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A Criterion for the Minimal Closedness of
the Lie Subalgebra Corresponding to a
Connected Nonclosed Lie Subgroup

JAN KUBARSKI

ABSTRACT. A Lie subalgebra h of a Lie algebra g is said to be minimally closed
(after A. Malcev [11]) if the corresponding connected Lie subgroup is closed in the
simply connected Lie group determined by g¢. The aim of this paper is to prove the
following theorem:

Let HC G be any connected (not necessarily closed) Lie subgroup of a Lie group
G. Denote by h, hand g the Lie algebras of H, of its closure H and of G, respectively.
If there exists a Lie subalgebra cCg such that (a) c+h=g, (b) cnh=h, then k is
minimally closed.

As a corollary we obtain that if m (G) is finite, then no such a Lie subalgebra ¢ -
exists provided that H is nonclosed.

The proof is carried out on the ground of the theory of Lie algebroids and by using
some ideas from the theory of transversally complete foliations.

0. INTRODUCTION

A) Let G be any connected Lie group. Assume that HC G is any of its

connected and nonclosed Lie subgroups. Denote by k, h, g the Lie algebras of
H, of its closure H and of G, respectively.

0.1. Problem. Does there exist a Lie subalgebra ¢Cg such that (a)
cth=g, (b)) cnh=h?

In work [7], some topological obstructions of the existence of such a Lie
algebra ¢ were found. Namely, the following theorem was proved.
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0.2. Theorem. [f the following homdmorphism of algebras
— — hp . —
V(h/hp*— (Vh*),— Hyr (G/H) (D

(where hp is the Chern-Weil homomorphism of the H-principal fibre bundle
P=(G—~G/H)) is nontrivial, then such a Lie subalgebra c does not exist.m

Next, it was noticed that the case of a compact and semisimple Lie group
is a case for which homomorphism (1) is always nontrivial. As a corollary we
have.

0.3. Theorem. IfGisa compéct and semisimple Lie group, then no Lie
subalgebra ¢ fulfilling (a) and (b) above exists. m

We add that (1) appears as the Chern-Weil homomorphism of the Lie
algebroid of the TC-foliation & ={gH; g€ G} of left cosets of G by H,
determined by the author [7], [8]. ‘

B) In the present paper, a Lie algebroid of a connected (not necessarily
closed) Lie subgroup H of a given Lie group G is constructed precisely. It can
be noticed that it is the same as the one constructed in the theory of P. Molino
[12] for the corresponding TC-foliation & of left cosets. Next, we get to the
core of the structure of this Lie algebroid and prove some strengthening of
theorem 0.3 (by weakening the assumptions to the finiteness of m (G))
without using any characteristic classes. This fact is obtained as a corollary
from the theorem saying that:

0.4. Theorem. The existence of a Lie subalgebra c fulfilling (a) and (b)
above implies the minimal closedness of k (in the sense of Malcev [11]).m

1. PRELIMINARIES

We give a few elementary facts concerning the theory of Lie algebroids,
needed in the sequel. We assume that in our paper all the manifolds
considered are of C*-class and Hausdorff. By (2° (M) we denote the ring of
C* functions on a manifold M, by X (M) the Lie algebra of C* vector fields
on M, and by SecA the Q°(M)-module of all C* global cross-sections of a
given vector bundle A (over M). _

1.1. Definition [15], [16]. By a transitive Lie algebroid on a manifold M
we mean a system

A:(A'l]:'s']]”y) (2)
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consisting of a vector bundle 4 (over M) and mappings
[-,-1: SecAx SecA—=SecA, v: A—TM,
such that
(i) (SecA, [[-,-T) is an R-Lie algebré,

(i) vy, called by K. Mackenzie [9] an anchor, is an epimorphism of
vector bundles,

(i)  Secy: SecA—X (M), §¢—=~yo£, is a homomorphism of Lie alge-
bras, '

) & fenll = f-L€E D+ (voE) (N)-n for fEQ(M), § nE SecA.
g: = Kery is a vector bundle and the short exact sequence

O—geed%TM—0O (3)

is called an Atiyah sequence of (2); in each vector space 8= Kery ., xeM,
some Lie algebra structure is defined by

[v. wl=[&nll(x), £ neSecA, £(x)=v, n(x)=w, v,wEg,.

g . is called the isotropy Lie algebra of (2) at x. g is a Lie algebra bundle [2],
[51, [6], [9] called (after Mackenzie) the adjoint of (2).

Let (2) and (A", [[-,- ]I, v’) be two transitive Lie algebroids on the same
manifold M. By a strong homomorphism

H: (A” [['*':[],v 7')'—"(/4’ [['9']]’ ‘Y) (4)

between them [4], [10, p. 273] we mean a strong homomorphism of vector
bundles H: A’— A, such that

(1) YoH=1",

(i) SecH: SecA’— SecA, é—Ho¢, is a homomorphism of Lie alge-,
bras.

If homomorphism (4) is a bijection, then H~! is also a homomorphism of
Lie algebroids; then H is called an isomorphism of Lie algebroids.
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1.2. Example. By a trivial Lie algebroid [14] we mean any algebroid
isomorphic to (TMxg, [[-,-], pr;) where g is a finitely dimensional Lie
algebra and the bracket [ .,.]] is defined by

[(X. 0), (¥, =X, Y] “xn—yo+][o,m]),

X, YeX(M), o, M—g ([o,n] is defined point by point:
[o,n](x)=[0 (x),n(x)], x€ M).

1.3. Example (See [5], [6], [9]). By the Lie algebroid A(P) of a
principal fibre bundle P= (P, w, M; G, .) we mean a transitive Lie algebroid
on M (A(P), [-,-1,v) in which A(P)=TP/G, y([v])=m,(v) where [v]
~ denotes the equivalence class of v, and the bracket L€, 7], é&,neSecA(P), is
constructed on the basis of the following observation: For each cross~-section
n € SecA(P), there exists exactly one C* right-invariant vector field n’€ XR (P)
such that [n’(z)]=7(7z), and the mapping SecA (P)— XR(P), n—7’, is an
isomorphism of °(M)—modules. The bracket [[£, 0] is a cross-section of
A(P) such that [[€ 0] =[&, ']

The Lie algebroid of a trivial principal fibre bundle P= MxG is cano-
nically isomorphic to the trivial Lie algebroid 4 = TMxg, g is the right Lie
algebra of G, via

A(P)=T(MxG)]G=TMx(TG/G)>(v, [w])— (v, OR(w))e TMxg;
©R denotes the canonical right-invariant 1-form on G [5], [6].

A transitive Lie algebroid strongly isomorphic to 4 (P) for some principal
fibre bundle is called integrable [9]. There exist non-integrable Lie algebroids
discovered by R. Almeida and P. Molino [1]. Lie algebroids of some TC-
foliations are non-integrable, for example, the Lie algebroid of the.foliation
of left cosets of any connected and simply connected Lie group by a
connected nonclosed Lie subgroup has this property.

1.4. Definition. By a connection in transitive Lie algebroid (2), see [5],
[9], [15], we mean a homomorphism of vector bundles A: TM — A4 such that
Y oN =idry, i.€. a splitting of Atiyah sequence (3) of A

Y
O— ge-A==TM—O.

By a curvature tensor of a connection A in (2) we shall mean a tensor
0, €0*(M;g) (=SecA? T* Mg g) defined by

O (X, Y)=A[X, YI-[AX, A YT, X, YEX(M).
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A also determines a covariant derivative V in g by
Vyo=[[AX, 0], XeX(M), ocSecg,
See [5], [9].

It turns out that the Lie algebra structure in SecA is uniquely determined
by g, V, ), and A, namely, we have

1.5. Theorem [5], [9]. The mapping ¢: TMa g—A (v,w)—Av+w,
is an isomorphism of Lie algebroids provided that in TM& g the following Lie
algebroid structure is defined: '

(a) the bracker:

[(X.0), MI=([X, ¥Y],—Qy(X, N+Vyn—Vya+[a,n]), X, YEX(M),
o, neSecg ([o,n] is defined point by point: [o,n](x) =[o(x), n(x)], xe M).

(b) the anchor: v=pr;: TM&g—TM.u

2. THE LIE ALGEBROID OF A CONNECTED (NOT
NECESSARILY CLOSED) LIE SUBGROUP

Let G be any connected Lie group and HC G any connected (not
necessarily closed) Lie subgroup of G. H determines the foliation # — {gH;
g€ G} of left cosets of G by H. 7 is a transversally complete foliation [12],
[13] because right-invariant vector fields are from the normalizer of X(7)
and generate the entire tangent space T,G for any ge G.

Denote by E the tangent bundle to . and Q= TG/ E-L- G the transversal
bundle of 7. Let
a: TG—Q

be the canonical projection and let v, ve TG, denote the vector a(v).
R,: TG— TG stands for the differential of the right translation by te G.

2.1. Lemma. (i) R, t€H (H is the closure of H), maps E into E
inducing the isomorphism of vector bundles R,: 0—0Q vV+—R,(v)

(i) The mapping R: OXH—Q, (v, 1)—R, (V) is a right str()ngl;vﬁee
action.
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Proof. Easy calculations. m

As a corollary we obtain

22. The topological space A (G; H) of orbits of the action R, ie.

A(G; H)=Q/~ where v=w<=>]_(R(®)=W)
teH

has a uniquely determined structure of a C* manifold, such that the canonical
projection B: Q— A (G; H) is a submersion.

In the sequel, the vector B(v), v€Q, will be denoted by [v] and
m,:G— G/H stands for the canonical projection. Of course, 7:A4(G;
H)— G/ H, [W] +—=m, (rWw), is a correctly defined projection. Its smoothness
follows immediately from the commutativity of the diagram

B
0—A(G; H)

o7

¢ G/H

For the fibre A (G; H)z of roverge G/ H, the mapping B, Q|,—A (G; H)3,
gem, ' (g), is a bijection. Via B, we introduce in 4 (G; H)z some structure of
a real vector space and, clearly, it is independent of the choice of g. We wish
to arrange the system (A (G; H), 7, G/H) to be a vector bundle. For the
purpose, we find local trivializations of this system.

2.3. Definition. A C* cross-section {€ SecQ is called a transversal field
if, for any g€ G and t€ H,

L(gt)=R,(L(g))

(that is, if { is H-right-invariant).

2.4. Example. The C* cross-section Y,:=avY, where Y, stands for
the right-invariant vector field on G generated by w€g (g is the Lie algebra
of G) is a transversal field. Therefore, transversal fields generate the entire
space Q,, for any g€ G.

2.5. Remarks. Denote by /(G; H) the space of all transversal fields.

(a) [(G:H)forms a module over the ring (°(G/ H) under the multipli-
cation f-L:=fom,-L, fEQ(G/H), Lel(G; H).
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(b) If transversal fields { ,..., {, are linearly independent at a point g€ G,
then, immediately by the definition, they are linearly independent at each
point gt, € H, and, in consequence, at some open S, —saturated open
subset where 7, is the so-called basic foliation #,={gH; g€ G}.

() Letl,{,€l(G; H) i<s.If{;are linearly independent on U= m, ~'[U]
(U open in G/H) and {=3, fi{, for fic Q°(U), then the functions f"are of
=
the form fi= fi.m,| U for some fie Qo).

2.6. Proposition. Let q=dimG—dimH, ie. q=-codim¥. Suppose
that {y,...,L, are transversal fields linearly independent at each point of a set
U=m, —'[U], U open in G/H. Then

¢: UXRY—F'[U]C A(G; H)
& a)—[2a'li(g)]), gem (),

is a local trivialization of ¥: A (G; H)— G/ H.

Proof. Of course, ¢z RI—A4 (G;H)z, gcU, is an isomorphism of
vector spaces. This proposition will be proved by showing that ¢ is a
diffeomorphism. For the purpose, take the mapping : UxRY—r='[U]C 0.

(g a)— a'l;(g). being a local trivialization of Q. Our assertion follows
now from the commutativity of the diagram

Uqug‘I’» ceoe Lo
17Th><l'd lB l
UxRY-E(TU1C AG; H)L-G/H . w

2.7. Remark. The structure of a C* manifold in A (G; H) can be
obtained independently by demanding that ¢’ s be diffeomorphisms.

Now, we introduce a structure of a Lie algebroid into the vector bundle
A (G: H). Firstly, we define the anchor y: 4 (G; H)—T(G/ H) by [W]—m« (W)
(the correctness is easy to obtain). Secondly, we introduce in Sec A (G;H) a
structure of a Lie algebra in the way described below.
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Take a homomorphism of Q°(G/ H)—modules

¢ 1(G; H—=Sec A (G; H), {—¢,, (5)

where ¢, is a C™ cross-section of A(G;H) defined by ¢ (8)=[{(g)].
gem (@) '

2.8. Lemma. c is an isomorphism of Q°(G/H)—modules.

Proof. We check at once that (5) is 2 monomorphism. To see that it is
also an epimorphism, take an arbitrary C* cross-section £ € Sec A (G; H) and
define a cross-section { of Q in such a way that the diagram

B
0~ A(G; H)
t pe
¢ G/H

commutes, i.e. ¢;= £ The smoothness of { is the last thing to notice. In order
to get this, take transversal fields {; ,..., {, being a basis on U= m—'[U] (U is
open in G/ H and contains an arbitrarily taken point of G/ H). Then ¢, ..., ¢;,
forms a_basis of 4(G;H) on U. Therefore, E=3 11 ¢, on U for some
fie Qo (U). Of course, (=3, om,-{; on U, which ends the proof. =

2.9. The space /(G; H) has a natural structure of a real Lie algebra.
Indeed, let {,vel(G; H)C SecQ. Take arbitrary vector fields X, YeX(G)
such that {=X (:=a. X) and, analogously, v=7Y. Put.

[, v]=I[X, Y] (6)
We need notice that

(@) [X, Y]e (G; H),
(b) definition (6) is correct.

Let us first observe
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2.10. Lemma. [f (€l(G;H) is of the form Cf)? Sfor a vector field
Xe X(G), then X belongs to the normalizer of X (%), that is,

[X, YIeX(F) for all YEX(¥) @)
[i.e. X is the so-called foliate vector field for 7, see [13]].

Proof. Of course, it is sufficient to show relation (7) for left-invariant
vector fields Y= X, heh, only. To this end, take an arbitrary g€ G and
express , locally on a set U= m, ~'[ U] containing g (U open in G/H), in the
form {;y=3, flomyy- Yijv ST€Q(U), wieg (for Y,, see 2.4). Then

Z:= Z]i"”hlu‘ Yoiv— X 0€X(FY)
and, furthermore, we have
[X. Xh]w:[z 7i“7rb|U'Yu',|U_‘Zx th]
=—1[Z XpJjue X(F),

thus [X, X,]€X(¥).u

2.11. Remark. It can be proved that condition (7) is equivalent to the
fact that {: = X is a transversal field; however, the sufficiency of this condition
will not be used in the sequel.

Now, we are able to prove (a) and (b) from 2.9.

(a): To get the equality R, ([ X, Y](g))=[X, Y](gt), geG, te H, take the
vector fields Z,= R, X— X and Z,= R, Y— Y tangent to .%. Applying 2.10,
we deduce that

R,([X, YI(2))=R,(X. Y1(g))=R, (X, Y1) (g1)
=[R X, R Y)(g)=[X+Z,, Y+ Z,](g1)
=[X Y](gt).

(b): Immediately from 2.10.

2.12. In SecA(G; H) we introduce the bracket [-,-f] (forming a Lie
algebra) by demanding that (5) be an isomorphism of Lie algebras, i.e.

[ep el =cpvs & vEI(G; H).
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2.13. Theorem. The system
A(G H)y=(A(G; H), [-,-1.7) (8)

is a transitive Lie algebroid on G/ H.

Proof. (1) Secy:SecA(G; H)—3((G/H) is a homomorphism of Lie
algebras. To see this, take €, n€ SecA (G; H). Find vector fields X, YeX(G)
such that £= ¢, n=cy. By the definition of v,

(Secy) () (@) = mpsy(X) for g=m,(8), g€ G,

from which we obtain that X is m-related to y +£ and, analogously, Y to y«n.
Therefore [ X, Y] is m,-related to [y« £, v+n] and to 7y «[[£, n]] simultaneously,
which confirms our assertion.

(2) The equality [&f-nl=/-L&nl+(v-&D-n, feQ°(G/H),
&, neSec A(G; H), follows easily from

[X, fomye Y]=fom[X, Y]+ (yocq)(f)- V.m
Lie algebroid (8) will be called the Lie algebroid of a Lie subgroup H of

G. 1t can be interesting only in the case of a nonclosed H because the
closedness of H implies the triviality of A (G, H): A(G; H)=T(G/H).

2.14. Remark. One can prove [cf. [7]] that Lie algebroid (8) is equal to
the one constructed by P. Molino [12], [13] for the TC-foliation .

3. STRUCTURE THEOREMS

Let (8) be the Lie algebroid of a connected Lie subgroup H of a connected
Lie group G and

O—gerA(G; H) 2~ T(G/ H)—O

its Atiyah sequence. In this section we prove three fundamental facts
concerning A (G; H):

e The adjoint Lie algebra bundle g of A(G; H) is a trivial bundle of
abelian Lie algebras.

® [fthe Lie algebroid A (G; H) admits a flat connection (i.e. a connection
with the zero curvature tensor), then it is trivial.
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o Leth, k. gdenote the Lie algebras of H, H and G, respectively. Suppose
that there exists a Lie subalgebra cCg such that (a) c+h=g, (b) cNh=h.
Then A (G; H) admits a flat connection.

The crucial role in the proving of the first fact is played by the following
Malcev theorem (for a short “foliated™ proof of it, see [7]).

3.1. The Malcev Theorem [11], [17]. If H is a dense connected Lie
subgroup of a Lie group T, then H is a normal subgroup of T and T/ H is
abelian. m

By this, according to our notations, k is an ideal of h and h/h is an abelian
Lie algebra.

3.2. Theorem. For avector wE, the cross-section X, of the transversal
bundle Q, induced by the left-invariant vector field X, is a transversal field,
and the mapping

¢: G/ Hxh/h—g, (& [W])—[X..(g)], g€ m~ " (), )

is a global trivialization of the Lie algebra bundle g.

Proof. It is sufficient to show that X,., weh, is a transversal field; the
rest is easy. Clearly, for t€ H and g€G R,(X.(2))=L,(R,(w)) and
X, (gt)=L,(L,(w)) where L, Q—Q is an automorphism of the vector
bundle Q, determined by the differential L, of the left-translation by g.
Therefore, it remains to prove that R, (w)— L, (w)€ E;,, which means that the
vector field X: = Y, — X, is tangent to the foliation . at each point of H.

Firstly, we notice that X is foliate; to see this, we calculate: Let A<h, then
[X, X, ]=[Y.— X, Xp1= X(n € X () because [h, w]Eh according to the
Malcev theorem.

Secondly, any foliate vector field X (for a foliation .7) in any
distinguished local coordinates x = (x',...,x”, y' ..., %) (p=dim .7,

g=codim 7)) is of the form X(x, y)=a'(x, ) aw+2b"(y) 57[13];

dx!
therefore, which is easy to see, if it is tangent to . at a point z, then it is
tangent to 7 at each point of the closure of the leaf through z. In our
situation, X (e)=[Y,— X,](e) = O€ E,,, so -— by the above — our theorem is
proved. =

Now, we proceed to the second problem.
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3.3. Theorem. [f the Lie algebroid A (G; H) is flat, then it is trivial.

Proof. Let A:T(G/H)—A(G; H) be a flat connection in A (G; H).
Then, taking account of 1.4 and isomorphism (9) of Lie algebra bundles, we
have an isomorphism of Lie algebroids

p: T(G/H)xh/hR—A(G; H), (v.[W])—Av+[X, (9],

ve T,G/ H,g=m,(g), g€ G, provided that in T(G/H )xh/h the Lie algebroid
structure is defined by the following formula

[[(X’ 0)5 (Y, n)]]:([X’ )/J» v:\)n—v(;'0+[os TI])»

X, YeEX(G/H), o,m: G/ H—h/h, where V° is a covariant derivative in the
trivial vector bundle T(G/H)xh/h, such that ¢ maps V° onto V, i.e.

Vio=¢ ' Vylpr0)=¢"+[[A X,¢.0]}

Looking at example 1.2, we see that to end the proof, it is sufficient to
show the equality

Vi=Yyx, Xe€X(G/H),
which is equivalent to the fact that the covariant_derivative V3 of any

constant function W:G/H—h/k, g—[w], weh, is zero, ie. that
A X, ¢ 1=O. The cross-section A X is locally of the form A X=3 fic;,

fie Q0 (G/H), thus
A X e = 1Y 5, 3,1
=%l 9. R, I1-v e () "7“,)
=0
because y o ¢, =0 and [[('T,WI, x, 1= [ X = O . n

It remains to consider the third problem.

3.4. Theorem. Suppose that there exists a Lie subalgebra ¢ Cg such
that (a) c+h=g, (b) cNh=h. Then A(G; H) admits a fiat connection.

Proof. The construction of a flat connection in A (G; H) has four steps.
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Step 1. Denote by C C TG the left-invariant distribution generated by ¢,
i.e. the vector bundle tangent to the foliation {g F} g€ G} where F is the
connected Lie subgroup with the Lie algebra equalling ¢. C fulfils the
following conditions (in which E}, is the vector bundle tangent to the foliation

7»=1{gH; g€ G}):
() C+E=TG,
3) CNE=E
(3) Cis H-right-invariant [i.e.'C|, = R,[C),], g€ G, t€ H],
(4) Cis involutive.

Clearly, (1), (2) and (4) hold. To see (3), take an arbitrary vector ve ('“
we have v= L, (w) for some wec. Since R, (v)= L,(R,(w)), we need only to
observe that R 2 (w)e C|, for tc H. Wrxte t—lzmt,,, t,€ H; then, by the

closedness of C in TG, we obtain that R (w)=lim R”(w)EC because
R,[C]=C

Step 2. Let CCTG be a distribution realizing conditions (1)< (4)
above. Via the epimorphism a: TG—-Q we define a subbundle C’C Q by
C|g—-ag[C|A] g€ G. [The fact that C" is a subbundle is obtained from the

relation EC C which holds by (2)]. € fulfils the following conditions:
(1Y @&C'=Q where O'=E,/ECQ,
(2') Cis H-right-invariant [ie. C',, = R,[C"), g€ G, te H],
(3) (G, H):=Sec C'NI(G; H) is a Lie subalgebra of /(G; H).
(1) and (2) are obvious. To check (3"), take arbitrary {, v€/;(G; H) and

write {=X, v=7Y for some vector fields X, Y€ X(C). According to (4),
[X, Y]€X(C), which gives the relation [X, Y]€ SecC’. On the other hand (see

2.9), [, v]=[X, YI€I(G; H).

Step 3. Let C"CQ be any vector subbundle realizing conditions
(I")+(3) above. Via the linear homomorphism B8: 0— A (G: H) we define a
subbundle CC A(G; H) by Cz;=8,[C,], gem~"(g), g€ G/H. Thanks to
the equality 8« R,= 8, 1€ H, the correctness of this definition is evident. To
see that Cis a C"° vector subbundle of A4 (G, H), it is sufficient to notice that
a local C* cross-section of A(G; H) lying in C and passing through an
arbitrarily taken vector from C exists. Let ve "\, and g=m, (g). Take a local
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C* cross-section ¢: U—G of the submersion m: G—G/H, such that
¢ (g)=g, and consider the diagram

wotccoPoam

l ! l

p

Im¢ —G T2 G/H

e |

U.

Diminishing U if necessary, we may assume that the vector bundle
i*C'—Ime has a global C* cross-section Z passing through v. Put ¢é=
BeioZogw: U—A(G; H); & 1s, of course, a C* cross-section of A (G; H) over
U such that ¢(g)=[v]. The vector bundle C fulfils the conditions

(1) gaC=A(G;H),

(2) SecCis a Lie subalgebra of SecA(G, H).

(I) s evident by the observation that 8, maps isomorphically ¢, onto
gz To see (2), take arbitrary ¢, ne SecC. According to 2.8, there exist
transversal fields {, v such that ¢;=¢ and ¢,=n. Of course, B,({,)=¢&; and
B, (v,)=n,, g€, ' (g). From the definition of C we obtain that { and v

belong to /;(G;H). By (3), [{,v]€SecC'MI(G, H), therefore [ n]l=
('[L v] € SecC.

Step 4. Let CC A (G; H) be a vector subbundle realizing conditions (1)
and (2) above. Then, of course, a splitting A of the Atiyah sequence of
A(G; H), see the diagram

O—g <~ A(G; H)=g® CLT(G/H)—O.
A

such that ImA = C, is a flat connection in 4 (G, H). =

Combining the above theorems we get

3.5. Corollary. The existence of a Lie subalgebra <Cg fulfilling
ct+h=g and cNh=h implies the triviality of the Lie algebroid A (G; H).
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4. MAIN RESULTS

Let the symbols H, H, G, h, k, g have the same meaning as in the previous
two sections.

4.1. Theorem. [f there is a Lie subalgebra ¢ Cg such that (a) c+h=g,
(b) cNk=h, then the Lie algebra h is minimally closed.

Proof. Corollary 3.5 states that the Lie algebroid A (G; H) of the Lie
subgroup HC G is trivial, i.e. there exists a Lie algebroid isomorphism
P A(G; H)—»A(, =T(G/H)xh/k. Such a Lie algebroid is, of course,
integrable: A4, is the Lie algebroid of the trivial principal fibre bundle
P= G/ H X Ffor an arbitrarily taken Lie group F with the abelian Lie algebra
h/k, see 1.3. The following reasoning is due to R. Almeida and P. Molino, see
the proof of their theorem [13, p. 138]. Consider the Lie algebroid (7Gx h/h,
[[-.- 1, pry) of the trivial principal fibre bundle G x F. The linear homomorphism
of vector bundles.

A TG—TGxh/k, v— (v, pry. ®([V]))

is a connection in this Lie algebroid. A is flat. Indeed, it is sufficient to show
the equality [[AX,AY]]=A[X, ¥] only for X, YeX(G) such that the

corrcspondmg cross-sections X, Y of Q are transversal fields. However, the
equality is then easy to obtain by using the fact that & is a homomorphism of
Lie algebras, namely, writing AX = (X, pryo ®.cyom) (and, analogously, for
AY), we have

[AX AYI=[(X, proe ®ocxom), (Y, pryo P ocyom)]]

=([X. Y] Yx(pryo®o rCyomy)— Ly (pryo B cxomy)
tpryo ®@ocyom, prae®ocyomy])

=X, Y] (/“?“"T (pryo ®ocy)om,— i/;w.? (pryo ®ocy)om,
+lprae®ocx, pry ®ocylem,)

=([X. Y], praoll(vecx, prao @ ocx)  (vocy, prye @ ocy)lomy)
=([X, Y], proo[®ecx, ®ocyllom,)

=([X, Y], prae®o[[cx, cy]lom)

=([X. Y], pryo e cixvjom)

=A[X, Y].
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Let D be the connection in G X F determined by A, i.e. the right-invariant
distribution DC T'(G x F) for which

Dy oy=1{(v, pryo ®([T]); vETGY}, gE€G,

where e denotes the neutral element of F. The flatness of A implies the
involutivity of D. Consider the diagram

p2:7Th><id .

Gx F G/HxF
LY
G ™, G/H.

Let GC GX F be any leaf of the distribution D. Of course, ;= =p,|G:
G— G is a covering and, which is easy to obtain, §, = p,| G: G—»G/H X F'is
a submersion. Denote by . the lifting (by 5,) of the foliation & in G. Let

(g, a)€ G. For ve T,G, the following conditions are equivalent:
(1) v is tangent to .7,
(2) Prrga ' (v) is tangent to 7,

(3) ﬁ2*(g. a)(ﬁl*(g, a)—l ('U) ) =0.

From this we obtain that . is defined by the submersion p,: G— G/ H x F,
n pamcular the leaves of . are closed. Introducing in G a structure of a
group in the standard way we obtain: G is a Lie group and p, is a local
isomorphism of Lie groups. It is a standard calculation to obtain that Fis
then the foliation of left cosets of G by Fwhere Fis a connected Lie subgroup
of G with the Lie algebra equalling k= P+, '[k] (¢ being the neutral element
of G). Therefore F is a closed Lie subgroup. Of course, F, being closed after
the lifting to some covering, is also closed after lifting it to the universal one,
which means that h is minimally closed. m

4.2. Theorem. If m (G) is finite and H # H, then there exists no Lie
subalgebra ¢ Cg fulfilling the conditions c+h=g and cNh=h.

Proof. Let m (G) be finite. Then, the universal covering is finite, which
implies the nonclosedness of the lifting H of H. Our assertion follows now
trivially from the previous theorem. m

To fimish with, we can ask
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Can Theorem 4.1 be inverted ?

It turns out that the answer is no.

4.3. Example. Let G= U(2). Suppose that H:= T'is a maximal torus
in G. It is well known that dimT=2 and the lifting of T to the universal
covering Rx §U(2)— U(2) is isomorphic to the ¢ _ylmder R x S!, Therefore,
any Lie subalgebra h of h (h—the Lie algebra of H) is minimally closed. We
prove, using theorem 0.2, that there exists some I-dimensional Lie subalgebra
k of k for which. .

(1) no Lie subalgebra ¢ Cg fulfilling (a) and (b) from 0.1 exists.
(i) the corresponding connected Lie subgroup of T is dense in 7.

Let A, V(h*)— Hyx (G/T) be the Chern-Weil homomorphism of the
T-principal fibre bundle P=(G—G/T). G and T have the same rank,
therefore, according to [3; Th.VII, p. 467}, we have that

(2)
: h*—H2, (G/T)

is surjective. Moreover, dimh* =2 and dimH} (G/T)=1, thus dim Kerhm
Then it is obvious that there exists a covector O# Beh* such that (1)

(2)(,8)#0 (2) h:= KerBCh is a subspace such that the corresponding Lie
subgroup HC T is dense in 7. Of course, the superposition

N
/L2l (G

1S nontrivial: h(pz) 2j(B)#0 where Be(h/h)* is a linear homomorphism
determined by B. Theorem 0.2 implies the nonexistence of a Lie subalgebra
¢ Cg fulfilling (a) and (b) above.

References

[1] R. ALMEIDA, P. MOLINO: Suites d’Atiyah et feuilletages transversallement
complets, C. R. Acad. Sci. Paris Ser. I Math., 300 (1985), 13-15.

[2] —Suites d’Atiyah, feuilletages et quantification geometrique, Estrait du
Seminaire du Geometrie differentielle, Montpellier, 1984-85.

[31 W. GREuB, S. HALPERIN, R. VANSTONE: Connections, Curvature, and
Cohomology, Vol. Ill, Academic Press, New York and London, 1976.

[4] J. KuBARSKI: Exponential mapping for Lie groupoids, Collog. Math. XLVII
(1982), 267-282.




176

(5]
[6]
(7

[8]

[91
[10]
(1
(12]
(13]
[14]
[15]

[16]
[17]

J. Kubarski

— Lie algebroid of a principal fibre bundle, Publications du Department de
Mathematiques de L’Universite de LYON |, in printing.

— Lie algebroid of a principal fibre bundle - three equivalent definitions, Prace
Naukowe Politechniki Szczecinskiej, 11 (1988), 123-145.

— The Chern-Weil homomorphism of regular Lie algebroids and TC-
foliations, Preprint No 9, Institute of Mathematics, Technical University of
Lod7, November 1988.

— Pontryagin algebra of a transitive Lie algebroid, Supplemento ai Rendiconti
del Circolo Matematico di Palermo, Proceedings of the Winter School on
Geometry and Physics, SRNI, 9-16 January, 1988 (in printing).

K. MACKENZIE: Lie groupoids and Lie algebroids in differential Geometry,
Cambridge, 1987.

-— A note on Lie algebroids Wthh arise from groupoid actions, Cahiers de
Topologie et Geometrie Differentielle Categoriques, XXV111-4 (1987), 283-302.
A. MALCEV: Subgroups of Lie groups in the large, C. R. (Doklady) Acad. Sci.
URSS (N. S.) 36 (1942), 5-7 (Kraus Reprint LTD. VADUZ 1963).

P. MoLINO: Etude des feuilletages transversalement complets et applications,
Ann. Sci. Ecole Norm. Sup., 10(3) (1977), 289-307.

— Riemannian Foliations, Progress in Mathematics Vol. 73, Blrkhauser
Boston Basel, 1988.

NGO-VAN-QUE: Sur l'espace de prolongement differentiable, J. Differential
Geom. 2.1. (1968), 33-40.

J. PRADINES: Theorie de Lie pour les groupoides differentiables dans la
categorie des groupoides, Calcul differential dans la categorie des groupoides
infinitesimaux, C. R. Acad. Sci. Ser. A-B, Paris, 264 (1967), 265-248.

— : Theorie de Lie pour les groupoides differentiables, Atti Conv Intern Geom
7 Diff. Bologna, 1967, Bologna-Amsterdam:

E. WINBERG, A. ONISHCHIK: A seminar on Lie groups and algebraic groups (in
Russian), Moscov, 1988.

Institute of Mathematics,
Technical University of Lodz,

Poland

Recibido: 28 de marzo de 1990



