# A Criterion for the Minimal Closedness of the Lie Subalgebra Corresponding to a Connected Nonclosed Lie Subgroup

JAN KUBARSKI

**ABSTRACT.** A Lie subalgebra k of a Lie algebra g is said to be *minimally closed* (after A. Malcev [11]) if the corresponding connected Lie subgroup is closed in the simply connected Lie group determined by g. The aim of this paper is to prove the following theorem:

Let  $H \subseteq G$  be any connected (not necessarily closed) Lie subgroup of a Lie group G. Denote by h,  $\overline{h}$  and g the Lie algebras of H, of its closure  $\overline{H}$  and of G, respectively. If there exists a Lie subalgebra  $c \subseteq g$  such that (a)  $c + \overline{h} = g$ , (b)  $c \cap \overline{h} = h$ , then h is minimally closed.

As a corollary we obtain that if  $\pi_1(G)$  is finite, then no such a Lie subalgebra c exists provided that H is nonclosed.

The proof is carried out on the ground of the theory of Lie algebroids and by using some ideas from the theory of transversally complete foliations.

### 0. INTRODUCTION

- A) Let G be any connected Lie group. Assume that  $H \subseteq G$  is any of its connected and nonclosed Lie subgroups. Denote by h,  $\overline{h}$ , g the Lie algebras of H, of its closure  $\overline{H}$  and of G, respectively.
- **0.1.** Problem. Does there exist a Lie subalgebra  $c \in g$  such that (a)  $c + \overline{h} = g$ , (b)  $c \cap \overline{h} = h$ ?

In work [7], some topological obstructions of the existence of such a Lie algebra c were found. Namely, the following theorem was proved.

1991 Mathematics Subject Classification: 17B05, 22E15, 22E60. Editorial de la Universidad Complutense. Madrid, 1991.

0.2. Theorem. If the following homomorphism of algebras

$$V(\overline{\mathbf{h}}/\mathbf{h})^* \longrightarrow (V\overline{\mathbf{h}}^*)_I \xrightarrow{h_P} H_{\mathrm{dR}}(G/\overline{H}) \tag{1}$$

(where  $h_P$  is the Chern-Weil homomorphism of the  $\overline{H}$ -principal fibre bundle  $P = (G \longrightarrow G/\overline{H})$ ) is nontrivial, then such a Lie subalgebra c does not exist.

Next, it was noticed that the case of a compact and semisimple Lie group is a case for which homomorphism (1) is always nontrivial. As a corollary we have.

**0.3. Theorem.** If G is a compact and semisimple Lie group, then no Lie subalgebra c fulfilling (a) and (b) above exists. ■

We add that (1) appears as the Chern-Weil homomorphism of the Lie algebroid of the TC-foliation  $\mathcal{F} = \{gH; g \in G\}$  of left cosets of G by H, determined by the author [7], [8].

- **B)** In the present paper, a Lie algebroid of a connected (not necessarily closed) Lie subgroup H of a given Lie group G is constructed precisely. It can be noticed that it is the same as the one constructed in the theory of P. Molino [12] for the corresponding TC-foliation  $\mathcal{F}$  of left cosets. Next, we get to the core of the structure of this Lie algebroid and prove some strengthening of theorem 0.3 (by weakening the assumptions to the finiteness of  $\pi_1(G)$ ) without using any characteristic classes. This fact is obtained as a corollary from the theorem saying that:
- **0.4.** Theorem. The existence of a Lie subalgebra c fulfilling (a) and (b) above implies the minimal closedness of h (in the sense of Malcev [11]).

## 1. PRELIMINARIES

We give a few elementary facts concerning the theory of Lie algebroids, needed in the sequel. We assume that in our paper all the manifolds considered are of  $C^{\infty}$ -class and Hausdorff. By  $\Omega^{\circ}(M)$  we denote the ring of  $C^{\infty}$  functions on a manifold M, by  $\mathbf{X}(M)$  the Lie algebra of  $C^{\infty}$  vector fields on M, and by SecA the  $\Omega^{\circ}(M)$ -module of all  $C^{\infty}$  global cross-sections of a given vector bundle A (over M).

1.1. **Definition** [15], [16]. By a transitive Lie algebroid on a manifold M we mean a system

$$A = (A, \llbracket \cdot, \cdot \rrbracket, \gamma) \tag{2}$$

consisting of a vector bundle A (over M) and mappings

$$[\![\cdot,\cdot]\!]: SecA \times SecA \longrightarrow SecA, \quad \gamma: A \longrightarrow TM,$$

such that

- (i)  $(SecA, [\cdot, \cdot])$  is an **R**-Lie algebra,
- (ii)  $\gamma$ , called by K. Mackenzie [9] an *anchor*, is an epimorphism of vector bundles,
- (iii) Sec $\gamma$ : Sec $A \longrightarrow X(M)$ ,  $\xi \longrightarrow \gamma \circ \xi$ , is a homomorphism of Lie algebras,
  - (iv)  $[\![\xi, f \cdot \eta]\!] = f \cdot [\![\xi, \eta]\!] + (\gamma \circ \xi) (f) \cdot \eta$  for  $f \in \Omega^{\circ}(M), \xi, \eta \in SecA$ .

 $g = Ker\gamma$  is a vector bundle and the short exact sequence

$$O \longrightarrow \mathbf{g} \hookrightarrow A \stackrel{\gamma}{\longrightarrow} TM \longrightarrow O \tag{3}$$

is called an Atiyah sequence of (2); in each vector space  $\mathbf{g}_{|x} = Ker\gamma_{|x}$ ,  $x \in M$ , some Lie algebra structure is defined by

$$[v, w] := [[\xi, \eta]](x), \quad \xi, \eta \in SecA, \ \xi(x) = v, \ \eta(x) = w, \ v, w \in \mathbf{g}_{|x}.$$

 $\mathbf{g}_{|x}$  is called the *isotropy Lie algebra of* (2) at x.  $\mathbf{g}$  is a Lie algebra bundle [2], [5], [6], [9] called (after Mackenzie) the *adjoint of* (2).

Let (2) and  $(A', [[\cdot, \cdot]]', \gamma')$  be two transitive Lie algebroids on the same manifold M. By a strong homomorphism

$$H: (A', \llbracket \cdot, \cdot \rrbracket', \gamma') \longrightarrow (A, \llbracket \cdot, \cdot \rrbracket, \gamma) \tag{4}$$

between them [4], [10, p. 273] we mean a strong homomorphism of vector bundles  $H: A' \longrightarrow A$ , such that

- (i)  $\gamma \circ H = \gamma'$ ,
- (ii) SecH: SecA'  $\longrightarrow$  SecA,  $\xi \longrightarrow H \circ \xi$ , is a homomorphism of Lie algebras.

If homomorphism (4) is a bijection, then  $H^{-1}$  is also a homomorphism of Lie algebroids; then H is called an *isomorphism of Lie algebroids*.

1.2. Example. By a trivial Lie algebroid [14] we mean any algebroid isomorphic to  $(TM \times \mathfrak{g}, [\cdot, \cdot], pr_1)$  where  $\mathfrak{g}$  is a finitely dimensional Lie algebra and the bracket  $[\cdot, \cdot]$  is defined by

$$\llbracket (X,\sigma), (Y,\eta) \rrbracket = (\llbracket X,Y \rrbracket, \mathcal{L}_X \eta - \mathcal{L}_Y \sigma + \llbracket \sigma,\eta \rrbracket),$$

X,  $Y \in \mathbf{X}(M)$ ,  $\sigma$ ,  $\eta$ :  $M \longrightarrow \mathfrak{g}$  ( $[\sigma, \eta]$  is defined point by point:  $[\sigma, \eta](x) = [\sigma(x), \eta(x)], x \in M$ ).

1.3. Example (See [5], [6], [9]). By the Lie algebroid A(P) of a principal fibre bundle  $P = (P, \pi, M, G, \cdot)$  we mean a transitive Lie algebroid on M (A(P),  $[[\cdot,\cdot]]$ ,  $\gamma$ ) in which A(P) = TP/G,  $\gamma([v]) = \pi_*(v)$  where [v] denotes the equivalence class of v, and the bracket  $[[\xi, \eta]]$ ,  $\xi, \eta \in SecA(P)$ , is constructed on the basis of the following observation: For each cross-section  $\eta \in SecA(P)$ , there exists exactly one  $C^{\infty}$  right-invariant vector field  $\eta' \in X^R(P)$  such that  $[\eta'(z)] = \eta(\pi z)$ , and the mapping  $SecA(P) \longrightarrow X^R(P)$ ,  $\eta \longrightarrow \eta'$ , is an isomorphism of  $\Omega^o(M)$ —modules. The bracket  $[[\xi, \eta]]$  is a cross-section of A(P) such that  $[[\xi, \eta]]' := [\xi', \eta']$ .

The Lie algebroid of a trivial principal fibre bundle  $P = M \times G$  is canonically isomorphic to the trivial Lie algebroid  $A = TM \times g$ , g is the right Lie algebra of G, via

$$A(P) = T(M \times G)/G = TM \times (TG/G) \ni (v, [w]) \longrightarrow (v, \Theta^R(w)) \in TM \times \mathfrak{g};$$

 $\Theta^R$  denotes the canonical right-invariant 1-form on G [5], [6].

A transitive Lie algebroid strongly isomorphic to A(P) for some principal fibre bundle is called *integrable* [9]. There exist non-integrable Lie algebroids discovered by R. Almeida and P. Molino [1]. Lie algebroids of some TC-foliations are non-integrable, for example, the Lie algebroid of the foliation of left cosets of any connected and simply connected Lie group by a connected nonclosed Lie subgroup has this property.

**1.4. Definition.** By a connection in transitive Lie algebroid (2), see [5], [9], [15], we mean a homomorphism of vector bundles  $\lambda: TM \longrightarrow A$  such that  $\gamma \circ \lambda = id_{TM}$ , i.e. a splitting of Atiyah sequence (3) of A

$$O \longrightarrow g \hookrightarrow A \xrightarrow{\gamma} TM \longrightarrow O.$$

By a curvature tensor of a connection  $\lambda$  in (2) we shall mean a tensor  $\Omega_b \in \Omega^2(M; \mathbf{g})$  (=  $Sec\Lambda^2 T^* M \otimes \mathbf{g}$ ) defined by

$$\Omega_b(X, Y) = \lambda[X, Y] - [[\lambda X, \lambda Y]], X, Y \in \mathbf{X}(M).$$

 $\lambda$  also determines a covariant derivative  $\nabla$  in  $\mathbf{g}$  by

$$\nabla_X \sigma = [[\lambda X, \sigma]], \quad X \in \mathbf{X}(M), \quad \sigma \in Sec\mathbf{g},$$

See [5], [9].

It turns out that the Lie algebra structure in SecA is uniquely determined by  $\mathbf{g}$ ,  $\nabla$ ,  $\Omega_b$  and  $\lambda$ , namely, we have

- **1.5.** Theorem [5], [9]. The mapping  $\varphi$ :  $TM \oplus \mathbf{g} \longrightarrow A$ ,  $(v, w) \longrightarrow \lambda v + w$ , is an isomorphism of Lie algebroids provided that in  $TM \oplus \mathbf{g}$  the following Lie algebroid structure is defined:
  - (a) the bracket:

(b) the anchor:  $\gamma = pr_1$ :  $TM \oplus g \longrightarrow TM$ .

# 2. THE LIE ALGEBROID OF A CONNECTED (NOT NECESSARILY CLOSED) LIE SUBGROUP

Let G be any connected Lie group and  $H \subseteq G$  any connected (not necessarily closed) Lie subgroup of G. H determines the foliation  $\mathscr{T} = \{gH; g \in G\}$  of left cosets of G by H.  $\mathscr{T}$  is a transversally complete foliation [12], [13] because right-invariant vector fields are from the normalizer of  $\mathbf{X}(\mathscr{T})$  and generate the entire tangent space  $T_gG$  for any  $g \in G$ .

Denote by E the tangent bundle to  $\mathscr{T}$  and  $Q = TG/E \xrightarrow{r} G$  the transversal bundle of  $\mathscr{T}$ . Let

$$\alpha: TG \longrightarrow Q$$

be the canonical projection and let  $\overline{v}$ ,  $v \in TG$ , denote the vector  $\alpha(v)$ .  $R_t: TG \longrightarrow TG$  stands for the differential of the right translation by  $t \in G$ .

- **2.1.** Lemma. (i)  $R_t$ ,  $t \in \overline{H}$  ( $\overline{H}$  is the closure of H), maps E into E inducing the isomorphism of vector bundles  $\overline{R}_t$ :  $Q \longrightarrow Q$ ,  $\overline{v} \mapsto \overline{R}_t(v)$ .
- (ii) The mapping  $\overline{R}$ :  $Q \times \overline{H} \longrightarrow Q$ ,  $(\overline{v}, t) \mapsto \overline{R}_t(\overline{v})$ , is a right strongly free action.

**Proof.** Easy calculations.

As a corollary we obtain

**2.2.** The topological space A(G; H) of orbits of the action  $\overline{R}$ , i.e.

$$A(G; H) = Q/\approx \quad where \quad \overline{v} \approx \overline{w} \iff \exists_{t \in \overline{H}} (\overline{R}_{t}(\overline{v}) = \overline{w})$$

has a uniquely determined structure of a  $C^{\infty}$  manifold, such that the canonical projection  $\beta: Q \longrightarrow A(G; H)$  is a submersion.

In the sequel, the vector  $\beta(\overline{v})$ ,  $\overline{v} \in Q$ , will be denoted by  $[\overline{v}]$  and  $\pi_h: G \longrightarrow G/\overline{H}$  stands for the canonical projection. Of course,  $\overline{r}: A(G; H) \longrightarrow G/\overline{H}$ ,  $[\overline{w}] \mapsto \pi_h(r\overline{w})$ , is a correctly defined projection. Its smoothness follows immediately from the commutativity of the diagram

$$Q \xrightarrow{\beta} A(G; H)$$

$$\downarrow r \qquad \qquad \downarrow \bar{r}$$

$$G \xrightarrow{\pi_b} G/\bar{H}$$

For the fibre  $A(G; H)_{|\overline{g}}$  of  $\overline{r}$  over  $\overline{g} \in G/\overline{H}$ , the mapping  $\beta_g: Q_{|g} \longrightarrow A(G; H)_{|\overline{g}}$ ,  $g \in \pi_h^{-1}(\overline{g})$ , is a bijection. Via  $\beta_g$  we introduce in  $A(G; H)_{|\overline{g}}$  some structure of a real vector space and, clearly, it is independent of the choice of g. We wish to arrange the system  $(A(G; H), \overline{r}, G/\overline{H})$  to be a vector bundle. For the purpose, we find local trivializations of this system.

**2.3. Definition.** A  $C^{\infty}$  cross-section  $\zeta \in SecQ$  is called a transversal field if, for any  $g \in G$  and  $t \in \overline{H}$ ,

$$\zeta(gt) = \overline{R}_t(\zeta(g))$$

(that is, if  $\zeta$  is  $\overline{H}$ -right-invariant).

- **2.4.** Example. The  $C^{\infty}$  cross-section  $\overline{Y}_{w} := \alpha \circ Y_{w}$  where  $Y_{w}$  stands for the right-invariant vector field on G generated by  $w \in \mathfrak{g}$  ( $\mathfrak{g}$  is the Lie algebra of G) is a transversal field. Therefore, transversal fields generate the entire space  $Q_{|g|}$  for any  $g \in G$ .
  - **2.5.** Remarks. Denote by l(G; H) the space of all transversal fields.
- (a) l(G; H) forms a module over the ring  $\Omega^{o}(G/\overline{H})$  under the multiplication  $\overline{f} \cdot \zeta := \overline{f} \circ \pi_{b} \cdot \zeta$ ,  $\overline{f} \in \Omega^{o}(G/\overline{H})$ ,  $\zeta \in l(G; H)$ .

- (b) If transversal fields  $\zeta_1, ..., \zeta_s$  are linearly independent at a point  $g \in G$ , then, immediately by the definition, they are linearly independent at each point gt,  $t \in \overline{H}$ , and, in consequence, at some open  $\mathcal{F}_b$ -saturated open subset where  $\mathcal{F}_b$  is the so-called basic foliation  $\mathcal{F}_b = \{g\overline{H}; g \in G\}$ .
- (c) Let  $\zeta$ ,  $\zeta_i \in I(G; H)$ ,  $i \leq s$ . If  $\zeta_i$  are linearly independent on  $U = \pi_b^{-1}[\overline{U}]$  ( $\overline{U}$  open in  $G/\overline{H}$ ) and  $\zeta = \sum_{i=1}^s f^i \zeta_i$  for  $f^i \in \Omega^o(U)$ , then the functions  $f^i$  are of the form  $f^i = \overline{f}^i \circ \pi_b | U$  for some  $\overline{f}^i \in \Omega^o(\overline{U})$ .
- **2.6.** Proposition. Let q = dimG dimH, i.e.  $q = codim\mathcal{F}$ . Suppose that  $\zeta_1, ..., \zeta_q$  are transversal fields linearly independent at each point of a set  $U = \pi_b^{-1}[\overline{U}]$ ,  $\overline{U}$  open in  $G/\overline{H}$ . Then

$$\varphi \colon \overline{U} \times \mathbf{R}^q \longrightarrow \overline{r}^{-1} [\overline{U}] \subset A (G; H)$$
$$(\overline{g}, \alpha) \longrightarrow [\sum \alpha^i \zeta_i(g)], g \in \pi_b^{-1} (\overline{g}),$$

is a local trivialization of  $\overline{r}$ :  $A(G; H) \longrightarrow G/\overline{H}$ .

**Proof.** Of course,  $\varphi_{\overline{g}} \colon \mathbb{R}^q \longrightarrow A(G; H)_{|\overline{g}|}, \overline{g} \in \overline{U}$ , is an isomorphism of vector spaces. This proposition will be proved by showing that  $\varphi$  is a diffeomorphism. For the purpose, take the mapping  $\psi \colon U \times \mathbb{R}^q \longrightarrow r^{-1}[U] \subset Q$ ,  $(g, \alpha) \longrightarrow \sum \alpha^i \zeta_i(g)$ , being a local trivialization of Q. Our assertion follows now from the commutativity of the diagram

$$U \times \mathbf{R}^{q} \xrightarrow{\psi} r^{-1} [U] \subseteq Q \xrightarrow{r} G$$

$$\downarrow \pi_{b} \times id \qquad \qquad \downarrow \beta \qquad \downarrow$$

$$\overline{U} \times \mathbf{R}^{q} \xrightarrow{\varphi} \overline{r}^{-1} [\overline{U}] \subseteq A(G; H) \xrightarrow{\overline{r}} G/\overline{H} . \blacksquare$$

**2.7.** Remark. The structure of a  $C^{\infty}$  manifold in A(G; H) can be obtained independently by demanding that  $\varphi's$  be diffeomorphisms.

Now, we introduce a structure of a Lie algebroid into the vector bundle A(G; H). Firstly, we define the anchor  $\gamma: A(G; H) \longrightarrow T(G/\overline{H})$  by  $[\overline{w}] \longrightarrow \pi_{b^*}(w)$  (the correctness is easy to obtain). Secondly, we introduce in  $Sec\ A(G; H)$  a structure of a Lie algebra in the way described below.

Take a homomorphism of  $\Omega^{\circ}(G/\overline{H})$  - modules

$$c: l(G; H) \longrightarrow Sec A(G; H), \zeta \longrightarrow c_{\zeta},$$
 (5)

where  $c_{\zeta}$  is a  $C^{\infty}$  cross-section of A(G; H) defined by  $c_{\zeta}(\overline{g}) = [\zeta(g)],$   $g \in \pi_h^{-1}(\overline{g}).$ 

- **2.8.** Lemma. c is an isomorphism of  $\Omega^{\circ}(G/\overline{H})$ -modules.
- **Proof.** We check at once that (5) is a monomorphism. To see that it is also an epimorphism, take an arbitrary  $C^{\infty}$  cross-section  $\xi \in Sec\ A\ (G; H)$  and define a cross-section  $\zeta$  of Q in such a way that the diagram

$$Q \xrightarrow{\beta} A(G; H)$$

$$\zeta \uparrow \qquad \uparrow \xi$$

$$G \xrightarrow{\pi_b} G / \overline{H}$$

commutes, i.e.  $c_{\zeta} = \xi$ . The smoothness of  $\zeta$  is the last thing to notice. In order to get this, take transversal fields  $\zeta_1,...,\zeta_q$  being a basis on  $\underline{U} = \pi_b^{-1}[\overline{U}]$  ( $\overline{U}$  is open in  $G/\overline{H}$  and contains an arbitrarily taken point of  $G/\overline{H}$ ). Then  $c_{\zeta_1},...,c_{\zeta_q}$  forms a basis of A(G;H) on  $\overline{U}$ . Therefore,  $\xi = \sum \overline{f}^i c_{\zeta_i}$  on  $\overline{U}$  for some  $\overline{f}^i \in \Omega^o(\overline{U})$ . Of course,  $\zeta = \sum \overline{f}^i \sigma_{\pi_b} \cdot \zeta_i$  on U, which ends the proof.

**2.9.** The space l(G; H) has a natural structure of a real Lie algebra. Indeed, let  $\zeta, v \in l(G; H) \subset SecQ$ . Take arbitrary vector fields  $X, Y \in \mathbf{X}(G)$  such that  $\zeta = \overline{X}$  (:=  $\alpha \circ X$ ) and, analogously,  $v = \overline{Y}$ . Put.

$$[\zeta, v] := \overline{[X, Y]}. \tag{6}$$

We need notice that

- (a)  $\overline{[X, Y]} \in l(G; H)$ ,
- (b) definition (6) is correct.

Let us first observe

**2.10.** Lemma. If  $\zeta \in l(G; H)$  is of the form  $\zeta = \overline{X}$  for a vector field  $X \in \mathbf{X}(G)$ , then X belongs to the normalizer of  $\mathbf{X}(\mathcal{F})$ , that is,

$$[X, Y] \in \mathbf{X}(\mathcal{F}) \text{ for all } Y \in \mathbf{X}(\mathcal{F})$$
(7)

[i.e. X is the so-called foliate vector field for  $\mathcal{F}$ , see [13]].

**Proof.** Of course, it is sufficient to show relation (7) for left-invariant vector fields  $Y = X_h$ ,  $h \in \mathbf{k}$ , only. To this end, take an arbitrary  $g \in G$  and express  $\zeta$  locally on a set  $U = \pi_b^{-1}[\overline{U}]$  containing  $g(\overline{U})$  open in  $G/\overline{H}$ , in the form  $\zeta_{|U} = \sum \overline{f^i}_{o} \pi_{b|U} \cdot \overline{Y_{w_i|U}}$ ,  $\overline{f^i} \in \Omega(\overline{U})$ ,  $w_i \in \mathfrak{g}$  (for  $\overline{Y_w}$ , see 2.4). Then

$$Z:=\sum \overline{f}^{i} \circ \pi_{b|U} \cdot Y_{w_{i}|U} - X_{|U} \in \mathbf{X}(\mathscr{F}_{U})$$

and, furthermore, we have

$$[X, X_h]_{|U} = [\sum_{i} \overline{f}^{i_o} \pi_{h|U} \cdot Y_{w_i|U} - Z, X_{h|U}]$$
  
=  $-[Z, X_h]_{|U} \in \mathbf{X}(\mathcal{F}_U),$ 

thus  $[X, X_h] \in \mathbf{X}(\mathscr{F})$ .

**2.11.** Remark. It can be proved that condition (7) is equivalent to the fact that  $\zeta := \overline{X}$  is a transversal field; however, the sufficiency of this condition will not be used in the sequel.

Now, we are able to prove (a) and (b) from 2.9.

(a): To get the equality  $\overline{R}_t(\overline{[X,Y]}(g)) = \overline{[X,Y]}(gt)$ ,  $g \in G$ ,  $t \in \overline{H}$ , take the vector fields  $Z_1 = R_t X - X$  and  $Z_2 = R_t Y - Y$  tangent to  $\mathscr{F}$ . Applying 2.10, we deduce that

$$\overline{R}_{t}(\overline{[X, Y]}(g)) = \overline{R_{t}([X, Y](g))} = \overline{R_{t}([X, Y])(gt)}$$

$$= \overline{[R_{t}X, R_{t}Y](gt)} = \overline{[X+Z_{1}, Y+Z_{2}]}(gt)$$

$$= \overline{[XY]}(gt).$$

- (b): Immediately from 2.10.
- **2.12.** In SecA(G; H) we introduce the bracket  $[\cdot, \cdot]$  (forming a Lie algebra) by demanding that (5) be an isomorphism of Lie algebras, i.e.  $[\cdot, \cdot] := c_{[\zeta, v]}, \zeta, v \in I(G; H)$ .

# 2.13. Theorem. The system

$$A(G; H) = (A(G; H), \llbracket \cdot, \cdot \rrbracket, \gamma)$$
(8)

is a transitive Lie algebroid on  $G/\overline{H}$ .

**Proof.** (1)  $Sec\gamma$ :  $SecA(G; H) \longrightarrow \mathcal{H}(G/\overline{H})$  is a homomorphism of Lie algebras. To see this, take  $\xi, \eta \in SecA(G; H)$ . Find vector fields  $X, Y \in \mathcal{X}(G)$  such that  $\xi = c_{\overline{X}}, \eta = c_{\overline{Y}}$ . By the definition of  $\gamma$ ,

$$(Sec\gamma)(c_{\overline{X}})(\overline{g}) = \pi_{h^*g}(X_g)$$
 for  $\overline{g} = \pi_h(g)$ ,  $g \in G$ ,

from which we obtain that X is  $\pi_h$ -related to  $\gamma \circ \xi$  and, analogously, Y to  $\gamma \circ \eta$ . Therefore [X, Y] is  $\pi_h$ -related to  $[\gamma \circ \xi, \gamma \circ \eta]$  and to  $\gamma \circ [\![\xi, \eta]\!]$  simultaneously, which confirms our assertion.

(2) The equality  $[\![\xi, \overline{f} \cdot \eta]\!] = \overline{f} \cdot [\![\xi, \eta]\!] + (\gamma \circ \xi)(\overline{f}) \cdot \eta$ ,  $\overline{f} \in \Omega^{\circ}(G/\overline{H})$ ,  $\xi, \eta \in Sec\ A(G; H)$ , follows easily from

$$[\overline{X}, \overline{f} \circ \pi_b \cdot \overline{Y}] = \overline{f} \circ \pi_b \cdot [\overline{X}, \overline{Y}] + (\gamma \circ c_{\overline{X}})(\overline{f}) \cdot \overline{Y}. \blacksquare$$

Lie algebroid (8) will be called the *Lie algebroid of a Lie subgroup H of* G. It can be interesting only in the case of a nonclosed H because the closedness of H implies the triviality of A(G; H):  $A(G; H) \cong T(G/\overline{H})$ .

**2.14.** Remark. One can prove [cf. [7]] that Lie algebroid (8) is equal to the one constructed by P. Molino [12], [13] for the TC-foliation  $\mathcal{F}$ .

### 3. STRUCTURE THEOREMS

Let (8) be the Lie algebroid of a connected Lie subgroup H of a connected Lie group G and

$$O \longrightarrow \mathbf{g} \hookrightarrow A(G; H) \xrightarrow{\gamma} T(G/\overline{H}) \longrightarrow O$$

its Atiyah sequence. In this section we prove three fundamental facts concerning A(G; H):

- The adjoint Lie algebra bundle g of A(G; H) is a trivial bundle of abelian Lie algebras.
- If the Lie algebroid A (G; H) admits a flat connection (i.e. a connection with the zero curvature tensor), then it is trivial.

• Let h,  $\overline{h}$ , g denote the Lie algebras of H,  $\overline{H}$  and G, respectively. Suppose that there exists a Lie subalgebra  $c \in g$  such that (a)  $c + \overline{h} = g$ , (b)  $c \cap \overline{h} = h$ . Then A(G; H) admits a flat connection.

The crucial role in the proving of the first fact is played by the following Malcev theorem (for a short "foliated" proof of it, see [7]).

3.1. The Malcev Theorem [11], [17]. If H is a dense connected Lie subgroup of a Lie group T, then H is a normal subgroup of T and T/H is abelian.

By this, according to our notations, **h** is an ideal of  $\overline{h}$  and  $\overline{h}/h$  is an abelian Lie algebra.

**3.2. Theorem.** For a vector  $w \in \overline{\mathbf{h}}$ , the cross-section  $\overline{X}_w$  of the transversal bundle Q, induced by the left-invariant vector field  $X_w$ , is a transversal field, and the mapping

$$\varphi: G/\overline{H} \times \overline{h}/h \longrightarrow \mathfrak{g}, (\overline{g}, [w]) \longrightarrow [\overline{X}_w(g)], g \in \pi_h^{-1}(\overline{g}),$$
 (9)

is a global trivialization of the Lie algebra bundle g.

**Proof.** It is sufficient to show that  $\overline{X}_w$ ,  $w \in \overline{\mathbf{h}}$ , is a transversal field; the rest is easy. Clearly, for  $t \in \overline{H}$  and  $g \in G$   $\overline{R}_t(\overline{X}_w(g)) = \overline{L}_g(\overline{R}_t(w))$  and  $\overline{X}_w(gt) = \overline{L}_g(\overline{L}_t(w))$  where  $\overline{L}_g$ :  $Q \longrightarrow Q$  is an automorphism of the vector bundle Q, determined by the differential  $L_g$  of the left-translation by g. Therefore, it remains to prove that  $R_t(w) - L_t(w) \in E_{|t|}$ , which means that the vector field  $X := Y_w - X_w$  is tangent to the foliation  $\mathscr T$  at each point of  $\overline{H}$ .

Firstly, we notice that X is foliate; to see this, we calculate: Let  $h \in \mathbf{h}$ , then  $[X, X_h] = [Y_w - X_w, X_h] = X_{[h, w]} \in \mathbf{X}(\mathscr{F})$  because  $[h, w] \in \mathbf{h}$  according to the Malcev theorem.

Secondly, any foliate vector field X (for a foliation  $\mathscr{T}$ ) in any distinguished local coordinates  $x = (x^1, ..., x^p, y^1, ..., y^q)$  ( $p = dim \mathscr{T}$ ,  $q = codim \mathscr{T}$ ) is of the form  $X(x, y) = \sum a^i(x, y) \frac{\partial}{\partial x^i} + \sum b^j(y) \frac{\partial}{\partial y^j}$  [13]; therefore, which is easy to see, if it is tangent to  $\mathscr{T}$  at a point z, then it is tangent to  $\mathscr{T}$  at each point of the closure of the leaf through z. In our situation,  $X(e) = [Y_w - X_w](e) = O \in E_{|e}$ , so — by the above — our theorem is proved.

Now, we proceed to the second problem.

# **3.3.** Theorem. If the Lie algebroid A(G; H) is flat, then it is trivial.

**Proof.** Let  $\lambda: T(G/\overline{H}) \longrightarrow A(G; H)$  be a flat connection in A(G; H). Then, taking account of 1.4 and isomorphism (9) of Lie algebra bundles, we have an isomorphism of Lie algebroids

$$\rho: T(G/\overline{H}) \times \overline{h}/h \longrightarrow A(G; H), (v, [w]) \longrightarrow \lambda v + [\overline{X}_w(g)],$$

 $v \in T_{\overline{g}}G/\overline{H}, \overline{g} = \pi_h(g), g \in G$ , provided that in  $T(G/\overline{H}) \times \overline{h}/h$  the Lie algebroid structure is defined by the following formula

 $X, Y \in \mathbf{X}(G/\overline{H}), \sigma, \eta: G/\overline{H} \longrightarrow \overline{\mathbf{h}}/\mathbf{h}$ , where  $\nabla^{o}$  is a covariant derivative in the trivial vector bundle  $T(G/\overline{H}) \times \overline{\mathbf{h}}/\mathbf{h}$ , such that  $\varphi$  maps  $\nabla^{o}$  onto  $\nabla$ , i.e.

$$\nabla_{X}^{\circ} \sigma = \varphi^{-1} \circ \nabla_{X} (\varphi \circ \sigma) = \varphi^{-1} \circ [[\lambda X, \varphi \circ \sigma]].$$

Looking at example 1.2, we see that to end the proof, it is sufficient to show the equality

$$\nabla_X^{\text{o}} = \mathcal{L}_X, \quad X \in \mathbf{X}(G/\overline{H}),$$

which is equivalent to the fact that the covariant derivative  $\nabla^0_X$  of any constant function  $\hat{w}: G/\overline{H} \longrightarrow \overline{h}/h$ ,  $\overline{g} \longrightarrow [w]$ ,  $w \in \overline{h}$ , is zero, i.e. that  $[\![\lambda X, c_{\overline{X}_w}]\!] = O$ . The cross-section  $\lambda X$  is locally of the form  $\lambda X = \sum_i \overline{f}^i c_{\overline{Y}_{w_i}}$ ,  $\overline{f}^i \in \Omega^o(G/\overline{H})$ , thus

$$\begin{split} [\![\![\lambda X, c_{\overline{\lambda}_w}]\!] &= [\![\![\![\sum \overline{f}^i c_{\overline{Y}_{w_i}}, c_{\overline{\lambda}_w}]\!]\!] \\ &= \sum \overline{f}^i [\![\![ c_{\overline{Y}_{w_i}}, c_{\overline{\lambda}_w}]\!]\!] - \gamma \circ c_{\overline{\lambda}_w} \overline{f}^i) \cdot c_{\overline{Y}_{w_i}} \\ &= O \end{split}$$

because 
$$\gamma \circ c_{\overline{X}_w} = \mathbf{O}$$
 and  $[[c_{\overline{Y}_w}, c_{\overline{X}_w}]] = c_{[\overline{Y}_w, X_w]} = \mathbf{O}$ .

It remains to consider the third problem.

**3.4. Theorem.** Suppose that there exists a Lie subalgebra  $c \subseteq g$  such that (a)  $c + \overline{h} = g$ , (b)  $c \cap \overline{h} = h$ . Then A(G; H) admits a flat connection.

*Proof.* The construction of a flat connection in A(G; H) has four steps.

- **Step 1.** Denote by  $\overline{C} \subset TG$  the left-invariant distribution generated by c, i.e. the vector bundle tangent to the foliation  $\{g \ F; \ g \in G\}$  where F is the connected Lie subgroup with the Lie algebra equalling c.  $\overline{C}$  fulfils the following conditions (in which  $E_b$  is the vector bundle tangent to the foliation  $\mathscr{F}_b = \{g \overline{H}; \ g \in G\}$ ):
  - $(\overline{1})$   $\overline{C} + E_b = TG$ ,
  - $(\overline{2})$   $\overline{C} \cap E_b = E$ ,
  - (3)  $\overline{C}$  is  $\overline{H}$ -right-invariant [i.e.  $\overline{C}_{|g|} = R_t[\overline{C}_{|g}], g \in G, t \in \overline{H}$ ],
  - $(\overline{4})$   $\overline{C}$  is involutive.

Clearly,  $(\overline{1})$ ,  $(\overline{2})$  and  $(\overline{4})$  hold. To see  $(\overline{3})$ , take an arbitrary vector  $v \in \overline{C}_{|g}$ . we have  $v = L_g(w)$  for some  $w \in c$ . Since  $R_t(v) = L_g(R_t(w))$ , we need only to observe that  $R_t(w) \in \overline{C}_{|t|}$  for  $t \in \overline{H}$ . Write  $t = \lim_{n \to \infty} t_n \in H$ ; then, by the closedness of  $\overline{C}$  in TG, we obtain that  $R_t(w) = \lim_{n \to \infty} R_{t_n}(w) \in \overline{C}$  because  $R_{t_n}[\overline{C}] = \overline{C}$ .

- **Step 2.** Let  $\overline{C} \subset TG$  be a distribution realizing conditions  $(\overline{1}) \div (\overline{4})$  above. Via the epimorphism  $\alpha \colon TG \longrightarrow Q$  we define a subbundle  $C' \subset Q$  by  $C'_{|g} = \alpha_g[\overline{C}_{|g}]$ ,  $g \in G$ . [The fact that C' is a subbundle is obtained from the relation  $E \subset \overline{C}$  which holds by  $(\overline{2})$ ]. C' fulfils the following conditions:
  - (1')  $Q' \oplus C' = Q$  where  $Q' = E_b/E \subset Q$ ,
  - (2') C' is  $\overline{H}$ -right-invariant [i.e.  $C'_{|gt} = \overline{R}_t[C'_{|gt}], g \in G, t \in \overline{H}$ ],
  - (3')  $l_i(G; H) := Sec\ C' \cap l(G; H)$  is a Lie subalgebra of l(G; H).
- (1') and (2') are obvious. To check (3'), take arbitrary  $\zeta, \nu \in I_i(G; H)$  and write  $\zeta = \overline{X}, \nu = \overline{Y}$  for some vector fields  $X, Y \in X(\overline{C})$ . According to  $(\overline{4}), [X, Y] \in X(\overline{C})$ , which gives the relation  $[X, Y] \in Sec(C')$ . On the other hand (see 2.9),  $[\zeta, \nu] = [X, Y] \in I(G; H)$ .
- Step 3. Let  $C' \subseteq Q$  be any vector subbundle realizing conditions  $(1') \div (3')$  above. Via the linear homomorphism  $\beta \colon Q \longrightarrow A(G; H)$  we define a subbundle  $C \subseteq A(G; H)$  by  $C_{|\overline{g}} = \beta_g[C'_{|g}]$ ,  $g \in \pi_h^{-1}(\overline{g})$ ,  $\overline{g} \in G/\overline{H}$ . Thanks to the equality  $\beta \circ \overline{R}_i = \beta$ ,  $t \in \overline{H}$ , the correctness of this definition is evident. To see that C is a  $C^{\infty}$  vector subbundle of A(G; H), it is sufficient to notice that a local  $C^{\infty}$  cross-section of A(G; H) lying in C and passing through an arbitrarily taken vector from C exists. Let  $\overline{v} \in C'_{|g|}$  and  $\overline{g} = \pi_h(g)$ . Take a local

 $C^{\infty}$  cross-section  $\varphi$ :  $U \longrightarrow G$  of the submersion  $\pi_b$ :  $G \longrightarrow G/\overline{H}$ , such that  $\varphi(\overline{g}) = g$ , and consider the diagram

$$i^*C' \xrightarrow{\bar{i}} C' \subset Q \xrightarrow{\beta} A(G; H)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$Im\varphi \xrightarrow{i} G \xrightarrow{\pi_b} G/\overline{H}$$

$$\downarrow \qquad \qquad \downarrow$$

$$U.$$

Diminishing U if necessary, we may assume that the vector bundle  $i^*C' othermap Im\varphi$  has a global  $C^{\infty}$  cross-section Z passing through  $\overline{v}$ . Put  $\xi = \beta \circ \overline{i} \circ Z \circ \varphi : U othermap A(G; H)$ ;  $\xi$  is, of course, a  $C^{\infty}$  cross-section of A(G; H) over U such that  $\xi(\overline{g}) = [\overline{v}]$ . The vector bundle C fulfils the conditions

- (1)  $\mathbf{g} \oplus C = A(G; H)$ ,
- (2) SecC is a Lie subalgebra of SecA(G; H).
- (1) is evident by the observation that  $\beta_g$  maps isomorphically  $Q'_{|g}$  onto  $\mathbf{g}_{|\overline{g}}$ . To see (2), take arbitrary  $\xi, \eta \in SecC$ . According to 2.8, there exist transversal fields  $\zeta, v$  such that  $c_{\zeta} = \xi$  and  $c_{\nu} = \eta$ . Of course,  $\beta_g(\zeta_g) = \xi_{\overline{g}}$  and  $\beta_g(v_g) = \eta_{\overline{g}}$ ,  $g \in \pi_b^{-1}(\overline{g})$ . From the definition of C we obtain that  $\zeta$  and v belong to  $l_i(G; H)$ . By (3'),  $[\zeta, v] \in SecC' \cap l(G; H)$ , therefore  $[\![\xi, \eta]\!] = c_{[\zeta, v]} \in SecC$ .
- **Step 4.** Let  $C \subset A(G; H)$  be a vector subbundle realizing conditions (1) and (2) above. Then, of course, a splitting  $\lambda$  of the Atiyah sequence of A(G; H), see the diagram

$$O \longrightarrow \mathbf{g} \hookrightarrow A(G; H) = \mathbf{g} \oplus C \xrightarrow{\gamma} T(G/\overline{H}) \longrightarrow O.$$

such that  $Im\lambda = C$ , is a flat connection in A(G; H).

Combining the above theorems we get

3.5. Corollary. The existence of a Lie subalgebra  $c \subseteq g$  fulfilling  $c + \overline{h} = g$  and  $c \cap \overline{h} = h$  implies the triviality of the Lie algebroid A(G; H).

### 4. MAIN RESULTS

Let the symbols H,  $\overline{H}$ , G, h,  $\overline{h}$ , g have the same meaning as in the previous two sections.

**4.1.** Theorem. If there is a Lie subalgebra  $c \subseteq g$  such that (a)  $c + \overline{h} = g$ , (b)  $c \cap \overline{h} = h$ , then the Lie algebra h is minimally closed.

**Proof.** Corollary 3.5 states that the Lie algebroid A(G; H) of the Lie subgroup  $H \subseteq G$  is trivial, i.e. there exists a Lie algebroid isomorphism  $\Phi: A(G; H) \longrightarrow A_o := T(G/\overline{H}) \times \overline{h}/h$ . Such a Lie algebroid is, of course, integrable:  $A_o$  is the Lie algebroid of the trivial principal fibre bundle  $P = G/\overline{H} \times F$  for an arbitrarily taken Lie group F with the abelian Lie algebra  $\overline{h}/h$ , see 1.3. The following reasoning is due to R. Almeida and P. Molino, see the proof of their theorem [13, p. 138]. Consider the Lie algebroid  $(TG \times \overline{h}/h, [[\cdot,\cdot]], pr_1)$  of the trivial principal fibre bundle  $G \times F$ . The linear homomorphism of vector bundles.

$$\lambda: TG \longrightarrow TG \times \overline{h}/h, \quad v \longrightarrow (v, pr_2 \circ \Phi([\overline{v}]))$$

is a connection in this Lie algebroid.  $\lambda$  is flat. Indeed, it is sufficient to show the equality  $[\![\lambda X, \lambda Y]\!] = \lambda [\![X, Y]\!]$  only for  $X, Y \in \mathbf{X}(G)$  such that the corresponding cross-sections  $\overline{X}$ ,  $\overline{Y}$  of Q are transversal fields. However, the equality is then easy to obtain by using the fact that  $\Phi$  is a homomorphism of Lie algebras, namely, writing  $\lambda X = (X, pr_2 \circ \Phi \circ c_{\overline{X}} \circ \pi_b)$  (and, analogously, for  $\lambda Y$ ), we have

$$\begin{split} \llbracket [\lambda X, \lambda Y] &= \llbracket (X, pr_2 \circ \Phi \circ c_{\overline{X}} \circ \pi_b), (Y, pr_2 \circ \Phi \circ c_{\overline{Y}} \circ \pi_b) \rrbracket \\ &= (\llbracket X, Y \rrbracket, \, \, \mathscr{S}_X (pr_2 \circ \Phi \circ c_{\overline{Y}} \circ \pi_b) - \mathscr{S}_Y (pr_2 \circ \Phi \circ c_{\overline{X}} \circ \pi_b) \\ &+ \llbracket pr_2 \circ \Phi \circ c_{\overline{X}} \circ \pi_b, \, pr_2 \circ \Phi \circ c_{\overline{Y}} \circ \pi_b \rrbracket ) \\ &= (\llbracket X, Y \rrbracket, \, \, \mathscr{S}_{\gamma \circ c_{\overline{X}}} (pr_2 \circ \Phi \circ c_{\overline{Y}}) \circ \pi_b - \mathscr{S}_{\gamma \circ c_{\overline{Y}}} (pr_2 \circ \Phi \circ c_{\overline{X}}) \circ \pi_b \\ &+ \llbracket pr_2 \circ \Phi \circ c_{\overline{X}}, \, pr_2 \circ \Phi \circ c_{\overline{Y}} \rrbracket \circ \pi_b ) \\ &= (\llbracket X, Y \rrbracket, \, pr_2 \circ \llbracket (\gamma \circ c_{\overline{X}}, \, pr_2 \circ \Phi \circ c_{\overline{X}}), (\gamma \circ c_{\overline{Y}}, pr_2 \circ \Phi \circ c_{\overline{Y}}) \rrbracket \circ \pi_b ) \\ &= (\llbracket X, Y \rrbracket, \, pr_2 \circ \llbracket \Phi \circ c_{\overline{X}}, \, \Phi \circ c_{\overline{Y}} \rrbracket \circ \pi_b ) \\ &= (\llbracket X, Y \rrbracket, \, pr_2 \circ \Phi \circ \llbracket c_{\overline{X}}, \, c_{\overline{Y}} \rrbracket \circ \pi_b ) \\ &= (\llbracket X, Y \rrbracket, \, pr_2 \circ \Phi \circ c_{\overline{X}}, \, c_{\overline{Y}} \rrbracket \circ \pi_b ) \\ &= (\llbracket X, Y \rrbracket, \, pr_2 \circ \Phi \circ c_{\overline{X}}, \, c_{\overline{Y}} \rrbracket \circ \pi_b ) \\ &= \lambda \llbracket X, Y \rrbracket. \end{split}$$

Let D be the connection in  $G \times F$  determined by  $\lambda$ , i.e. the right-invariant distribution  $D \subset T(G \times F)$  for which

$$D_{|(g,e)} = \{(v, pr_2 \circ \Phi([\overline{v}]); v \in TG\}, g \in G,$$

where e denotes the neutral element of F. The flatness of  $\lambda$  implies the involutivity of D. Consider the diagram

$$\begin{array}{ccc}
p_2 = \pi_b \times id \\
G \times F \longrightarrow G/\overline{H} \times F \\
\downarrow p_1 & \downarrow \\
G \longrightarrow G/\overline{H}.
\end{array}$$

Let  $\tilde{G} \subset G \times F$  be any leaf of the distribution D. Of course,  $\tilde{p}_1 = p_1 | \tilde{G}$ :  $\tilde{G} \longrightarrow G$  is a covering and, which is easy to obtain,  $\tilde{p}_2 = p_2 | \tilde{G}$ :  $\tilde{G} \longrightarrow G/H \times F$  is a submersion. Denote by  $\tilde{\mathscr{F}}$  the lifting (by  $\tilde{p}_1$ ) of the foliation  $\mathscr{F}$  in  $\tilde{G}$ . Let  $(g, a) \in \tilde{G}$ . For  $v \in T_v G$ , the following conditions are equivalent:

- (1) v is tangent to  $\mathcal{F}$ ,
- (2)  $\tilde{p}_{1*(g,a)}^{-1}(v)$  is tangent to  $\tilde{\mathcal{F}}$ ,
- (3)  $\tilde{p}_{2^*(g,a)}(\tilde{p}_{1^*(g,a)}^{-1}(v)) = 0.$

From this we obtain that  $\widetilde{\mathcal{F}}$  is defined by the submersion  $\widetilde{p}_2 \colon \widetilde{G} \longrightarrow G/\overline{H} \times F$ , in particular, the leaves of  $\widetilde{\mathcal{F}}$  are closed. Introducing in  $\widetilde{G}$  a structure of a group in the standard way we obtain:  $\widetilde{G}$  is a Lie group and  $\widetilde{p}_1$  is a local isomorphism of Lie groups. It is a standard calculation to obtain that  $\widetilde{\mathcal{F}}$  is then the foliation of left cosets of  $\widetilde{G}$  by  $\widetilde{F}$  where  $\widetilde{F}$  is a connected Lie subgroup of  $\widetilde{G}$  with the Lie algebra equalling  $\widetilde{\mathbf{h}} = \widetilde{p}_{1*\widetilde{c}}^{-1}[\mathbf{h}]$  ( $\widetilde{e}$  being the neutral element of  $\widetilde{G}$ ). Therefore  $\widetilde{F}$  is a closed Lie subgroup. Of course, F, being closed after the lifting to some covering, is also closed after lifting it to the universal one, which means that  $\mathbf{h}$  is minimally closed.

**4.2.** Theorem. If  $\pi_1(G)$  is finite and  $H \neq \overline{H}$ , then there exists no Lie subalgebra  $c \subseteq g$  fulfilling the conditions  $c + \overline{h} = g$  and  $c \cap \overline{h} = h$ .

**Proof.** Let  $\pi_1(G)$  be finite. Then, the universal covering is finite, which implies the nonclosedness of the lifting  $\tilde{H}$  of H. Our assertion follows now trivially from the previous theorem.

To finish with, we can ask

Can Theorem 4.1 be inverted?

It turns out that the answer is no.

- **4.3.** Example. Let G = U(2). Suppose that  $\overline{H} := T$  is a maximal torus in G. It is well known that dimT = 2 and the lifting of T to the universal covering  $\mathbb{R} \times SU(2) \longrightarrow U(2)$  is isomorphic to the cylinder  $\mathbb{R} \times S^1$ . Therefore, any Lie subalgebra  $\mathbb{R}$  of  $\mathbb{R}$  ( $\mathbb{R}$ ) is minimally closed. We prove, using theorem 0.2, that there exists some 1-dimensional Lie subalgebra  $\mathbb{R}$  of  $\mathbb{R}$  for which.
  - (i) no Lie subalgebra  $c \subset g$  fulfilling (a) and (b) from 0.1 exists.
  - (ii) the corresponding connected Lie subgroup of T is dense in T.

Let  $h_p: V(\overline{\mathbf{h}}^*) \longrightarrow H_{d\mathbf{R}}(G/T)$  be the Chern-Weil homomorphism of the T-principal fibre bundle  $P = (G \rightarrow G/T)$ . G and T have the same rank, therefore, according to [3; Th.VII, p. 467], we have that

$$h_P^{(2)}: \overline{h}^* \longrightarrow H_{\mathrm{dR}}^2(G/T)$$

is surjective. Moreover,  $dim\overline{\mathbf{h}}^* = 2$  and  $dimH_{d\mathbf{R}}^2(G/T) = 1$ , thus  $dim\ Kerh_P^{(2)} = 1$ . Then it is obvious that there exists a covector  $O \neq \beta \in \overline{\mathbf{h}}^*$  such that (1)  $h_P^{(2)}(\beta) \neq 0$ , (2)  $\mathbf{h} := Ker\beta \subset \overline{\mathbf{h}}$  is a subspace such that the corresponding Lie subgroup  $H \subset T$  is dense in T. Of course, the superposition

$$(\overline{\mathbf{h}}/\mathbf{h})^* \xrightarrow{j} \overline{\mathbf{h}}^* \xrightarrow{h_P^{(2)}} H_{\mathrm{dR}}^2(G/T)$$

is nontrivial:  $h_P^{(2)} \circ j(\overline{\beta}) \neq 0$  where  $\overline{\beta} \in (\overline{h}/h)^*$  is a linear homomorphism determined by  $\beta$ . Theorem 0.2 implies the nonexistence of a Lie subalgebra  $c \subset \mathfrak{g}$  fulfilling (a) and (b) above.

#### References

- [1] R. ALMEIDA, P. MOLINO: Suites d'Atiyah et feuilletages transversallement complets, C. R. Acad. Sci. Paris Ser. I Math., 300 (1985), 13-15.
- [2] Suites d'Atiyah, feuilletages et quantification geometrique, Estrait du Seminaire du Geometrie differentielle, Montpellier, 1984-85.
- [3] W. GREUB, S. HALPERIN, R. VANSTONE: Connections, Curvature, and Cohomology, Vol. III, Academic Press, New York and London, 1976.
- [4] J. KUBARSKI: Exponential inapping for Lie groupoids, *Colloq. Math.* XLVII (1982), 267-282.

- [5] Lie algebroid of a principal fibre bundle, *Publications du Department de Mathematiques de L'Universite de LYON 1*, in printing.
- [6] Lie algebroid of a principal fibre bundle three equivalent definitions, *Prace Naukowe Politechniki Szczecinskiej*, 11 (1988), 123-145.
- [7] The Chern-Weil homomorphism of regular Lie algebroids and TC-foliations, Preprint No 9, Institute of Mathematics, Technical University of Lódź, November 1988.
- [8] Pontryagin algebra of a transitive Lie algebroid, Supplemento ai Rendiconti del Circolo Matematico di Palermo, Proceedings of the Winter School on Geometry and Physics, SRNI, 9-16 January, 1988 (in printing).
- [9] K. MACKENZIE: Lie groupoids and Lie algebroids in differential Geometry, Cambridge, 1987.
- [10] A note on Lie algebroids which arise from groupoid actions, Cahiers de Topologie et Geometrie Differentielle Categoriques, XXVIII-4 (1987), 283-302.
- [11] A. MALCEV: Subgroups of Lie groups in the large, C. R. (Doklady) Acad. Sci. URSS (N. S.) 36 (1942), 5-7 (Kraus Reprint LTD. VADUZ 1963).
- [12] P. MOLINO: Etude des feuilletages transversalement complets et applications, *Ann. Sci. École Norm. Sup.*, 10(3) (1977), 289-307.
- [13] Riemannian Foliations, *Progress in Mathematics Vol. 73*, Birkhäuser Boston Basel, 1988.
- [14] NGO-VAN-QUE: Sur l'espace de prolongement differentiable, J. Differential Geom. 2.1. (1968), 33-40.
- [15] J. Pradines: Theorie de Lie pour les groupoides differentiables dans la categorie des groupoides, Calcul differential dans la categorie des groupoides infinitesimaux, C. R. Acad. Sci. Ser. A-B, Paris, 264 (1967), 265-248.
- [16] : Theorie de Lie pour les groupoides differentiables, Atti Conv Intern Geom 7 Diff. Bologna, 1967, Bologna-Amsterdam.
- [17] E. WINBERG, A. ONISHCHIK: A seminar on Lie groups and algebraic groups (in Russian), Moscov, 1988.

Institute of Mathematics, Technical University of Lodz, Poland

Recibido: 28 de marzo de 1990