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Abstract

The aim of this paper is to construct the Chern-Weil homomorphism
for regular Lie algebroids. This homomorphism, in the case of an arbitrary
integrable transitive Lie algebroid A, agrees with the one for any connected
principal bundle for which A is its Lie algebroid. Next, it is proved that
there exist nonintegrable transitive Lie algebroids having the nontrivial
Chern-Weil homomorphism. Lie algebroids of some transversally com-
plete foliations have this property. Some applications to nonclosed Lie
subgroups and to vector bundles over foliated manifolds are given.,
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0.1 INTRODUCTION

1. In [24] K.Mackenzie gives the �rst general and abstract treatment of the al-
gebraic properties of Lie algebroids. The present work belongs to this direction.
It is based on:

(a) the observation by the author that the Chern-W eil homomorphism of
a connected principal bundle is an invariant of the Lie algebroid of this
bundle,

(b) the construction of an equivalent of this homomorphism in a large class of
regular (thus, nontransitive in general) Lie algebroids,

(c) the discovery of a class of Lie algebroids which are not integrable, i.e.
which do not come from principal bundles, but have nontrivial Chern-
Weil homomorphisms.

[Analogous observations, which will be the topic of the next work by the
author, concern the characteristic classes of �at (and partially �at) principal
bundles]. This enables one to apply this technique to the investigation of some
geometric structures de�ned on objects not being principal bundles but pos-
sessing Lie algebroids, such as transversally complete foliations, nonclosed Lie
subgroups, vector bundles over foliated manifolds, Poisson manifolds or some
complete closed pseudogroups.
This work concerns the Chern-Weil homomorphism and transversally com-

plete foliations, chie�y, foliations of left cosets of Lie groups by nonclosed con-
nected Lie subgroups.
2. The notion of a Lie algebroid comes from J.Pradines [29], [30]. Originally,

this notion was invented in connection with the study of di¤erential groupoids
(J.Pradines in [29] introduced the so-called Lie functor which assigns a Lie alge-
broid to any di¤erential groupoid). Since each principal bundle P determines a
di¤erential groupoid (the so-called Lie groupoid PP�1 of Ehresmann [6]), there-
fore each principal bundle P de�nes - in an indirect manner - a Lie algebroid
A (P ). P.Libermann noticed [21] that the vector bundle of this Lie algebroid is
canonically isomorphic to the vector bundle TP=G (G is the structure
Lie group of P ). The construction of the Lie functor for principal bun-

dles with the omission of the indirect step of di¤erential groupoids was made
independently by K.Mackenzie [23] and by the author [16].
The Chern-Weil homomorphism hP of a principal bundle P has been known

for some forty years [3]. One can ask the question whether this homomorphism is
an invariant of the Lie algebroid A (P ) of a given principal bundle P . In [17] (see
also [19]) the author proved that it is so under the assumption that the structure
Lie group G of P is connected. It turns out that this condition can be eliminated
entirely (see Chapter 5). More precisely, the Chern-Weil homomorphism of
a principal bundle P appears as a characteristic feature of the Lie algebroid
A (P ) of P in every case (provided only that P is connected). This means
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that, knowing only the Lie algebroid A (P ) of P , one can uniquely reproduce
the ring of invariant polynomials (

W
g�)I and the Chern-Weil homomorphism

hP : (
W
g�)I ! HdR (M) (g denotes the Lie algebra of G).

We pay our attention to the fact that this holds although in the Lie algebroid
A (P ) there is no direct information about the structure Lie group of P (which
may be disconnected !).
In addition, we must point out two things:

1) A Lie algebroid is - in some sense - a simpler structure than a principal
bundle. Namely, nonisomorphic principal bundles can possess isomorphic
Lie algebroids. For example, there exists a nontrivial principal bundle for
which the Lie algebroid is trivial (the nontrivial Spin (3)-structure of the
trivial principal bundle RP (5)� SO (3) [18], [19]).

2) There exist other sources of Lie algebroids than principal bundles, for
example, transversally complete foliations [26], [27], Poisson manifolds
[4], [5], or some complete closed pseudogroups [31]. Among them there
are ones which give �nonintegrable�Lie algebroids, i.e. those which are
transitive and cannot be realized as the Lie algebroids of principal bundles
. Namely, according to Almeida-Molino theorem [1], [27], Lie algebroids
of nondevelopable (and only such) transversally complete foliations have
this property. An example of such a foliation is any transversally complete
foliation with nonclosed leaves on a simply connected manifold. A more
concrete example is any foliation of left cosets of any connected and simply
connected Lie group by a Lie subgroup connected and dense in some torus.

3. In connection with the above, it seems important to construct the Chern-
Weil homomorphism in some category of Lie algebroids, being a generalization
of that for principal bundles. This problem is solved in our paper (chapter 4)
in the category of regular Lie algebroids, i.e. of such ones in which the anchor
is of constant rank. Namely,

hA :

k�0M 
Sec

k_
ggg�

!
I0

�! HE (M)

� 7�!
�
1

k!
h�;
b _ ::: _ 
bi

�
serves as this homomorphism for the regular Lie algebroid A ( with the

adjoint bundle of Lie algebras ggg), where 
b 2 
2E (M ;ggg) is the curvature tensor
of any connection in A, whereas

�
Sec

Wk
ggg�
�
I0
is the space of invariant cross-

sections of
Wk

ggg� with respect to the adjoint representation of A on
Wk

ggg�, i.e.

� 2
�
Sec

Wk
ggg�
�
I0
if and only if

8�2SecA8�1;:::;�k2Secggg

 
(
 � �) h�; �1 _ ::: _ �ki =

kX
i=1

h�; �1 _ ::: _ [[�; �i]] _ ::: _ �ki
!
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The nontriviality of hA means, of course, that in A there is no �at connection.
The existence of a natural isomorphism of algebras � such thatLk�0

�
Sec

Wk
ggg�
�
I0

&hA(P )

�=" � HdR (M)
%hP

(
W
g�)I

for the Lie algebroid A (P ) of a principal bundle P ( provided only that P is
connected ) means that the Chern-Weil homomorphism of a Lie algebroid is
some generalization of this notion known on the ground of principal bundles.
On the other hand, this also means that the Chern-Weil homomorphism of a
principal bundle is a characteristic feature of its Lie algebroid (for connected
principal bundles).
We give two applications of the homomorphism obtained:

� the transitive case is used for TC-foliations, especialy, for the foliations of
left cosets of Lie groups by nonclosed connected Lie subgroups (chapters
6 and 7),

� the nontransitive case - for vector bundles over foliated manifolds (section
5.7).

4. Chapters 6 and 7 concern transversally complete foliations. We start
with giving a precise construction of the Lie algebroid A (M ;F) of a TC-foliation
(M ;F). Next, we explain the geometric signi�cation of connections in A (M ;F):
Let E and Eb be the distributions tangent to the foliation F and to the basic

foliation Fb, respectively. Connections in A are in the correspondence to the
C1 distributions �C � TM satisfying the conditions : (1) �C + Eb = TM , (2)
�C \Eb = E, (3) an arbitrarily taken vector belonging to �C is the value of some
foliate vector �eld having all values in �C [in the case of left cosets of a connected
Lie group G by a connected Lie subgroup H � G, condition (3) is equivalent to
: (3�) �C is �H-right-invariant].
In particular, such a distribution �C always exists. A connection in A is �at

if and only if the corresponding distribution in TM is completely integrable.
Thus the nontriviality of the Chern-Weil homomorphism of A (M ;F) means
that then there exists no completely integrable distribution �C � TM satisfying
conditions (1)-(3) above. In chapter 7 we give a wide class of transversally com-
plete foliations for which the Chern-Weil homomorphisms of the corresponding
Lie algebroids are nontrivial. It will be some class of foliations of left cosets
of Lie groups by nonclosed connected Lie subgroups. As a preparation in this
direction we give (Th.7.4.2 ):

Let H � G be any connected Lie subgroup of G and let h, �h and g be the
Lie algebras of H, of its closure �H and of G, respectively. Let A (G;H)
be the Lie algebroid of the foliation of left cosets of G by H. Denote by
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hP :
�W �h��

I
! HdR

�
G= �H

�
the Chern-Weil homomorphism of the �H-

principal bundle P =
�
G! G= �H

�
. Then there exists an isomorphism of

algebras � such that the following diagram commutes:Lk�0
�
Sec

Wk
ggg�
�
I0

hA(G;H)�! HdR

�
G= �H

�
�=# � " hP�W��h=h��� �

�W �h��
I

Because of the well-known fact that, under the assumption that G is a con-
nected, compact and semisimple Lie group,

(hP )
2
:
�
�h�
�
I

�=�! H2
dR

�
G= �H

�
is an isomorphism, we assert, thanks to the diagram above, that hA(G;H) is
nontrivial. This means that then there exists no C1 completely integrable
distribution �C � TG such that (1) �C + Eb = TG, (2) �C \ Eb = E, (3) �C is
�H-right-invariant.
As a corollary we also obtain that ( Cor.7.4.8 ) :

No Lie subalgebra c � g satisfying (1) c + �h = g, (2) c \ �h = h exists.
(Such a Lie subalgebra determines some �at connection in A (G;H)).

Adding the simple connectedness to the assumption about G, we get, accord-
ing to the Almeida-Molino theorem, some nonintegrable transitive Lie algebroid
having the nontrivial Chern-Weil homomorphism.

0.2 PRELIMINARIES

We assume that in our work all the manifolds considered, are of the C1-class
and Hausdor¤, and that the manifolds M , M 0, ... over which we have Lie
algebroids are, in addition, connected. By 
0 (M) we denote the ring of C1

functions on a manifold M , by X (M) the Lie algebra of C1 vector �elds on
M , and by SecA the 
0 (M)-module of all C1 global cross-sections of a given
vector bundle A (over M).
Denote by F the category of couples (M;E) consisting of a manifold M and

a C1 constant dimensional and involutive distribution E � TM . A morphism
f : (M 0; E0)! (M;E) in F from (M 0; E0) to (M;E) is a C1 mapping f :M 0 !
M such that f� [E0] � E.
Let (M;E) be an object of the category F, and f any vector bundle on M .

Each element of


E (M ; f) =

k�0M

kE (M ; f) ; where 


k
E (M ; f) := Sec

^k
E�
O

f
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is called a (C1) tangential di¤erential form on (M;E) with values in f, while,
for the trivial vector bundle f =M�R, brie�y a (C1 real) tangential di¤erential
form on (M;E) (for that, see [28]). The space of tangential di¤erential forms
on (M;E) will be denoted by 
0 (M).
There is an obvious di¤erential dE of degree +1 in 
0E (M) which can be

de�ned in an elementary way in terms of local coordinates [28] or, equivalently,
by the global formula:

dE (�) (X0; :::; Xk) =
X
j

(�1)j Xj

�
�

�
X0; :::

^
j:::Xk

��
+

+
X
i<j

(�1)i+j �
�
[Xi; Xj ] ; X0; :::

^
i :::

^
j:::Xk

�

(for � 2 
kE (M ; f)). We evidently have
�
dE
�2
= 0. The tangential coho-

mology space HE(M) of (M;E) is, by de�nition, the cohomology space of the
complex (
0 (M) ; d). If E = TM , then HE(M) is the de Rham cohomology
space HdR(M) of M .
For a morphism f : (M 0; E0) ! (M;E) of F and a vector bundle f on M ,

we can de�ne, in a standard way, the pullback of forms f� : 
E (M ; f) !

E0 (M 0; f�f).
The usual law of the commuting of f� with the di¤erentiation of real-valued

forms holds:
f� � dE = dE

0
� f�:

Let f1; :::; fk; f be vector bundles over M . An arbitrary k-linear homomorphism
of vector bundles ' : f1 � :::� fk ! f determines the mapping

'� : 
E
�
M ; f1

�
� :::� 
E

�
M ; fk

�
�! 
E (M ; f)

de�ned by the standard formula

'� (�1; :::;�k) (x; v1 ^ ::: ^ vm)

=
1

q1! � ::: � qk!
X
�

sgn� � '
�
�1
�
x; v�(1) ^ :::

�
; :::;�k

�
x; :::v�(m)

��
in which m =

P
qi where qi is the degree of �i 2 
E

�
M ; fi

�
.

Sometimes, the form '� (�1; :::;�k) will be denoted in other ways:

(a) for forms of degree 0 (i.e. for cross-sections of the vector bundles fi), by
' (�1; :::;�k)

(b) for the standard homomorphisms
Nk

: f� :::� f!
Nk

f,
Wk

: f� :::� f!Wk
f by �1 
 :::
�k and �1 _ ::: _�k respectively;

(c) for the duality h�; �i :
Wk
f� �

Wk
f! R, [8], by h�1;�2i, etc.
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1 THE CATEGORY OF REGULAR LIE AL-
GEBROIDS

1.1 The category of regular Lie algebroids.

De�nition 1.1.1 (see [29], [30]). By a Lie algebroid on a manifold M we mean
a system

A = (A; [[�; �]]; 
) (1.1)

consisting of a vector bundle A (over M) and mappings

[[�; �]] : SecA� SecA �! SecA; 
 : A �! TM;

such that

(i) ((SecA; [[�; �]])) is an R-Lie algebra,

(ii) 
, called by K.Mackenzie [23] an A nchor, is a homomorphism of vector
bundles,

(iii) Sec 
 : Sec 
 �! X (M) ; � 7�! 
 � �; is a homomorphism of Lie algebras,

(iv) [[�; f � �]] = f � [[�; �]] + (
 � �) (f) � � for f 2 
0 (M) ; �; � 2 SecA:

Lie algebroid 1.1 is called
(a) regular if 
 is a constant rank; then E := Im 
 is, of course, C1 constant

dimensional and completely integrable distribution, 1.1 is then also called a Lie
algebroid over (M;E). ggg = ker 
 is a vector bundle, called the adjoint of 1.1,
and the short exact sequence

0 �! ggg ,!A 
�! E �! 0 (1.2)

is called the Atiyah sequence of 1.1;
(b) transitive if 
 is an epimorphism.
The concept of a Lie algebroid enables one to make many generalizations

[15], [22].
Let 1.1 be a regular Lie algebroid. In each vector space gggjx (= ker 
jx),

x 2M , some Lie algebra structure is de�ned by

[v; w] := [[�; �]] (x) ; �; � 2 SecA; � (x) = v; � (x) = w; v; w 2 gggjx:

gggjx is called the isotropy Lie algebra of 1.1 at x. For transitive Lie algebroid 1.1,
ggg is a Lie algebra bundle [2], [19], [23].

Example 1.1.2 The following are important examples of transitive Lie alge-
broids:

(10) the Lie algebroid A (P ) = TP=G of a G-principal bundle P , see [16], [19],
[23],
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(20) the Lie algebroid CDO(f) of covariant di¤erential operators on a vector
bundle f , see [23],

(30) the Lie algebroid i� (T��) of a Lie groupoid �, see [13], [30],

(40) the Lie algebroid A (M ;F) of a transversally complete foliation (M ;F),
see [26], [27]; in particular,

(50) the Lie algebroid A(G;H) of the foliation of left cosets of a Lie group G
by a nonclosed connected Lie subgroup H � G, see [20], [27],

(60) the Lie algebroid of some pseudogroups, see [31].

The following are examples of nontransitive (in general) Lie algebroids:

(10) the Lie algebroid i� (T��) of a di¤erential groupoid �, see [12], [29], [30],

(20) the Lie algebroid of a Poisson manifold, see [4], [5],

(30) the regular Lie algebroid AE = 
�1 [E] � A de�ned by transitive Lie
algebroid 1.1 and an involutive distribution E � TM (for example, a Lie
groupoid (or a vector bundle) over a foliated manifold determines such an
object).

De�nition 1.1.3 (24) Let 1.1 and A0 = (A0; [[�; �]]0; 
0) be two Lie algebroids
(even not necessarily regular) on manifolds M and M 0, respectively. By a ho-
momorphism

H : (A0; [[�; �]]0; 
0) �! (A; [[�; �]]; 
) (1.3)

between them we mean a homomorphism of vector bundles H : A0 ! A, say,
over f :M 0 !M , such that,

(a) 
 �H = f� � 
0,

(b) for arbitrary cross-sections �; �0 2 SecA with H-decompositions

H � � =
X
i

f i � (�i � f) ; H � �0 =
X
j

f 0j �
�
�0j � f

�
;

f i; f 0j 2 
0 (M 0) ; �i; �
0
j 2 SecA, we have

H � [[�; �0]]0 =
X
i;j

f i � f 0j � [[�i; �0j ]] � f +
X
i

(
0 � �)
�
f 0j
�
� �0j � f�

�
X
j

(
0 � �0)
�
f i
�
� �i � f:

In the case of Lie algebroids A and A0 on the same manifoldM , a strong ho-
momorphismH : A0 ! A of vector bundles is a homomorphism of Lie algebroids
if and only if
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(1�) 
 �H = 
0,

(2�) SecH : SecA0 ! SecA, � 7! H � �; is a homomorphism of Lie algebras.

Indeed, �) �is trivial.
�( �Let H � � =

P
i f

i � �i and H � �0 =
P
j f

0j � �0j be H-decompositions
of �; �0 2 SecA0. Then

H � [[�; �0]]0

= [[H � �;H � �0]] = [[
X
i

f i � �i;
X
j

f 0j � �0j ]]

=
X
i;j

f i � f 0j � [[�i; �0j ]] +
X
i;j

f i � (
 � �i)
�
f 0j
�
� �0j �

X
i;j

f 0j �
�

 � �0j

� �
f i
�
� �i

=
X
i;j

f i � f 0j � [[�i; �0j ]] +
X
i

(
0 � �)
�
f 0j
�
� �0j �

X
j

(
0 � �0)
�
f i
�
� �i:

If homomorphism 1.3 is a bijection, then H�1 is also a homomorphism of
Lie algebroids; then H is called an isomorphism of Lie algebroids.
Below, we represent each nonstrong homomorphism 1.3 of regular Lie alge-

broids over f : (M 0; E0)! (M;E) as a superposition of some strong homomor-
phism �H : A0 ! f^A with the canonical nonstrong one { : f^A ! A where
f^A is the so-called inverse-image of A over f . The term �inverse-image of A
over f�appears in work [24] by K.Mackenzie, but in the sense not quite helpful
here (for example, Mackenzie�s de�nition, although it is general enough, ensures
neither the existence of the inverse-image of A nor its regularity for a regular
Lie algebroid A). For the sake of completness, we add that the two de�nitions,
1.1.4 below and 1.4 from [24], are equivalent on the ground of transitive Lie
algebroids.

De�nition 1.1.4 Let 1.1 be a regular Lie algebroid over (M;E) and let f :
(M 0; E0) ! (M;E) be a morphism of the category F. The inverse-image of A
by f is a regular Lie algebroid over (M 0; E0)�

f^A; [[�; �]];pr1
�

(1.4)

in which

(i)

f^A = E0 �(f�;
) A = f(v; w) 2 E0 �A; f� (v) = 
 (w)g � E0
M

f�A

(f^A is a submanifold of E0
L
f�A because f� � 
 : E0 � A ! E � E is

transverse to the diagonal � � E � E; and f^A = (f�; 
)�1 [�] ;

(ii) the bracket [[�; �]] in Sec f^A is de�ned in the following way: Let
�
Xi; ��i

�
2

Sec f^A, i = 1; 2 (where Xi 2 SecE0, ��i 2 Sec f^A). Then, locally (say
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on U � M 0), ��i is of the form
P
j g

j
i � �

j
i � f for some g

j
i 2 
0 (M 0) and

�ji 2 SecA, and we put

[[
�
X1; ��1

�
;
�
X2; ��2

�
]]jU

= ([X1; X2] ;
X
j;k

gj1 � gk2 � [[�
j
1; �

k
2 ]] � f +

X
k

X1

�
gk2
�
� �k2 � f�

�
X
i

X2

�
gj1

�
� �j1 � f)jU :

The correctness of this de�nition. By antisymmetry, it is su¢ cient to show
that

P
j;k g

j
1 � gk2 � [[�

j
1; �

k
2 ]] � f +

P
kX1

�
gk2
�
� �k2 � f

is independent of the choice of the decomposition for ��2. Consider simulta-
neously the 2-linear function F : 
0 (M 0)� SecA! Sec f^A given by

F (g; �) =
X
j

gj1 � g � [[�
j
1; �]] � f +X1 (g) � � � f; g 2 
0 (M 0) ; � 2 SecA:

Clearly
P
j;k g

j
1 � gk2 � [[�

j
1; �

k
2 ]] � f +

P
kX1

�
gk2
�
� �k2 � f =

P
k F

�
gk2 � �k2

�
: For t 2


0 (M) ; by standard calculations and thanks to the assumption that f� (X1 (x)) =


�
��1 (f (x))

�
; one can easily notice that (cf. Lemma 1.4 from [24])

F (g; t � �) = F (g � (t � f) ; �) :

To prove the examined independence, take two decompositions ��2 =
P
k g

k
2 �

�k2 � f =
P
r ~g

r
2 � ~�r2 � f: For a point x 2M 0, let �s be a local basis of the module

SecA around f (x) and let �k2 =
P
s h

s
k � �s; ~�r2 =

P
s
~hsr � �s (around f (x)),

hsk;
~hsr 2 
0 (M) ; then, around x we have

P
k g

k
2 �hsk �f =

P
r ~g

r
2 � ~hsr �f for each

s. Therefore, in the end, we obtainX
k

F
�
gk2 � �k2

�
=
X
k

F

 
gk2 ;
X
s

hsk � �s

!
=
X
s

F

 X
k

gk2 � hsk � f; �s

!

=
X
s

F

 X
r

~gr2 � ~hsr � f; �s

!
=
X
r

F

 
~gr2;
X
s

~hsr � �s

!
=
X
r

F
�
~gr2;
~�r2

�
:

The Atiyah sequence of the inverse-image f^A of A is

0 �! f�ggg �! f^A
pr1�! E0 �! 0

(identify f�ggg with 0
L
f�ggg).

Clearly,
{ = pr2 : f^A �! A

is a homomorphism of regular Lie algebroids.
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Proposition 1.1.5 Let A and A0 be regular Lie algebroids over (M;E) and
(M 0; E0), respectively. Let H : A0 ! A be a homomorphism of vector bundles
over f : (M 0; E0) ! (M;E). Then H is a homomorphism of Lie algebroids if
and only if

(1) 
 �H = f� � 
0,

(2) �H : A0 ! f^A; � 7! (
0 (v) ;H (v)) ; is a strong homomorphism of Lie
algebroids.

Proof. The very easy proof will be omitted.
According to this proposition, each nonstrong homomorphism of regular Lie

algebroids is canonically represented as the superposition

H : A0
�H�! f^A

{�! A: (1.5)

In the case of regular Lie algebroids, each homomorphism 1.3 determines a
homomorphism of the associated Atiyah sequences

0 �! ggg0 ,! A0

0�! E0 �! 0

# H+ # H # f�
0 �! ggg ,! A


�! E �! 0

(H+ is the restricted homomorphism of the adjoint vector bundles and H+
jx :

ggg0jx ! gggjf(x); x 2M; is a homomorphism of Lie algebras).
An example of a nonstrong (in general) homomorphism of regular Lie alge-

broids is the tangent mapping f� : E0 ! E to any C1 morphism f : (M 0; E0)!
(M;E) of the category F, cf. [24].
All regular Lie algebroids and all homomorphisms between them form a

category fundamental in our considerations.

Lemma 1.1.6 Let A and B be two regular Lie algebroids over (M;E), H :
A ! B a strong homomorphism, and f : (M 0; E0) ! (M;E) any morphism
of F. Then the mapping f^H : f^A ! f^B; (u; v) 7! (u;H (v)), is a strong
homomorphism of regular Lie algebroids.

Proof. Of course, pr1 �f^H = pr1. To prove that Sec f
^H is a homomor-

phism of Lie algebras, take two cross-sections �; � 2 Sec f^A; � =
�
X;
P
i f

i � �i � f
�
;

� =
�
Y;
P
j g

j � �j � f
�
; and calculate

f^H � [[�; �]]

= f^H � ([[(X;
X
i

f i � �i � f); (Y;
X
j

gj � �j � f)]])

= ([X;Y ] ;
X
i;j

f i � gj � [[H � �i;H � �j ]] � f +
X
i

�
X
�
gi
�
� Y

�
f i
��
�H � �i � f)

= [[(X;
X
i

f i �H � �i � f); (Y;
X
j

gj �H � �j � f)]]

= [[f^H � �; f^H � �]]:

14



f^H is called the inverse-image of H over f .

1.2 The Lie algebroid A (f) of a vector bundle f

De�nition 1.2.1 Let f be any vector bundle on a manifold M , with a vector
space V as the typical �bre. A linear homomorphism l : Sec f! fjx is called an
f-vector tangent at x if and only if there exists a vector u 2 TxM such that

l (f � �) = f (x) � l (�) + u (f) � � (x)

for all f 2 
0 (M) and � 2 Sec f.

The vector u determined uniquely by l, is called the anchor of l and denoted
by q (l). All f-vectors tangent at x form a vector space A (f)jx. Put A (f) =`
x2M A (f)jx (a disjoint sum) and let p : A (f)!M be the canonical projection.

Clearly, each f-vector l is factorized by some linear mapping ~l from the space of
1-jets at x:

Sec f �!
�
J1f
�
jx

& l # ~l
fjx;

and the mapping just obtained A (f)! Hom
�
J1f; f

�
; l 7! ~l; is a monomorphism

on each �bre. One can prove [23] that the image of this mapping, equalling
CDO f, is a vector subbundle of Hom

�
J1f; f

�
. Via this mapping we shall identify

A (f) with CDO f to obtain a transitive Lie algebroid with q : A (f) ! TM;
l 7! q (l) ; as the anchor. A cross-section � 2 SecA(F) de�nes a di¤erential
operator L� in f by the formula:

L� (�) (x) = �x (�) ; � 2 Sec f; x 2M;

being a covariant di¤erential operator in f. Besides, each covariant di¤erential
operator in f is of the form L� for exactly one cross-section � 2 SecA (f). The
bracket [[�; �]] of cross-sections of A (f) is de�ned in the classical - for di¤erential
operators - manner, i.e. for �; � 2 SecA (f), [[�; �]] is a cross-section of A (f) such
that L[[�;�]] = L� � L� � L� � L�. The Atiyah sequence of A (f) is

0 �! End f
i
,! A (f)

q�! TM �! 0

(and Li�� (�) = �(�) for �2 (f), where �(�)2Sec f is de�ned by �(�)(x) = �x(�);
x 2M).
Take now a vector bundle f on M and a mapping f : M 0 ! M . Consider

the inverse-image f^ (A (f)) (= TM 0
(f�;q)

A (f) ) of A (f).

Lemma 1.2.2 For x 2 M 0 and (u; l) 2 f^ (A (f)) ; there exists exactly one
element w 2 A (f)jx with the anchor u, such that w(� � f) = l (�), �2Sec f. The
correspondence (u; l) 7! w establishes a strong isomorphism

cf : f
^ (A (f)) �! A (f�f)
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of transitive Lie algebroids.

Proof. Let x 2 M 0 and (u; l) 2 f^ (A (f))jx ; i.e. u 2 TxM
0; l 2 A (f)jf(x)

and
f� (u) = q (l) : (1.6)

The uniqueness of an element w 2 A (f)jx with the anchor u, such that
w(� � f) = l(�), � 2 Sec f, is evident. As to the existence of such an element,
we notice that any cross-section � 2 Sec f�f can be represented (not uniquely)
in the form � =

P
i f

i � �i � f; f i 2 
0 (M 0) ; �i 2 Sec f. Put

~w (�) =
X
i

f i (x) � l (�i) + u
�
f i
�
� �i � f (x) :

The correctness of this de�nition: Let � =
P
i f

i ��i�f =
P
j g

j ��j �f (locally in
some neighbourhood of x). Take an arbitrary basis �1; :::; �n of cross-sections
of f around f (x) and let �i =

P
s '

s
i � �s; �j =

P
s  

s
j � �s: Therefore in a

neighbourhood of xX
i

f i � 'si � f =
X
j

gj �  sj � f; s = 1; :::; n: (1.7)

Equalities 1.6 and 1.7 yieldX
i

f i (x) � l (�i) + u
�
f i
�
� �i � f (x)

=
X
s

 X
i

f i (x) � 'si � f (x)
!
� l (�s) +

X
s

u

 X
i

f i � 'si � f
!
� �s � f (x)

=
X
j

gj (x) � l (�j) + u
�
gj
�
� �j � f (x) :

[It is easy to see that ~w is an f�f-vector tangent at x (with the anchor u).
Clearly, the mapping obtained cf : f^ (A (f)) ! A (f�f) ; (u; l) 7! w; is a strong
homomorphism of vector bundles. The smoothness of cf follows from the fact
that cf maps a smooth cross-section to a smooth one: namely,

�
X;
P
i f

i � �i � f
�

is carried over to a cross-section � such that L�(� � f) =
P
i f

i � L�i(�) � f;
� 2 Sec f.
It remains to show that cf is a homomorphism of transitive Lie algebroids.

Of course, q � cf = pr1. To see that Sec (cf) is a homomorphism of Lie algebras,
take two cross-sections �; � 2 Sec f^ (A (f)). They are (locally) of the form

� =
�
X;
P
i f

i � �i � f
�
; � =

�
Y;
P
j g

j � �j � f
�
for f i; gj 2 
0 (M 0) and � 2i
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SecA (f). We calculate (for � 2 Sec f)

L[[cf��;cf��]](� � f)
= Lcf�� � Lcf��(� � f)� Lcf�� � Lcf��(� � f)

=
X
i;j

f i � gj � L[[�i;�j ]] (�) � f +
X
i

�
X
�
gi
�
� Y

�
f i
��
� L�i(�) � f

= Lcf�[[�;�]] (� � f) :

2 REPRESENTATIONSOF LIE ALGEBROIDS
ON VECTOR BUNDLES

2.1 De�nition and fundamental examples.

De�nition 2.1.1 (cf. [23, p.106]) Let f and (1) be any vector bundle and Lie
algebroid (both over M), respectively. By a representation of A on f we mean a
strong homomorphism of Lie algebroids

T : A �! A (f) : (2.1)

2.1.1 Adjoint representation (de�ned by Mackenzie [23] for the tran-
sitive case)

One can trivially notice that if � 2 Secggg, then, for � 2 SecA, the value of [[�; �]]
at x depends only on the value of � at x and belongs to gggjx. In this way, it is
the correctly de�ned element [[v; �]] 2 gggjx for v 2 A and � 2 Secggg.
A very important representation is the so-called adjoint representation of a

regular Lie algebroid A
adA : A �! A (ggg)

de�ned uniquely by the following property:

adA (v) (�) = [[v; �]]; v 2 A; � 2 Secggg:

To see the existence of adA, we only need to notice that Secggg 3 � 7![[v; �]] 2 gggjx
is a ggg-vector. The smoothness of adA is evident.

2.1.2 Contragredient representation

The contragredient representation of 2.1 is, by de�nition,

T \ : A �! A (f�)

such that hLT \�� (') ; �i = (
 � �) h'; �i � h';LT��(�)i; � 2 SecA, ' 2 Sec f�,
� 2 Sec f.
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2.1.3 Representations induced by a single one

A single representation T : A ! A(f) determines (as in the case of a represen-
tation of a Lie algebra in a vector space) a number of new ones. Among them
we shall need the following ones:

� The symmetric product
Wk

T of A on
Wk
f as the one for which

LWk T��
�
�1 _ ::: _ �k

�
=
X
i

�1 _ ::: _ LT��
�
�i
�
_ ::: _ �k; �i 2 Sec f; � 2 SecA:

� The representationHomk (T ) ofA on the space of k-linear homomorphisms
Homk(f;R) as the one for which

LHomk(T )�� (')
�
�1; :::; �k

�
= (
 � �)

�
'
�
�1; :::; �k

��
�
X
i

'
�
�1; :::;LT��

�
�i
�
; :::; �k

�
;

for any k-linear homomorphism ' : f � ::: � f ! R and for � 2 Sec f,
� 2 SecA.

Via the above, the given representation 2.1 determines
Wk

T \ of A on the
space

Wk
f�.

Lemma 2.1.2 The representation
Wk

T \ is de�ned by the following formula:

hLWk T \���; �1 _ ::: _ �ki

= (
 � �) h�; �1 _ ::: _ �ki �
X
i

h�; �1 _ ::: _ LT�� (�i) _ ::: _ �ki

for � 2 Sec
�Wk

f�
�
and � 2 Sec f.

Proof. We need the following
Sublemma. Let, for a given matrix B, the symbol permji (B) denote the

permanent of the matrix which arises from B by the eliminating of the ith

row and jth column (for the de�nition of a permanent, see [8]). The following

properties of the permanent of the matrix B =
h
f ji ; i; j � k

i
hold:

� The expansion formula with respect to the itho row or jtho column:

permB =
kX
j=1

f jio � perm
j
io
(B) =

kX
i=1

f joi � permjoi (B) ;
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� the law of di¤erentiation :

X (permB) =
X
i;j

X
�
f ji

�
� permji (B)

where f ji and X are C1 functions and a vector �eld on a given manifold,
respectively.

The very easy proof will be omitted.
Proof of Lemma (2.1.2). It is su¢ cient to show the equality for a cross-

section � of the form � = u�1_ :::_u�k; u�j 2 Secggg. Using the above sublemma,
we obtain, for � 2 Sec f,

hLWk T \��u
�1 _ ::: _ u�k; �1 _ ::: _ �ki

= h
X
j

u�1 _ ::: _ LT \��u�j _ ::: _ u�k; �1 _ ::: _ �ki

=
X
j

perm

264 hu�1; �1i ::: hLT \��u�j ; �1i ::: hu�k; �1i
...

...
...

hu�1; �ki ::: hLT \��u�j ; �ki ::: hu�k; �ki

375
=
X
j

perm

264 hu�1; �1i ::: (
 � �) hu�j ; �1i ::: hu�k; �1i
...

...
...

hu�1; �ki ::: (
 � �) hu�j ; �ki ::: hu�k; �ki

375
�
X
j

perm

264 hu�1; �1i ::: hu�j ;LT���1i ::: hu�k; �1i
...

...
...

hu�1; �ki ::: hu�j ;LT���ki ::: hu�k; �ki

375
=
X
i;j

(
 � �) hu�j ; �ii � permji �
X
i;j

hu�j ;LT���ii � permji

= (
 � �) perm

264 hu�1; �1i ::: hu�k; �1i
...

...
hu�1; �ki hu�k; �ki

375

�
X
i

perm

26666664

hu�1; �1i ::: hu�k; �1i
...

...
hu�1;LT���ii ::: hu�k;LT���ii

...
...

hu�1; �ki hu�k; �ki

37777775

= (
 � �) hu�1 _ ::: _ u�k; �1 _ ::: _ �ki

�
X
i

hu�1 _ ::: _ u�k; �1 _ ::: _ LT���i _ ::: _ �ki:
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2.2 The inverse-image of a representation

De�nition 2.2.1 Let A be any regular Lie algebroid over (M;E), and f any
vector bundle over M , whereas f : (M 0; E0) ! (M;E) �any morphism of the
category F. By the inverse-image of a representation

T : A! A (f)

over f we mean the representation f�T : f^ (A)! A (f�f) de�ned as the super-
position

f�T : f^ (A)
f^T�! f^A (f)

cf�! A (f�f)

where cf is the isomorphism described in Lemma 1.2.2 whereas f^T is the
inverse-image of T over f , see Lemma 1.1.6.

Lemma 2.2.2 The inverse-image of the adjoint representation is adjoint, i.e.

f� (adA) = adf^A :

Proof. It is enough to check the equality

f� (adA) (u) (� � f) = adf^A (u) (� � f)

for � 2 Secggg and u 2 f^A. Write u = (v; w) for v 2 E0 and w 2 A, see Def.
1.1.4. Then

f� (adA) (u) (� � f) = cf � f^ adA (v; w) (� � f)
= cf (v; adA (w)) (� � f) = (adA (w)) (�)
= [[w; �]] = [[(v; w) ; (0; � � f)]] = adf^A (u) (� � f) :

Lemma 2.2.3 Under the canonical identi�cations f� (f�) �= (f�f)� ; f�
�Wk

f
�
�=Wk

(f�f) ; the following equalities of representations hold:

(a) f�
�
T \
�
= (f�T )

\
;

(b) f�
�Wk

T
�
=
Wk
(f�T ) :

Proof. (a): Let x 2 M 0 and (v; w) 2
�
f^A

�
jx ; i.e. v 2 E

0
jx; w 2 Ajf(x) and

f� (v) = 
 (w) : Of course (by the uniqueness considered in Lemma 1.2.2), it is
su¢ cient to show the equality

f�
�
T \
�
(v; w) (�� � f) = (f�T )\ (v; w) (�� � f)
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for �� 2 Sec f�. Both sides of the equality are elements of the space f�jf(x)
(= (f�f�)jx), therefore, to show this, take arbitrary u 2 f and a cross-section
� 2 Sec f, such that � (f (x)) = u:

hf�
�
T \
�
(v; w) (�� � f) ; ui

= hf�
�
T \
�
(v; w) (�� � f) ; � (f (x))i

= hc(f�)
�
v; T \ (w)

�
(�� � f) ; � � f (x)i

= hT \ (w) (��) ; � � f (x)i
= (
 (w)) h��; �i � h�� (f (x)) ; T (w) (�)i
= f� (v) h��; �i � h�� (f (x)) ; cf (v; T (w)) (� � f)i
= v (h�� � f; � � fi)� h�� (f (x)) ; f�T (v; w) (� � f)i
= h(f�T )\ (v; w) (�� � f) ; � � f (x)i
= h(f�T )\ (v; w) (�� � f) ; ui:

(b): Under the canonical identi�cation f�
�Wk

f
�
=
Wk
(f�f), we have �1�f_

:::_�k �f = (�1 _ ::: _ �k)�f for �i 2 Sec f . Since a cross-section � 2 Sec
Wk
f is

( locally) a linear combination of cross-sections of the form �1_:::_�k; �i 2 Sec f,
we see ( by the same argument as in (a) above) that it is su¢ cient to notice the
following:

f�
�_k

T

�
(v; w) ((�1 _ ::: _ �k) � f)

=
_k

T (w) (�1 _ ::: _ �k)

=
X
i

�i (f (x)) _ ::: _ T (w) (�i) _ ::: _ �k (f (x))

=
_k

(f�T ) (v; w) (�1 � f _ ::: _ �k � f) :

2.3 Invariant cross-sections ( cf. Mackenzie, [23, p.195])

De�nition 2.3.1 Let 2.1 be any representation of a regular Lie algebroid A
over (M;E) on f. A cross-section � 2 Sec f will be called invariant (or, more
precisely, T -invariant , or, after Mackenzie, A-parallel) if T (v) (�) = 0 for all
v 2 A and � 2 Sec f.

Denote by (Sec f)Io(T ) ( or brie�y by (Sec f) if it does not lead to confusion)
the space of all T -invariant cross-sections of f. (Sec f)Io(T ) is an 
0b (M;F)-
module where F is the foliation having E as its tangent bundle [
0b (M;F)
being the ring of F-basic functions].
One can prove ( cf. [23]) that each invariant cross-section � 2 Sec f with

respect to a representation T : A ! A (f) of a transitive Lie algebroid A is
uniquely determined by the value at one of the points of M .
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Lemma 2.3.2 Let T : A ! A (f) be a given representation of A on f. An
element ' 2 Sec

Wk
f determines a k-linear homomorphism ~' : f� :::� f! R by

the formula : ~' (v1; :::; vk) = h'; v1; :::; vki. We have that ' is
Wk

T \-invariant
if and only if ~' is Homk (T )-invariant.

Proof. Follows directly from Lemma 2.1.2 and the de�nitions.

Lemma 2.3.3 Let T : A ! A (f) be a given representation of A on f. Let
�1 2 Sec

Wk
f and �2 2 Sec

Wl
f be

Wk
T - and

Wl
T -invariant cross-sections, re-

spectively. Then the symmetric product �1_�2 2 Sec
Wk+l

f is
Wk+l

T -invariant.

Proof. Follows trivially from the equality�_k+l
T

�
(v) (�1 _ �2) =

�_k
T (v)

�
(�1)_�2 (x)+�1 (x)_

�_l
T

�
(v) (�2)

for v 2 Ajx, x 2M ; which can easily be checked by considering simple tensors
�1 = �1 _ ::: _ �k; �2 = �k+1 _ ::: _ �k+l; �i 2 Sec f, only.

Theorem 2.3.4 Let A be any regular Lie algebroid over (M;E), and f any
vector bundle over M , whereas f : (M 0; E0) ! (M;E) �any morphism of the
category F . For a representation T : A! A (f), the linear mapping f� : Sec f!
Sec f�, � 7! �� f , can be restricted to the spaces of cross-sections invariant under
T and f�T , respectively:

f�Io : (Sec f)Io(T ) �! (Sec f�f)Io(f�T ) :

Proof. Let � 2 (Sec f)Io(T ) and (v; w) 2 f^A. Then

f�T (v; w) (� � f) = cf � F ^T (v; w) (� � f)
= cf (v; T (w)) (� � f) = T (w) (�) = 0:

3 CONNECTIONS IN REGULAR LIE ALGE-
BROIDS

In this chapter we �x a regular Lie algebroid (1.1) over (M;E) 2 F with the
Atiyah sequence 1.2.

3.1 Connections, curvature and partial exterior covariant
derivatives.

De�nition 3.1.1 By a connection in A we mean a homomorphism of vector
bundles � : E ! A such that 
 � � = idE. The uniquely determined homomor-
phism ! : A ! ggg such that !jggg = id and !j Im� = 0 is called the connection
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form of �. The projection H : A ! A onto the second component with respect
to the decomposition A = ggg

L
C, C := Im�, is the horizontal projection. By

the curvature tensor of a connection � we shall mean the form 
b 2 
2E (M;ggg)
de�ned by


b(X1; X2) = �!([[� �X1; � �X2]]); Xi 2 SecE;

or, equivalently, by


b(X1; X2) = � � [X1; X2]� [[� �X1; � �X2]]; Xi 2 SecE: (3.1)

A given connection � in A determines the so-called partial exterior covariant
derivative r : 
E (M;ggg)! 
E (M;ggg) by the formula

(r�) (X0; :::; Xk) =
kX
j=0

(�1)j [[� �Xj ;�(X0; :::|̂:::; Xk)]]+

+
X
i<j

(�1)i+j �([Xi; Xj ]; X0; :::̂{:::|̂:::; Xk);

Xi 2 SecE, for � 2 
kE (M;ggg). Without di¢ culties we assert that

r(� � �) = r� ^ � + � � dE� (3.2)

for � 2 Secggg and � 2 
E (M); besides, the linear operator

rjSecggg : Secggg !
1E (M;ggg)

is a partial covariant derivative (in the sense of [11], compare [13], [14]).

Proposition 3.1.2 (1) If ':ggg � :::� ggg !R is a Homk (adA)-invariant k-linear
homomorphism, then, for �i 2 
qlE (M;ggg), we have

dE('�(�1; :::;�k)) =
X
i=1`k

(�1)q1+:::+qi�1 '�(�1; :::;r�i; :::;�k):

(2) r
b = 0 (The Bianchi identity).

Proof. (1): We begin with the following lemma:
Lemma For aHomk(adA)-invariant k-linear homomorphism ':ggg � :::� ggg �!

R and �i 2 Secggg, we have

d('(�1; :::; �k)) =
X
i

'�(�1; :::;r�i; :::; �k):
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Proof of the lemma. According to de�nitions 2.1.3 and 2.3.1, we have, for
X 2 SecE,

dE('(�1; :::; �k))(X) = X('(�1; :::; �k))

= (
 � � �X)('(�1; :::; �k))

=
X
i

'(�1; :::;LadA ���X(�i); :::; �k)

=
X
i

'(�1; :::; [[� �X; �i]]; :::; �k)

=
X
i

'(�1; :::; (r�i)(X); :::; �k)

=
X
i

'�(�1; :::;r�i; :::; �k)(X):

To continue the proof of our Proposition, we notice that since both sides of
the examined equality are R-linear with respect to each �i, and each ggg-valued
form � is (locally) a linear combination of forms � � � where � 2 Secggg and �
is a real form, therefore it is su¢ cient to show the equality for �i = �i � �i,
�i 2 Secggg, �i 2 
qi (M). From the lemma above and 3.2 we obtain

dE('�(�1 � �1; :::; �k � �k))
= dE('(�1; :::; �k) � �1 ^ ::: ^ �k)
= dE('(�1; :::; �k)) ^ �1 ^ ::: ^ �k + '(�1; :::; �k) � dE(�1 ^ ::: ^ �k)

=
X
i

'�(�1; :::;r�i; :::; �k) ^ �1 ^ ::: ^ �k+

+ '(�1; :::; �k) �
kX
i=1

(�1)q1+:::+qi�1 �1 ^ ::: ^ dE�i ^ ::: ^ �k

=

kX
i=1

(�1)q1+:::+qi�1 '�(�1 � �1; :::;r�i ^ �i; :::; �k � �k)+

+
kX
i=1

(�1)q1+:::+qi�1 '�(�1 � �1; :::; �1 � dE�i; :::; �k � �k)

=

kX
i=1

(�1)q1+:::+qi�1 '�(�1 � �1; :::;r�i ^ �i + �i � dE�i; :::; �k � �k)

=
kX
i=1

(�1)q1+:::+qi�1 '�(�1 � �1; :::;r(�i � �i); :::; �k � �k):
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(2): From the de�nitions, equality 3.1 and the Jacobi identity in SecE we
obtain:

r
b(X0; X1; X2)

= [[� �X0;
b(X1; X2)]]� [[� �X1;
b(X0; X2)]] + [[� �X2;
b(X0; X1)]]

� 
b([X0; X1]; X2) + 
b([X0; X2]; X1)� 
b([X1; X2]; X0)

= [[� �X0; � � [X1; X2]� [[� �X1; � �X2]]]� [[� �X1; � � [X0; X2]�
� [[� �X0; � �X2]]] + [[� �X2; � � [X0; X1]� [[� �X0; � �X1]]]�
� � � [[X0; X1]; X2] + [[� � [X0; X1]; � �X2] + � � [[X0; X2]; X1]�
� [[� � [X0; X2]; � �X1]]� � � [[X1; X2]; X0] + [[� � [X1; X2]; � �X0]]

= 0:

3.2 Inverse-image of a connection

De�nition 3.2.1 Let � be a connection in A. Take a morphism f : (M 0; E0)!
(M;E) of the category F (see Preliminaries). By the inverse-image of � over
f we mean the connection �� in the inverse-image of A over f , (4), de�ned by
� (v) = (v; �(f (v))), v 2 E0. Notice the commuting of the diagram

f^A
pr2�! A

�� " � "
E0

f��! E

and the equality �� �X = (X;� � f� �X) for X 2 SecE0. The connection form
of �� is ! : f^A �! f�ggg, (v; w) 7! !(w), where ! is such a form for �.

Proposition 3.2.2 Let � be a connection in A, and 
b - its curvature tensor.
Then �
b, the curvature tensor of the inverse-image �� of � over f , is equal to
�
b(X;Y ) = (f

�
b)(X;Y ), X,Y 2 SecE0.

Proof. We start with the following
Lemma (1) For X 2 SecE0, we have (X;� � f� �X) 2 Sec f^A.
(2) For X;Y 2 SecE0, we have

[[(X;� � f� �X); (Y; � � f� � Y )]] = ([X;Y ]); � � f� � [X;Y ]� (f�
b)(X;Y )):

Proof of the Lemma. (1) is evident. To prove (2) we establish the equality
in some neighbourhood of an arbitrary point x 2 M 0. For the purpose, take
any commuting vector �elds Y 1; :::; Y n 2 Sec(E) being a local basis in some
neighbourhood U of y := f(x). Then, on U 0 := f [U ] �M 0, we may write

(f� �X)jU 0 = (
X
i

gi � Y i � f)jU 0 ; (f� � Y )jU 0 = (
X
j

hj � Y j � f)jU 0
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for some gi; hj 2 
0 (M). Therefore, by 3.1,

[[(X;� � f� �X); (Y; � � f� � Y )]]jU 0

= [[(X;
X
i

gi � � � Y i � f); (Y;
X
j

hj � � � Y j � f)]]jU 0

= ([X;Y ];
X
i;j

gi � hj � [[� � Y i; � � Y j ]] � f +
X
j

X(hj) � � � Y j � f�

�
X
i

Y (gi) � � � Y i � f)jU 0

= ([X;Y ];�
X
i;j

gi � hj � 
b(Y i; Y j) � f +
X
j

X(hj) � � � Y j � f�

�
X
i

Y (gi) � � � Y i � f)jU 0

= ([X;Y ];�(f�
b)(X;Y ) +
X
j

X(hj) � � � Y j � f �
X
i

Y (gi) � � � Y i � f)jU 0 :

It remains to prove that

(f� � [X;Y ])jU 0 =
X
j

X(hj) � Y j � f �
X
i

Y (gi) � Y i � f)jU 0 :

Let � 2 
0 (M); then (f� � X)(�)jU 0 = X(� � f)jU 0 = (
P
i g
i � Y i(�) � f)jU 0 ,

analogously - for Y ; so,

f� � [X;Y ](�)jU 0 = [X;Y ](� � f)jU 0

= (X(Y (� � f))� Y (X(� � f)))jU 0

= (X(
X
j

hj � Y j(�) � f)� Y (
X
i

gi � Y i(�) � f))jU 0

= (
X
j

X(hj) � Y j(�) � f �
X
i

Y (gi) � Y i(�) � f)jU 0

because

(
X
j

hj �X(Y j(�) � f)�
X
i

gi � Y (Y i(�) � f))jU 0

= (
X
j

hj � (f� �X)(Y j�)�
X
i

gi � (f� � Y )(Y i�))jU 0

= (
X
i;j

hj � gi � Y i(Y j�) � f �
X
i:;j

gi � hj � Y j(Y j�) � f)jU 0

=
X
i;j

hj � gi � [Y i; Y j ](�) � fjU 0

= 0:
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Proof of the proposition. Let X;Y 2 SecE0 and x 2 M 0. By the lemma above,
we have

�
b(X;Y )(x) = ��!([[�� �X; �� � Y ]])(x)
= ��!([[(X;� � f� �X); (Y; � � f� � Y )]])(x)
= ��!(([X;Y ]; � � f� � [X;Y ]� (f�
b)(X;Y )))(x)
= �!f(x)((� � f� � [X;Y ]� (f�
b)(X;Y ))(x))
= (f�
b)(X;Y )(x):

Proposition 3.2.3 Let H : A0 ! A be an arbitrary homomorphism (say, over
f : (M 0; E0)! (M;E)) of regular Lie algebroids. Let � : E ! A and �0 : E0 !
A0 be connections in A and A0, respectively, such that H � �0 = � � f ; then the
curvature tensors 
b and 
0b of � and �

0, respectively, are related to each other
via

(f�
b)x = H+
jx(


0
bx); x 2M 0:

Proof. Represent canonically H in the form of superposition 1.5. Let ��
be the inverse-image of � over f and denote by �
 the curvature tensor of ��.
Consider the following diagram

ggg0jx
H+
jx�! gggjf(x)

& �H+
jx ��

" 
0bx gggjf(x) " 
bf(x)
" �
bx

E0jx � E0jx = E0jx � E0jx
f�x�f�x�! Ejf(x) � Ejf(x):

By Prop. 3.2.2, we have the commutativity of the right square. Thus the
proposition reduces to the case of a strong homomorphism, say, �H : A0 ! �A0:

�
b(X;Y ) = ��!([[�� �X; �� � Y ]]) = ��!([[ �H � �0 �X; �H � �0 � Y ]])
= ��! � �H � [[�0 �X;�0 � Y ]] = � �H+ � !0[[�0 �X;�0 � Y ]]
= �H+

� 

0
b(X;Y ):

4 THECHERN-WEILHOMOMORPHISMOF
A REGULAR LIE ALGEBROID

4.1 De�nition of the homomorphism.

Let 1.1 be an arbitrary but �xed regular Lie algebroid over (M;E) 2 F and let
1.2 be its Atiyah sequence. Assume also that a connection � in A is given, and
that 
b 2 
2E (M;ggg) is its curvature tensor. Let us �x a point x 2 M . By the
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commutativity of the algebra
Lk�0V2k

E�jx, there exists [8,p.192] exactly one
homomorphism of algebras

~X(A;�);x :
_
ggg�jx �!

k�0M^2k
E�jx

such that ~X(A;�);x(1) = 1 and ~X(A;�);x(�) = h�;
bxi, � 2
W1

ggg�jx = ggg�jx.

Lemma 4.1.1 ~X(A;�);x(�) = 1
k! � h�;
bx _ ::: _ 
bx| {z }

k times

i for � 2
Wk

ggg�jx.

Proof. De�ne auxiliarily a mapping

~�x :
O

ggg�jx �!
k�0M^2k

E�jx; � 7�! h�;
bx 
 :::
 
bxi; for � 2
kO
ggg�jx:

Thanks to the simplicity of the nature of the duality
N
ggg�jx�

N
gggjx �! R

(see [8]), we state (analogously as in Lemma III in [9,p.261]) that ~�x is a ho-
momorphism of algebras. Take the canonical projection �x:

N
ggg�jx �!

W
ggg�jx,

w 
1 :::
 wk 7! w1 _ ::: _ wk. The following diagramN
ggg�jx

~�x�!
Lk�0V2k

E�jx
�x # % ~X(A;�);xW
ggg�jx

commutes, which can easily be seen by checking on simple tensors w1
:::
wk 2Nk
ggg�jx. Let �x :

W
ggg�jx �!

N
ggg�jx denote a mapping de�ned by �(w1_:::_wk) =

1
k! �
P
� w�(1)
:::
w�(k): Then �x��x = id and (see [8, pp.91,193]), for � 2

Wk
ggg�jx

and ui 2 gggjx,

h�x(�); u1 
 :::
 uki =
1

k!
� h�; u1 _ ::: _ uki:

Therefore

~X(A;�);x(�) = ~X(A;�);x(�x � �x�) = ~�x(��) = h�x�;
bx 
 :::
 
bxi;

so, for vi 2 Ejx,

~X(A;�);x(�)(v1 ^ ::: ^ v2k) = h�x(�);
bx 
 :::
 
bx(v1 ^ ::: ^ v2k)i

=
1

k!
� h�;
bx _ ::: _ 
bxi(v1 ^ ::: ^ v2k):

Fix an integer k � 0: The family of homomorphisms ~X k
(A;�);x :

Wk
ggg�jx �!V2k

E�jx, x 2M , gives rise to a strong homomorphism of vector bundles ~X k
(A;�) :W

ggg� �!
V2k

E� and, by the Lemma above, we have the equality

~X k
(A;�) � � =

1

k!
� h�;
b _ ::: _ 
bi
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for � 2 Sec
Wk

ggg�, from which we obtain that ~X k
(A;�) is a C

1 homomorphism of
vector bundles. The homomorphism of 
0 (M)-moduli

X(A;�) :
k�0M

Sec
k_
ggg� �!

k�0M

2kE (M) � 
 (M) ;

induced on the cross-sections, is, of course, a homomorphism of algebras. The
adjoint representation adA gives rise to a representation

Wk
ad\A of A on

Wk
ggg�,

see 2.1.3. Denote by (Sec
Wk

ggg�)Io the space of invariant (under
Wk
ad\A) cross-

sections of
Wk

ggg� and restrict X(A;�) to invariant cross-sections to obtain

X(A;�);Io :
k�0M
(Sec

k_
ggg�)Io �! 
E (M) :

According to Lemma 2.3.3
Lk�0

(Sec
Wk

ggg�)Io forms an algebra.

Proposition 4.1.2 The forms from the image of X(A;�);Io are closed.

Proof. Let � 2 (Sec
Wk

ggg�)Io . Then, by Lemma 2.3.2 and Prop. 3.1.2,

dE(X(A;�);Io(�)) =
1

k!
� dE(h�;
b _ ::: _ 
bi) =

1

k!
� dE(~��(
b; :::;
b))

=
1

k!
�
X
j

(~��(
b; :::;
b| {z }
k�1 times

;r
b; :::;
b)) = 0:

De�ne the superposition

h(A;�) :

k�0M
(Sec

k_
ggg�)Io

X(A;�);Io�! ker dE �! HE (M) :

4.2 The functoriality of the homomorphism h(A;�)

Let H : A0 ! A be an arbitrary homomorphism (say, over f : (M 0; E0) !
(M;E)) of regular Lie algebroids. De�ne the pullbackH+� :

Lk�0
Sec

Wk
ggg� �!Lk�0

Sec
Wk

ggg�0 by the formula:

h(H+�(�))x; v1 _ ::: _ vki = h�f(x);H+
jx(v1) _ ::: _H

+
jx (vk)i; x 2M 0; vi 2 ggg0jx:

It is easy to see that H+� is a homomorphism of algebras.

Proposition 4.2.1 The pullback H+� maps invariant cross-sections into in-
variant ones.

Proof. Represent H in the form of superposition 1.5 and notice that
H+�(�) = �H+�((X+)�(�)); therefore we see that it is enough to consider
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two cases: (a) a strong homomorphism and, (b) the canonical homomorphism
X : f^A! A, see §1.1.
(a) Consider the case of a strong homomorphism H : A0 ! A of regular

Lie algebroids (both over (M;E)). Let � 2 (Sec
Wk

ggg�)Io . For � 2 SecA0,
�i 2 Secggg0;

(
0 � �)hH+��; �1 _ ::: _ �ki
= (
 �H � �)h�;H+ � �1 _ ::: _H+ � �ki

=
X
i

h�;H+ � �1 _ ::: _H+ � [[�; �i]] _ ::: _H+ � �ki

=
X
i

hH+��; �1 _ ::: _ [[�; �i]] _ ::: _ �ki:

(b) Consider the canonical homomorphism X : f^A! A. Identify f�(
Wk

ggg�) �=Wk
(f�ggg)�. Then (X+)�� = f�� and, applying Lemmas 2.2.2 and 2.2.3, we get

f�(
k_
ad\A) =

k_
f� ad\A =

k_
ad\
f^A

:

Our assertion now follows from Theorem 2.3.4.

Theorem 4.2.2 (The functoriality property) Let H : A0 ! A be a homo-
morphism (say, over f : (M 0; E0) ! (M;E)) of regular Lie algebroids. Then,
for arbitrarily taken connections �0 and � in A0 and A, respectively, such that
H � �0 = � � f�, the following diagram commutes:

Lk�0
(Sec

Wk
ggg�)Io

h(A;�)�! HE (M)
H+� # # f#Lk�0
(Sec

Wk
ggg0�)Io

h(A0;�0)�! HE0 (M 0) :

Proof. Of course, it is enough to prove the commutativity of the following
diagram: Lk�0

(Sec
Wk

ggg�)
X(A;�)�! 
E (M)

H+� # # f�Lk�0
(Sec

Wk
ggg0�)

X(A0;�0)�! 
E0 (M 0) :

Let 
b be the curvature tensor of � . Take � 2 Sec
Wk

ggg. By Prop. 3.2.3, we
have, for x 2M 0 and vi 2 E0jx,
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f� � X(A;�)(�)(x; v1 ^ ::: ^ v2k)

=
1

k!
� h�;
b _ ::: _ 
bi(f(x); f� (v1) ^ ::: ^ f� (v2k))

=
1

k!
� h�f(x);
b _ ::: _ 
b(f(x); f� (v1) ^ ::: ^ f� (v2k))i

=
1

k!
� h�f(x);

1

2k
�
X
�

sgn� � 
b(f(x); f�
�
v�(1)

�
^ f�

�
v�(2)

�
) _ :::

::: _ 
b(f(x); f�
�
v�(2k�1)

�
^ f�

�
v�(2k)

�
)i

=
1

k!
� h�f(x);

1

2k
�
X
�

sgn� �H+
jx(


0
b(x; v�(1) ^ v�(2))) _ :::

::: _H+
jx(


0
b(x; v�(2k�1) ^ v�(2k)))i

=
1

k!
� hH+�(�)x;

1

2k
�
X
�

sgn� � 
0b(x; v�(1) ^ v�(2)) _ :::

::: _ 
0b(x; v�(2k�1) ^ v�(2k))i

=
1

k!
� hH+�(�)x; (


0
b _ ::: _ 
0b)(x; v1 ^ ::: ^ v2k)i

= X(A0;�0) �H+�(�)(x; v1 ^ ::: ^ v2k):

4.3 The independence on the choice of a connection

Theorem 4.3.1 Let 1.1 be an arbitrary regular Lie algebroid over (M;E).
Then, the homomorphism his independent of the choice of a connection �.

Proof. Let �1 : E ! A, i = 0; 1, be two arbitrarily taken connections in A
and let !i : A ! ggg be their connection forms. Take the regular Lie algebroid
TR�A over (R�M;TR�E) [24] being the product of the trivial Lie algebroid
TR with A and take in it the connection form ! : TR� E ! 0� ggg de�ned by

!(t;x)(v; w) = (0; !0x(w) � (1� t) + !1x(w) � t):

The following

G : TR�A �! A; (v; w) 7�! w;

Ft : A �! TR�A; w 7�! (�t; w) ;

(�t is the null tangent vector at t 2 R), t 2 R, are homomorphisms of regular Lie
algebroids over pr2 : (R�M;TR�E)! (M;E) and jt : (M;E)! (R�M;TR�
E) (x 7! (t; x)); respectively. Notice the equality ! �Fi = F+i �!i; i = 0; 1. Let
� : TR� E �! TR�A be the connection in TR�A, corresponding to !. We
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see that � � ji� = Fi � �i. Functoriality property 4.2.2 yields the commutativity
of the diagram fori = 0; 1:Lk�0

(Sec
Wk
(0� ggg)�)Io

h(TR�A;�)�! HTR�E (R�M)
F+�i # # j#iLk�0
(Sec

Wk
ggg�)Io

h(A;�i)�! HE (M) :

Consider the homotopy H = idR�M joining j0 to j1. Since H : (R �M;TR �
E) ! (R �M;TR � E) is a morphism of the category F, therefore H implies
the equality j#0 = j#1 (h : 
�TR�E(R�M)! 
��1E (M) de�ned by (h�)(x; v1 ^
::: ^ vq�1) =

R 1
0
�(t;x)(

@
@t ^ v1 ^ ::: ^ vq�1)dt is a cochain homotopy operator,

i.e. the condition j�0 � j�1 = h � dE + dE � h holds, cf. [28]). From the fact that
G � Fi = idA; i = 0; 1; we have

F+�i �G+� = id :

Therefore

h(A;�0) = h(A;�0) � F
+�
i �G+� = j#0 � h(TR�A;�) �G+�

= j#1 � h(TR�A;�) �G+� = h(A;�1):

The theorem just proved means that the examined homomorphism h(A;�) is, in
fact, a characteristic feature of the regular Lie algebroid A and justi�es its being
denoted by hA. It will be called (traditionally) the Chern-Weil homomorphism
of A, whereas its image ImhA � HE (M) will be called the Pontryagin algebra
of A and denoted by PontA. Clearly,

hA(�) = [
1

k!
� h�;
b _ ::: _ 
bi] if � 2 (Sec

k_
ggg�)Io ; (4.1)

where 
b is the curvature tensor of any connection in A. As a simple corollary
from Theorem 4.3.1 we obtain

Corollary 4.3.2 If the Chern-Weil homomorphism hA of a regular Lie alge-
broid A is nontrivial (i.e. h+A 6= 0), then there exists no �at connection in
A.

In the nearest chapter we compare this homomorphism with the well-known
homomorphism for principal bundles, whereas in the next ones we examine this
homomorphism more precisely for Lie algebroids called into existence by other
objects such as TC-foliations or nonclosed Lie subgroups.

5 COMPARISONWITHPRINCIPAL BUNDLES

5.1 The Lie algebroid of a principal bundle [16], [19], [23].

Let us �x a G-principal bundle (P = (P; �;M;G; �)). By a Lie algebroid A(P ) of
a P we mean a transitive Lie algebroid (A(P ); [[�; �]]; 
) on a manifoldM , in which
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A(P ) = TP=G (i.e. the vectors v and (Ra)�v, v 2 TP , are identi�ed for each
a 2 G), 
([v]) = �� (v) ; v 2 TP , where [v] denotes the equivalence class of v,
and the bracket is constructed on the basis of the following observation (see [16]
[19]): For each cross-section � 2 SecA(P ), there exists exactly one C1 right-
invariant vector �eld �0 2 XR(P ) such that [�0(z)] = �(�z), and the mapping
SecA(P ) �! XR(P ); � 7! �0, is an isomorphism of 
0 (M)-modules. The
bracket [[�; �]] for �; � 2 SecA(P ) is de�ned in such a way that [[�; �]]0 = [�0; �0].
[The Lie algebroid of a principal bundle can also be constructed in some other
ways [16], [19]].
The Lie algebra bundle ggg adjoint of A(P ) is canonically isomorphic to the

Ad-associated Lie algebra bundle P �G g (g denotes the right! Lie algebra of
G) via � : P �G g! ggg; (z; v) 7! ẑ (v) ; where

ẑ : g �! gggjx; v 7�! [(Az)�e (v)]; x := �(z); (5.1)

is an isomorphism of Lie algebras, Az : G �! P; a 7! z �a (see [16], [19]). Notice
that

(za) = z �AdG(a); z 2 P; a 2 G:

Let (P 0; �0;M;G0; �0) and (P; �;M;G; �) be two principal bundles (on the same
manifold M) and � : G0 �! G - a homomorphism of Lie groups. By a (�-
)homomorphism of principal bundles

F : (P 0; �0;M;G0; �0) �! (P; �;M;G; �)

we shall mean a mapping F : P 0 �! 3P such that � � F = �0 and F (z � 0a) =
F (z) � �(a), z 2 P 0, a 2 G0. F determines a homomorphism of Lie algebroids
dF : A(P 0)! A(P ); [v] 7! [F� (v)] (see [16], [19]).

5.2 The Lie algebroid of a principal bundle of repers

With a vector bundle f we associate the Lie algebroid A(f), see 1.2. Of course,
with f we can also associate the Lie algebroid A(Lf) of the principal bundle
Lf of repers of f. Both of them are isomorphic [23] which can be proved by
considerably simpler means than those of K.Mackenzie [23]. We begin by giving
some simple

Example 5.2.1 For the right Lie algebra Tid(GL(V )) of the Lie group GL(V ),
V being any �nite dimensional R-vector space, the following linear homomor-
phism

� : Tid(GL(V )) �! EndV; v 7�! (w 7�! v( ~w));

where ~w : GL(V ) �! V; a 7! a�1(w); is an isomorphism of Lie algebras
provided that EndV is equipped with the canonical Lie algebra structure [l1; l2] :=
l1 � l2� l2 � l1. Of course, thanks to the fact that GL(V ) can be considered as an
open subset of EndV , we have the canonical identi�cation c : Tid(GL(V )) �!
EndV . Then, �V = � id.
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Now, we apply this idea to vector bundles. Let f be any vector bundle overM
with the typical �bre V and let Lf be the GL(V )-principal bundle of all repers
of f interpreted as linear isomorphisms V �! f; x 2 M . For a cross-section
� 2 Sec f, de�ne the C1 mapping

� : Lf �! V; u 7�! u�1(�(�u)): (5.2)

It is easy to see that, for � 2 SecA(Lf) and � 2 Sec f,

L�(�) :M �! f; x 7�! u(�0u(~�)); u 2 (Lf)jx;

is a correctly de�ned C1 cross-section of f. By a simple calculation we assert
that

(i0) L�(f � �) = f � L�(�) + (
 � �)(f) � �, f 2 
0 (M), which means that
L�:Sec f �! Sec f is a covariant di¤erential operator, [23],

(ii0) Lf �� = f � L�,

(iii0) L[[�;�]] = L� � L� � L� � L�.

By (i0), L� can be interpreted as a C1 cross-section of A(f) with q � L� =

 � �, see 1.2, and, by (ii0), SecA(Lf) �! SecA(f), � 7! L�, is a 
0 (M)-
homomorphism. Therefore we see the existence and the uniqueness of a homo-
morphism of vector bundles

�f : A(Lf)! A(f)

such that �f � � is the cross-section of A(f) corresponding to a covariant di¤er-
ential operator L�. By (iii0), �f is a homomorphism of Lie algebroids. �f is
de�ned by the formula:

�f([v])(�) = u(v(~�)); where v 2 Tu(Lf); u 2 Lf:

Proposition 5.2.2 �f is an isomorphism of transitive Lie algebroids.

Proof. Look at the homomorphism of associated Atiyah sequences induced
by �f. By the 5-Lemma, it is clear that it su¢ ces to see that �

+
f : ggg �! End f

is an isomorphism of vector bundles (ggg being the adjoint Lie algebra bundle of
A(Lf)). For the purpose, take x 2 M , u 2 (Lf) and notice the commutativity
of the diagram

gggjx
�+jx�! End

�
fjx
�

u � a � u�1
û "�= �=" "

Tid(GL(V ))
��! EndV a
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5.3 Representations of principal bundles on vector bun-
dles

Let f be any �xed vector bundle overM , with a vector space V as a typical �bre.
Denote by Lf the GL(V )-principal bundle of all repers z : V

�=�! fjx, x 2M .

De�nition 5.3.1 Let � : G ! GL(V ) be a homomorphism of Lie groups.
By a �-representation of a principal bundle (P; �;M;G; �) on f we mean a �-
homomorphism of principal bun-dles

F : P �! Lf: (5.3)

Example 5.3.2 (a). By the adjoint representation of P we mean the AdG-
repre-sentation

AdP : P �! Lggg; z 7�! ẑ;

where ẑ is de�ned by (5.1).
(b). The contragredient representation of (5.3) is

F \ : P �! L(f�); z 7�! (F (z)�1)�:

(c). The symmetric product of (5.3) is

k_
F : P �! L(

k_
f); z 7�!

k_
F (z):

5.4 Di¤erential of a representation

De�nition 5.4.1 By the di¤erential of a representation F : P �! Lf we mean
the representation F 0 : A(P )! A(f) de�ned as the superposition F 0 = �f � dF .

Example 5.4.2 Consider a Lie group G as a G-principal bundle. Its Lie al-
gebroid A(G) (on a one-point manifold) can be canonically identi�ed with the
right Lie algebra g of G (see [19]) via the isomorphism

' = 'G : A(G) �! g; [v] 7�! �R (v) ;

where �R denotes the canonical right-invariant 1-form on G. Therefore [[v; w]] =
[v; w]R ([�; �]R is the right Lie algebra structure on g). The Atiyah sequence of
A(G) equals

0 �! g = g �! 0 �! 0

(g is treated here as a vector bundle over a one-point manifold), whereas the
principal bundle Lg of repers of the vector bundle g is the same as the Lie group
GL(g) of all automorphisms of the vector space g. Besides, the following two
isomorphisms

A(GL(g)) = A(Lg)
�g�! A(g) = g�

O
g �= End g;
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and
A(Lg) = A(GL(g)) �= Tid(GL(g))

�g�! End g;

are identical (which is not di¢ cult to prove). Also, after the identi�cations
A(G) �= g and A(GL(g)) �= Tid(GL(g)), the adjoint representation AdG of the
principal bundle G is simply the adjoint representation of the Lie group G.
Therefore d(AdG) = (AdG)�e.
Seeing the following commuting diagram

g
(AdG)�e�! Tid(GL(g))

c�= End g

&(AdG)
0

�g #�= &�g # � id
A (g) �= End g

and recalling that (c � (AdG)�e) (v) (w) = [v; w]L ([�; �]L is the left Lie algebra
structure on g), we assert that, for v; w 2 g,

(AdG)
0 (v) (w) = �(AdG) (v) (w) = �[v; w]L

= [v; w]R = [[v; w]] = adA(G) (v) (w);

which means that (AdG)0 = � adA(G).

Theorem 5.4.3 (a) (AdP )0 = adA(P ),
(b) (F \)0 = (F 0)\ and (

Wk
F )0 =

Wk
(F 0) for any representation 5.3.

We start with the following

Lemma 5.4.4 Let  : U � V �! p�1[U ] be a local trivialization of a vector
bundle f (with V as a typical �bre). For � 2 Sec f, denote by � the function
U 3 x 7!  �1jx (�) 2 V . Then the mapping

 : TU � EndV �! A(f)jU ;

such that � (v; a)(�) =  jx(v(� ) + a(� (x))) when v 2 TxU and a 2 EndV , is
an isomorphism of Lie algebroids.

Proof. It is immediate that � (v; a) is an f-vector with v as the anchor,
which means that q � � = pr1. First, we notice that � is a bijection such that
� jx : TxU � EndV ! A(f)jx is a linear isomorphism. The fact that � jx is a
monomorphism is clear. To see that it is an epimorphism, take an arbitrary
l 2 A(f)jx and notice that the element � �1jx (l(�)) � q(l)(� ) of V depends only
on the value of � 2 Sec f at x. Denote by a(u) the element where � is a cross-
section of f such that �(x) =  jx(u); u 2 V: Put a = (u 7! a(u)) 2 EndV .
One can trivially assert that � (q(l); a) = l. It remains to verify that Sec � is
a homomorphism of suitable Lie algebras. To this end, take X;Y 2 X(U) and
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�; � 2 
0(U ; EndV ). For x 2 U and � 2 Sec f, we have

[[ � � (X;�); � � (Y; �)]]x(�)
= � jx(Xx; �x)( � � (Y; �)(�))� � jx(Yx; �x)( � � (X;�)(�))
=  jx(Xx(Y (� ) + �(� )) + �x(Yx(� ) + �x(� (x))))�
�  jx(Yx(X(� ) + �(� )) + �x(Xx(� ) + �x(� (x))))

=  jx([X;Y ]x(� ) +Xx (�))(� (x))� Yx(�)(� (x)) + [�x; �x](� (x)))
= ( � � ([X;Y ];LX(�)� LY (�) + [�; �]))x(�)
= ( � � [[(X;�); (Y; �)]])x(�):

Proof of theorem 5.4.3 (a): The case P = G was considered in Example 5.4.2. To
prove (a) in all its generality, take an arbitrary local trivialization ' : U�G �!
P . ' determines a local trivialization 'A : TU�g! A(P ); (v; w) 7! ['�(v; w)],
of the Lie algebroid A(P ), (see [19]), especially, a local trivialization  := 'A0 :
U � g ! ggg; (x;w) 7! 'Ajx(�x; w);of the vector bundle ggg. Next, according to
the Lemma above, we obtain a local trivialization � : TU � End g ! A(ggg) of
the Lie algebroid A(ggg). To prove that (AdP )0 = adA(P ), it is su¢ cient to show
(taking account of the classical equality (Ad)0 = ad) that two following diagrams
commute for any ':

A (P )
(AdP )

0

�! A(ggg) A (P )
adA(P )�! A(ggg)

'A " " � 'A " " � 
TU � g �!

id�(AdG)0
TU � Endggg TU � g �!

id�(� adg)
TU � Endggg

in which (AdG)0 : g
AdG�e�! Tid(GL(g)) �= End g (c as in Example 5.4.2). For the

purpose, take � 2 Secggg, v 2 TxU , w 2 g and notice that  jx = '(x; e)^, whereas
~� �AdP �' : U �G �! g is given by

~� �AdP �'(x; a) = ~�('(x; a)^) = ~�('(x; e)^ �AdG a) = AdG(a�1)(� (x))
= � (x)

~(AdG a):

Therefore

(AdP )
0 � 'A(v; w)(�)

= �ggg � d(AdP )(['�(v; w)])(�)
= �ggg([AdP�('�(v; w))])(�) =  jx((AdP �')�(v; w)(~�))
=  jx((v; w)(~� �AdP �')) =  jx(v(� ) + w(� (x)

~ �AdG(�)))
=  jx(v(� ) + �ggg(AdG� w)(� (x))) =  jx(v(� )�Ad0G(w)(� (x)))
= � � (id��Ad0G)(v; w)(�):
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Since 'A � (0; � ) = �, we have, following the fact that 'A is an isomorphism
of Lie algebroids, that

adA(P ) �'A(v; w)(�) = [['A(v; w); �]]
= [['A(v; w); 'A � (0; � )]] = 'Ajx[[(v; w); (0; � )]]

= 'Ajx(�x; v(� ) + [w; � (x)]
R) =  jx(v(� )� [w; � (x)]L)

=  jx(v(� )� adg(w)(� (x)))
= � � (id�� adg)(v; w)(�):

(b): Consider the identical representation idLf : Lf �! Lf. Of course,
�f : A(Lf)! A(f) is its di¤erential. First, we notice that

(1) F \ = id\Lf �F;

(2) T \ = id\A(f) �T for any representation T : A! A(f), in particular, (F 0)\ =

id\A(f) �(F 0);

(3) (id0Lf)
\ = (id\Lf)

0 or, equivalently,

id\A(f) ��f = �f� � d(id
\
Lf):

(1) and (2) follow directly from the de�nitions. (3): Let ' 2 Sec f�, � 2 Sec f,
u 2 (Lf)jx and v 2 Tu(Lf). Then

h�f� � d(id\Lf)([v])('); �xi

= hu�1�((id\Lf)� (v) ( ~')); �xi

= hv( ~' � id\Lf); ~�(u)i:

On the other hand (for � : Lf �!M being the projection),

h(id\A(f) ��f([v]))('); �xi
= �� (v) h'; �i � h'x;�f([v])�i
= v(h'; �i � �)� h'x � u; v(~�)i:

To end the proof of (3), notice that h'; �i � � = h ~' � id\Lf; ~�i and apply the
Leibniz formula for vh ~' � id\Lf; ~�i.
From (1)-(3) above we obtain

(F \)0 = �f � d(F \) = �f � d(id\Lf �F ) = id
\
A(f) ��f � dF

= id\A(f) �F
0 = (F 0)\:

(c): First, we notice that
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(1)
Wk

F = (
Wk
idLf) � F ,

(2)
Wk

T = (
Wk
idA(f)) � T for any representation T :A ! A(f), in particular,Wk

(F 0) = (
Wk
idA(f)) � (F 0),

(3)
Wk
(id0Lf) = (

Wk
idLf)

0, or equivalently,

(
k_
idA(f)) � �f = �Wk f � d(

k_
idLf):

(1) and (2) follow directly by the de�nitions. (3): Let �i 2 Sec f, u 2 (Lf)jx,
v 2 Tu(Lf). Then

�Wk f � d(
k_
idLf)([v])(�1 _ ::: _ �k)

= u _ ::: _ u((
k_
idLf)� (v) (�1 _ ::: _ �k)~)

= u _ ::: _ u(v((�1 _ ::: _ �k)~ �
k_
idLf))

= u _ ::: _ u(v(~�1 _ ::: _ ~�k))

= u _ ::: _ u(
X
i

~�1(u) _ ::: _ v(~�i) _ ::: _ ~�k(u))

=
X
i

�1x _ ::: _ u(v(~�i)) _ ::: _ �kx)

=
X
i

�1x _ ::: _ idA(f) ��f([v])�i _ ::: _ �kx)

= (

k_
idA(f)) � �f([v])(�1 _ ::: _ �k):

From (1)-(3) above we obtain

(

k_
F )0

= �Wk f � d(
_
F ) = �Wk f � d((

_
id) � F ) = �Wk f � d(

_
id) � dF

= (
k_
idLf) � �f � dF = (

k_
idLf) � F 0 =

k_
(F 0):

Problem 5.4.5 Prove part (a) of the above theorem immediately without using
this fact for a single Lie group.
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5.5 Invariant cross-sections

De�nition 5.5.1 Let 5.3 be any representation of a principal bundle P on f. A
cross-section � 2 Sec f will be called invariant (or, more precisely, F -invariant)
if there exists a vector v 2 V such that F (z) (v) = ��z for all z 2 P (equivalently,
if the function ~� �F is constant, where ~� is de�ned by 5.2. Denote by (Sec f)I(F )
the space of all invariant (with respect to F ) cross-sections of f.

Proposition 5.5.2 Let 5.3 be a �-representation of P on f. Denote by VI
the subspace of V of �-invariant vectors (see [9,p.39]). Then, for v 2 VI , the
function

�v :M �! f; x 7! F (z) (v) ;

where z 2 Pjx, is a correctly de�ned C1 cross-section of f, and

VI ! (Sec f)I(F ); v 7�! �v;

is an isomorphism of vector spaces.

Proposition 5.5.3 The spaces of invariant cross-sections (Sec f)I(F ) and (Sec f)Io(F 0)

under a representation F : P �! Lf and its di¤erential F 0 : A(P ) ! A(f) are
related by

(a) (Sec f)I(F ) � (Sec f)Io(F 0),

(b) if P is connected (nothing is assumed about the connectedness of G !),
then (Sec f)I(F ) = (Sec f)Io(F 0).

Proof. (a). Let � 2 (Sec f)I(F ); this means that ~� �F is constant. Thus, for
[w] 2 A(P )jx, w 2 TzP , we have

F 0([w])(�) = �f � dF ([w])(�)
= �f[F�(w)](�) = F (z)(F�(w)(~�))

= F (z)(w(~� � F )) = 0:

(b). Let � 2 (Sec f)Io(F 0); this means that F 0 (v) (�) = 0 for all v 2 A(P ).
Let w 2 TzP , then

w(~� � F ) = F�(w)(~�) = F (z)�1(�f([F�(w)])(�))

= F (z)�1F 0([w])(�) = 0:

From the assumption about the connectedness of P it follows that ~� � F is
constant.

5.6 The Chern-Weil homomorphism

Consider the representation Ad_G : G ! GL
�Wk

g�
�
induced by AdG on the

k-symmetric power of the dual vector space g�. According to 5.3.2(b)(c), AdP :

40



P �! Lggg determines theAd_G-representationAd
_
P (:=

Wk
ad\P ): P �! L(

Wk
ggg�).

Theorem 5.4.3 yields that the di¤erential ofAd_P is equal to ad
_
A(P ) (:=

Wk
ad\A(P )):

A(P )! A(
Wk

ggg�); therefore Propositions 5.5.2 and 5.5.3 give rise to a monomor-
phism of vector spaces

� : (
k_
g�)I � (Sec

k_
ggg�)Io ; w 7�! �w;

where �w(x) =
Wk
(ẑ�1)�(w); x 2 M; z 2 Pjx; and next, assert that ' is an

isomorphism if P is connected.

Theorem 5.6.1 (cf. [17], [19]) The Chern-Weil homomorphism hP of P and
hA(P ) of A(P ) are related by the following commutative diagramLk�0

(Sec
Wk

ggg�)Io

&hA(P )

" � HdR (M)
%hP

(
W
g�)I

Proof. To see this, we only need to observe the equality

��(
1

k!
� h�w;
b _ ::: _ 
bi) =

1

k!
� hw;
 _ ::: _ 
i (5.4)

where 
 and 
b are, respectively: the curvature form of some connection H �
TP in P and the curvature tensor of the corresponding connection �in the Lie
algebroid A(P ) (Hjz = (�Ajz)

�1[Im�jz]; z 2 P , where �A : TP ! A(P ) is
the canonical projection). Both sides of 5.4 are horizontal forms, so we must
notice the equality on the horizontal vectors only. Let � : TM ! A(P ) be any
connection in A(P ) and let vz 2 TzP denote the horizontal lifting of v 2 T�zM .
By the relationship between 
b and 
,


b(x; v ^ w) = ẑ(
(z; vz ^ wz)); z 2 Pjx; v; w 2 TxM;
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we have, for w 2 (
Wk
g�)I , z 2 P and vi 2 T�zM ,

��(
1

k!
� h�w;
b _ ::: _ 
bi)(z; vz1 ^ ::: ^ vz2k)

=
1

k!
� h(

k_
(ẑ�1)�)(w);

1

2k
�
X
�

sgn� � 
b(x; v�(1) ^ v�(2)) _ :::

::: _ 
b(x; v�(2k�1) ^ v�(2k))i

=
1

k!
� hw; 1

2k
�
X
�

sgn� � (ẑ�1)
b(x; v�(1) ^ v�(2)) _ :::

::: _ (ẑ�1)
b(x; v�(2k�1) ^ v�(2k))i

=
1

k!
� hw; 1

2k
�
X
�

sgn� � 
(z; vz�(1) ^ vz�(2)) _ ::: _ 
(z; vz�(2k�1) ^ vz�(2k))i

=
1

k!
� hw;
 _ ::: _ 
i(z; vz1 ^ ::: ^ vz2k):

Remark 5.6.2 In [19] it is proved that the Chern-Weil homomorphism of a
principal bundle is an invariant of the so-called �local isomorphisms� between
principal bundles, ful�lling an additional condition (the Ch-W property) which is
satis�ed, for example, in the case of principal bundles with connected structure
Lie groups. By 5.6.1 above, we can assert more, namely, that the Chern-Weil
homomorphism of a principal bundle is a characteristic feature of the Lie al-
gebroid of this bundle provided only that it is connected. In consequence, the
Chern-Weil homomorphism of a principal bundle is an invariant of all local
isomorphisms between connected principal bundles. More precisely, we have:

Proposition 5.6.3 Let F : P 0 �! P be a local homomorphism of principal
bundles (see [16], [19]). Assume that P 0 is connected. Then, for an arbitrary
partial homomorphism F : P 0 � DF �! P belonging to F and the corresponding
local homomorphism � : G0 � D� �! G of Lie groups, we have

(1)
W
(d�)� [(

W
g�)I ] � (

W
g0�)I and

W
(d�)� : (

W
g�)I ! (

W
g0�)I is indepen-

dent of the choice of F 2 F,

(2) the diagram
(
W
g�)I

&hPW
(d�)� # HdR (M)

%hP 0

(
W
g0�)I

commutes.
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Proof. Let dF : A(P 0) ! A(P ) be the homomorphism of Lie algebroids
induced by F. By functoriality property 4.2.2, we obtain the commutative dia-
gram

(
W
g�)I

hP�! HdR (M)
&� %hA(P )Lk�0

(Sec
Wk

ggg�)Io

# (dF)+� kLk�0
(Sec

Wk
ggg0�)Io

�= %�0 &hA(P 0)

(
W
g0�)I

hP 0�! HdR (M)

To end the proof, it is enough to check that
W
(d�)� = �0�1�(dF)+���. Let F be

an arbitrary partial homomorphism belonging to F. Take x 2 UF and z 2 P 0jx.
By the obvious equality F (z)^�d� = dF+jx � ẑ, we have the commutative diagram

W
g�

Wk(F (z)^�1)
�

�!
Wk

ggg�jxWk(d�)� # #
Wk(dF+

jx)
�

W
g0�

Wk(ẑ�1)
�

�!
Wk

ggg0�jx

Notice also that (dF+)�(�)x =
Wk
(dF+jx)

�(�x), and that �w(x) =
Wk
(F (z)^�1)�(w):

The result is now trivial:

�0�1((dF+)�(�w)) =

k_
ẑ� �

k_
(dF+jx)

� �
k_
(F (z)^�1)�(w) =

k_
(d�)�(w):

5.7 Remarks on the tangential Chern-Weil homomorphism

Let P be a connected H-principal bundle on a manifold M , and F � TM a
C1 constant dimensional involutive distribution. Let F denote the foliation
of M determined by F . We recall that the transitive Lie algebroid A (P ) and
the distribution F give rise to a regular Lie algebroid over (M;F ) equalling
A(P )F := 
�1[F ] � A(P ), see 1.1.2. By the tangential Chern-Weil homo-
morphism of P over the foliated manifold (M;F) we mean the Chern-Weil
homomorphism

hA(P )F :
kM
(Sec

k_
ggg�)Io(adA(P )F )

�! HF (M)

of the regular Lie algebroid A(P )F (ggg is the Lie algebra bundle adjoint of A(P )).
hA(P )F measures the nonexistence of a partial (over F ) �at connection in P: In
the case of P equalling to the G-principal bundle LGf of G-repers of some
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G-vector bundle f (G � GL(n;R); n = rank f), the tangential Chern-Weil homo-
morphism measures the nonexistence of (suitable) �at partial covariant deriva-
tives. Notice that the superposition

(
_
g�)I �=

kM
(Sec

k_
ggg�)I(adA) �

kM
(Sec

k_
ggg�)Io(adAF )

hAF�! HF (M)

(in which A := A(LGf)) agree for G = GL(n;R) with the homomorphism ob-
tained by Moore and Schochet [28] to investigate vector bundles over foliated
manifolds. However, the domain of our homomorphism hAF contains, in gen-
eral, more elements. To further consideration of the matter, the author will
devote an individual paper.
In the end, we add that the generalization of the Bott Vanishing Theorem

from [14] can be formulated in our language as follows:

� Let fF; F 0g (F 0 � F � TM) be a �ag of foliations on M. If F = F 0
L
f ,

then Pontk(A(f)F ) = 0 for k � 2 � rank f .

This theorem follows easily from the existence of a �at partial covariant
derivative in f over F .

6 THE LIE ALGEBROIDOFATC-FOLIATION

6.1 TC-foliations. Basic properties [26], [27]

A foliation (M;F)is said to be transversally complete [TC-foliation for short]
(see P.Molino [26], [27]) if, at each point x 2 M , the family Lc (M;F) of com-
plete global (F-)foliate vector �elds generates the entire tangent space TxM .
For an arbitrary TC-foliation, we adopt the following notations:

� Fb- the basic foliation,

� E; Eb - the vector bundles tangent to F and Fb, respectively,

� Lx; Lbx - the leaves of F and Fb, respectively, passing through x 2M ,

� r : Q!M (Q = TM=E) - the transverse bundle,

� �b :M !W - the basic �bration,

� � : TM ! Q - the canonical projection,

� �X := � �X - the cross-section of Q corresponding to a (local) vector �eld
X on M ,

� l (M;F) - the Lie algebra (and the 
0 (W )-module, as well) of transverse
�elds.

44



Recall that by a transverse �eld we mean a cross-section � 2 SecQ such
that, in any simple distinguished open set U equipped with distinguished local
coordinates

�
x1; :::; xp; y1; :::; yq

�
(p = dimF , q = codimF), � is of the form

� =
P
j b
j � @

@yj for the functions b
j constant on the plaques. If � = �X, then

� 2 l (M;F) if and only if X 2 L (M;F).
Besides, the foliation F is simple and de�ned by a locally trivial basic �bra-

tion �b :M !W with a Hausdor¤ manifold W .
A fundamental role in the construction of the Lie algebroid of (M;F) is

played by the following properties:

(A) If �; � 2 l (M;F) and, for some x 2 M , � (x) = � (x), then � (y) = � (y)
for all y 2 Lbx.

(B) Every foliate vector �eld X projects onto W , giving a vector �eld XW ,
and the homomorphism of Lie algebras L (M;F) �! X (W ) ; X 7�! XW ,
factorizes to a homomorphism of Lie algebras �
 : l (M;F) �! X (W ) ;
�X 7�! XW . The following equality holds:

[ �X; �f ��b � �Y ] = �f ��b �[ �X; �Y ]+XW ( �f)� �Y ; �f 2 
0 (W ) ; X; Y 2 L (M;F) :

6.2 Construction of the Lie algebroid of a TC-foliation

Let (M;F) be an arbitrary TC-foliation. In the transverse bundle r : Q ! M
of (M;F) we introduce the equivalence relation ���as follows :
For �v; �w 2 Q we put

�v � �w () f�b(r�v) = �b(r �w) and 9�2l(M;F) (�(r�v) = �v and �(r �w) = �w)g:

(A) and (B) above makes the following lemma obvious.

Lemma 6.2.1 Take x and y lying on the same leaf of the basic foliation Fb.
Then, for each vector �v 2 Qjx, there exists exactly one vector �w 2 Qjy such
that �v � �w. The correspondence �v 7�! �w establishes a linear isomorphism
�yx : Qjx �! Qjy.

Clearly, two vectors �v; �w 2 Q are in the equivalence relation � if and only if
they corresponds to each other via one of the isomorphisms �yx. In the sequel,
[�v] denotes the equivalence class of �v and A (M;F) := Q= � denotes the set of
all equivalence classes (with the quotient topology) and

�r : A (M;F) �!W; [�v] 7�! �(r�v);

the projection.
Each �bre A (M;F)jx := �r�1 (�x) ; �x 2 W , possesses a structure of a vector

space, de�ned uniquely by demanding that for each x 2 �
_1
b (�x) the canonical

bijection �jx : Qjx �! A (M;F)jx ; �v 7�! [�v], be a linear isomorphism. The
family �jx, x 2 M , determines the canonical projection � : Q �! A (M;F)
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being a homomorphism of vector bundles over the basic �bration �b. We equip
A (M;F) with a structure of a C1 manifold as follows: For any �x 2 W , we
�nd (as a consequence of (A)) its open neighbourhood �U and transverse �elds
�1; :::; �q 2 l (M;F) which are linearly independent on U := ��1b [ �U ], and we put

' : �U�Rq �! �r�1[ �U ]�A

(�x; a) 7�! [
X
i

ai�ix]; x 2 ��1b (�x):

' is a bijection such that '�x : Rq �! A (M;F)j�x is an isomorphism of vector
spaces. It is easy to see that �r�1[ �U ] is open and ' is a hemeomorphism, see the
following diagram:

U�Rq
�=�! r�1[U ] � Q (x; a) 7�!

P
i a
i�ix

# �b � id # �
�U�Rq '�! �r�1[ �U ] � A (M ;F)

In A (M;F) there is exactly one C1 manifold structure (compatible with the
topology) for which the '�s are di¤eomorphisms. To see this, we must only notice
that, for another '0 (de�ned on �U 0 � Rq via � 01; :::; � 0q 2 l (M;F) ), '0�1 � ' is
C1. Clearly, for a point xo 2 �U \ �U 0 there exists its neighbourhood �U 00� �U \ �U 0
and functions �f ji 2 
0 (W ) such that �i =

P
j
�f ji � �b � � 0j on U 00 := ��1b [ �U 00].

Therefore we have

'0�1 � '(�x; a) = (�x; (
X
i

ai �f1i (�x) ; :::;
X
i

ai �fqi (�x))); �x 2 U 00; a 2 Rq;

which proves the smoothness of '0�1 �'. Of course, �r : A (M;F) �!W is C1

and (A (M;F) ; �r;W ) is a vector bundle with '�s as local trivializations.
The mapping


 : A (M;F) �! TW; [�v] 7�! �b�(v);

is a correctly de�ned epimorphism of vector bundles.

Proposition 6.2.2 (1) A cross-section � 2 SecQ is a transverse �eld if and
only if there exists a cross-section � 2 SecA (M;F) such that the following
diagram

Q
��! A

" � " �
M

�b�! W

(6.1)

commutes. Such a � is at most one.
(2) The correspondence � 7�! � establishes an isomorphism of 
0 (W )-

n3modules
c : l (M;F) �! SecA (M;F) ;
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Proof. (1): Necessity is evident.
Su¢ ciency. Let � 2 SecQ be a cross-section of Q for which there exists

� 2 SecA (M;F) making diagram 6.1 commute. Equivalently,

�yx(�x) = �y

for any points x and y lying on the same leaf of Fb. To prove that � is a
transverse �eld, we �rst observe that if (x1; :::; xp; y1; :::; yq) are distinguished
local coordinates in U , then, for any points x and y lying on the same plaque,
we have @

@yi jx
� @

@yi jy
, i � q. Indeed, (M;F)is TC, therefore there exists a

transverse �eld � 2 l (M;F) such that �x = @
@yi jx

. Locally on U , � =
P
k b

k � @
@yk

with the functions bk constant on plaques. Since bk (x) = �ki , therefore b
k (y) =

�ki ; in consequence, �y =
@
@yi jy

, so, by the de�nition of the equivalence relation

�, we have that @
@yi jx

� @
@yi jy

.

Passing to the proof of su¢ ciency, write locally � =
P
k b

k � @
@yk
. Take x and

y belonging to one of the plaques. We have, by the above,X
k

bk (y) � @

@yk jy
= �y = �yx(�x) = �yx(

X
k

bk (x) � @

@yk jx
)

=
X
k

bk (x) � �yx(
@

@yk jx
) =

X
k

bk (x) � @

@yk jy
:

Thus bk (x) = by (y), which con�rms (1).
(2): c is a monomorphism of 
0 (W )-modules, as is easy to check. The

surjectivity follows from (1) and the observation indicating that, for a cross-
section � 2 SecA (M;F), there exists a cross-section � 2 SecQ making diagram
6.1 commute.
In SecA (M;F) we introduce the bracket [[�; �]] (forming a Lie algebra) by

demanding that c be an isomorphism of Lie algebras, i.e. [[c(�); c(�)]] = c([�; �]),
�; � 2 l (M;F). The system (A (M;F) ; [[�; �]]; 
) is a transitive Lie algebroid (over
the basic manifold W ), which is clear from (B). It is called the Lie algebroid
of the TC-foliation (M;F). Let ggg = ker 
 be the adjoint Lie algebra bundle of
A (M;F). We have the following isomorphism of short exact sequences

0 �! l+ (M;F) ,! l (M;F) �
�! X (W ) �! 0
�=# c+ �=# c k

0 �! Secggg ,! SecA (M;F) �! X (W ) �! 0

6.3 Connections and the Chern-Weil homomorphism

Let (M;F) be an arbitrary TC-foliation and (A (M;F) ; [[�; �]]; 
) - its Lie alge-
broid. Notice that, for any x 2 M , the isomorphism �jx : Qjx �! A (M;F)j�x
maps Q0jx := Ebjx=Ejx onto gggj�x, �x := �b (x). A connection � in A (M;F) de-
termines the so-called horizontal subbundle C� := Im� � A (M;F) (i.e. the
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condition A (M;F) = ggg
L
C� holds), and next, the distribution �C��TM on

the manifold M by �C�jx := ��1jx [�
�1
jx [C

�
j�x]], x 2M .

Lemma 6.3.1 The correspondence � 7�! �C� establishes a bijection between
connections in A (M;F) and distributions �C�TM such that

(1) Eb \ �C = E,

(2) Eb + �C = TM ,

(3) �Cjx = fX (x); X 2 L (M;F)\Sec �Cg for each point x 2M . In particular,
such a distribution �C always exists (and is C1 ).

Proof. �=)�Let �C = �C� for some connection �.
(1): (Eb \ �C)jx = ��1jx [�

�1
jx [gggj�x \ C�j�x]] = ker((� � �)jx) = Ejx:

(2): (Eb + �C)jx = ��1jx [�
�1
jx [gggj�x + C

�
j�x]] = ��1jx [�

�1
jx [A (M;F)j�x]] = TxM:

(3): Let v 2 �Cjx. We have to �nd a foliate vector �eld X lying in the
distribution �C and such that Xx = v. For the purpose, take arbitrarily a cross-
section � 2 Sec(C�) such that �j�x = [�v], and next, the cross-section � 2 SecQ
de�ned by �y = ��1jy (��y), y 2 ��1b (�y), �y 2 W . � is a transverse �eld, see

Proposition 6.2.2. Let � = �Y for a foliate vector �eld Y . Then v � Yx 2 Ejx.
Taking an arbitrary vector �eld X 2 X(F) such that Xx = v � Yx, we obtain
that X + Y 2 L (M;F) \ Sec �C and (X + Y )x = v.
�(=�Let �C�TM be any distribution on M satisfying (1)-(3). There exists

a subbundle C�A (M;F) such that Cj�x = �jx � �jx[ �Cjx], x 2 ��1b (�x), �x 2 W .
To see this this formula, i.e. the independence of the right-hand side of the
choice of a point x 2 ��1b (�x). In order to get this, it is su¢ cient to notice
the inclusion �jx � �jx[ �Cjx]��jy � �jy[ �Cjy] for x; y 2 ��1b (�x). For v 2 �Cjx and
X 2 L (M;F) \ Sec �C such that Xx = v, we have Xy 2 �Cjy. Since �X is a
transverse �eld, according to the de�nition of the equivalence relation � in Q,
we have [�v] = [ �Xy] 2 �jy��jy[ �Cjy]. C is easily seen to be C1 and complementing
ggg, thus, in consequence, determining some connection � for which the property
�C� = �C is obvious by the construction.

De�nition 6.3.2 (a). A distribution �C�TM ful�lling (1)-(3) from Lemma
6.3.1 will be called a connection for the TC-foliation (M;F).
(b). If �C = �C� for a connection � in A (M;F) and if ! and 
b are the

connection form and the curvature tensor of �, respectively, then the tensors
�! 2 
1(M ;Q0) and �
 2 
2(M ;Q0) de�ned in such a way that the following
diagrams

TxM TxM � TxM
�jx # & �!x & �
x
Qjx Q0jx �b� � �b� # Q0jx

�jx #�= �=# �+jx �=# �+jx
Aj�x

!j�x�! gggj�x T�x � T�x

b�x�! ggg�x
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are commutative will be called the connection form and the curvature form of
the connection �C, respectively.

�! may be de�ned immediately in the following way: �!(v) = �v1 (= �(v1)) if
v = v1 + v2 is an arbitrary decomposition such that v1 2 Eb, v2 2 �C. Lemma
6.3.3 below gives an independent de�nition of �
. Let Cu� �C be any complement
of E (i.e. �C = E

L
Cu). Of course, TM = Eb

L
Cu. Put �H : TM �! TM

as the projection onto the second component. �H plays a role of the horizontal
projection for �C (although it is not uniquely determined by �C), giving the
equality

H � (� � �) = (� � �) � �H
in which H is the horizontal projection for the connection �.

Lemma 6.3.3 (a) The vector �eld �H �Y is foliate if Y 2 X(M) is such a �eld,
(b) For Y1; Y2 2 L (M;F) �
(Y1; Y2) = ��!([ �H � Y1; �H � Y2]).

Proof. (a): Let Y 2 L (M;F). To prove that �H � Y is a foliate vector �eld,
it is su¢ cient to show that � � ( �H � Y ) is a transverse �eld. Since

� � (� � �H � Y ) = H � � � � � Y = H � � � �Y = (H � c( �Y )) � �b;

proposition 6.2.2(1) yields our assertion.
(b): Let Y1; Y2 2 L (M;F) and x 2M . We have

�
x(Y1x; Y2x) = �+�1jx � �+jx(�
x(Y1x; Y2x))

= �+�1jx (
b�x(�b�Y1x; �b�Y2�))

= �+�1jx (
b�x(
j�x(c( �Y1)�x); 
j�x(c( �Y2)�x)))

= �+�1jx (
b(
 � c( �Y1); 
 � c( �Y2))�x)

= ��+�1jx !�x([[� � 
 � c( �Y1); � � 
 � c( �Y2)]]�x)

= ��+�1jx !�x([[H � c
�
�Y1
�
;H � c

�
�Y2
�
]]�x)

= ��+�1jx !�x([[c(� � �H � Y1); c(� � �H � Y2)]]�x)

= ��+�1jx !�x(c([� � �H � Y1; � � �H � Y2])�x)

= ��+�1jx !�x(c(� � [ �H � Y1; �H � Y2]x))

= ��+�1jx !�x(�jx � �jx([ �H � Y1; �H � Y2]x))
= ��!x([ �H � Y1; �H � Y2]x):

Proposition 6.3.4 The following conditions are equivalent:
(1) 
b = 0,
(2) �
 = 0,
(3) L (M;F) \ Sec �C is a Lie subalgebra of L (M;F),
(4) the distribution �C is completely integrable.
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Proof. The equivalence (1) () (2) is evident.
(2) =) (3): Let Y1; Y2 2 L (M;F) \ Sec �C. It is su¢ cient to prove that

[Y1; Y2] 2 Sec �C (because L (M;F) is a Lie algebra). Using the decomposition
�C = E

L
Cb, we write Y1 = X1 + Y1u where X1 2 SecE and Y1u 2 SecCu,

i = 1; 2. Then

[Y1; Y2] = [X1; X2] + [X1; Y2u]� [X2; Y1u] + [Y1u; Y2u]:

We have

(a) [X1; X2] 2 SecE (�Sec �C),

(b) [X1; Y2u]; [X2; Y1u] 2 SecE because Xi 2 SecE and the vector �elds Yiu =
Yi �Xi, i = 1; 2, are foliate,

(c) [Y1u; Y2u] 2 Sec �C by Lemma 6.3.3(b) and the equalities �C = ker �! and
[Y1u; Y2u] = [ �H � Y1; �H � Y2].

3) =) (4): Take Z1; Z2 2 Sec �C, x 2M , and put �x = �b (x) 2W . Take also
cross-sections �1; :::; �q 2 SecC being a local basis of the vector bundle C on a
neighbourhood W 0�W of �x. The cross-sections �1; :::; �q 2 SecQ for which the
equalities ���i = �i��b, i � q, hold exist and are linearly independent transverse
�elds (see Proposition 6.2.2). Besides, any vector �elds Xi representing �i are
(by the de�nition of �C) from Sec �C and linearly independent onW 00 := ��1b [W 0].
Adding any vector �elds Xq+1; :::; Xq+p 2 SecE forming a local basis of E on
some neighbourhood U of x, we obtain a system (X1; :::; Xq+p) of foliate vector
�elds being a local basis of �C on U \ W 00. Let Zi =

P
j a

j
i � Xj , i = 1; 2

(aji 2 
0(U \W 00)). Then, on U \W 00, we have

[Z1; Z2] =
X
j;k

(aj1 � ak2 � [Xj ; Xk] + a
j
1 �Xj(a

k
2) �Xk � ak2 �Xk(a

J
1 ) �XJ) 2 Sec �C

according to assumption (3).
(4) =) (2) - trivial by Lemma 6.3.3(b).
As a consequence of the above proposition and Corollary 4.3.2 we obtain the

aim of this chapter:

Theorem 6.3.5 (The geometric signi�cation of the Chern-Weil homo-
morphism for TC-foliations) If the Chern-Weil homomorphism of the Lie
algebroid A (M;F) of a TC-foliation (M;F) is nontrivial, then there exists no
completely integrable distribution �C on the manifold M satisfying conditions
(1)-(3) from Lemma 6.3.1.

In chapter 7 we describe a wide class of TC-foliations for which there exists
no completely integrable connection �C.
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7 THE LIE ALGEBROID OF A NONCLOSED
CONNECTED LIE SUBGROUP

7.1 Dense connected Lie subgroups and the Malcev The-
orem [7], [25], [32].

Let H�T be a connected and dense Lie subgroup of a Lie group T and let
F = ftH; t 2 Tg be the foliation of left cosets of G by H. E, as usual, denotes
the tangent bundle to F , whereas h and t the (left) Lie algebras of H and T ,
respectively. In the sequel, Rt is the tangent mapping to the right translation
by t.

Lemma 7.1.1 If t = h
L
K for some linear subspace K�h, then, for each

t 2 T ,
Ejt \Rtje[K] = 0:

Proof. Let v 2 Ejt\Rtje[K]. Then, v is the value at t of the right-invariant
vector �eld Yw generated by some vector w 2 K. Since Yw is an (F-)foliate
vector �eld belonging to the distribution E at t, it belongs to E for each point
of the closure (tH)cl of the leaf tH of F through t; however, (tH)cl = T ,
therefore w = Yw (e) 2 Eje \K = 0; in consequence, v = 0.

Lemma 7.1.2 Every foliate vector �eld Y 2 L(T;F) is of the form Y = X+Yw
for the uniquely determined vector �eld X 2 X(F) (i.e. tangent to F) and vector
w 2 K.

Proof. As a corollary from 7.1.1, we see that the system f �Yw1 ; :::; �Ywqg of
transverse �elds, where (w1; :::; wq) is a basis ofK, forms a transverse parallelism
on (T;F). Therefore any vector �eld Y 2 X(T ) is of the form Y = X+

P
j f

j �Ywj
where X 2 X(F) and f j 2 
0 (G). Now, let Y be foliate. Then f j are constant.
Indeed, for an arbitrarily taken vector �eldX 0 2 X(F), we have: [X 0; Y ] 2 X(F).
However,

[X 0; Y ] = [X 0; X] +
X
j

f j � [X 0; Ywj ] +
X
j

X 0(f j) � Ywj ;

therefore
P
j X

0(f j) � Ywj = 0, which implies that X 0(f j) = 0. The free choice
of X 0 gives the result: f j are F-basic functions, i.e. in our situation, f j are
constant; f j = bj 2 R. In the end, we assert that Y = X+Yw for w =

P
j b
j �wj .

Proposition 7.1.3 If H is a connected and dense Lie subgroup of a Lie group
T , then:

(i) H is a normal subgroup of T ,

(ii) each left-invariant vector �eld Xw, w 2 t, is foliate, and Xw = X + Yw
for some X 2 X(F),
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(iii) T=H is abelian.

Proof. (i) and (iii) follow from the Malcev Theorem [7], [25], [32]. Here we
give new, �foliated proofs�of these facts.
(i): Equivalently, we need to notice that h is invariant under the isomor-

phisms Ad(t), t 2 T . Let t 2 T and u 2 h. Put w := Ad(t)(u); then
Ejt 3 Lt(u) = Rt(w) (Lt denotes here the tangent mapping to the left transla-
tion by t), so the foliate vector �eld Yw is tangent to F at t, which implies that
w = Yw (e) 2 Eje = h.
(ii): The module X(F) is generated by the left-invariant vector �elds Xu,

u 2 h, therefore we need only to check that [Xu; Xw] 2 X(F) for w 2 t and
u 2 h. But, by virtue of (i), h is an ideal in t, thus [u;w]L 2 h, which gives
[Xu; Xw] = X[u;w]L 2 X(F). The second part follows from the observation that
X = Xw � Yw is foliate and X (e) = 0 2 Eje.
(iii): T=H is connected, thus it is su¢ cient to show that t=h is abelian. Let

u;w 2 t. On account of (ii), we have:

[u;w]L = [Xu; Xw] (e) = [X + Yu; Xw] (e) = [X;X] (e) 2 h:

7.2 A structure of the Lie algebra bundle, adjoint of the
Lie algebroid A(G;H)

Here, we give a more detailed description of the Lie algebroid A(G;H) of the
foliation F = faH; a 2 Gg of a connected Lie group G by left cosets of a
connected and nonclosed (in general) Lie subgroup H�G. [The fact that F is
TC follows from the observation that all right-invariant vector �elds are foliate
and generate the entire tangent space TgG for each g 2 G]. A(G;H) is called the
Lie algebroid of a connected Lie subgroup H. Denote by h and g the Lie algebras
of H and G, respectively. In the sequel, Yw and Xw stand for the right-invariant
and left-invariant vector �elds on G, respectively, generated by the vector w 2 g.
Assume that T�G is the closure of H. Then Fb := fgT ; g 2 Gg is the basic
foliation and the projection �b : G �! G=T is the basic �bration.

Lemma 7.2.1 The isomorphism Rtjg : TgG �! TgtG, t 2 T , g 2 G, maps Ejg
onto Ejgt, thus induces an isomorphism �Rtjg : Qjg �! Qjgt, and, furthermore,
the right free action �R : Q�T �! Q, (�v; t) 7�! �Rt(�v):

Proof. Since Adt[h]�h for t 2 T , Ejt = Ltje[h] = Rtje[h]. Thus for g 2 G,

Rtjg[Ejg] = Rtjg[Lgje[h]] = Lgjt[Rtje[h]] = Lgjt[Ejt] = Ejgt:

Clearly, �R is a right smooth free action.

Lemma 7.2.2 (a). For a cross-section � 2 SecQ, we have: � 2 l(G;F) if and
only if, for any g 2 G and t 2 T;

�(gt) = �Rt(�(g)); (7.1)
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in other words, if and only if � is T -right-invariant (with respect to the action
�R).
(b). For �v; �w 2 Q,

�v � �w () 9t2T �w = �Rt (�v) ;

i.e. �v � �w if and only if they belong to the same orbit of the action �R.

Proof. (a). �=) �Let � 2 l(M;F) and g 2 G. Then there exists a vector
w 2 g such that �(g) = �Yw(g). According to 6.1(A), � and �Yw agree on the leaf
gT of Fb. So, for t 2 T ,

�(gt) = �Yw(gt) = �Rt( �Yw(g)) = �Rt(�(g)):

�(= �Let � 2 SecQ satisfy 7.1. Take vectors w1; :::; wq 2 g in such a way
that transverse �elds �Yw1 ; :::; �Yw2 form a base of Q over some Fb-saturated open
subset U�G containing g. Then � =

P
i f

i � �Ywi for some f i 2 
0(U). Therefore,
property 7.1 of � and of �Ywi yields that, for g 2 U and t 2 T , �(gt) =

P
i f

i(gt) �
�Ywi(gt) and, simultaneously,

�(gt) = �Rt(�(g)) = �Rt(
X
i

f i(g) � �Ywi(g))

=
X
i

f i(g) � �Rt( �Ywi(g)) =
X
i

f i(g) � �Ywi(gt):

These give f i(gt) = f i(g), which means that f i are FU -basic functions. The
assertion follows now trivially (namely, the coe¢ cients with respect to any dis-
tinguished local coordinates after multiplying them by basic functions remain
constant on plaques).
(b). �=) �Results from (a).
�(= �Let �v; �w 2 Q and let �w = �Rt (�v) for some t 2 T . Clearly, �v = �Yu(g)

for a vector u 2 g where g = r (�v). So, since �w 2 Qjgt and �Yu 2 l(G,F) and
�w = �Rt (�v) = �Rt( �Yu(g)) = �Yu(gt), we assert that �v � �w.

Remark 7.2.3 The above two lemmas enable us to de�ne the Lie algebroid
A(G;H) immediately as the space of orbits of the action �R. Such a principle is
adopted by the author in [20].

By the same reasoning as in 7.1.3(ii), we assert that each left-invariant vector
�eld Xw, w 2 t, is foliate.

Proposition 7.2.4 The Lie algebra bundle ggg of the transitive Lie algebroid
A(G;H) of F is a trivial bundle of abelian Lie algebras, with the global trivial-
ization

G=T�t=h �! g (7.2)

(x; [w]) 7�! (c( �Xw)) (x) ;
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Proof. Since
 g : t �! Ebjg; w 7�! Lgje(w); (7.3)

is an isomorphism, we see that t=h �! Q0jg, [w] 7�! �Xw(g), is also an iso-
morphism. Hence - mapping 7.2 (whose correctness of the de�nition is easy to
check) is an isomorphism of vector bundles. To verify that gggjx is abelian, take
u1; u2 2 gggjx. By the above, there exist w1 and w2 belonging to t such that
u1 = (c( �Xw1)) (x) for i = 1; 2: So, we have

[u1; u2] = [c( �Xw1) (x) ; c(
�Xw2) (x)] = [[c(

�Xw1); c(
�Xw2)]] (x)

= c([ �Xw1 ;
�Xw2 ]) (x) = c( �X[w1;w2]

L) (x) = 0

(because the relation w := [w1; w2]L 2 h implies Xw 2 SecE).

7.3 Connections in A(G;H)

Proposition 7.3.1 Any distribution �C � TG is a connection for the TC-
foliation F [see Def.6.3.2] if and only if it is C1, satis�es (1) and (2) from
Lemma 6.3.1, and
(30) �C is T -right-invariant, i.e. �Cjgt = Rt[ �Cjg], g 2 G, t 2 T .

Proof. � =) �Let �C ful�l conditions (1)-(3) from Lemma 6.3.1 and take
v 2 �Cjg. By condition (3), v = X(g) for some X 2 L(G;F) \ Sec �C. Since
�X 2 l(G;F), 7.2.2(a) shows that

X(gt) = �X(gt) = �Rt( �X(g)) = �Rt (�v) = Rt(v);

which yields Rt(v)�X(gt) 2 Ejgt. Condition (1) and the relationX 2 Sec �C give
now Rt(v) 2 �Cjgt. So, Rt[ �Cjg] � �Cjgt, therefore the equality of the dimensions
gives the examined T -right-invariance of �C.
�(= �Assume that �C � TG is a C1 distribution satisfying (1) and (2)

from Lemma 6.3.1 and (30) above. For each point x 2 G/T , we de�ne

Cjx = �jg[�jg[ �Cjg]]; g 2 ��1b (x) :

(30), 7.2.1 and 7.2.2(b) imply the correctness of this de�nition: for t 2 T and
g 2 G, we have

�jgt[�jgt[Cjgt]] = �jgt[�jgt[Rtjg[ �Cjg]]]

= �jgt[ �Rtjg[�jg[ �Cjg]]] = �jg[�jg[ �Cjg]]:

Put C =
S
x2G=T Cjx � A(G;H). It is a standard calculation to prove that C

is a C1 subbundle of A(G;H). By assumptions (1) and (2) , C is a horizontal
subbundle of A (G;H) [i.e. C + ggg = T (G=T ) and C \ ggg = 0 hold], therefore it
is determined by some connection �. Clearly, �C = �C� (see 6.3). Thereby, (3) is
satis�ed according to Lemma 6.3.1.
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7.4 The Chern-Weil homomorphism of A (G;H)

Notice that the situation when H = T or T = G is not interesting from our
point of view because then, in the �rst case, the Lie algebroid A (G;H) is trivial,
A (G;H)


�!�= T (G=T ), which implies ggg = 0 and, in consequence, (hA(G;H))+ =

0; in the second case, the basic manifoldW is one-point, so also (hA(G;H))+ = 0.
Therefore we can consider the case H 6= T 6= G:
The Proposition 7.2.4 sets up a global trivialization

' : ggg
�=�! G=T�t=h (7.4)

therefore any cross-section � 2 Secggg determines some t=h-valued function =
� :

G=T �! t=h, namely
=
� := pr2 �' � �. Analogously, via the canonically induced

global trivialization
Wk

ggg� �= G=T�
Wk
(t=h)�, any cross-section � 2 Sec

Wk
ggg�

determines some
Wk
(t=h)�-valued function

=

� : G=T �!
Wk
(t=h)�. Let h�; �i :Wk

ggg��
Wk

ggg �! R be the canonical duality [8]. It is easily seen that, for
x 2 G=T and wi 2 t, i � k (k = rankggg = dim t� dim h),

h�; c( �Xw1) _ ::: _ c( �Xwk)i (x) = h
=

� (x) ; [w1] _ ::: _ [wk]i: (7.5)

Proposition 7.4.1 Let � 2 Sec
Wk

ggg�, then � is
Wk
ad\A(G;H)-invariant [i.e.

� 2 (Sec
Wk

ggg�)I0 ] if and only if
=

� is constant.

Proof. �=) �Let � be invariant. This means, in particular, that

(
 � c( �Yw))h�; c( �Xw1) _ ::: _ c( �Xwk)i

=
X
j

h�; c( �Xw1) _ ::: _ [[c( �Yw); c( �Xwj )]] _ ::: _ c( �Xwk)i;

for w 2 g, w 2 t; but [[c( �Yw); c( �Xwj )]] = c[ �Yw; �Xwj ]
= 0, so

(
 � c( �Yw))h�; c( �Xw1) _ ::: _ c( �Xwk)i = 0:

The values of vector �elds 
 � c( �Yw), w 2 g, generate at each point x 2 G=T the
entire tangent space Tx (G=T ); therefore the function h�; c( �Xw1)_ :::_ c( �Xwk)i,
thanks to the connectedness of G=T , is constant, so the same holds for the

function G=T 3 x 7�! h
=

� (x) ; [w1] _ ::: _ [wk]i. Equivalently,
=

� : G=T �!Wk
(t=h) is constant.

�(= �Assume now that � is such that the function
=

� is constant. Thus
7.5 implies the same for the function h�; c( �Xw1) _ ::: _ c( �Xwk)i, wj 2 t. To
prove the invariance of �, take arbitrarily cross-sections �i 2 Secggg, i � k, and
� 2 SecA (G;H). They can be written as follows:

�i =
X
j

f ji � c( �Xwj ) (globally), � =
X
j

gj � c( �Yuj ) (locally),
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for some f ji ; g
j 2 
0 (G=T ), wi 2 t, uj 2 g. Therefore 
 � � =

P
j g

j � 
 � c( �Yuj )
and

[[�; �s]] =
X
j;js

(gj � f jss � [[c( �Yuj ); c( �Xwjs )]]� f
js
s � 
 � c( �Xwjs )(g

j) � c( �Yuj+

+ gj � 
 � c( �Yuj )(f jss ) � c( �Xwjs ))

=
X
j;js

gj � 
 � c( �Yuj )(f jss ) � c( �Xwjs )

because 
 � c( �Xwjs ) = 0 and [[c( �Yuj ); c( �Xwjs )]] = c([Yuj ; Xwjs ]) = 0. Next, we
have

(
 � �)h�; �1 _ ::: _ �ki

=
X

j;j1;:::;jk

gj � 
 � c( �Yuj )h�; f
j1
1 � c( �Xwj1

) _ ::: _ f jkk � c( �Xwjk
)i

=
X
j

gj � 
 � c( �Yuj )(f
j1
1 � ::: � f jkk � h�; c( �Xwj1

) _ ::: _ c( �Xwjk
)i)

=
X
j

gj � 
 � c( �Yuj )(f
j1
1 � ::: � f jkk ) � h�; c( �Xwj1

) _ ::: _ c( �Xwjk
)i

=
X

j;s;j1;:::;jk

gj � f j11 � ::: � 
 � c( �Yuj )(f jss ) � ::: � f
jk
k � h�; c( �Xwj1

) _ ::: _ c( �Xwjk
)i

=
X
s

h�;
X
j1

f j11 � c( �Xwj1
) _ ::: _

X
j

gj � 
 � c( �Yuj )(f jss ) � c( �Xwjs ) _ :::

::: _
X
jk

f jkk � c( �Xwjk
)i

=
X
s

h�; �1 _ ::: _ [[�; �s]] _ ::: _ �ki;

which means that � is
Wk
ad\A(G;H)-invariant.

By the above proposition, the value of the function
=

� at any point x 2 G=T
does not depend on x for � 2 (Sec

Wk
ggg�)I0 . Denote it by �̂. Clearly,

� :

k�0M
(Sec

k_
ggg�)I0 �!

_
(t=h)�; � 7�! �̂;

is an isomorphism of algebras.

Theorem 7.4.2 The Chern-Weil homomorphism hof the Lie algebroid A (G;H)
makes the following diagramLk�0

(Sec
Wk

ggg�)I0
hA(G;H)�! HdR (G=T )

# � " hPW
(t=h)�

W
j�

� (
W
t�)I
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commute, in which
W
j� is the monomorphism of algebras induced by the canon-

ical projection j : t �! t=h, whereas hP : (
W
t�)I �! HdR (G=T ) is the Chern-

Weil homomorphism of the T -principal bundle P = (G �! G=T ):

Proof. First, we notice that Im
W
j� � (

W
t�)I . Indeed, Im

W
j� = f�� 2W

t�; �w�� = 0 for all w 2 hg. Since h is an ideal in t and t=h is an abelian Lie
algebra, see 7.1.3, therefore [u;w]L 2 h for all u;w 2 t. Thus, for any u 2 h and
�� 2 Im

Wk
j�, we have:X

j

h��; w1 _ ::: _ [u;wj ]L _ ::: _ wki = 0; wi 2 t;

which means [because T is connected] the AdT -invariance of ��. That
Wk

j� is a
monomorphism follows from the fact that j� is a monomorphic (see [8,p.108]).
By the independence of hP (��) and hA(G;H)(�) on the choice of a connection,
we may set an arbitrary connection C � TG in the principal bundle P . Then
�C := E

L
Cu is a connection in TG for F because �C is a C1 distribution and

requirements (1), (2) and (30) from 7.3.1 are satisfying:

(1) Clearly, E � �C \ Eb. To see the opposite inclusion, take arbitrarily v 2
�C \ Eb and write v = v1 + v2 for v1 2 E, v2 2 Cu. Of course, the vector
v2 = v � v1 2 Cu \ Eb = 0 is null. Therefore v = v1 2 E.

(2) �C + Eb = (E
L
Cu) + Eb � Cu

L
Eb = TG (Eb is the vertical bundle of

P ).

(3�) For t 2 T and g 2 G, we have, by 7.2.1 and the T -right-invariance of Cu
in P ,

Rtjg[ �Cjg] = Rtjg[Ejg
M

Cujg] = Rtjg[Ejg]
M

Rtjg[Cujg]

= Ejgt
M

Cujgt = �Cjgt:

Let !u 2 
1(G; t) be the connection form of Cu. Denote by �V : TG �! Eb
the vertical projection. Since Ag : T �! G, g 7�! gt, is the restriction to
T of the left translation by t, we have  g � !ug = �Vjg, g 2 G, where  g is
de�ned by 7.3. According to the de�nitions of the connection form �! of �C
(Def. 6.3.2(b)) and of the isomorphism ' of vector bundles 7.4, we obtain the
commuting diagram:

TgG
!ug�! t

& �Vjg  g % # j
�!g # Ebjg t=h

. �jg " 'jx

Q0jg
�+jg�! gggjx

(7.6)

for g 2 G and x = �b (g) : Let 
u 2 
2(G; t) and �
 2 
2(G;Q0) be the curvature
forms of Cu and of �C, respectively, while 
b 2 
2(G=T ;ggg) the curvature tensor
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of the connection � in A(G;H) for which �C = �C�. De�ne auxiliarily the form

0 2 
2(G; t=h) by 
0(g; v1 ^ v2) = 'jx � �+jg(�
(g; v1 ^ v2)), x = �b(g) as above.
We prove the equality


0 = j � 
u: (7.7)

To this end, take v1; v2 2 TgG and �nd foliate vector �elds Y1; Y2 2 L(G;F)
such that Yi(g) = vi; i = 1; 2. By Lemma 6.3.3(b) and diagram 7.6, we assert
that


0(g; v1 ^ v2) = 'jx � �+jg(�
(g; v1 ^ v2))

= 'jx � �+jg(��!(g; [ �H � Y1; �H � Y2](g)))
= �j � !u(g; [ �H � Y1; �H � Y2](g))
= j(
u(g; v1 ^ v2)):

For �� 2 (
Wk
t�)I , the class hp(��) is represented by the form � 2 
2k (G=T )

whose �b-lifting equals 1
k! � h��;
u _ ::: _ 
ui. Let �� = (

Wk
j�)(�̂) for �̂ = �(�)

where � 2 (Sec
Wk

ggg�)I0 ; then we have

h��;
u _ ::: _ 
ui = h�̂;
0 _ ::: _ 
0i: (7.8)

Indeed, using the fact that homomorphisms of algebras
Wk

j�and
Wk

j are dual
[8,p.108], we obtain, by 7.7, that for g 2 G and vi 2 TgG:

h��;
u _ ::: _ 
ui(g; v1 ^ ::: ^ v2k)

=
1

2k
�
X
�

sgn� � h(
k_
j�)(�̂);
u(g; v�(1) ^ v�(2)) _ :::

::: _ 
u(g; v�(2k�1) ^ v�(2k))i

=
1

2k
�
X
�

sgn� � h�̂; j(
u(g; v�(1) ^ v�(2))) _ ::: _ j(
u(g; v�(2k�1) ^ v�(2k)))i

=
1

2k
�
X
�

sgn� � h�̂;
0(g; v�(1) ^ v�(2)) _ ::: _ 
0(g; v�(2k�1) ^ v�(2k)))i

= h�̂;
0 _ ::: _ 
0i(g : v1 ^ ::: ^ v2k):

On the other hand, hA(G;H)(�) is represented by the form
1
k! � h�;
b _ :::_
bi,

see 4.1. Put 
0b 2 
2(G=T; t=h) as follows:


0b(x; �v1 ^ �v2) = 'jx(
b(x; �v1 ^ �v2)); �vi 2 Tx (G=T ) :

We check that

0 = ��b (


0
b); (7.9)

h�;
b _ ::: _ 
bi = h�̂;
0b _ ::: _ 
0bi: (7.10)
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Seeing Def. 6.3.2 of the tensor �
, we assert 7.9 trivially. Using the duality
between the homomorphisms

W
'�jx and

W
'jx of symmetric algebras, we notice

that, for x 2 G=T and �vi 2 Tx (G=T ),

h�;
b _ ::: _ 
bi(x; �v1 ^ ::: ^ �v2k)
= h�x; (
b _ ::: _ 
b)(x; �v1 ^ ::: ^ �v2k)i

= h
_
'�jx(�̂); (
b _ ::: _ 
b)(x; �v1 ^ ::: ^ �v2k)i

= h�̂;
_
'jx((
b _ ::: _ 
b)(x; �v1 ^ ::: ^ �v2k))i

= h�̂;
0b _ ::: _ 
0bi(x; �v1 ^ ::: ^ �v2k);

which con�rms 7.10.
Now, we are able to prove our theorem: Taking � 2(Sec

Wk
ggg�)I0 and keeping

the notations above, we assert, by 7.8 and 7.10, that the cohomology classes
hP (

Wk
j�(�(�))) and hA(G;H)(�) are represented by the forms whose �b-liftings

are equal to 1
k! � h�̂;


0_ :::_
0i and ��b ( 1k! � h�̂;

0
b _ :::_
0bi), respectively. But,

these two last forms are identical according to 7.9, which ends the proof.
Here is the aim of this section:

Theorem 7.4.3 If G is any connected, compact and semisimple Lie group and
H � G is its arbitrary connected nonclosed Lie subgroup, then the Chern-Weil
homomorphism his nontrivial.

Proof. Let T be the closure of H. T is, of course, compact. Applying Th.XI
from [10, Ch.IX, p.392] to the principal bundle P = (G �! G=T ), we get the
equivalence of the conditions:

(1) the Chern-Weil homomorphism hP is m-regular [understanding in (
W
t�)I

the natural even gradation],

(2) H0
dR(G) = R and H

p
dR(G) = 0; 1 � p � m.

Since G is compact and semisimple, it follows that H0
dR(G) = R, H1

dR(G) =
H2
dR(G) = 0 [H

3
dR(G) 6= 0]. Combining this with the above-mentioned theorem,

we obtain that the Chern-Weil homomorphism hP is 2-regular, in particular,
this yields that

(hP )
(2) : (t�)I �! H2

dR (G=T )

is an isomorphism. In view of Theorem 7.4.2, we get that

(hA(G;H))
(2) � ��1 : (t=h)� � (t�)I

�=�! H2
dR (G=T )

is a monomorphism. The assumption H 6= T implies t=h 6= 0, whence we obtain
that (hA(G;H))(2) 6= 0, and so, hA(G;H) is nontrivial.

Remark 7.4.4 Here is the more concrete example of a nonclosed Lie subgroup:
Let T be an arbitrary, not necessarily maximal, torus of G and H � T any of
its dense connected Lie subgroups.
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Remark 7.4.5 Adding the simple connectedness of G to the assumptions of
Theorem 7.4.3, we get, according to Almeida-Molino�s Theorem, see [1], [27],
some nonintegrable transitive Lie algebroid having the nontrivial Chern-Weil
homomorphism.

Therefore we can formulate the important

Corollary 7.4.6 There exists a nonintegrable transitive Lie algebroid having
the nontrivial Chern-Weil homomorphism.

Return to Theorem 7.4.3. As its consequence as well as that of Theorem
6.3.5 and Prop.7.3.1 we obtain that, under the assumptions of Theorem 7.4.3,
there exists no completely integrable T -right-invariant distribution �C � TG
such that �C + Eb = TG and �C \ Eb = E. Now, we give a simple situation in
which such a completely integrable distribution exists.

Example 7.4.7 Assume that the symbols G, H, T , F , g, h, t have the same
meaning as before. If there is a Lie subalgebra c � g such that

(1) c+ t = g,

(2) c \ t = h,

then the G-left-invariant distribution �C determined by c (i.e. the one tangent
to the foliation fgF ; g 2 Gg where F is the connected Lie subgroup with its Lie
algebra equalling c) is a completely integrable connection in TG for F . Indeed,
it is clear that the conditions �C\Eb = E and �C+Eb = TG hold. Therefore it is
enough to verify the T -right-invariance of �C only, i.e. the equality Rt[ �Cjg] = �Cg,
t 2 T , g 2 G. Let v 2 �Cg, then v = Lg(w) for some vector w 2 c. Since
Rt(v) = Rt(Lg(w)) = Lg(Rt(w)), we need observe that Rt(w) 2 �Cjt. Since T is
the closure of H, we have t = limhn, hn 2 H. In virtue of the closedness of �C,
we obtain that the fact that the element Rt(w) (equalling limRhn(w)) belongs
to �C follows from the relation Rh[c] � �Cjh for h 2 H which is evident by the
relation rh[H] � H where rh is the left translation by h.

As a simple corollary of 7.4.3 and 7.4.7 we obtain

Corollary 7.4.8 Under the assumptions of Theorem 7.4.3, no Lie subalgebra
c � g ful�lling (1), (2) from 7.4.7 exists.
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