all T-invariant cross-sections of f. (Secf)ro(r) is an Qf (M, F)-
module where F is the foliation having E as its tangent bundle [Q) (M, F)
being the ring of F-basic functions].

One can prove ( cf. [23]) that each invariant cross-section v € Secf with
respect to a representation T : A — A(f) of a transitive Lie algebroid A is
uniquely determined by the value at one of the points of M.
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Lemma 2.3.2 Let T : A — A(f) be a given representation of A on f. An
element ¢ € Sec \/kf determines a k-linear homomorphism ¢ : fx ... xf — R by
the formula : @ (vy,...,v5) = (@, v1,...,v%). We have that ¢ is \/* T-invariant
if and only if ¢ is Hom” (T)-invariant.

Proof. Follows directly from Lemma 2.1.2 and the definitions. =

Lemma 2.3.3 Let T : A — A(f) be a given representation of A on f. Let
Ty € Sec\/*§ and T € Sec \/' § be \/* T- and \/' T-invariant cross-sections, re-
spectively. Then the symmetric product I'1 VI € Sec \/kH fis \/kH T-invariant.

Proof. Follows trivially from the equality

(V1) m@vr = (Vire) eoveewsriwov (V') o e

for v € Aj,, z € M ; which can easily be checked by considering simple tensors
1= V..V, T =vp1 V.o Vg, 1 € Secf, only. m

Theorem 2.3.4 Let A be any regular Lie algebroid over (M, E), and f any
vector bundle over M, whereas f : (M',E") — (M, E) — any morphism of the
category F. For a representation T : A — A(f), the linear mapping f* : Secf —
Secf*, v vo f, can be restricted to the spaces of cross-sections invariant under
T and f*T, respectively:

fro : (Sec f)]o(T) — (Sec f*f)lo(f*T) :
Proof. Let v € (Secf)o(p) and (v,w) € f A. Then

T (v,w) (vo f)=c¢ oFﬁT(v,w) (vof)
=ci(v,T(w)) (vo f) =T (w)(v) =0.

3 CONNECTIONS IN REGULAR LIE ALGE-
BROIDS

In this chapter we fix a regular Lie algebroid (1.1) over (M, E) € § with the
Atiyah sequence 1.2.

3.1 Connections, curvature and partial exterior covariant
derivatives.

Definition 3.1.1 By a connection in A we mean a homomorphism of vector
bundles A : E — A such that vo A = idg. The uniquely determined homomor-
phism w : A — g such that w|g = id and w|Im X\ = 0 is called the connection
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form of X\. The projection H : A — A onto the second component with respect
to the decomposition A = g@ C, C :=Im A, is the horizontal projection. By
the curvature tensor of a connection X we shall mean the form , € Q3% (M, g)
defined by

Qb(Xl,XQ) = —W(HA o Xl, Ao XQ]]), X; € Sec E,

or, equivalently, by

Qb(Xl,XQ) =)Ao [Xl,XQ} — [[)\OX1,>\ OXQ]], X; € SeckFE. (31)

A given connection A in A determines the so-called partial exterior covariant
derwative V : Qg (M,g) — Qg (M,g) by the formula

k
(VO) (X0, ..., Xi) = Y (—1)! [A 0 X;,0(Xo, ...jrr, Xi) ]+
=0
+ 3 (=)™ O(1X4, X)), Xo, ooy Xi),

X; € Sec E, for © € QX (M, g). Without difficulties we assert that
V(v-0)=VvAl+v-d¥ (3.2)
for v € Secg and 0 € Qg (M); besides, the linear operator
V|Secg : Secg —Q% (M, g)
is a partial covariant derivative (in the sense of [11], compare [13], [14]).

Proposition 3.1.2 (1) If o:g X ... x g =R is a Hom" (ad4)-invariant k-linear
homomorphism, then, for ©; € QF (M, g), we have

d¥(0.(O1,..,0p)) = Y ()P 0 (0,..,VO;, .., Op).

i=1'%
(2) V4 =0 (The Bianchi identity).

Proof. (1): We begin with the following lemma: m
Lemma For a Hom"* (ad 4)-invariant k-linear homomorphism ¢:g X ... x g —
R and v; € Secg, we have

A1, k) = Y @ulV1, s Vs oy ).
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Proof of the lemma. According to definitions 2.1.3 and 2.3.1, we have, for
X € SecE,

" (p(v1, e ) (X) = X (@ (01, ... 1))
= (')/ oAo X)((p(l/l, () Vk))
= Z(p(ljl, ceey EadA o)\oX(Vi), ceey Vk-)

= Z@(yl, N PN, €8 71 RS 7%
= Z(p(z/l, e (V) (X)), )

= Z(p*(ul, oy VU4 g ) (X)),

To continue the proof of our Proposition, we notice that since both sides of
the examined equality are R-linear with respect to each ©;, and each g-valued
form © is (locally) a linear combination of forms v - § where v € Secg and 6
is a real form, therefore it is sufficient to show the equality for ©;, = v; - 6;,
v; € Secg, 0; € Q% (M). From the lemma above and 3.2 we obtain

AP (@u(v1 - 01, oy v - O))
= dE(SO(Vla "~7Vk) : 91 VANRTRIVAN Qk)
= dE((p(Vlv o VR))ANOLA AN O+ (v, vk) - dE((gl A A Og)

= Z Os(V1y ooty VU o UE) ANOL A N O+

k
+ oV, ey Vi) - Z (—1)(11'~_“"~_‘1F1 L A . ANdEO; A ... N O
i=1

(=)D H =t () 0y, VU Ay, oy - O+

|

s
Il
_

(_1)q1+4..+q171 (p*(Vl . 91, syt dEGl, ey Vg Qk)

+
M=

1

o
Il

(_1)q1+4..+q171 (p*(Vl . 91, . Vy; A 91 + v dEal, R ek)

I
'M”

s
Il
_

(=) B H = o () 0y, V(v - 0), oy v - Op).

I

s
Il
_
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(2): From the definitions, equality 3.1 and the Jacobi identity in Sec E we
obtain:

V% (Xo, X1, X2)

= Ao Xo, (X1, X2)] — [A o X1, (X0, X2)] + [N 0 X2, (X0, X1)]
— U ([Xo, X1], X2) + Qp([Xo, X2, X1) — ([ X1, X2, Xo)

=[AoXp, Ao [X1,Xo] —[ANo X1, A0 Xo]] — [Mo X1, Ao [Xo, Xao]—

— Mo Xg, Ao Xo]] + [Mo Xo, Ao [Xg, X1] — [Ao Xg, Ao X4]]—

— Ao [[Xo, X1, Xo] + [A o [Xo, X1], A o Xo] + Ao [[Xo, Xo], X1]—

— [Ao[Xo, X2], Ao X1] — Ao [[ X1, Xa], Xo] + [X o [X1, X2], A o Xo]

=0.

3.2 Inverse-image of a connection

Definition 3.2.1 Let A be a connection in A. Take a morphism f : (M', E') —
(M, E) of the category § (see Preliminaries). By the inverse-image of \ over
f we mean the connection X in the inverse-image of A over f, (4), defined by
A(W) = (v, A(f (v))), v € E'. Notice the commuting of the diagram

fA = A
21 AT
g I E

and the equality AoX = (X, o f.oX) for X € Sec E'. The connection form
of Nisw: f A— f*g, (v,w) — w(w), where w is such a form for .

Proposition 3.2.2 Let A be a connection in A, and Sy, - its curvature tensor.
Then U, the curvature tensor of the inverse-image A of A over f, is equal to
QW(X,Y) = (f*U%)(X,Y), X,Y € SecE'.

Proof. We start with the following
Lemma (1) For X € Sec E’, we have (X, Ao f,oX)€Secf A. =
(2) For X,Y € Sec E’, we have

[(X, X0 fuo X), (Y, Ao fuoY)] = ([X,Y]), Ao fu o [X, Y] = (f")(X,Y)).

Proof of the Lemma. (1) is evident. To prove (2) we establish the equality
in some neighbourhood of an arbitrary point z € M’. For the purpose, take
any commuting vector fields Y, ...,Y"™ € Sec(E) being a local basis in some
neighbourhood U of y := f(z). Then, on U’ := f [U] C M’', we may write

(feo X =g Yo P, (feoY)ur =0 W Yo
i J
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for some g%, h? € Q° (M). Therefore, by 3.1,
ﬂ(X,)\Of*OX),(Y,)\Of*OY)H‘U/
=[(X,> g AoY o f), (¥, W -AoYio )]
i J
:([X,Y],Zgi~hj~[[/\oYi,/\on]]oerZX(hj)~)\onof—
i,J J
*Zy(gi)'Aoyiof)|U'
= ([X,Y], Zg B (YY) o f Y X(W)-AoY o f—
J
S v
= (X, Y], ~(f")(X,Y) +ZX(hj) AoYiof— Zy(gi) AoYio f)

It remains to prove that

(Foo (XY = 3 X (W) - Y70 f =3 ¥ (g")-Y o

Let oo € Q° (M); then (fi o X)(a)jyr = X(ao flipr = (39" - Yi(a)o i,
analogously - for Y’; so,

feo (X Y](a)jur = [X,Y](ao
(X(Y(ao f)) - ( (OéOf)))w

= XZhJ Y (a ng Yo
Zw Yi(@)o f - ZY< g)-Yi(@)o N

?

because

Zhﬂ' )= 2g Y@ e
Zh] Ta *Zg ([ Yia))
th g -Y'(Ya) f—ng~hJ‘~Yf(Yﬂ’a>of>|U/

thﬂ Y Y)(a) o fwf’]

=0.
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Proof of the proposition. Let X,Y € Sec E' and x € M'. By the lemma above,
we have

0(X,Y)(2) = ~@

(Mo X, Ao Y])(x)
= —w(
(

[

[(X; Ao fuo X), (Y, Ao fu o Y)])(z)

(X, Y], Ao fuo [X, Y] = (f7 ) (X, Y))) (2)
@) (Ao fuo [X, V] = (f2)(X, Y))())
(" 0)(X,Y) ().

= -

S

Proposition 3.2.3 Let H : A’ — A be an arbitrary homomorphism (say, over
f:(M',E") — (M,E)) of reqular Lie algebroids. Let A\: E — A and X' : B/ —
A’ be connections in A and A’, respectively, such that H o XN = Xo f; then the
curvature tensors Q and Q) of X and X', respectively, are related to each other
via

(f*Qb)£ = H[;( ;).L)’ reM.

Proof. Represent canonically H in the form of superposition 1.5. Let }\
be the inverse-image of A over f and denote by 2 the curvature tensor of A.
Consider the following diagram

H,
9 i — 9)f()
N N
T, 9)4(x) T Qga)
T Qbm
E/ El _ E/ E/ foa X fra E B

By Prop. 3.2.2, we have the commutativity of the right square. Thus the
proposition reduces to the case of a strong homomorphism, say, H : A — A’:

W(X,Y)=-0([Ao X, AoY]) = —@([HoN o X,Ho XN oY])
=—-w0oHo[NoX,NoY]=-Htow[NoX,NoY]
= H O, (X,Y).

4 THE CHERN-WEIL HOMOMORPHISM OF
A REGULAR LIE ALGEBROID

4.1 Definition of the homomorphism.

Let 1.1 be an arbitrary but fixed regular Lie algebroid over (M, E) € § and let
1.2 be its Atiyah sequence. Assume also that a connection A in A is given, and
that Qp, € Q3% (M, g) is its curvature tensor. Let us fix a point z € M. By the
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commutativity of the algebra @F=% A* E},, there exists [8,p.192] exactly one
homomorphism of algebras

~ k20 2k
Xane:Va. — DN EL

such that A?(A)A)J(l) =1 and (A7/\))$(F) =T, Ne), T € VlgTI ZgTw.

Lemma 4.1.1 X4 ) .(T) = & - (T, Qe V... V. Q) for T € \/kgl*/ch
: —_——
k times

Proof. Define auxiliarily a mapping m

k>0

k
By : ®g|*m — @/\Qk El*aﬂ F'— (T, Qe ® ... @ Qpge), for T € Q@gl’fch

Thanks to the simplicity of the nature of the duality &) gj, % Q9. — R

(see [8]), we state (analogously as in Lemma III in [9,p.261]) that j3, is a ho-
momorphism of algebras. Take the canonical projection 7,:@) gl*w — gl*gp,
WR1 ... ®wg — wy V... Vwg. The following diagram

* Ba k>0 A2k s
Tz | /X(A,)\),a:
Vg,

commutes, which can easily be seen by checking on simple tensors wy ®...Quwy, €
Q" 9}, Let kg : \/grm — ®ng denote a mapping defined by k(w; V...Vwg) =
A Wo(1)®...@Wo(x). Then myot, = id and (see [8, pp.91,193]), for T € \/* gi:
and u; € g,,

1
(e(T),u1 ® ... Qug) = R (Tyug V... V ug).

Therefore
‘)E(A,)\),x(]-—‘) = ‘)E‘(A,)\),m(ﬂ-m o K'x]-—‘) = Bz(’il—‘) = <"$x1—‘a be ... ® sz>7

so, for v; € F,

X(A’,\)VI(F)(vl A A ’ng) = <Hz(r), Qpr ® ... ® wa(vl A A ’ng)>
1

= E . <F,sz V..V Qbm>(v1 VANRTRIVAN "ng).

Fix an integer £ > 0. The family of homomorphisms ??(’27)\)7;8 : \/kgfx —
/\21c E‘*m, x € M, gives rise to a strong homomorphism of vector bundles X(kA, NE

Vg — /\% E* and, by the Lemma above, we have the equality

1
o <F,Qb\/ \/Qb>

xk r=
(ax ° 2
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for I' € Sec \/’c g*, from which we obtain that 2\3(1347)\) is a C'°° homomorphism of
vector bundles. The homomorphism of Q° (M)-moduli

k>0 k>0

Xan @SGC\/Q — P (M) c (M),

induced on the cross-sections, is, of course, a homomorphism of algebras. The
adjoint representation ad4 gives rise to a representation \/k adi‘ of A on \/k g,
see 2.1.3. Denote by (Sec\/* g*)so the space of invariant (under \/* adix) CrOss-
sections of \/k g" and restrict X4 y) to invariant cross-sections to obtain

k>0 k
X(A7)\)7Io : @(Sec\/g*)lu — Qg (M)

According to Lemma 2.3.3 @"=%(Sec \/* g*) o forms an algebra.

Proposition 4.1.2 The forms from the image of X(a )10 are closed.

Proof. Let ' € (Sec \/k g*)ro. Then, by Lemma 2.3.2 and Prop. 3.1.2,

A (X .10 (0) = - PRV oV ) = - ()
1 .
== Z(F*(Qb7 s, Voo, Q) = 0.
/ k—1 times

Define the superposition

k>0
X, o
hea : €D Sec\/g LA kerd” — Hp (M).

4.2 The functoriality of the homomorphism A4 ))

Let H : A’ — A be an arbitrary homomorphism (say, over f : (M',E') —
(M, E)) of regular Lie algebroids. Define the pullback H+* : @2 Sec \/* g* —
B"=2? Sec \/* g*' by the formula:

<(H+*(F))I,’U1 V... \/Uk,> = <Ff(w),H‘j;(’U1) V..V H‘J; (’Uk)>, T e M/,Ui S g?z
It is easy to see that H* is a homomorphism of algebras.

Proposition 4.2.1 The pullback HT* maps invariant cross-sections into in-
variant ones.

Proof. Represent H in the form of superposition 1.5 and notice that
H™(T) = H™™((XT)*(I")); therefore we see that it is enough to consider
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two cases: (a) a strong homomorphism and, (b) the canonical homomorphism
X:f A— A, see§l.1.

(a) Consider the case of a strong homomorphism H : A" — A of regular
Lie algebroids (both over (M, E)). Let I' € (Sec\/"g*)so. For &€ € SecA’,
o; € Secg’,

(y 0o &)(H™T,01 V...V o)
=(yoHo&WI',H ooy V..VH' o0y)
=Y (IH ooy V..VH o[£, 05 V...V H" o 0y)

= Z(H**F,al V. V[Ea] V... Vo).
n
(b) Consider the canonical homomorphism X : f* A — A. Identify f*(\/* g*) =
\V¥(f*g)*. Then (X+)*T = f*T and, applying Lemmas 2.2.2 and 2.2.3, we get

k k
£(\/ ad®) \/f ad’ :\/adfm

Our assertion now follows from Theorem 2.3.4.

Theorem 4.2.2 (The functoriality property) Let H : A’ — A be a homo-
morphism (say, over f : (M',E") — (M, E)) of reqular Lie algebroids. Then,
for arbitrarily taken connections X' and X in A’ and A, respectively, such that
Ho )N = )Xo f,, the following diagram commutes:

@kzO(SeC ng*)lo hﬂ) He (M)
Ht | | f#

h
EBkZO(Sec\/kg’*)Io —' Hg (M').

Proof. Of course, it is enough to prove the commutativity of the following
diagram:
X,
O (SecVgr) T Qp(M)
Ht | L
X ’ !
B secVrg™) T ap ().
Let € be the curvature tensor of A . Take I' € Sec \/k g. By Prop. 3.2.3, we
have, for x € M’ and v; € E|

x?
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f*o X(A7/\)(F)($;U1 Ao A vag)

_ % AT,V e VU (F(); fu (01) A e A fi (v20))

- % AT py W Voo V()5 fi (V1) A e A fic (v2r)))

— % (Tt 2% . ngna S (f(@); fr (Vo)) A fr (Vo)) V oo
VU (f(@); fe (Vo(2h-1)) A fr (Vo(2r)))

- % (T ), Qik Y sgno - HiE(Q4(25051) A vg(2) Vo
LV H;(Qg(x;va(gkq) A Vg(2k))))

_ % (HP ), 2% 3 sgn0 - (@5 000y Ae(z) Vo

V(5 Ve (26— 1) A Vo(2m)))
_ % CH ()0, (Vo V) (501 A Avag))

= X(A’,)\’) o H+*(F)($,’U1 VANRAN ng).

4.3 The independence on the choice of a connection

Theorem 4.3.1 Let 1.1 be an arbitrary regular Lie algebroid over (M, E).
Then, the homomorphism his independent of the choice of a connection \.

Proof. Let \; : E — A, i =0, 1, be two arbitrarily taken connections in A
and let w; : A — g be their connection forms. Take the regular Lie algebroid
TR x A over (R x M, TR x E) [24] being the product of the trivial Lie algebroid
TR with A and take in it the connection form w : TR x E' — 0 x g defined by

w(t’w) (U7 U)) = (05 WO:E(U)) . (1 - t) + OJ1$<U)) . t)
The following

G:TRxA— A, (v,w)+— w,

Fi:A—TRx A, w+— (0:,w),
(0; is the null tangent vector at t € R), ¢ € R, are homomorphisms of regular Lie
algebroids over pry : (RXM,TRX E) — (M, E) and j; : (M, E) — (Rx M, TR x

E) (z+ (t,2)), respectively. Notice the equality wo F; = F;" ow;, i = 0, 1. Let
A:TR x E— TR x A be the connection in TR x A, corresponding to w. We
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see that Ao j;, = F; o \;. Functoriality property 4.2.2 yields the commutativity
of the diagram fori =0, 1:

h(Trx 4,
@ = (Sec V" (0% 9))pe 2V Hrgew (R x M)
Fi | Lt
h )
@kzO(Sec \/k g )10 (ax) Hg (M).

Consider the homotopy H = idrx s joining jo to ji. Since H : (R x M, TR x
E) — (R x M TR >< E) is a morphism of the category §, therefore H implies
the equahty jo =¥ (h gy (R x M) — Qi (M) defined by (hO)(x;v1 A
A Vg-1) fo (t,z) at Av1 A ... ANvg_1)dt is a cochain homotopy operator,

i.e. the condition j§ — j;i =ho dE + d¥ o h holds, cf. [28]). From the fact that
Go F; =idy, i = 0,1, we have

oGT* =1id.

Therefore m

hiang) = hapg) 0 FiT 0 G = jf o hirrya ) o G
=57 o hirrxany © G = hea ).

The theorem just proved means that the examined homomorphism /4 ) is, in
fact, a characteristic feature of the regular Lie algebroid A and justifies its being
denoted by h4. It will be called (traditionally) the Chern-Weil homomorphism
of A, whereas its image Imhg C Hg (M) will be called the Pontryagin algebra
of A and denoted by Pont A. Clearly,

k

ha(T) = T,V .. v)] if T € (Sec\/g)re, (4.1)

1
[
where ), is the curvature tensor of any connection in A. As a simple corollary
from Theorem 4.3.1 we obtain

Corollary 4.3.2 If the Chern-Weil homomorphism ha of a regular Lie alge-
broid A is montrivial (i.e. hY # 0), then there exists no flat connection in

A.

In the nearest chapter we compare this homomorphism with the well-known
homomorphism for principal bundles, whereas in the next ones we examine this
homomorphism more precisely for Lie algebroids called into existence by other
objects such as TC-foliations or nonclosed Lie subgroups.

5 COMPARISON WITH PRINCIPAL BUNDLES

5.1 The Lie algebroid of a principal bundle [16], [19], [23].

Let us fix a G-principal bundle (P = (P, 7w, M, G, )). By a Lie algebroid A(P) of
a P we mean a transitive Lie algebroid (A(P), [, -], ~) on a manifold M, in which

32



A(P) =TP/G (i.e. the vectors v and (R,).v, v € TP, are identified for each
a € G), y([v]) = 7« (v), v € TP, where [v] denotes the equivalence class of v,
and the bracket is constructed on the basis of the following observation (see [16]
[19]): For each cross-section n € Sec A(P), there exists exactly one C'*° right-
invariant vector field ' € Xf(P) such that [1)/(z)] = n(72), and the mapping
Sec A(P) — XE(P), n — 7/, is an isomorphism of QY (M)-modules. The
bracket [£,7n] for £,n € Sec A(P) is defined in such a way that [¢,n]" = [£,7].
[The Lie algebroid of a principal bundle can also be constructed in some other
ways [16], [19]].

The Lie algebra bundle g adjoint of A(P) is canonically isomorphic to the
Ad-associated Lie algebra bundle P x g (g denotes the right! Lie algebra of
G)viaT: P xgg—g, (2,v) — 2(v), where

51g— gy v [(A)we W), @ i=7(2), (5.1)

is an isomorphism of Lie algebras, A, : G — P, a — z-a (see [16], [19]). Notice
that
(za) = zo0Adg(a), z€ P, a€G.

Let (P',n',M,G’,1) and (P,7, M,G,-) be two principal bundles (on the same
manifold M) and p : G' — G - a homomorphism of Lie groups. By a (u-
Yhomomorphism of principal bundles

F:. (P, MG, 1) — (P,x,M,G,-)

we shall mean a mapping F : P/ — 3P such that mo F = 7/ and F(z - /a) =
F(z) - p(a), 2 € P', a € G'. F determines a homomorphism of Lie algebroids
dF : A(P") — A(P), [v] — [Fx (v)] (see [16], [19]).

5.2 The Lie algebroid of a principal bundle of repers

With a vector bundle f we associate the Lie algebroid A(f), see 1.2. Of course,
with f we can also associate the Lie algebroid A(Lf) of the principal bundle
Lf of repers of f. Both of them are isomorphic [23] which can be proved by
considerably simpler means than those of K.Mackenzie [23]. We begin by giving
some simple

Example 5.2.1 For the right Lie algebra Tiq(GL(V)) of the Lie group GL(V),
V' being any finite dimensional R-vector space, the following linear homomor-
phism

p:T(GL(V)) — EndV, v+— (wr— v(w)),

where w : GL(V) — V, a + a Y(w), is an isomorphism of Lie algebras
provided that End V' is equipped with the canonical Lie algebra structure [l1, 3] :=
lyoly—ly0ly. Of course, thanks to the fact that GL(V') can be considered as an
open subset of End V', we have the canonical identification ¢ : Tia(GL(V)) —
EndV. Then, py = —id.
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Now, we apply this idea to vector bundles. Let f be any vector bundle over M
with the typical fibre V' and let Lf be the GL(V)-principal bundle of all repers
of f interpreted as linear isomorphisms V' — f, x € M. For a cross-section
v € Secf, define the C*° mapping

v:Lf—V, ur— u” (). (5.2)
It is easy to see that, for £ € Sec A(Lf) and v € Secf,
[,5(1/) M —f z— u(é.qlt(ﬂ))? u € (Lf)\acv

is a correctly defined C*° cross-section of f. By a simple calculation we assert
that

(1% Le(f-v) = f-Le(w) + (o O)(f) - v, f € Q°(M), which means that
Le:Secf — Secf is a covariant differential operator, [23],

(i) Lye=fLe
(iii%) Lgeyy = Leo Ly — Lyo Le.

By (i%), L¢ can be interpreted as a C cross-section of A(f) with g o L¢ =
yo¢, see 1.2, and, by (ii%), Sec A(Lf) — Sec A(f), & — L¢, is a Q° (M)-

homomorphism. Therefore we see the existence and the uniqueness of a homo-
morphism of vector bundles

Dy : A(Lf) — A(f)

such that ®; o £ is the cross-section of A(f) corresponding to a covariant differ-
ential operator L¢. By (iii%), ®; is a homomorphism of Lie algebroids. ®; is
defined by the formula:

Qs ([v])(v) = u(v(P)), where v e T,(Lf), ue€ Lf.
Proposition 5.2.2 ®; is an isomorphism of transitive Lie algebroids.

Proof. Look at the homomorphism of associated Atiyah sequences induced
by ®;. By the 5-Lemma, it is clear that it suffices to see that @;’ :g — Endf
is an isomorphism of vector bundles (g being the adjoint Lie algebra bundle of
A(Lf)). For the purpose, take z € M, u € (Lf) and notice the commutativity
of the diagram

o
9|z —%  End (ﬂx) uogou~!
e > 1
Ta(GL(V)) £ EndV a
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5.3 Representations of principal bundles on vector bun-
dles

Let f be any fixed vector bundle over M, with a vector space V as a typical fibre.
Denote by Lf the GL(V)-principal bundle of all repers z : V. — fj,, x € M.

Definition 5.3.1 Let p : G — GL(V) be a homomorphism of Lie groups.
By a p-representation of a principal bundle (P,7,M,G,-) on f we mean a p-
homomorphism of principal bun-dles

F:P—Lf. (5.3)

Example 5.3.2 (a). By the adjoint representation of P we mean the Adg-
repre-sentation
Adp: P — Lg, z+— %,

where 2 is defined by (5.1).
(b). The contragredient representation of (5.3) is

Fo:P — L(f), z+— (F(2)7Y)".

(c). The symmetric product of (5.3) is

k k k
\/F:P—>L(\/f), Z|—>\/F(z)

5.4 Differential of a representation

Definition 5.4.1 By the differential of a representation F' : P — Lf we mean
the representation F' : A(P) — A(f) defined as the superposition F' = ®s o dF.

Example 5.4.2 Consider a Lie group G as a G-principal bundle. Its Lie al-
gebroid A(G) (on a one-point manifold) can be canonically identified with the
right Lie algebra g of G (see [19]) via the isomorphism

¢:¢G:A(G)4)gv [’U]F—>®R(’U),

where OF denotes the canonical right-invariant 1-form on G. Therefore [v, w] =
[v,w]® ([-,]|% is the right Lie algebra structure on g). The Atiyah sequence of
A(G) equals

0—g=g—0—70

(g is treated here as a vector bundle over a one-point manifold), whereas the
principal bundle Lg of repers of the vector bundle g is the same as the Lie group
GL(g) of all automorphisms of the vector space g. Besides, the following two
isomorphisms

A(GL(g)) = A(Lg) =% A(g) = g" R g = End g,
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and
A(Lg) = A(GL(g)) = Ta(GL(g)) > Endg,
are identical (which is not difficult to prove). Also, after the identifications
A(G) = g and A(GL(g)) = Tia(GL(g)), the adjoint representation Adg of the
principal bundle G is simply the adjoint representation of the Lie group G.
Therefore d(Adg) = (Adg)«e-
Seeing the following commuting diagram

(Adg),. ~
S T(GLe) &
NG o = N\ | —id

and recalling that (c o (Adg)«e) (v) (w) = [v,w]t ([-,-]F is the left Lie algebra
structure on g), we assert that, for v,w € g,

(Adg)' (v) (w) = —(Adg) (v) (w) = —[v,w]*

= [v,w]® = [v,w] = ada(g) (v) (w),

which means that (Adg)" = —ad (@)

Theorem 5.4.3 (a) (Adp)' = ada(p),
(b) (F&) = (F)* and (\V* F)' = \/*(F") for any representation 5.3.

We start with the following

Lemma 5.4.4 Let ¢ : U x V. — p~L[U] be a local trivialization of a vector
bundle § (with V' as a typical fibre). For v € Secf, denote by vy the function
Usz— wl;l(y) € V. Then the mapping

¥ :TU x EndV — A(f),0,

such that ¥ (v, a)(v) = ¥, (v(vy) + a(vy(x))) when v € T,U and a € EndV, is
an isomorphism of Lie algebroids.

Proof. It is immediate that 1 (v,a) is an f-vector with v as the anchor,
which means that ¢ o ¢ = pry. First, we notice that 1 is a bijection such that
Y+ T,U x EndV — A(f)), is a linear isomorphism. The fact that ¢, is a
monomorphism is clear. To see that it is an epimorphism, take an arbitrary
I € A(f)|, and notice that the element &ﬁl(l(u)) — q(1)(vy) of V depends only
on the value of v € Secf at x. Denote by a(u) the element where v is a cross-
section of f such that v(z) = ¢j,(u),u € V. Put @ = (u +— a(u)) € EndV.
One can trivially assert that ¢ (q(l),a) = I. It remains to verify that Sec is
a homomorphism of suitable Lie algebras. To this end, take X,Y € X(U) and
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o,n € Q°(U;End V). For 2 € U and v € Secf, we have

[¢ 0 (X,0),4 0 (Y,n)]a(v)

= Ple (Xucu)(& o (Yyn)(¥)) = ¥ (Ye, ) (¥ 0 (X
= Y (Xe

- w\m( Y (X (Vw) + J(Vw)) + nz(Xx(Vw) + Ur(”l/)(
= Yo ([X, Yo (vy) + Xo (7)) (vy (@) = Ya(0) (vy(2)
= (o ([X,Y],Lx(n) — Ly (o) + [o,7]))2(v)

= (¢ o [(X,0), (V.n)])a(v).

Proof of theorem 5.4.3 (a): The case P = G was considered in Example 5.4.2. To
prove (a) in all its generality, take an arbitrary local trivialization ¢ : U x G —
P. ¢ determines a local trivialization o4 : TU x g — A(P), (v,w) — [@x«(v,w)],
of the Lie algebroid A(P), (see [19]), especially, a local trivialization 1 := ¢ :
Uxg—g, (z,w) — @ﬁ(@x,w),of the vector bundle g. Next, according to

)
—
—~

AN
N
=

the Lemma above, we obtain a local trivialization ¢ : TU x Endg — A(g) of
the Lie algebroid A(g). To prove that (Adp)’ = ad(p), it is sufficient to show
(taking account of the classical equality (Ad)’ = ad) that two following diagrams
commute for any ¢:

Ay A Alg) APy MW Alg)
7 T A1 T
TUxg ——  TUxEndg Tng —  TU x Endg
id x (Adg)’ id x (—ady )

in which (Adg) : g Adose Tia(GL(g)) 2 End g (c as in Example 5.4.2). For the
purpose, take v € Secg, v e T,U, w € g and notice that ¢, = ¢(x, e) , whereas
voAdpoyp: U x G — g is given by
7o Adpoyp(x,a) = v(p(x,a) ) = i(p(x,e) oAdga) = Adg(a™")(vy(z))
= vy(z) (Adg a).

Therefore

(Adp)" o o™ (v, w)(v)

= ®g o d(Adp)([p«(v, w)])(v)
= Pq([Adps(px(v,w))])(v) = 1/f\x((AdP o)« (v, w)(P))

= P12 ((v,w)(7 0 Adp o)) = P14 (v(vy) + w(vy(z) o Ada(-)))

=P (v(vy) + pg(Adew w) (v ( ) = Yo (v(vy) — Adg(w) (vy (@)
=1 o (id x — Adg) (v, w)(v).
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Since ¢4 o (0,vy) = v, we have, following the fact that ¢“ is an isomorphism
of Lie algebroids, that

ad a(py o™ (v,w)(v) = [

)

), 0% 0 (0,v5)] = ¢f, [(v,w), (0,v4)]

( = Y2 (v(vy) = [w, vy (2)]")
)

)
= Yz (v(vy) — adg (w)(vy(2)))
= o (id x — ady) (v, w)(v).

(b): Consider the identical representation idzs : Lf — Lf. Of course,
s : A(Lf) — A(J) is its differential. First, we notice that

(1) F# =id},oF,

(2) T8 = idi‘(f) oT for any representation T : A — A(f), in particular, (F')% =
;40
1dA(f) o(F"),

(3) (id'Lf)h = (idth)’ or, equivalently,
id’y ;) 0Py = Dy, 0 d(id];).

(1) and (2) follow directly from the definitions. (3): Let ¢ € Secf*, v € Secf,
u € (Lf)|, and v € Ty, (Lf). Then

(®y. 0 d(id ) ([v]) (), va)
= (u ™ ((id}))s (v) (), va)
= (v(goid},), i(u)).

On the other hand (for 7 : Lf — M being the projection),

<(id?4(f) o®@s([v])) (), va)
= (V) (9, V) = (@, @5 ([0])v)
=v({p,v) o) — (pz o u,v(D)).

To end the proof of (3), notice that (p,v) om = (@ o idth,ﬂ> and apply the

Leibniz formula for v{p o idth, ).
From (1)-(3) above we obtain

(F%) = & 0 d(F*) = & 0 d(id} oF) = id”

Af)
= id’y ) oF = (F)".

o®s o dF

(¢): First, we notice that
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(1) V' F = (Veidry) o F,
@) V' = (V" idy(j)) o T for any representation T:A — A(f), in particular,
"(F) = (VEidagp) o (F),

(3) \/k(id/Lf) = (V¥idg;), or equivalently,

<

k k
(Vidag) o B5 = By 0 d(\/ idyy).

(1) and (2) follow directly by the definitions. (3): Let v; € Secf, u € (Lf)4,
v € Ty, (Lf). Then

.
@y od(\/idr) () (va V.o V )

k
=uV .. Vau((\/idr)s (v) (11 V.. Vi) )

k
=uV..Vu((ry V..V o \/ide))

=uV..Vul(nV..Vi))
=uV .. Vu(d_ o1(u) V.. V@) V..V i(u)

K2

= Zylw Voo Vu(o(@)) Voo V Vgg)

K3

= ZV1$ V..V idA(f) O(I)f([’l)])l/i V..V V]m»)

7

k
= (\/ ldA(f)) o <I>f([v])(ul V..V Vk).

From (1)-(3) above we obtain

k
(\V/ FY
=0i;0d(\/F)=yr;0d((\/id) o F) = @\u;0d(\/id) 0 dF

.
= (\idyy) o @0 dF = (\/idr) o F' = \/(F).
]

Problem 5.4.5 Prove part (a) of the above theorem immediately without using
this fact for a single Lie group.
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5.5 Invariant cross-sections

Definition 5.5.1 Let 5.8 be any representation of a principal bundle P on f. A
cross-section v € Secf will be called invariant (or, more precisely, F-invariant)
if there exists a vectorv € V' such that F(z) (v) = vry for all z € P (equivalently,
if the function o F is constant, where U is defined by 5.2. Denote by (Secf)(p)
the space of all invariant (with respect to F') cross-sections of f.

Proposition 5.5.2 Let 5.3 be a p-representation of P on f. Denote by V;
the subspace of V' of p-invariant vectors (see [9,p.89]). Then, for v € Vi, the
function

v M —f, 21— F(2) (v),

where z € P, is a correctly defined C* cross-section of §, and
Vi — (Secf)r(r), v vy,
18 an isomorphism of vector spaces.

Proposition 5.5.3 The spaces of invariant cross-sections (Sec f)r(ry and (Secf)o(pr
under a representation F : P — Lf and its differential F' : A(P) — A(f) are
related by

(a) (Secf)rpy C (Secf)o(pry,

(b) if P is connected (nothing is assumed about the connectedness of G !),
then (Sec f)[(F) = (SeC f)]o(F!).

Proof. (a). Let v € (Secf)(r); this means that o F' is constant. Thus, for
[w] € A(P)|,, w € T, P, we have

F([w)(v) = @ 0 dF([w])(v)
= (I)f[F*(w)}(V) = F(Z)(F*(w)(ﬁ))
— F(:)(w(io F)) = 0.

(b). Let v € (Secf)ro(p); this means that F’ (v) (v) = 0 for all v € A(P).
Let w € T, P, then

w(? o F) = F.(w)(7) = F(2) " (®([F(w)]) (v))
= F(2) 7' F'([w])(v) = 0.

From the assumption about the connectedness of P it follows that 7 o F' is
constant. m

5.6 The Chern-Weil homomorphism

Consider the representation Ad), : G — GL (\/lC g*) induced by Adg on the
k-symmetric power of the dual vector space g*. According to 5.3.2(b)(c), Adp :
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P — Lg determines the Ad},-representation Ad} (:=\/* ade): P — L(\V* g).
Theorem 5.4.3 yields that the differential of Ad} is equal to adX(P) (= \/" adi‘(P)):

A(P) — A(\V* g%); therefore Propositions 5.5.2 and 5.5.3 give rise to a monomor-
phism of vector spaces

k k
vi(\/ g — (Sec\/ g")re, w— v,

where v, (z) = VG D (w), z € M, z € P, and next, assert that ¢ is an
isomorphism if P is connected.

Theorem 5.6.1 (cf. [17], [19]) The Chern-Weil homomorphism hp of P and
hacpy of A(P) are related by the following commutative diagram

@kzo(Sec \/k g*)re

A
Tv Hir (M)
/hp
(Ve*)s
Proof. To see this, we only need to observe the equality
o1 1
7r (H-@w,Qb\/...\/Qb)): g-<w,ﬂ\/...\/9> (5.4)

where 2 and 2, are, respectively: the curvature form of some connection H C
TP in P and the curvature tensor of the corresponding connection Ain the Lie
algebroid A(P) (H|., = (ﬂr‘;)*l[lm M), z € P, where 74 : TP — A(P) is
the canonical projection). Both sides of 5.4 are horizontal forms, so we must
notice the equality on the horizontal vectors only. Let A : TM — A(P) be any
connection in A(P) and let v* € T, P denote the horizontal lifting of v € T, M.
By the relationship between 2, and €2,

W (z;v Aw) = 2(Qz,v* Aw?)), z€ P, v,weT,M,
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we have, for w € (\/k 0")r, z€ Pand v; € T, M,
(W, W Vo V Q) (2505 AL A0S

= % . ((\/(2*1)*)(71}), 2% . ngna (25 V5 (1) A Vs(2)) V oo

vV Qp(m; Vo (2k—1) /\ Ua(2k))>

1 1 o
=1 (w, ok ngna- (2 1)Qb(x;vg(1) AVg(2)) V..
SV (ETH (@5 V0 (20-1) A Vo(28)))
1 1 z 4 z z
= (w, ok ZSgDU “Q25v50) AV5) VeV Q2505 05— 1) A V5 21)))
1
= (W, QV ...V Q) (207 Ao AVgg).
[

Remark 5.6.2 In [19] it is proved that the Chern-Weil homomorphism of a
principal bundle is an invariant of the so-called ”local isomorphisms” between
principal bundles, fulfilling an additional condition (the Ch-W property) which is
satisfied, for example, in the case of principal bundles with connected structure
Lie groups. By 5.6.1 above, we can assert more, namely, that the Chern-Weil
homomorphism of a principal bundle is a characteristic feature of the Lie al-
gebroid of this bundle provided only that it is connected. In consequence, the
Chern-Weil homomorphism of a principal bundle is an invariant of all local
isomorphisms between connected principal bundles. More precisely, we have:

Proposition 5.6.3 Let § : P/ — P be a local homomorphism of principal
bundles (see [16], [19]). Assume that P’ is connected. Then, for an arbitrary
partial homomorphism F : P' D Dp — P belonging to § and the corresponding
local homomorphism p: G' O D,, — G of Lie groups, we have

(1) V(dp) (Ve )il € (Vg™)r and \(dp)*: (Vg*)r — (V@)1 is indepen-
dent of the choice of F € §,

(2) the diagram
(Ve)r
NP

V(dp)* | Har (M)

/b
(Va1

commutes.
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Proof. Let dF : A(P') — A(P) be the homomorphism of Lie algebroids
induced by §. By functoriality property 4.2.2; we obtain the commutative dia-
gram

(Va*)r Le, Hyp (M)
\l/ /‘}LA(p)
" (Sec\V* g*)r
| (d3)™ [
@kZO(SeC \/k g/*)lo
= /l// \‘hA(P’)

(V o™)r e Hag (M)

To end the proof, it is enough to check that \/(du)* = v/~ 1o (dF)* *ov. Let F be
an arbitrary partial homomorphism belonging to §. Take x € Ur and z € Pllx'

By the obvious equality F(z) odu = dF‘: 0%, we have the commutative diagram

VA (FE) )’

Ve — Vi,
Vi | (VrERD)”
. Vk(ﬁ—l)* i

Notice also that (dF+)* ('), = V" (dF])*(I',), and that 1, (x) = \V/*(F(2) ~1)* (w).
The result is now trivial:

k k k k

VHAET) () =\ 270 \(@ED) o \/(F(2) =" (w) = \/(du)* (w).

5.7 Remarks on the tangential Chern-Weil homomorphism

Let P be a connected H-principal bundle on a manifold M, and F C TM a
C*° constant dimensional involutive distribution. Let F denote the foliation
of M determined by F. We recall that the transitive Lie algebroid A (P) and
the distribution F' give rise to a regular Lie algebroid over (M, F) equalling
A(P)F = ~7Y[F] c A(P), see 1.1.2. By the tangential Chern-Weil homo-
morphism of P over the foliated manifold (M,F) we mean the Chern-Weil
homomorphism

k k
hawpyr @<Sec\/g*)1°(adA<P>F) — Hr (M)

of the regular Lie algebroid A(P)¥" (g is the Lie algebra bundle adjoint of A(P)).
h s(pyr measures the nonexistence of a partial (over ) flat connection in P. In
the case of P equalling to the G-principal bundle Lgf of G-repers of some
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G-vector bundle f (G C GL(n,R),n = rankf), the tangential Chern-Weil homo-
morphism measures the nonexistence of (suitable) flat partial covariant deriva-
tives. Notice that the superposition

k k k k

(\/9*)1 = @(Sec \/g*)l(adA) C @(Sec \/g*)lo(adAF) Lar Hp (M)

(in which A := A(L¢f)) agree for G = GL(n,R) with the homomorphism ob-
tained by Moore and Schochet [28] to investigate vector bundles over foliated
manifolds. However, the domain of our homomorphism h4r contains, in gen-
eral, more elements. To further consideration of the matter, the author will
devote an individual paper.

In the end, we add that the generalization of the Bott Vanishing Theorem
from [14] can be formulated in our language as follows:

o Let {F,F'} (F' C F CTM) be a flag of foliations on M. If F = F' @ f,
then Pont®(A(f)F) =0 for k > 2 - rank f.

This theorem follows easily from the existence of a flat partial covariant
derivative in f over F.

6 THE LIE ALGEBROID OF A TC-FOLIATION

6.1 TC-foliations. Basic properties [26], [27]

A foliation (M, F)is said to be transversally complete [TC-foliation for short)

(see P.Molino [26], [27]) if, at each point = € M, the family L. (M,F) of com-

plete global (F-)foliate vector fields generates the entire tangent space T, M.
For an arbitrary TC-foliation, we adopt the following notations:

e F,- the basic foliation,
e E. Fj - the vector bundles tangent to F and Fy, respectively,

o L., Ly, - the leaves of F and Fy, respectively, passing through x € M,

r:Q— M (Q =TM/E) - the transverse bundle,

mp : M — W - the basic fibration,

a:TM — @ - the canonical projection,

e X :=aoX - the cross-section of Q corresponding to a (local) vector field
X on M,

o [ (M, F) - the Lie algebra (and the Q° (W)-module, as well) of transverse
fields.
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Recall that by a transverse field we mean a cross-section ¢ € Sec @ such
that, in any simple distinguished open set U equipped with distinguished local
coordinates (z',...,a?,y*,...,y?) (p = dimF, ¢ = codim F), ¢ is of the form
¢ = Zj b - % for the functions & constant on the plaques. If ¢ = X, then
Eel(M,F)ifand only if X € L(M,F).

Besides, the foliation F is simple and defined by a locally trivial basic fibra-
tion 7, : M — W with a Hausdorfl manifold W.

A fundamental role in the construction of the Lie algebroid of (M,F) is
played by the following properties:

(A) If ¢,v € I (M, F) and, for some € M, ((z) = v(x), then ¢ (y) = v (y)
for all y € Ly,

(B) Every foliate vector field X projects onto W, giving a vector field Xy,
and the homomorphism of Lie algebras L (M, F) — X (W), X — Xw,
factorizes to a homomorphism of Lie algebras 7 : [ (M,F) — X (W),
X — Xw. The following equality holds:

(X, fom, Y] = fom,- [X, Y]+ Xw(f)-Y, fFeQW), X,Y € L(M,F).

6.2 Construction of the Lie algebroid of a TC-foliation

Let (M, F) be an arbitrary TC-foliation. In the transverse bundle r : Q — M
of (M, F) we introduce the equivalence relation ” ~” as follows :
For v, w € @ we put

v w = {m(rv) = mp(rw) and Iegyar, 7y (((r0) = v and ((rw) = w)}.
(A) and (B) above makes the following lemma obvious.

Lemma 6.2.1 Take x and y lying on the same leaf of the basic foliation Fy.
Then, for each vector v € Q|,, there exists exactly one vector w € Q|, such
that v ~ w. The correspondence v —— w establishes a linear isomorphism

ag: : Q|3c - Q\y

Clearly, two vectors v, w € @ are in the equivalence relation ~ if and only if
they corresponds to each other via one of the isomorphisms a¥. In the sequel,
[7] denotes the equivalence class of ¥ and A (M, F) := Q/ ~ denotes the set of
all equivalence classes (with the quotient topology) and

F:AM,F)— W, [0]— n(rv),

the projection.
Each fibre A (M, F),, = 7=1(Z), z € W, possesses a structure of a vector

space, defined uniquely by demanding that for each = € 7751 (Z) the canonical
bijection 3|, : Q, — A (M, }")‘w, ¥ — [7], be a linear isomorphism. The
family f),, + € M, determines the canonical projection 3 : Q — A (M,F)
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being a homomorphism of vector bundles over the basic fibration m,. We equip
A(M,F) with a structure of a C° manifold as follows: For any z € W, we
find (as a consequence of (A)) its open neighbourhood U and transverse fields
C1y-ey Gg € L(M, F) which are linearly independent on U := 7rb_1[(7], and we put

:UxR? — 7 HU]CA
ZaCu z € m, (7).

© is a bijection such that ¢z : R? — A (M, f)li' is an isomorphism of vector
spaces. It is easy to see that 7~ ![U] is open and ¢ is a hemeomorphism, see the
following diagram:

o A
Ty X 1
UxR? s U ¢ A(M;F)

In A(M,F) there is exactly one C°° manifold structure (compatible with the
topology) for which the ¢’s are diffeomorphisms. To see this, we must only notice
that, for another ¢ (defined on U’ x RY via ({,...,, € L(M,F) ), ¢ topis
C*. Clearly, for a point z, € UNU’ there exists its neighbourhood U"cUNU’
and functions f{ € Q0 (W) such that ¢; = > flom - onU" = m, U],
Therefore we have

¢ op(@a)=(z,> d'fl (2),..,> ' fi(z), T€U" acR,

which proves the smoothness of ¢'~! o . Of course, 7 : A (M, F) — W is C>
and (A (M, F),7,W) is a vector bundle with ¢’s as local trivializations.
The mapping

AM,F) — TW, [0] — mp(v),
is a correctly defined epimorphism of vector bundles.

Proposition 6.2.2 (1) A cross-section ( € SecQ is a transverse field if and
only if there exists a cross-section & € Sec A(M,F) such that the following
diagram

o o4
T¢ T¢ (6.1)
M oW

commutes. Such a & is at most one.
(2) The correspondence ( +—— & establishes an isomorphism of Q0 (W)-
\ 3modules
I(M,F) — SecA(M,F),
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Proof. (1): Necessity is evident.
Sufficiency. Let ( € Sec@ be a cross-section of @) for which there exists
¢ € Sec A (M, F) making diagram 6.1 commute. Equivalently,

O‘g(gx) = Cy

for any points z and y lying on the same leaf of F,. To prove that ¢ is a
transverse field, we first observe that if (z!,...,2P,y!,...,y?) are distinguished
local coordinates in U, then, for any points z and y lying on the same plaque,

we have 8%1'| ~ a%i‘ , 1 < q. Indeed, (M,F)is TC, therefore there exists a
xr Yy o

transverse field v € [ (M, F) such that v, = ﬁ| Locally on U, v = 37, b*- -2 y

with the functions b constant on plaques. Since b* (z) = 0¥, therefore b* (y) =

§%; in consequence, Uy = %‘ , 80, by the definition of the equivalence relation
y

9 ., 9
~, we have that By | Y By |y

Passing to the proof of sufficiency, write locally ¢ =), bk -%. Take x and
y belonging to one of the plaques. We have, by the above,

ICH T
() 57 =G =0alC)=al> V() -5
; oy, Z oy* |qc

0
_Zk Zk
_k-b( ay ’ Tykly-

Thus b* (z) = bY (y), which confirms (1).

(2): ¢ is a monomorphism of Q° (W )-modules, as is easy to check. The
surjectivity follows from (1) and the observation indicating that, for a cross-
section & € Sec A (M, F), there exists a cross-section ¢ € Sec @ making diagram
6.1 commute. m

In Sec A (M,F) we introduce the bracket [-,-] (forming a Lie algebra) by
demanding that ¢ be an isomorphism of Lie algebras, i.e. [¢(¢),c(v)] = ¢([¢,V]),
C,v €l(M,F). Thesystem (A(M,F),[,-],7) is a transitive Lie algebroid (over
the basic manifold W), which is clear from (B). It is called the Lie algebroid
of the TC-foliation (M,F). Let g = ker+y be the adjoint Lie algebra bundle of
A (M, F). We have the following isomorphism of short exact sequences

0 — IT(M,F) — I(MF) L xW) — 0
=] et ~lec [
0 — Secg — SecAM,F) — X(W) — 0

6.3 Connections and the Chern-Weil homomorphism

Let (M, F) be an arbitrary T'C-foliation and (A (M,F),[-,],7) - its Lie alge-
broid. Notice that, for any z € M, the isomorphism f, : Q, — A (M, JT)@
maps QTQJ := Ey|o/E|, onto gz, T := m (z). A connection A in A (M,F) de-
termines the so-called horizontal subbundle C* := Im A C A (M,F) (i.e. the

47



condition A (M,F) = g @ C* holds), and next, the distribution C*CTM on
the manifold M by C’"}E = oz‘;l [ﬁ‘;l[C"’}c]], reM.

Lemma 6.3.1 The correspondence A »—>_C'/\ establishes a bijection between
connections in A (M, F) and distributions CCTM such that

(1) Ebﬂé:E,
(2) Eb+C:TM,

(8) Cpp ={X (2); X € L(M,F)NSecC} for each point x € M. In particular,
such a distribution C always exists (and is C* ).

Proof. =" Let C' = C* for some connection .

(1)s (BN O)ye = a5 (87 910 N CAl] = ker((B 0 a)pa) = .

(2): (Bo+C)jp = arxl [ﬂﬁ»l 9z + CGH = a\_zl [5|;1[A (M, f)\;z]] =1, M.

(3): Let v € C|z- We have to find a foliate vector field X lying in the
distribution C' and such that X, = v. For the purpose, take arbitrarily a cross-
section ¢ € Sec(C*) such that &; = [0], and next, the cross-section ¢ € Sec Q
defined by ¢, = 5@1(5?7)’ y € m, ' (§), § € W. (is a transverse field, see
Proposition 6.2.2. Let ( =Y for a foliate vector field Y. Then v — Y, € E,.
Taking an arbitrary vector field X € X(F) such that X, = v — Y, we obtain
that X +Y € L(M,F)NSecC and (X +Y), = v.

"«=" Let CCTM be any distribution on M satisfying (1)-(3). There exists
a subbundle CCA (M, F) such that Cjz = f|, o a‘z[C_"z], x € 77;1 (Z), z € W.
To see this this formula, i.e. the independence of the right-hand side of the
choice of a point € 7, ' (). In order to get this, it is sufficient to notice
the inclusion §), o a‘mlé‘x]cﬁ‘y o a‘y[é‘y] for z,y € 7r;1 (z). For v € C’Lx and
X € L(M,F)NSecC such that X, = v, we have X, € C},. Since X is a
transverse field, according to the definition of the equivalence relation ~ in @,
we have [0] = [X,] € Bjy0a,,[C},]. C is easily seen to be C*° and complementing
g, thus, in consequence, determining some connection A for which the property
C* = C is obvious by the construction. m

Definition 6.3.2 (a). A distribution CCTM fulfilling (1)-(3) from Lemma
6.3.1 will be called a connection for the TC-foliation (M,F).

(b). If C = C* for a connection \ in A(M,F) and if w and Qy are the
connection form and the curvature tensor of X\, respectively, then the tensors
0 € QYM;Q") and Q € Q*(M; Q') defined in such a way that the following
diagrams

T.M T.M x T, M
Ay l« \ Wy \ Qm
Q\z iz s X s | il’
B 1= ~| G ~| G
A|i’ ﬁ’ 9z T: x T; % 9z
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are commutative will be called the connection form and the curvature form of
the connection C, respectively.

@ may be defined immediately in the following way: @(v) = 71 (= a(v1)) if
v = v + vy is an arbitrary decomposition such that v; € Ep, vy € C. Lemma
6.3.3 below gives an independent definition of Q. Let C,,CC be any complement
of E (ie. C=E@C,). Of course, TM = E,C,. Put H:TM — TM
as the projection onto the second component. H plays a role of the horizontal
projection for C' (although it is not uniquely determined by C), giving the

equality
Ho(Boa)=(Boa)oll

in which H is the horizontal projection for the connection .

Lemma 6.3.3 (a) The vector field HoY is foliate if Y € X(M) is such a field,
(b) For Y1,Ys € L(M,F) Q(Y1,Ys) = —w([H oYy, H o Y3)).

Proof. (a): Let Y € L (M, F). To prove that H oY is a foliate vector field,
it is sufficient to show that cwo (H oY) is a transverse field. Since

Bo(aoHoY)=HofBoaoY=HofBoY = (Hoc(Y))om,

proposition 6.2.2(1) yields our assertion.
(b): Let Y1,Y2 € L (M,F) and = € M. We have

Qo (Yias You) = B 0 8100 (Yia, Yau))
= Bﬁ;_l(gbf(ﬁb*ylx, s Y2x))
= B (Qz (2 (c(Y1)2), 112 (c(Y2)2)))
= B (v 0 e(Y1), 7 0 e(V2))z)
= B wa([A oy 0 (Y1), Aoy o c(Va)]z)

[
= —ﬂﬁ_lwf([[Hoc(Yl) JHoc(Ys)])
= —5;71%5([[0(04 oHoY)),clao HoYs)]z)
= fﬂﬁ_lwi(c([aoHoYl,aoI:Ing])j)
= —Brgflwf(c(ao [H oYy, HoYs,))

Proposition 6.3.4 The following conditions are equivalent:
(1) % =0,
(2) Q =0,
(3) L(M,F)NSecC is a Lie subalgebra of L (M, F),
(4) the distribution C is completely integrable.
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Proof. The equivalence (1) <= (2) is evident.

(2) = (3): Let Y1,Ys € L(M,F)NSecC. It is sufficient to prove that
[Y1,Ys] € SecC (because L (M, F) is a Lie algebra). Using the decomposition
C = E@Cy, we write Y; = X; + Y1, where X; € SecE and Yj, € SecC,,
1 =1,2. Then

[Y17 }/2] - [X17X2] + [X17 YZu] - [X27Y1u] + [}/lu7Y2u]~
We have
(a) [X1, X2] € Sec E (CSecC),

(b) [X1,Yau], [X2, Y1.] € Sec E because X; € Sec F and the vector fields Y;,, =
Y; — X;, i = 1,2, are foliate,

(©) [Yiu,You] € SPCC’ by Lemma 6.3.3(b) and the equalities C' = ker® and
[Yluax/v?u] == [H o Yl,H o }/2]

3) = (4): Take Z1, Zy € SecC, z € M, and put Z = m, (z) € W. Take also
cross-sections &1, ...,&; € Sec C being a local basis of the vector bundle C' on a
neighbourhood W/CW of Z. The cross-sections (i, ..., (,; € Sec@ for which the
equalities fo(; = &;omy, © < @, hold exist and are linearly independent transverse
fields (see Proposition 6.2.2). Besides, any vector fields X; representing (; are
(by the definition of C') from Sec C' and linearly independent on W" := 7, ' [W'].
Adding any vector fields Xq41,..., Xq4+p € Sec E' forming a local basis of F on
some neighbourhood U of z, we obtain a system (X7, ..., X44,) of foliate vector
fields being a local basis of C on U NW". Let Z; = -ag - X, 1 =1,2

: j
(al € Q%(UNW")). Then, on U NW", we have

21, Z5) =Y (o] - ab - [X;, X4] + a] - X;(a5) - Xp — ab - Xg(a{) - X;) € Sec C
7,k

according to assumption (3).

(4) = (2) - trivial by Lemma 6.3.3(b). m

As a consequence of the above proposition and Corollary 4.3.2 we obtain the
aim of this chapter:

Theorem 6.3.5 (The geometric signification of the Chern- Weil homo-
morphism for TC-foliations) If the Chern-Weil homomorphism of the Lie
algebroid A (M, F) of a TC-foliation (M,F) is nontrivial, then there exists no
completely integrable distribution C on the manifold M satisfying conditions
(1)-(3) from Lemma 6.3.1.

In chapter 7 we describe a wide class of T'C-foliations for which there exists
no completely integrable connection C.
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7 THE LIE ALGEBROID OF A NONCLOSED
CONNECTED LIE SUBGROUP

7.1 Dense connected Lie subgroups and the Malcev The-
orem [7], [25], [32].

Let HCT be a connected and dense Lie subgroup of a Lie group T and let
F = {tH;t € T} be the foliation of left cosets of G by H. E, as usual, denotes
the tangent bundle to F, whereas b and t the (left) Lie algebras of H and T,
respectively. In the sequel, R; is the tangent mapping to the right translation
by t.

Lemma 7.1.1 If t = @ K for some linear subspace KCh, then, for each
teT,
Elt ﬂ Rt‘e[K] - 0

Proof. Let v € E};N Ry [K]. Then, v is the value at ¢ of the right-invariant
vector field Y, generated by some vector w € K. Since Y, is an (F-)foliate
vector field belonging to the distribution E at t, it belongs to E for each point
of the closure (tH) of the leaf tH of F through t; however, (tH)" = T,
therefore w =Y, (¢) € | N K = 0; in consequence, v =0. =

Lemma 7.1.2 FEvery foliate vector fieldY € L(T,F) is of the formY = X+Y,,
for the uniquely determined vector field X € X(F) (i.e. tangent to F) and vector
we K.

Proof. As a corollary from 7.1.1, we see that the system {V,,...,Yy, } of
transverse fields, where (w1, ..., wy) is a basis of K, forms a transverse parallelism
on (T, F). Therefore any vector field Y € X(T) is of the form ¥ = X+3 f1-Ya,
where X € X(F) and f7 € Q°(G). Now, let Y be foliate. Then f7 are constant.
Indeed, for an arbitrarily taken vector field X’ € X(F), we have: [X',Y] € X(F).
However,

XY] = XX+ 30 (XY )+ S X () Yo,

therefore Y~ X'(f7) - Yy, = 0, which implies that X’(f7) = 0. The free choice
of X' gives the result: f/ are F-basic functions, i.e. in our situation, f7 are
constant; f7 = b/ € R. In the end, we assert that Y = X +Y,, forw = Zj b7 Wy
]

Proposition 7.1.3 If H is a connected and dense Lie subgroup of a Lie group
T, then:

(i) H is a normal subgroup of T,

(ii) each left-invariant vector field X,,, w € t, is foliate, and X, = X +Y,,
for some X € X(F),
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(i3) T/H is abelian.

Proof. (i) and (iii) follow from the Malcev Theorem [7], [25], [32]. Here we
give new, ” foliated proofs” of these facts.

(i): Equivalently, we need to notice that b is invariant under the isomor-
phisms Ad(t), t € T. Let ¢t € T and u € h. Put w := Ad(¢)(u); then
Ey 5 Li(u) = Ri(w) (L denotes here the tangent mapping to the left transla-
tion by t), so the foliate vector field Y,, is tangent to F at ¢, which implies that
w =Y, (6) € E\e =bh.

(ii): The module X(F) is generated by the left-invariant vector fields X,
u € b, therefore we need only to check that [X,, X,] € ¥(F) for w € t and
u € h. But, by virtue of (i), b is an ideal in t, thus [u,w]’ € b, which gives
[Xu, Xo] =X [ww] € X(F). The second part follows from the observation that
X = X, — Y, is foliate and X (e) =0 € Ej..

(iii): T'/H is connected, thus it is sufficient to show that t/h is abelian. Let
u,w € t. On account of (ii), we have:

[u, wl* = [ Xy, Xu] (€) = [X + Vi, Xy (e) = [X, X] (e) € b.

7.2 A structure of the Lie algebra bundle, adjoint of the
Lie algebroid A(G; H)

Here, we give a more detailed description of the Lie algebroid A(G; H) of the
foliation F = {aH;a € G} of a connected Lie group G by left cosets of a
connected and nonclosed (in general) Lie subgroup HCG. [The fact that F is
TC follows from the observation that all right-invariant vector fields are foliate
and generate the entire tangent space TG for each g € G]. A(G; H) is called the
Lie algebroid of a connected Lie subgroup H. Denote by h and g the Lie algebras
of H and G, respectively. In the sequel, Y,, and X,, stand for the right-invariant
and left-invariant vector fields on G, respectively, generated by the vector w € g.
Assume that TCG is the closure of H. Then F;, := {gT;g9 € G} is the basic
foliation and the projection m, : G — G/T is the basic fibration.

Lemma 7.2.1 The isomorphism Ry, : T,G — TG, t €T, g € G, maps E,
onto E\| g4, thus induces an isomorphism Ry : Qg — Q|g¢, and, furthermore,
the right free action R: QxT — @, (0,t) — Ry(0).

Proof. Since Ad;[h]Ch for t € T, Ej; = Lyjc[h] = Ryc[h]. Thus for g € G,
Rtlg[Elg] = Rtlg[Lg\e[h]] = Lglt[Rtle[hH = Lglt[E\t] = E\gt~
Clearly, R is a right smooth free action. m

Lemma 7.2.2 (a). For a cross-section ¢ € Sec@, we have: ¢ € (G, F) if and
only if, for any g € G and t € T,

¢(gt) = Re(C(9)), (7.1)
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in other words, if and only if ¢ is T-right-invariant (with respect to the action
R).
(b). Forv, w € Q,
VR W &= Jier 0= Ry (V),

i.e. U~ w if and only if they belong to the same orbit of the action R.

Proof. (a). 7 = " Let ( € (M, F) and g € G. Then there exists a vector
w € g such that ((g) = Y., (g). According to 6.1(A), ¢ and Y,, agree on the leaf
gT of Fy. So, fort € T,

C(gt) = Y (gt) = Re(Ya(9)) = Re(<(g)).

7 <=7 Let ¢ € SecQ satisfy 7.1. Take vectors wy,...,w; € g in such a way
that transverse fields Y,,,, ..., Yy, form a base of Q over some F,-saturated open
subset U CG containing g. Then( >, 1Y, for some fi € QO(U). Therefore,
property 7.1 of ¢ and of Y,,, yields that, for g € U and ¢t € T, {(gt) = >, f'(gt)-

Y., (gt) and, simultaneously,

C(gt) = ZJ”
=Zflg- Zf Yo, (gt).-

These give fi(gt) = fi(g), which means that f¢ are Fy-basic functions. The
assertion follows now trivially (namely, the coefficients with respect to any dis-
tinguished local coordinates after multiplying them by basic functions remain
constant on plaques).

(b). 7 = ” Results from (a).

” =" Let v,w € Q and let w = R; (v) for some t € T. Clearly, v = Y,(g)
for a vector u € g where g = r(0). So, since w € Q|4 and Y, € I(G,F) and
W = Ry (0) = Re(Yu(g)) = Yu(gt), we assert that v ~ ©. m

Remark 7.2.3 The above two lemmas enable us to define the Lie algebroid
A(G; H) immediately as the space of orbits of the action R. Such a principle is
adopted by the author in [20].

By the same reasoning as in 7.1.3(ii), we assert that each left-invariant vector
field X, w € t, is foliate.

Proposition 7.2.4 The Lie algebra bundle g of the transitive Lie algebroid
A(G; H) of F is a trivial bundle of abelian Lie algebras, with the global trivial-
1zation
G/Txt/h — g (7.2)
(, [w]) — (c(Xw)) (2)
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Proof. Since
Yy 1t — Eyg, w— Lgj(w), (7.3)
is an isomorphism, we see that t/h — Q'g, [w] — X,(g), is also an iso-
morphism. Hence - mapping 7.2 (whose correctness of the definition is easy to
check) is an isomorphism of vector bundles. To verify that 9|, is abelian, take

ui,uz € g),. By the above, there exist w; and wy belonging to t such that
uy = (¢(Xy,)) (x) for i = 1,2. So, we have

] = ) 0, ) 0] = ol ) o] 0
:c([XU)l?sz])( ) C( [w1 wg]L)(x)

(because the relation w := [wy, ws]L € b implies X, € Sec ). =

7.3 Connections in A(G;H)

Proposition 7.3.1 Any distribution C C TG is a connection for the TC-
foliation F [see Def.6.3.2] if and only if it is C°, satisfies (1) and (2) from
Lemma 6.3.1, and

(8) C is T-right-invariant, i.e. Cigy = Ry[C,], g€ G, t € T.

Proof. 7 = 7 Let C fulfil conditions (1)-(3) from Lemma 6.3.1 and take
v € Cly. By condition (3), v = X(g) for some X € L(G,F) N SecC. Since
X € (G, F), 7.2.2(a) shows that

( t) = ( t) = Rt(X(g)):Rt(’D):Rt(v)u

which yields Ry (v)—X (gt) € Ej4. Condition (1) and the relation X € Sec C give
now R;(v) € Cjg. So, R[C)] C Cgt, therefore the equality of the dimensions
gives the examined T-right-invariance of C.

” <= " Assume that C C TG is a C*> distribution satisfying (1) and (2)
from Lemma 6.3.1 and (3) above. For each point € G/T, we define

Cla = Bglagg[Clll, gem,t (z).

(3"), 7.2.1 and 7.2.2(b) imply the correctness of this definition: for ¢ € T and
g € G, we have

ﬂ\gt[amt[qgt]] = 5|gt[ff\gt[Rt|g[_C'|gm B
= Bigt[Rejglaig[Clgl]] = Bigleyy[Clyll-

Put C = U,cq/r Clx C A(G; H). It is a standard calculation to prove that C
is a C'*° subbundle of A(G; H). By assumptions (1) and (2) , C is a horizontal
subbundle of A (G; H) [i.e. C+ g =T(G/T) and C Ng = 0 hold], therefore it
is determined by some connection A. Clearly, C' = C* (see 6.3). Thereby, (3) is
satisfied according to Lemma 6.3.1. ®
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7.4 The Chern-Weil homomorphism of A (G; H)

Notice that the situation when H = T or T" = G is not interesting from our
point of view because then, in the first case, the Lie algebroid A (G; H) is trivial,

A(G;H) % T(G/T), which implies g = 0 and, in consequence, (ha(c;m))t =
0; in the second case, the basic manifold W is one-point, so also (hA(G;H))“' =0.
Therefore we can consider the case H # T # G.

The Proposition 7.2.4 sets up a global trivialization

©:g — G/Txt/h (7.4)

therefore any cross-section v € Secg determines some t/h-valued function v :
G/T — t/b, namely v := pr, op o v. Analogously, via the canonically induced
global trivialization \/* g* = G/T'x \/*(t/h)*, any cross-section I' € Sec\/" g*
determines some \/*(t/h)*-valued function T : G/T — \/k(t/h)*. Let (-,-) :
V¥ g*x\/¥g — R be the canonical duality [8]. It is easily seen that, for
xz € G/T and w; € t,i <k (k =rankg = dimt — dimb),

(T, e(Xw) Vo VoK) (@) = (T (), [wn] V oo V i) (7.5)

Proposition 7.4.1 Let T' € Sec\/*g*, then T is \/* adi(G,H)—invariant [i.e.
I' € (Sec \/’C g*) 0] if and only sz‘ is constant.

Proof. 7 — 7 Let I" be invariant. This means, in particular, that

(voc(Yu)) (T, e(Xuy) Voo V(X))
= Z<F’C<X““) VoV [e(Ya), o( X, )]V o V e(Xuy ),

for w € g, w € t; but [e(Y,), c(Xu,)] = C[¥, X0, = 0, so

(voc(Yu)) (T, e(Xu,) V.o Ve(Xy,)) =0.

The values of vector fields vyoc¢(Y,,), w € g, generate at each point x € G/T the

entire tangent space T, (G/T); therefore the function (T, ¢(Xy, ) V... V (X, )),
thanks to the connectedness of G/T, is constant, so the same holds for the
function G/T 3> z — (L (), [w1] V ... V [wy]). Equivalently, T' : G/T —>
\/*(t/p) is constant.

7 <=7 Assume now that I' is such that the function f_is constant. Thus
7.5 implies the same for the function (T',c(Xy,) V ... V ¢(Xuw,)), w; € t. To

prove the invariance of I', take arbitrarily cross-sections v; € Secg, ¢ < k, and
¢ € Sec A(G; H). They can be written as follows:

vi=Y f]-e(Xu;) (globally), €= ¢’ c(V,,) (locally),
j N

J
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for some ff7gj € Q°(G/T), w; € t, u; € g. Therefore yo ¢ = > g’ -yoc(Yy,)
and

60 = 7 2 0o, £ 0 o, ) ot
+g voc(Yu,)(fLP) - e(Xuw,,))
=> g yoeY, ) (1) - e(Xu,,)

JJs

because 7y o ¢(Xy, ) = 0 and [c(Vy,), c(Xuw, )] = c([Yu,, Xw,,]) = 0. Next, we
have

( o§)<1“ V1 V.. \/Vk>
= Y g vocWu )T (X, ) Vo VA oK)

35J1s Tk
= Zgy‘ o c(Yy,)( Ll (T e( Xy, ) VooV e( Xy, )
::E:gﬁyocGzﬂ(flu“-gﬂ-ﬂﬂdX@h)v“.vdX@m»
= > gV () (oK, ) VoV e(X, )
J58:J15--3Tk

—ZFZf (X, ) V- ng 2y 0 (Y, ) (f37) - e(Xu,,) V
vZf Xu,,)

=> (T Vo V[Ev] V. Vi),

which means that T is \/* adi\(G py-invariant. ®

By the above proposition, the value of the function I‘ at any point = € G/T
does not depend on  for T' € (Sec\/* g*) 0. Denote it by I'. Clearly,

k>0

p: @Sec\/g 70 —>\/t/f) [T,

is an isomorphism of algebras.

Theorem 7.4.2 The Chern- Weil homomorphism hof the Lie algebroid A (G; H)
makes the following diagram

D0 (Sec Vg ) D Hyn (GT)
lp . T hp
V(t/h)* Y,
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commute, in which \/ j* is the monomorphism of algebras induced by the canon-
ical projection j : t — t/b, whereas hp : (\/ t*); — Har (G/T) is the Chern-
Weil homomorphism of the T-principal bundle P = (G — G/T).

Proof. First, we notice that Im\/j* C (\/t*);. Indeed, Im\/j* = {T €
\V t*; 1, =0 for all w € h}. Since b is an ideal in t and t/b is an abelian Lie
algebra, see 7.1.3, therefore [u,w]" € b for all u,w € t. Thus, for any u € h and

le Im\/kj*, we have:

T,bun V...V u,w»L\/...\/w;c =0, w; €t
J
J

which means [because T is connected] the Adp-invariance of T'. That \/* j* is a
monomorphism follows from the fact that j* is a monomorphic (see [8,p.108]).
By the independence of hp(T) and ha(c;m)(I') on the choice of a connection,
we may set an arbitrary connection C' C T'G in the principal bundle P. Then
C = E@C, is a connection in TG for F because C is a C* distribution and
requirements (1), (2) and (3') from 7.3.1 are satisfying:

(1) Clearly, E C C N E,. To see the opposite inclusion, take arbitrarily v €
C N Ey and write v = v + vy for vy € E, vy € C,. Of course, the vector
v =v—1v1 € Cy,NEy,=0is null. Therefore v =1, € E.

(2) C+E,=(EQC.) + Ey, D> C,@ E, =TG (Ey is the vertical bundle of
P).

(3’) For t € T and g € G, we have, by 7.2.1 and the T-right-invariance of C,
in P,

Rtlg[c_’\g] = Rt\g[Elg @CUIQ] = Rtlg[E\g] @Rt\g[cu\g]
=En @ Cu\gt = C’\gt'

Let w, € Q'(G;t) be the connection form of C,. Denote by V : TG — E
the vertical projection. Since Ay : T — G, g —— g¢t, is the restriction to
T of the left translation by ¢, we have 1y 0 wyy = V‘g, g € G, where ¢, is
defined by 7.3. According to the definitions of the connection form @ of C
(Def. 6.3.2(b)) and of the isomorphism ¢ of vector bundles 7.4, we obtain the
commuting diagram:

T,G =4 t
N Vg Yy 1J
@ | Eblg t/h (7.6)
/ Alg T Pla
, Bl
lg - g|;v

for g € G and z = m, (g) . Let Q, € Q*(G;t) and Q € Q*(G; Q') be the curvature
forms of C, and of C, respectively, while Q, € Q?(G/T;g) the curvature tensor
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of the connection \ in A(G; H) for which C = C*. Define auxiliarily the form
QY € Q*(G;t/h) by Q°(g;v1 Ava) = @), oﬂ‘fl(ﬂ(g; v1 Avg)), T = m(g) as above.
We prove the equality '

A =joQ,. (7.7)

To this end, take v1,v2 € T,G and find foliate vector fields Y7,Y2 € L(G,F)
such that Y;(g) = v;, i = 1,2. By Lemma 6.3.3(b) and diagram 7.6, we assert
that

Q%(g;v1 Av2) = @i 0 B (Qgs v A v2))
= ¢l 0 B, (=0 (g; [H o Y1, H 0 Y2](9)))
= —jowy(g; [H oY1, H 0 Y3](g))
= (Qu(g;v1 Av2)).

For T € (V¥ ), the class h,(T) is represented by the form 6 € Q% (G/T)
whose my-lifting equals 7 - (I, Q, V... V. Q). Let I' = (V¥ 5*)(D) for I = p(I)
where T € (Sec \/* g*)0; then we have

T, Q,V..VQ,)=(T0Vv..vQo). (7.8)

Indeed, using the fact that homomorphisms of algebras \/k 7 and \/k j are dual
[8,p.108], we obtain, by 7.7, that for g € G and v; € T,G:

(T, V. V(g5 01 A oo Avag)
k
1 e
= QT'ZS%HU‘ (\/ )@, Qg5 00(1) A Vo) V -

oV Qu(95 Vo (20—1) A Vo (2k)))

1 . .
o 25800 - (0,593 Vo (1) A Vo) V oV 5(Qu (85 Voan-1) A Va(zr))

1 .
ok ZSgHU' <F790(9;%(1) A 'Ua(z)) V..V Qo(g;va(zk—l) A Ua(2k)))>
= (0,007 ... VO (g:v1 A Avgg).

On the other hand, ha(g;m)(T) is represented by the form % (T, Voo V),
see 4.1. Put QY € Q*(G/T,t/h) as follows:

Q) (2501 A D) = @1 (W(a;01 AD2)), 0; € Ty (G/T).
We check that
Q% = 7 (), (7.9)

T, V...V = (1,00 V..vQ. (7.10)
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Seeing Def. 6.3.2 of the tensor €, we assert 7.9 trivially. Using the duality
between the homomorphisms \/ go‘*z and \/ ¢|, of symmetric algebras, we notice
that, for x € G/T and v; € T, (G/T),

<F, Qp V...V Qb>(:c;171 VARRTIVAN I_JQk-)
=Ty, (Voo V) (2501 A oo AT2g))

= (V5@ (Vo V Q) (2501 Ao A i)
=0,V (V. V Q) (551 A .. A Ti)))
= (0, Q0V ... VO (201 Ao ATop),

which confirms 7.10.

Now, we are able to prove our theorem: Taking I" €(Sec \/IC g*) o and keeping
the notations above, we assert, by 7.8 and 7.10, that the cohomology classes
he(VF 7 (p(I))) and h a(c;m)(I') are represented by the forms whose m-liftings
are equal to 7 - IT,00V...vQ°) and (- (1,9 V...vQ9)), respectively. But,
these two last forms are identical according to 7.9, which ends the proof. m

Here is the aim of this section:

Theorem 7.4.3 If G is any connected, compact and semisimple Lie group and
H C G is its arbitrary connected nonclosed Lie subgroup, then the Chern-Weil
homomorphism his nontrivial.

Proof. Let T be the closure of H. T is, of course, compact. Applying Th.XI
from [10, Ch.IX, p.392] to the principal bundle P = (G — G/T), we get the
equivalence of the conditions:

(1) the Chern-Weil homomorphism hp is m-regular [understanding in (\/ t*),
the natural even gradation],

(2) HY(G) =R and H?(G) =0,1< p < m.

Since G is compact and semisimple, it follows that HI5(G) =R, Hln(G) =
H2,(G) =0 [H34(G) # 0]. Combining this with the above-mentioned theorem,
we obtain that the Chern-Weil homomorphism hp is 2-regular, in particular,
this yields that

(he)® : ()1 — H3g (G/T)

is an isomorphism. In view of Theorem 7.4.2, we get that
(hagam)® o p™": (4/)" — ()1 — Hip (G/T)

is a monomorphism. The assumption H # T implies t/h # 0, whence we obtain
that (hA(G;H))(Z) # 0, and so, hy(g;m) is nontrivial. m

Remark 7.4.4 Here is the more concrete example of a nonclosed Lie subgroup:
Let T be an arbitrary, not necessarily mazimal, torus of G and H C T any of
its dense connected Lie subgroups.
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Remark 7.4.5 Adding the simple connectedness of G to the assumptions of
Theorem 7.4.8, we get, according to Almeida-Molino’s Theorem, see [1], [27],
some nonintegrable transitive Lie algebroid having the nontrivial Chern-Weil
homomorphism.

Therefore we can formulate the important

Corollary 7.4.6 There exists a nonintegrable transitive Lie algebroid having
the nontrivial Chern-Weil homomorphism.

Return to Theorem 7.4.3. As its consequence as well as that of Theorem
6.3.5 and Prop.7.3.1 we obtain that, under the assumptions of Theorem 7.4.3,
there exists no completely integrable T-right-invariant distribution C C TG
such that C + E, = TG and C N E, = E. Now, we give a simple situation in
which such a completely integrable distribution exists.

Example 7.4.7 Assume that the symbols G, H, T, F, g, b, t have the same
meaning as before. If there is a Lie subalgebra ¢ C g such that

(1) c+t=g,
(2) ent=b,

then the G-left-invariant distribution C' determined by ¢ (i.e. the one tangent
to the foliation {gF;g € G} where F is the connected Lie subgroup with its Lie
algebra equalling c) is a completely integrable connection in TG for F. Indeed,
it is clear that the conditions CNEy = E and C+ E, = TG hold. Therefore it is
enough to verify the T-right-invariance of C only, i.e. the equality Ry [C"g] =Cy,
teT, ge G Letve (4, then v = Ly(w) for some vector w € ¢. Since
Ri(v) = Ry(Lg(w)) = Ly(Ry(w)), we need observe that Ry(w) € Cj,. Since T is
the closure of H, we have t = lim h,,, h,, € H. In virtue of the closedness of C,
we obtain that the fact that the element Ri(w) (equalling lim Ry, (w)) belongs
to C follows from the relation Ry[c] C C_'|h for h € H which is evident by the
relation v, [H] C H where 1, is the left translation by h.

As a simple corollary of 7.4.3 and 7.4.7 we obtain
Corollary 7.4.8 Under the assumptions of Theorem 7.4.3, no Lie subalgebra
¢ C g fulfilling (1), (2) from 7.4.7 exists.
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