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SOME EXOTIC CHARACTERISTIC HOMOMORPHISM FOR

LIE ALGEBROIDS

BOGDAN BALCERZAK AND JAN KUBARSKI

Abstract. The authors define some secondary characteristic homomorphism for the triple
(A,B,∇), in which B ⊂ A is a pair of regular Lie algebroids over the same foliated manifold
and ∇ : L → A is a homomorphism of Lie algebroids (i.e. a flat L-connection in A) where L is
an arbitrary (not necessarily regular) Lie algebroid and show that characteristic classes from its
image generalizes known exotic characteristic classes for flat regular Lie algebroids (Kubarski)
and flat principal fibre bundles with a reduction (Kamber, Tondeur). The generalization includes
also the one given by Crainic for representations of Lie algebroids on vector bundles. For a pair
of regular Lie algebroids B ⊂ A and for the special case of the flat connection idA : A → A

we obtain a characteristic homomorphism which is universal in the sense that it factorizes any
other one for an arbitrary flat L-connection ∇ : L → A.

1. Introduction

From the very beginning the characteristic classes (primary and secondary) are global in-
variants of geometric structures on manifolds (more generally on principal fibre bundles on
manifolds) determined mainly by connections, reductions of structure Lie groups, and so on,
and having some important topological properties like homotopy independence, functoriality or
rigidity. N. Telemmaan [23] showed in 1972 that the Chern-Weil homomorphism of any principal
fibre bundle with a connected structural Lie group is invariant of its infinitesimal object, i.e.
of the Lie algebroid of this bundle. J. Kubarski [16] showed in 1991 that the condition of the
connectedness of the structural Lie group is redundant, which means that primary characteristic
homomorphisms (i.e. the Chern-Weil homomorphism) is really the ”algebraic” notion belong-
ing to the category of Lie algebroids. The crucial role was played by some generalization of
the standard concepts of the representation of Lie groups (and Lie algebras) on vector spaces
to the concept of the representation of principal fibre bundles and of Lie algebroids on vector
bundles and comparing the spaces of suitable invariant cross-sections. It turns out (J. Kubarski
[18], [19])) that the same holds for the secondary (exotic) characteristic classes, in particular,
for the characteristic classes of flat bundles. In [18] there was constructed a characteristic ho-
momorphism for flat regular Lie algebroids equipped with some ”reduction”, i.e. with some
Lie subalgebroid, generalizing this homomorphism for foliated principal fibre bundles given by
F. Kamber and Ph. Tondeur [13, 14, 15]. Next, a different approaches to secondary classes by
M. Crainic and R. L. Fernandes [4, 2003], [5], [8], [6, 2005], appeared in the geometry of Lie al-
gebroids (inspired, for example, by irregular Lie algebroids important in the Poisson geometry),
for example, secondary characteristic classes for representations [4, 2003], characteristic classes
up to homotopy [5] and intrinsic secondary characteristic classes [8], [6, 2005]. The last were
lastly generalized by I. Vaisman [24].

The main goal of the paper is to build an exotic characteristic homomorphism in the category
of Lie algebroids, which generalizes simultaneously the one given by Kubarski [18] and the one
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given by Crainic [4] and describes in the Lie algebroids language the classical case for foliated
principal bundles. It is a characteristic homomorphism ∆(A,B,∇)# for the triple (A,B,∇), where
B ⊂ A is a pair of regular Lie algebroids, both on the same regular foliated manifold (M,F ),
and ∇ : L→ A is a flat L-connection in A (i.e. ∇ is a homomorphism of Lie algebroids), where
L is an arbitrary (not necessarily regular) Lie algebroid on M . For a Lie algebroid of a principal
fibre bundle, its reduction, and a usual flat connection, we obtain a homomorphism equivalent
to the one by Kamber and Tondeur, mentioned above. Putting L = A and the ”trivial” flat
connection ∇ = idA : A → A, we obtain a quite new characteristic homomorphism previously
unknown, even in the context of the principal fibre bundles. In fact, this homomorphism is
obtained for a pair of Lie algebroids (A,B), B ⊂ A and can be denoted by ∆(A,B)#. It is in
some sense a universal homomorphism. Namely, for any flat L-connection ∇ : L→ A we have

(1.1) ∆(A,B,∇)# = ∇# ◦∆(A,B)#,

i.e. ∆(A,B,∇)# is factorized by the universal characteristic homomorphism ∆(A,B)#. The classes
form the image of ∆(A,B)# (which belongs to the cohomology algebra H• (A) ) are called universal

for the pair B ⊂ A.
In the context of the comparison with the Crainic classes (which concern [in our setting] the

triple (A (f) ,A(f, {h}) ,∇) where A (f), A (f, {h}) are Lie algebroids of a vector bundle f, its
Riemann reduction (f, {h}), and ∇ : L → A (f) is an arbitrary flat L-connection in f, i.e. a
representation of L on f), we present one – based on the Pfaffian – characteristic class for an
even dimensional, oriented vector bundle not considered by Crainic. An example with such a
nontrivial universal characteristic class is presented in Section 3.3.

2. The Secondary (Exotic) Characteristic Homomorphism for FS-Lie Algebroids
and the Universal Characteristic Homomorphism

In this section we first define a characteristic homomorphism for the triple (A,B,∇), where
B ⊂ A is a pair of regular Lie algebroids, both on the same regular foliated manifold (M,F ),
and ∇ : L→ A is a flat L-connection in A, where L is an arbitrary Lie algebroid on a manifold
M . Next we compare this homomorphism with characteristic homomorphisms for regular Lie
algebroids and usual flat connections – given by Kubarski [18], and for principal fibre bundles
– given by Kamber and Tondeur [15]. The comparison with the Crainic approach of secondary
characteristic classes for representations will be given in the next section.

2.1. A Few Words about Lie Algebroids. The notion of Lie algebroid (Pradines, 1967) had
appeared as an infinitesimal object of Lie groupoids, principal bundles, vector bundles, TC-
foliations, Poisson and Jacobi manifolds, etc. (for the historical approach see [20], [21]). A Lie

algebroid over a smooth manifold M is a triple (L, [[·, ·]],#L) where L is a vector bundle over M ,
(Γ (L) , [[·, ·]]) is an R-Lie algebra, #L : L → TM is a linear homomorphism of vector bundles
such that [[ξ, f · η]] = f · [[ξ, η]] + #L (ξ) (f) · η for all f ∈ C∞ (M), ξ, η ∈ Γ (L). The anchor
#L of (L, [[·, ·]],#L) is bracket-preserving, see [12] and [1]. The image F := Im#L ⊂ TM of
the anchor #L is an integrable (non constant rank in general) distribution whose leaves form a
Stefan foliation F of M [22], [7]. We say also that A is a Lie algebroid over the foliated manifold
(M,F ) . If the anchor #L is of constant rank [an epimorphism], then the Lie algebroid L is
called regular [transitive]. By a homomorphism of Lie algebroids T : L→ A on a given manifold
we mean a linear homomorphism of the underlying vector bundles which commutes with the
anchors and preserves Lie bracket. The Lie algebroids of Lie groupoids, principal bundles, vector
bundles and TC-foliations are transitive, but the Lie algebroids of general differential groupoids,
Poisson manifolds, Jacobi manifolds etc. are rather nontransitive (and, in general, irregular).
For details concerned Lie functors on the category of principal fibre bundles P  A(P ) and
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vector bundles f  A(f) see, for example, [16]. A (P ) = TP/G is a Lie algebroid with the
real Lie algebra Γ (A (P )) ∼= Xr (P ) and the anchor #A(P ) : A (P ) → TM determined by
the projection π∗ whereas A (f) is the vector bundle whose global cross-sections forms a Lie
algebra of covariant derivative operators and the anchor #A(f) : A (f) → TM is defined by
the anchors of these operators. Together with a V -vector bundle f (the vector space V is the
typical fibre of f) we associate the GL (V )-principal fibre bundle of frames L (f) and its Lie
algebroid A (L (f)) which is canonically isomorphic to A (f) [16]. For a regular Lie algebroid L

we have the exact Atiyah sequence 0 −→ ggg →֒L
#L−→ F −→ 0, (ggg = ker#L), the fibre ggg|x of

ggg at x is a Lie algebra called the isotropy Lie algebra at x. Over any leaf of the foliation F
the vector bundle ggg is a Lie Algebra Bundle. A splitting of this sequence ∇ : F → L (i.e.
#L ◦ ∇ = idF ) is called a connection in L. If L = A(P ) (here F = TM), then connections in L
correspond one-to-one with usual connections in the principal fibre bundle P (i.e. a horizontal
right-invariant distributions on P ). We consider more general notion of L-connection in A
(where L and A are arbitrary Lie algebroids on the same manifold) understanding as a linear
homomorphism of vector bundles ∇ : L → A commuting with the anchors [1]. If A is a regular
Lie algebroid with the adjoint LAB ggg, then the curvature tensor R∇ ∈ Ω2 (L,ggg) is defined by
R∇ (ξ, η) = [[∇ξ,∇η]]−∇ ([[ξ, η]]) , ξ, η ∈ Γ (L) . Clearly, ∇ is a homomorphism of Lie algebroids
if and only if ∇ is flat, i.e. if R∇ = 0. Any L-connection ∇ : L → A determines the standard
operator d∇ : Ω (L;ggg) → Ω (L;ggg) in the space of L-differential forms with values in ggg by the
formula

(
d∇Ω

)
(ξ1, . . . , ξn) =

∑n

i=1
(−1)i−1 [[∇ξi

,Ω (ξ1, . . . ı̂ . . . , ξn)]]A(2.1)

+
∑

i<j
(−1)i+j Ω

(
[[ξi, ξj]]L, ξ1, . . . ı̂ . . . ̂ . . . , ξn

)
.

The equality d∇d∇Ω = R∇∧Ω holds; in particular, d∇ is a differential operator if ∇ is flat. For

an arbitrary Lie algebroid L there is a derivative dL in the space of real L-forms Γ(
∧
L∗) giving

the cohomology algebra H
• (L). For more details about Lie algebroids we refer the reader, for

example, to [21], [20].

2.2. The Construction of the Secondary Characteristic Classes. Let us consider the
triple (A,B,∇), in which we have: a regular Lie algebroid (A, [[·, ·]],#A) on a foliated manifold
(M,F ), its regular Lie subalgebroid B ⊂ A, also on the same foliated manifold (M,F ), and a
flat L-connection ∇ : L→ A in A for an arbitrary Lie algebroid L. We will call the triple

(A,B,∇)

an FS-Lie algebroid. The below constructed characteristic homomorphism for this triple mea-
sures the independence of these two geometric structures B and ∇ defined for A (in the sense
that it is zero when ∇ takes values in B). In the diagram below λ : F → B is an arbitrary

auxiliary connection in B. Then j ◦ λ : F → A is a connection in A. Let λ̆ : A → ggg be its
connection form.

0 ggg- A-i �

�
λ

L

?
0 hhh-

∪
B- F-#B

F1

⊂

⊃

#L

6

⊂
∪

6
j
@
@
@
@@R

#A

∇
�

λ̆

We define the homomorphism

ωB,∇ : L −→ ggg/hhh by ωB,∇ (w) = [−(λ̆ ◦ ∇) (w)].
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Observe that ωB,∇ does not depend on the choice of an auxiliary connection λ : F → A and
ωB,∇ = 0 if ∇ takes values in B. Let us define a homomorphism of algebras

(2.2) ∆(A,B,∇) : Γ(
∧k

(ggg/hhh)∗ ) −→ Ω (L) ,

(∆(A,B,∇)Ψ)x (w1 ∧ . . . ∧ wk) = 〈Ψx, ωB,∇ (w1) ∧ . . . ∧ ωB,∇ (wk)〉 , wi ∈ L|x.

In the special simple case L = A and the flat connection ∇ = idA : A → A we have particular
case of a homomorphism for the pair (A,B):

∆(A,B) : Γ(
∧k

(ggg/hhh)∗ ) −→ Ω (A) ,

(∆(A,B)Ψ)x (υ1 ∧ . . . ∧ υk) = 〈Ψx, [−λ̆ (υ1)] ∧ . . . ∧ [−λ̆ (υk)]〉, υi ∈ A|x.

We assert that ∆(A,B,∇) can be written as a composition ∆(A,B,∇) = ∇∗ ◦∆(A,B),

∆(A,B,∇) : Γ (
∧

(ggg/hhh)∗)
∆(A,B)
−−−−→ Ω (A)

∇∗

−−−−→ Ω (L) ,

where ∇∗ is the pullback of forms. In the algebra Γ (
∧

(ggg/hhh)∗) we distinguish the subalgebra

(Γ (
∧

(ggg/hhh)∗))
Γ(B)

of invariant cross-sections with respect to the representation of the Lie alge-
broid B in the vector bundle

∧
(ggg/hhh)∗, associated to the adjoint one adB,hhh : B → A(ggg/hhh),

adB,hhh (ξ) ([ν]) = [[[ξ, ν]]], ξ ∈ Γ (B), ν ∈ Γ (ggg), where A (ggg/hhh) is the (transitive) Lie alge-

broid of ggg/hhh. Clearly, Ψ ∈
(
Γ
(∧k (ggg/hhh)∗

))Γ(B)
if and only if (#B ◦ ξ)〈Ψ, [ν1] ∧ . . .∧ [νk]〉 =

∑k
j=1 (−1)j−1〈Ψ, [[[j ◦ ξ, νj]]] ∧ [ν1] ∧ . . . ̂ . . .∧ [νk]〉 for all ξ ∈ Γ (B) and νj ∈ Γ (ggg) (see [16]). In

the space (Γ (
∧

(ggg/hhh)∗))
Γ(B)

of invariant cross-sections there exists a differential δ̄ defined by
the formula

〈
δ̄Ψ, [ν1] ∧ . . . ∧ [νk]

〉
=

∑

i<j

(−1)i+j+1〈Ψ, [[[νi, νj ]]] ∧ [ν1] ∧ . . . ı̂ . . . ̂ . . . ∧ [νk]〉 ,

(see [18]) and we obtain the cohomology algebra

H
• (ggg,B) := H

•((Γ(
∧

(ggg/hhh)∗ ))Γ(B), δ̄).

Theorem 1. The homomorphism ∆(A,B,∇) commutes with the differentials δ̄ and dL, where dL
is the differential operator in Ω (L) = Γ (

∧
L∗).

Proof. Since the pullback of differential forms ∇∗ : Ω (L) → Ω (A) commutes with differentials
dL and dA, it is sufficient to show the commutativity of ∆(A,B) with differentials δ̄ and dA. Let
ξ0, . . . , ξk ∈ Γ (A), and Ψ be an arbitrary invariant cross-section of the degree k. The curvature
tensor Ωj◦λ of the connection j ◦ λ takes values in the bundle hhh. Thus, we see that

Ωj◦λ(#A ◦ ξi,#A ◦ ξj) = [λ̆ ◦ ξi, λ̆ ◦ ξj]− [[ξi, λ̆ ◦ ξj]] + [[ξj , λ̆ ◦ ξi]] + λ̆ ◦ [[ξi, ξj ]] ∈ hhh.

Therefore, using invariantness of Ψ, we have

(dA ◦∆(A,B)) (Ψ) (ξ0, . . . , ξk)

=
∑

i<j

(−1)i+j+1 〈Ψ, [[[λ̆ ◦ ξi, ω ◦ ξj]]] ∧ [−λ̆ ◦ ξ0] ∧ . . . ı̂ . . . ̂ . . . ∧ [−λ̆ ◦ ξk]〉

−
∑

i<j

(−1)i+j〈Ψ,
[
Ωj◦λ

(
#A ◦ ξi,#A ◦ ξj

)]
∧ [−λ̆ ◦ ξ0] ∧ . . . ı̂ . . . ̂ . . . ∧ [−λ̆ ◦ ξk]〉

= 〈δ̄Ψ, [−λ̆ ◦ ξ0] ∧ . . . ∧ [−λ̆ ◦ ξk]〉

= (∆(A,B) ◦ δ̄) (Ψ) (ξ0, . . . , ξk) .
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Corollary 2. ∆(A,B) and ∆(A,B,∇) induce the cohomology homomorphisms

∆(A,B)# : H• (ggg,B) → H
• (A)

and

∆(A,B,∇)# : H• (ggg,B) → H
• (L) .

The significance of ∆(A,B)# follows from the fact that ∆(A,B,∇)#, for every flat L-connection
∇ : L→ A, is factorized by ∆(A,B)#:

(2.3) ∆(A,B,∇)# : H• (ggg,B)
∆(A,B)#
−−−−−→ H

• (A)
∇#

−−−−→ H
• (L) .

The map ∆(A,B,∇)# we will call the characteristic homomorphism of the FS-Lie algebroid
(A,B,∇). We call elements of a subalgebra Im∆(A,B,∇)# ⊂ H

• (L) the secondary (exotic)
characteristic classes of this algebroid. In particular, ∆(A,B)# = ∆(A,B,idA)# is the characteristic
homomorphism of the Lie subalgebroid B ⊂ A. We define the last homomorphism as the
universal exotic characteristic homomorphism and the characteristic classes from its image as
the universal characteristic classes of the pair B ⊂ A.

2.3. The Case for Regular Lie Algebroids and Usual Flat Connections . Given a regular
Lie algebroid (A, [[·, ·]],#A) over a regular, foliated manifold (M,F ), consider two geometric
structures:

– a flat connection ω : F → A,
– a Lie subalgebroid j : B →֒ A over (M,F ).
Let ω̆ : A→ ggg be the connection form of ω. Let us consider an auxiliary connection λ : F → B,

its extension j ◦ λ to A and let λ̆ : A→ ggg be its connection form. Since i ◦ ω̆ + ω ◦#A = idA, it
follows that i ◦ ω̆ ◦ j ◦ λ = −i ◦ λ̆ ◦ ω. Hence, we conclude that

(∆(A,B,ω)Ψ)|x (w1 ∧ . . . ∧ wk) =
〈
Ψx, [− (λ̆ ◦ ω) (w1) ] ∧ . . . ∧ [− (λ̆ ◦ ω) (wk) ]

〉

= 〈Ψx, [ω̆x (w̃1)] ∧ . . . ∧ [ω̆x (w̃k)]〉 ,

where w̃i = λ (wi). Since #B(w̃i) = wi,

∆(A,B,ω)# : H• (ggg,B) −→ H
• (F )

is the characteristic homomorphism for the regular flat Lie algebroid (A,B, ω), which was con-
sidered in [18].

2.4. The Particular Case: The Classical Kamber-Tondeur Homomorphism and Uni-

versal Characteristic Homomorphism Factorizing the Classical One. Consider any
G-principal fibre bundle P over a smooth manifold M , a flat connection ω ⊂ TP in P and a
connected H-reduction P ′ ⊂ P , where H ⊂ G is a closed Lie subgroup of G (we do not as-
sume either connectedness or compactness of H). Applying the Lie functor for principal fibre
bundles we can consider Lie algebroids A (P ) and A (P ′) as well as the induced flat connection
ωA : TM → A(P ) in the Lie algebroid A (P ) and the secondary characteristic homomorphism

∆(A(P ),A(P ′),ωA)# : H•
(
ggg,A

(
P ′

))
−→ H

•
dR (M)

for the FS-Lie algebroid
(
A(P ) ,A (P ′) , ωA

)
. This homomorphism is ”equivalent” to the stan-

dard classical homomorphism on principal fibre bundles

∆(P,P ′,ω)# : H• (g,H) −→ H
•
dR (M)
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given by F. Kamber and Ph. Tondeur [15], where H
•(g,H) — called the relative Lie algebra

cohomology of (g,H) (see [15], [3]) — is the cohomology space of the complex (
∧

(g/h)∗H , dH)

where
∧

(g/h)∗H is the space of invariant elements with respect to the adjoint representation of
the Lie group H (see [15, 3.27]) and the differential dH is defined by the formula:

〈
dH(ψ) , [v1] ∧ . . . ∧ [vk]

〉
=

∑

i<j

(−1)i+j 〈ψ, [[vi, vj ]] ∧ [v1] ∧ . . . ı̂ . . . ̂ . . . ∧ [vk]〉

for ψ ∈
∧k (g/h)∗H and vi ∈ g. The equivalence of these two characteristic homomorphisms lies

in the fact that there exists an isomorphism of algebras κ : H• (g,H)
≃

−→ H
• (ggg,A(P ′)) such

that

(2.4) ∆(A(P ),A(P ′),ωA)# ◦ κ = ∆(P,P ′,ω)#

(see [18, Theorem 6.1]). Therefore, the obtained algebras of characteristic classes are iden-
tical. We recall that the isomorphism κ on the level of cochains is defined via the isomor-

phism κ̃ : (
∧

(g/h)∗)
H

→ (Γ (
∧

(ggg/hhh)∗))
Γ(B)

given by κ̃ (ψ) (x) = Ad∧P ′,ggg (z) (ψ) , z ∈ P
′

|x, where

the representation Ad∧P ′,ggg of P ′ on
∧k (ggg/hhh)⋆ is induced by AdP ′,ggg : P ′ → L (ggg/hhh) , z 7→ [

∧
z],

and
∧
z : g

∼=
→ ggg|x, v 7→ [Az⋆v], (Az : G → P, a 7→ za). The fact that κ̃ is an isomorphism

is obtained by Proposition 5.5.3 from [16] (just here the assumption that P ′ is connected is
needed). We recall briefly the definition of the homomorphism ∆(P,P ′,ωA)# and reasoning

giving (2.4). Let ω̆ : TP → g denote the connection form of ω. There exists a homomor-
phism of G-DG-algebras ω̆∧ :

∧
g∗ → Ω (P ) (in view of the flatness of ω) induced by the

algebraic connection ω̆ : g∗ → Ω (P ) , α 7→ αω̆ = 〈α, ω̆〉. The homomorphism ω̆∧ is given by

the formula ω̆∧

(
φk

)
z
(v1, ..., vk) = 〈φ;ωz (v1) ∧ ... ∧ ωz (vk)〉 and can be restricted to H-basic

elements ω̆H : (
∧

g∗)H → Ω (P )H . According to the isomorphisms (
∧

g∗)H
∼=

∧
(g/h)∗H and

Ω (P )H
∼= Ω(P/H) it gives a DG-homomorphism of algebras ω̆H :

∧
(g/h)∗H → Ω (P/H).

Composing it with s∗ : Ω (P/H) → Ω (M), where s :M → P/H is the cross-section determined

by the H-reduction P ′, we obtain a homomorphism of DG-algebras ∆P,P ′,ω :
∧

(g/h)∗H
ω̆H−→

Ω (P/H)
s∗

−→ Ω (M). Passing to cohomology we obtain ∆(P,P ′,ω)#. Because of the algebraic
formula for ω̆∧ we see that this homomorphism on the level of forms is given by:

(
∆P,P ′,ω (ψ)

)
x
(w1 ∧ . . . ∧ wk) = 〈ψ, [ω̆z (w̃1)] ∧ . . . ∧ [ω̆z (w̃k)]〉 ,

where z ∈ P ′
|x, wi ∈ TxM , w̃i ∈ TzP

′, π′∗w̃i = wi, with π
′ : P ′ → M . Therefore, the equality

(2.4) holds (for details see [18, Th. 6.1]).
Using the universal exotic characteristic homomorphism ∆(A(P ),A(P ′))# for the pair of tran-

sitive Lie algebroid (A (P ) ,A (P ′)), A (P ′) ⊂ A (P ), we can define the universal exotic charac-

teristic homomorphism

∆(P,P ′)# := ∆(A(P ),A(P ′))# ◦ κ : H• (g,H) −→ H
• (A (P )) −→ H

r•
dR (P )

for the reduction of a principal fibre bundle P ′ ⊂ P (where H
r•
dR (P ) is the space of cohomology

of right invariant differential forms on P ; we recall that Hr•
dR (P ) := H

• (Ωr (P )) ≃ H
•
dR (P ) if G

is compact and connected).

Theorem 3. The homomorphism ∆(P,P ′)# on the level of differential forms is given by the

following formula:
(
∆P,P ′ψ

)
z
(w1 ∧ . . . ∧ wk) = 〈ψ, [−λz (w1)] ∧ . . . ∧ [−λz (wk)]〉 ,

where λ is the form of any connection on P extending an arbitrary connection on P ′.
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The commutativity of the diagram

H
• (ggg,A(P ′)) H

• (A (P ))-
∆(A(P ),A(P ′))#

H
• (g,H) H

r •
dR (P )-

∆(P,P ′)#

?

κ ∼=

H
•
dR (M)

ωA#

H
•
dR (P )-

-

HHHHHHHHHj

ω#

where ω# on the level of right-invariant differential forms Ωr (P ) is given as the pullback of
differential forms:

ω∗ : Ωr (P ) −→ Ω (M) , ω∗ (φ)x (u1 ∧ . . . ∧ uk) = φz (ũ1 ∧ . . . ∧ ũk) ,

where z ∈ P|x, ũi is the ω-horizontal lift of ui, yields the following theorem.

Theorem 4. The homomorphism ∆(P,P ′)# factorizes ∆(P,P ′,ω)# for any flat connection ω in

P , i.e. the diagram below commutes

H
•(g,H) H

•
dR(M).-

∆(P,P ′,ω)#

H
•
dR(P )

∆(P,P ′)#

�
�
�
��

ω#

@
@
@
@R

From the above we get a corollary on the existing of the new universal exotic characteristic
homomorphism for a G-principal fibre bundle P and his H-reduction P ′ which factorizes each
classical exotic characteristic homomorphism for any flat connection in P .

Corollary 5. If G is a compact, connected Lie group and P ′ is a connected H-reduction in a

G-principal bundle P , H ⊂ G, then there exists a homomorphism of algebras

∆(P,P ′)# : H• (g,H) −→ H
•
dR (P )

(called a universal exotic characteristic homomorphism for the pair P ′ ⊂ P ) such that for

arbitrary flat connection ω in P , the characteristic homomorphism ∆(P,P ′,ω)# : H• (g,H) →
H
•
dR (M) is factorized by ∆(P,P ′)#, i.e. the following diagram is commutative

H
•(g,H) H

•
dR(M).-

∆(P,P ′,ω)#

H
•
dR(P )

∆(P,P ′)#

�
�
�
��

ω#

@
@
@
@R

3. Comparison with the Crainic Classes

3.1. The Crainic Approach. We briefly explain the Crainic approach to characteristic classes
of a representation ([4]). Primarily we notice that arbitrary representation ∇ξν of an arbitrary
Lie algebroid L (irregular in general) in a vector bundle f can be described by a homomorphism
of Lie algebroids ∇ : L → A(f) (i.e. a flat L-connection in A (f)). The Crainic classes of a
representation ∇ live in the cohomology algebra H

• (L) of the Lie algebroid L. In the simplest
case of the trivial vector bundle f = M × V (dimV = n) they are constructed as follows: For
a frame {e1, . . . , en} of f we introduce a matrix ω = [ωi

j ] ∈ Mn×n (Ω (L)) of 1-forms on L such
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that ∇ξej =
∑

i ω
i
j (ξ) · ei for all ξ ∈ Γ (L). Clearly tr (ω) = tr (ω̃), where ω̃ = ω+ωT

2 is the
symmetrization of ω, and the flatness condition implies that for all natural numbers k,

(3.1) tr(ω̃2k−1)

are closed forms on L. Their cohomology classes are independent of the choice of frames. These
classes vanish if ∇ is a Riemannian connection with respect to some Riemannian metric h in f.
A Riemannian connection is a connection in a Riemannian reduction L (f, {h}) of the principal
fibre bundle of frames L (f). For an arbitrary vector bundle f Crainic uses a local construction (a
suitable cocycle) and the Čech double complex Č∗ (U , C∗ (L)) together with the Mayer-Vietoris
argument. For L = TM the usual exotic characteristic classes of flat vector bundles f are
obtained. An explicit formula for an arbitrary L-flat real vector bundle (f,∇) is based on the
observation that in a local orthonormal frame {e1, . . . , en} of (f, {h}) the symmetrization ω̃ of ω
is equal to the matrix of the symmetric-values form ω (f, h) = 1

2(∇−∇h), where∇h is the adjoint

L-connection induced by the metric h. The adjoint connection ∇h remains flat. The classes will
be given as in (3.1), with ω̃ replaced by ω (f, h). One explicit formula up to a constant uses the
Chern-Simons transgression differential forms csk for suitable two connections and is given by
(see [6])

u2k−1 (f) = [u2k−1 (f,∇)] ∈ H
2k−1 (L) ,

where

(3.2) u2k−1 (f,∇) = (−1)
k+1
2 csk (∇,∇

h)

and k is an odd natural (u2k−1 (f) is trivial if k is even). We recall that

csk (∇,∇
h) =

1∫

0

chk (∇
aff) ∈ Ω2k−1 (L) ,

(∫ 1

0
chk (∇

aff)

)

ξ1,...,ξ2k−1

=

∫ 1

0
chk(∇

aff) ∂
∂t

,ξ1,...,ξ2k−1
|(t,•)dt, ξi ∈ Γ (L) ,

where ∇aff = (1− t) · ∇̃ + t · ∇̃
h

: TR × A −→ A(pr ∗
2 f) is the affine combination of the

connections ∇̃ and ∇̃
h
whereas chk (∇) = Tr ((R∇)k). The connection ∇̃ : TR× L → A (pr∗2 f),

∇̃(vt,ξx)
(ν ◦ pr2) = ∇ξx

(ν) , is the lifting of the connection ∇ through the projection pr2 :

R×M →M . If ∇ is flat, then ∇̃ is flat, too.

3.2. The Secondary Characteristic Homomorphism for Riemannian Reductions. Let
(f, {h}) denote a vector bundle of the rank n over a manifoldM with a Riemannian metric h. The
metric h yields [17] the Lie subalgebroid B = A (f, {h}) of the algebroid A (f) of the vector bundle
f and a reduction L (f, {h}) of the frames bundle L f of f; (u : Rn → f|x) ∈ L (f, {h}) if and only if u
is an isometry. Taking the canonical isomorphism Φf : A (L f) → A (f) of Lie algebroids ([16]) we
have A (f, {h}) = Φf [A (L (f, {h}))]. We observe that α ∈ Γ (A (f)) belongs to Γ (A (f, {h})) if and
only if for each cross-sections ν, µ ∈ Γ (f) the formula h (α (ν) , µ) = (#α) (h (ν, µ))−h (ν, α (µ))
holds. The Atiyah sequences for A (f) and A (f, {h}) are

0 −→ End (f)
i

−→ A(f)
π

−→ TM −→ 0,

0 −→ Sk (f) −→ A(f, {h}) −→ TM −→ 0,

where Sk (f) ⊂ End (f) is the vector subbundle of h-skew symmetric endomorphisms. Let L be
a Lie algebroid over M and ∇ : L→ A(f) any flat L-connection in f. Let us consider FS-Lie al-
gebroids ((A (f) ,A (f, {h})) ,∇) and

(
A (f) ,A (f, {h}) , idA(f)

)
and theirs secondary characteristic
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homomorphisms denote, for shortness, by

∆# : H• (End f,A (f, {h})) −→ H
• (L) ,

∆o# : H• (End f,A (f, {h})) −→ H
• (A (f)) ,

respectively and take into the consideration the isomorphism

κ : H• (gl (n,R) , O (n))
∼=
−→ H

• (End f,A(f, {h}))

of algebras described in Section 2.4. If the vector bundle f is nonorientable, then

H
• (End f,A(f, {h}))

κ
∼= H

• (gl (n,R) , O (n)) ∼=
∧

(y1, y3, . . . , yn′) ,

where n′ is the largest odd integer ≤ n (n′ = 2
[
n+1
2

]
−1) and y2k−1 ∈ H

4k−3 (End f,A(f, {h})) is

represented by the multilinear trace form ỹ2k−1 ∈ Γ
(∧4k−3 (End f/Sk f)∗

)
, k ∈

{
1, 2, . . . ,

[
n+1
2

]}
,

see [15, 6.31, p. 142].
In the case of an oriented vector bundle f with a volume form v, the metric h and v induce

an SO (n,R)-reduction L (f, {h, v}) of the frames bundle L f of f; (u : Rn → f|x) ∈ L (f, {h, v})
if and only if u is an isometry keeping the orientation. Clearly, A (f, {h, v}) = A (f, {h}), and
hence H

• (End f,A(f, {h})) ∼= H
• (End f,A (f, {h, v})). If f is orientable and odd rank (see [9]),

H
• (gl (n,R) , SO (n)) ∼= H

• (gl (n,R) , O (n)) .

Using κ and the above, we have

H
• (End f,A (f, {h, v})) ∼= H

• (gl (n,R) , O (n)) ∼=
∧

(y1, y3, . . . , yn) .

If the vector bundle f is orientable of even rank n = 2m, then

H
• (End f,A (f, {h, v})) ∼= H

• (gl (2m,R) , SO (2m)) ∼=
∧

(y1, y3, . . . , y2m−1, y2m) ,

where y2k−1 ∈ H
4k−3 (End f,A(f, {h, v})) are defined as above and y2m ∈ H

2m (gl (n,R) , SO (n)) ∼=

H
2m (End f,A(f, {h, v})) is represented by ỹ2m ∈ Γ

(∧2m (End f/Sk f)∗
)
,

(3.3) ỹ2m ([A1] , . . . , [A2m]) = d (z2m−1) (Ã 1, . . . , Ã 2m),

A1, . . . , A2m ∈ Γ (End f), and where d is the usual differential on the algebra
∧

(End f)∗ and z2m−1 ∈

Γ
(∧2m−1 (End f)∗

)
is given by

z2m−1 (A1, . . . , A2m−1)

= c (m)
∑

σ∈S2m−1

sgnσ
(
e, αAσ1 ∧ α [Aσ2 , Aσ3 ] ∧ . . . ∧ α

[
Aσ2m−2 , Aσ2m−1

])
,

where c (m) = (−1)m−1(m−1)!
2m−1(2m−1)! ∈ R, e is a non-zero cross-section of

∧2m
f and α : End f →

∧2 f is

given by (α (A) , ν ∧ µ) = 1
2 ((Aν, µ)− (ν,Aµ)), A ∈ Γ (End f), ν, µ ∈ Γ (f). We add that z2m−1

is the image of the Pfaffian for a pair (f, e) by the Cartan map for End f (for the Cartan map
see for example [10, Ch. VI, 6.7, 6.8]).

We shall show that ∆# (y2j−1) is (up to a constant) equal to the Crainic class u4j−3 (f) for

all j ∈
{
1, 2, . . . ,

[
n+1
2

]}
. Let ∇0,∇1 : L → A (f) be arbitrary two L-connections in f and let

∇aff = (1− t) ∇̃0 + t∇̃1 : TR× L→ A (pr∗2 f) be their affine combination. Observe

(3.4) R∇1 = R∇0 + d∇0θ + [θ, θ] ,

where

(3.5) θ = ∇1 −∇0 ∈ Ω1 (L; End f)
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and [θ, θ] = θ2 = θ ∧ θ ∈ Ω2 (L; End f), [θ, θ] (ξ, η) = [θ (ξ) , θ (η)]. The 1-form θ we can lifted to

θ̃ ∈ Ω1 (TR× L; End f) putting θ̃(vt,ξx) = θξx . The cross-section (0, ξ) of TR×L will be denoted

by ξ and ( ∂
∂t
, 0) by ∂

∂t
. Observe that ∇aff = ∇̃0+Ξ, where Ξ|(t,x) = t· θ̃x and (d∇̃1 θ̃)ξ,η (ν ◦ pr2) =(

d∇1θ
)
ξ,η

(ν) ◦ pr2 for any ξ, η ∈ Γ (L), x ∈ M , t ∈ R. The affine combination ∇aff of flat

connections can not be flat even ∇0 is flat: by (3.4) for flat ∇0 we have

(3.6) R∇aff
= d∇̃0Ξ+ [Ξ,Ξ] .

Lemma 6. The curvature tensor R∇aff
of the affine combination ∇aff of two flat L-connections

∇0,∇1 has the following properties

(3.7) (R∇aff

) ∂
∂t

,ξ (ν ◦ pr2) = θξ (ν) ,

(3.8) (R∇aff
)ξ,η (ν ◦ pr2)|(t,·) =

(
t2 − t

)
· (θ ∧ θ)ξ,η (ν) ,

(3.9) ((R∇aff
)k∂
∂t

,ξ1,...,ξ2k−1
)|(t,·) = k · tk−1 · (t− 1)k−1 · θ2k−1

ξ1,...,ξ2k−1
.

Proof. Formula (3.7) is clear. To see (3.8), we need only to observe (because of (3.6), (3.4) and
the flatness of ∇0 and ∇1) that

(d∇̃0Ξ)ξ,η (ν ◦ pr2)|(t,·) = t ·R∇1
ξ,η (ν)− t · (θ ∧ θ)ξ,η (ν) = −t · (θ ∧ θ)ξ,η (ν) ,

[Ξ,Ξ]ξ,η (ν ◦ pr2)|(t,·) = t2 · (θ ∧ θ)ξ,η (ν) .

Formula (3.9) can be proved by induction with respect to k. Indeed, from (3.7) we have the
step k = 1. Let n ∈ N. Assume that (3.9) holds for all k ≤ n. From this, (3.8), (3.7) and the
associativity of the algebra (End f , ◦) we get

((R∇aff
)n+1

∂
∂t

,ξ1,....,ξ2n+1
)|(t,·)

= (((R∇aff
)n ∧R∇aff

) ∂
∂t

,ξ1,....,ξ2n+1
)|(t,·)

=
∑

σ∈S(2n−1,2)

sgnσ · ((R∇aff
)n∂
∂t

,ξσ1
,....,ξσ2n−1

◦R∇aff

ξσ2n
,ξσ2n+1

)|(t,·)

+
∑

σ∈S(2n,1)

sgnσ · ((R∇aff
)nξσ1 ,....,ξσ2n

◦R∇aff

∂
∂t

,ξσ2n+1

)|(t,·)

=
∑

σ∈S(2n−1,2)

sgnσ · (n · tn (t− 1)n · θ2n−1
ξσ1

,....,ξσ2n−1
◦ (θ ∧ θ)ξσ2n ,ξσ2n+1

)

+
∑

σ∈S(2n,1)

sgnσ · (tn (t− 1)n · θ2n(aσ1 ,....,aσ2n)
◦ θaσ2n+1

)

= n tn (t− 1)n · θ2n+1
ξ1,....,ξ2n+1

+ tn (t− 1)n · θ2n+1
ξ1,....,ξ2n+1

= (n+ 1) t(n+1)−1 (t− 1)(n+1)−1 · θ
2(n+1)−1
ξ1,....,ξ2n+1

.

�

From the above we have the following theorem.
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Theorem 7. The Chern-Simons transgression differential form csk (∇0,∇1) for two flat L-
connections ∇0,∇1, is equal to

(3.10) csk (∇0,∇1) = (−1)k+1 k! · (k − 1)!

(2k − 1)!
· tr θ2k−1,

where θ is defined by (3.5).

The above formula is well known in the classical cases on principal fibre bundles (see, for
example, the papers by Chern and Simons [2], Heitsch and Lawson [11], 1974).

Let ˜ : End f → End f, v 7→ ṽ := 1
2 (v + v∗) denote the symmetrization. Let us consider idA(f)

as an A (f)-connection in f and take its adjoint idhA(f) induced by the metric h. Let λ : TM → A(f)

be any h-Riemannian connection (i.e. a connection such that Imλ ⊂ A(f, h), or equivalently

λh = λ) and λ̆ : A (f) → End f be its connection form. Since i ◦ λ̆ + λ ◦ π = idA(f), for any
cross-section α of A (f) we have

(3.11) − ˜̆λ (α) =
1

2
(idhA(f)− idA(f)) (α) .

Using (3.11), (3.10) and (3.2) we get that

∆o (ỹ2k−1) = (−1)k · 23−4k ·
(4k − 3)!

(2k − 1)! · (2k − 2)!
· u4k−3(f, idA(f) ).

Since csk(∇,∇
h) = ∇∗(csk(idA(f), id

h
A(f))) and u4k−3 (f,∇) = ∇#u4k−3(f, idA(f) ),

∆# (y2k−1) = [∇∗∆o (ỹ2k−1)] =
(−1)k · (4k − 3)!

24k−3 · (2k − 1)! · (2k − 2)!
· u4k−3 (f) .

From the above formulae we can explain the relation between the characteristic homomorphism
∆# : H• (End f, A (f, {h})) → H

• (L) of the triple (A (f) , A (f, {h}) ,∇) and the family of the
Crainic classes {u4k−3 (f)}.

Theorem 8. Let f be a real vector bundle over a manifold M and

∆# : H• (End f, A (f, {h})) −→ H
• (L)

the secondary characteristic homomorphism corresponding to (A (f) , A (f, {h}) ,∇), where ∇ :
L→ A (f) is a flat L-connection in A (f).

(a) If the vector bundle f is nonorientable or orientable and of odd rank n, then the image

of ∆# is generated by u1 (f), u5 (f),. . .,u4[n+3
4 ]−3 (f).

(b) If the vector bundle f is orientable and of even rank n = 2m, then the image of ∆# is

generated by u1 (f), u5 (f),. . .,u4[n+3
4 ]−3 (f) and additionally by ∆# (y2m), where y2m is

given in (3.3).

3.3. Example of a Nontrivial Universal Characteristic Class Determined by the Pfaf-

fian. Let M be an oriented, connected manifold, dimM ≥ 1, and g = End
(
R2

)
. Given a

transitive Lie algebroid (A, [[·, ·]],#A) over M , where A = TM ⊕ End
(
R2

)
∼= A

(
M × R2

)
and

#A = pr1 is a projection on the first factor, and

[[(X1, σ1) , (X2, σ2)]] = ([X1,X2] ,X1 (σ2)−X2 (σ1) + [σ1, σ2])

for all X1,X2 ∈ X (M), σ1, σ2 ∈ C∞
(
M ; End

(
R2

))
, we have the Atiyah sequence

0 −→M × End
(
R2

)
∼= End

(
M × R2

) i
→֒ A

pr1−→ TM −→ 0.
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Let B ⊂ A be the Riemannian reduction of A, i.e. B = TM ⊕ Sk
(
R2

)
is a transitive subalge-

broid of A. Observe that in the domain of the universal characteristic homomorphism ∆o# :
H
• (M × g, B) → H

• (A) is [ỹ2] ∈ H
2 (M × g, B), where ỹ2 ([σ1] , [σ2]) = proof ([[σ̃1, σ̃2]]) for all

σ1, σ2 ∈ Γ (ker#A) ∼= C∞ (M ; g). ∆o# ([ỹ2]) ∈ H
2 (A) is represented by ∆o (ỹ2) ∈ Ω1 (A) given

by
∆o (ỹ2) ((X1, σ1) , (X2, σ2)) = proof ([σ̃1, σ̃2]) .

Theorem 9. ∆o# (ỹ2) 6= 0.

Proof. Suppose that ∆o (ỹ2) is exact. Let ∆o (ỹ2) = dA (ζ) for some ζ ∈ Ω1 (A). Thus we get
that for all (X1, σ1) , (X2, σ2) ∈ X (M)× C∞ (M ; g), proof ([σ̃1, σ̃2]) is equal to

X1 (ζ (X2, σ2))−X2 (ζ (X1, σ1)) + ζ ([X1,X2] ,X1 (σ2)−X2 (σ1) + [σ1, σ2]) .

Observe that ζ = 1 ⊗ ζ1 + ζ2 ⊗ 1 for some ζ1 ∈ Γ (M × g∗) and ζ2 ∈ Ω1 (M). For this reason,
for σ1 = σ2 = 0, we obtain that ddR (ζ2) = 0. Moreover, for X1 = 0 and σ2 = 0 we have

(3.12) X2 (ζ1 (σ1)) = −ζ1 (X2 (σ1))

for all X2 ∈ X (M), σ1 ∈ C∞ (M ; g). Let {E1, E2, E3, E4} be a base of g. Fix X ∈ X (M), σ ∈

C∞ (M ; g), and let ζ1 =
∑

j ζ
j
1Ej for some ζj1 ∈ C∞ (M). Note that X (ζ1 (σ)) = ζ1 (X (σ)) +

X (ζ1) (σ). Combining this with (3.12) we deduce that

(3.13) 2ζ1 (X (σ)) +X (ζ1) (σ) = 0.

Taking in (3.13) constant functions σj = 1 · Ej ∈ C∞ (M ; g), j ∈ {1, 2, 3, 4}, we see that
X (ζ1) = 0 for all X ∈ X (M). It follows that ζ1 is a constant function. Let σ̃j = σjEj ∈

C∞ (M ; g) for some non–constant functions σj ∈ C∞ (M ; g). (3.13) now implies X
(
σj

)
ζj1 = 0

for all X ∈ X (M) and j ∈ {1, 2, 3, 4}. Hence ζj1 = 0. Since ζ1 = 0 and ddR (ζ2) = 0,
proof ([σ̃1, σ̃2]) = 0 for all σ1, σ2 ∈ C∞ (M ; g). On the second hand proof ([σ̃1, σ̃2]) is not a zero
function for all σ1, σ2. Indeed, let {e1, e2} be a base of R2 and

{
e∗1, e∗2

}
the associated dual

base of
(
R2

)∗
. Let E1, E2, E3 ∈ Sym

(
R2

)
⊂ End

(
R2

)
, E4 ∈ Sk

(
R2

)
⊂ End

(
R2

)
be defined

by E1 (x) =
〈
e∗ 1, x

〉
e1, E2 (x) =

〈
e∗ 2, x

〉
e2, E3 (x) =

〈
e∗ 1, x

〉
e2 +

〈
e∗ 2, x

〉
e1, E4 (x) =〈

e∗ 1, x
〉
e2−

〈
e∗ 2, x

〉
e1. Observe that proof ([E1, E3]) = proof (E4) = 1 6= 0. Thus ∆o# ([ỹ2]) ∈

H
2 (A) is a nontrivial secondary characteristic class for

(
TM ⊕ End

(
R2

)
, TM ⊕ Sk

(
R2

)
, id

)
of

even rank. �
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[13] F. Kamber, Ph. Tondeur, Algèbres de Weil semi-simpliciales, C.R. Acad. Sci. Paris Sér. A 276 (1973), pp.
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