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Abstrat. We present short diret proofs of two known properties of omplete �at manifolds.They say that the di�eomorphism lasses of m-dimensional omplete �at manifolds form a �niteset SCF (m) and that eah element of SCF (m) is represented by a manifold with �nite holonomygroup.1. Introdution. The aim of this paper is to give short diret proofs of two fundamentalproperties of omplete �at manifolds (Theorems 1 and 2). A omplete �at manifold (f-manifold) M an be treated as the orbit spae Rm/Γ of a properly disontinuous andfree ation of a disrete group Γ on a Eulidean spae. The holonomy homomorphism Φof M arries eah element γ of the dek group Γ onto the linear part of γ (f. [2, p. 51℄,[11, h. 3, Lemma 3.4.4℄). The group Φ(Γ) is the holonomy group of M . We prove thefollowing.Theorem 1. Every omplete �at manifold is di�eomorphi to a omplete �at manifoldwith �nite holonomy group.Theorem 2. The set SCF (m) of di�eomorphism lasses of omplete m-dimensional �atmanifolds is �nite.Theorem 1 was derived in [10℄ from related general results. The whole proof presentedin [10℄ is long and di�ult. The reader interested in �at manifolds would like to know ashorter one, valid in this partiular ase. Our proof is more algebrai than that given in[10℄. The main step of it onsists of showing that an appropriate �nite extension of theholonomy group a f-manifold is a semidiret produt of a torsion free abelian group anda �nite group (Lemma 2). Theorem 2 has been proved in [10℄, [8℄, and [9℄. It seems thatour elementary proof of it is simpler than the earlier known ones.2000 Mathematis Subjet Classi�ation: Primary 53C25; Seondary 57R22, 20C99.Key words and phrases: omplete �at manifold, holonomy group, �at bundle, di�eomorphism,representation of a Bieberbah group.The paper is in �nal form and no version of it will be published elsewhere.[527℄ © Instytut Matematyzny PAN, 2007



528 M. SADOWSKITheorem 2 annot be extended to the a�ne ase beause the set of a�ne equivalenelasses of nonompat omplete �at m-manifolds is unountable ([6, Theorem 1.3℄ seealso [11, h. 3, Theorem 3.5.1℄). This shows that there is a big di�erene between thetheory of losed �at manifolds and the more general theory of omplete �at manifolds.The �rst one an be treated as the theory of Bieberbah groups and the seond oneuses real representations of these groups (see Setion 2 and [6, Theorem 1.2℄). For thedesription of SCF (m) for m ≤ 4 we refer to [11℄ and [7℄.Throughout this paper the following notation will be used. Given a omplete �atmanifold M , the symbols Γ and Φ mean the same as above. By X we denote the losedtotally geodesi submanifold X of M homotopy equivalent to M and by ΦU the vertialholonomy homomorphism of M (see Setion 2 for the de�nition). The symbols m, n, and
s stand for dimM , dimX, and m−n, respetively. If G is a subgroup of a Lie group G1,then G is the losure of G in G1 and G0 is the identity omponent of G. The subgroupof G generated by a subset S of G will be denoted by 〈S〉.2. Semidiret produts and holonomy groups. The starting point of the proof ofTheorem 1 is the desription of a omplete �at manifold M as the total spae of a �atvetor bundle over a losed �at manifold. It is known that M ontains a losed totallygeodesi submanifold X homotopy equivalent to M ([11, Setion 3.2℄). Let Γ be the dekgroup of M and let ΦX be the holonomy homomorphism X. Write M as Rm/Γ and
X as Rn/Γ. The linear isometry Φ(γ) an be written as ΦX(γ) × ΦU (γ), where ΦX(γ)is an orthogonal transformation of Rn and ΦU (γ) ∈ O(s) (see the proof of Theorem3.3.3 in [11℄). The group ΦX(Γ) is always �nite and it is isomorphi to the fator groupof Γ by its maximal abelian subgroup (see e.g. [11, h. 3, � 3.2, � 3.4℄). In order todesribe the holonomy group of M it is neessary to desribe its vertial part ΦU (Γ). Let
Π : Rn → X = Rn/Γ be the projetion and let ρ : Γ → GL(s,R) be a representation of Γ.Consider the diagonal ation γ(x, u) = (γx, ρ(γ)u) of Γ on Rn × Rs and the orbit spae
M [ρ] = (Rn×Rs)/Γ. The projetion of Rn×Rs onto Rn determines a map p : M [ρ] → X.The triple Π[ρ] = (M [ρ], X, p) is a vetor bundle assoiated to the prinipal bundle Πwith typial �ber Rs. The arguments given in the proof of Theorem 3.3.3 in [11℄ showthatLemma 1. The manifold M is a�nely di�eomorphi to M [φU ].The aim of this setion is to prove the following.Lemma 2. There is a subgroup G of ΦU (Γ) suh that:a) ΦU (Γ) is a �nite index subgroup of G,b) G is a semidiret produt of a torsion free abelian subgroup A of ΦU (Γ)

0
and a �nitegroup H.Proof. Denote ΦU (Γ) byG∗ andG∗

0∩G
∗ by B. Let Γma be the maximal abelian subgroupof Γ. Sine ΦU (Γma) is a �nite index subgroup of ΦU (Γ), dimG∗

0 = dimΦU (Γma)
0
sothat G∗

0 = ΦU (Γma)
0
and G∗

0 is a torus T overed by a vetor spae T̃ . For notationalonveniene the group operations in T will be written additively. If ρ is the order of thetorsion subgroup of B and Bρ = ρB, then Bρ is a torsion free normal subgroup of G∗. Let
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P : T̃ → T be the projetion, H∗ = G∗/Bρ, and r = |H∗|. Fix a free system of generators
b1, . . . , bl in Bρ and b̃j ∈ P−1(bj). Take representatives h1, . . . , hr of the left osets of Bρin G∗. For t ∈ R, k ∈ N, and i ∈ {1, . . . , l} onsider bi,t = P(t̃bi), and bi(k) = bi, 1

k
. Let

B(k) = 〈b1(k), . . . , bl(k)〉 and G(k) = 〈B(k), h1, . . . , hr〉.It is easily seen that B(k) is a free abelian group and kbi(k) = bi.Let g ∈ G∗ and Ig : x → gxg−1. Sine Bρ is a normal subgroup of G∗, there are
cij ∈ Z suh that Ig(bi) =

∑l
j=1

cijbj . In order to prove the equality
(∗) Ig(bi,t) =

l∑

j=1

cijbj,t,assume that k is relatively prime to r. We have
Ig(bi(k)) =

l∑

j=1

dijbj(k) + h(i)for dij ∈ Z and h(i) ∈ {h1, . . . , hr}. Sine
kh(i) = Ig(kbi(k)) − k

l∑

j=1

dijbj(k) =

l∑

j=1

(cij − dij)bj ∈ Bρand (k, r) = 1 it is lear that h(i) ∈ Bρ. Hene
Ig(bi, a

k
) =

l∑

j=1

cijbj, a
kfor a ∈ Z. Now (∗) follows from the fat that the set {a
k

: a ∈ Z, (k, r) = 1} is dense in R.Let H(k) = G(k)/B(k), B(∞) =
⋃∞

k=1
B(k!), G(∞) =

⋃∞
k=1

G(k!), and H(∞) =

G(∞)/B(∞). Clearly B(∞) ∼= Ql. Consider the exat sequene
(∗∗) 0 → B(∞) → G(∞) → H(∞) → 1.By [1, h. 3, Corollary 10.2℄, H∗(H(∞), B(∞)) = 0 and this implies that there is a split
σ : H(∞) → G(∞).Every oset of G(k!) modulo B(k!) an be written as hjB(k!) for some j ∈ {1, . . . , l} sothat there is an epimorphism of H(k!) onto H((k+1)!) and onsequently H(k!) ∼= H(∞)for k su�iently big. Fix a positive integer k0 suh that σ(H) ⊂ G(k!) and H(k!) ∼= H(∞)for k ≥ k0. Setting A = B(k0!), G = G(k0!), and H = H(k0!), we omplete the proof ofLemma 2.3. Redutions of the holonomy groups of omplete �at manifolds. Using theresults of Setion 2, we omplete the proof of Theorem 1.Proof of Theorem 1. Let A, G, and H be as in Lemma 2 and let T = A, T̃ , P, and σ beas in the proof of Lemma 2. Take a basis a1, . . . , al of the free abelian group A, t ∈ [0, 1],

ãj ∈ P−1(aj), and aj,t = P(tãj) ∈ T. The formula ft(aj) = aj,t, j = 1, . . . , l, de�nes ahomomorphism ft : A→ T.



530 M. SADOWSKILet g ∈ G and Ig : T ∋ x → gxg−1 ∈ T. Fix t ∈ [0, 1]. As in the proof of Lemma 2,the group operations in T will be written additively. Consider cij ∈ Z suh that Ig(ai) =∑l
j=1

cijaj . The arguments given in the proof of Lemma 2 show that
Ig(ai,t) =

l∑

j=1

cijaj,t.Hene
Ig ◦ ft = ft ◦ Ig.An element x of G an be uniquely written as σ(h)a, where h ∈ H and a ∈ A. Considerthe map

Ft : G ∋ σ(h)a→ σ(h)ft(a) ∈ G.Sine G0 is abelian and ft(σ(h)aσ(h)−1) = σ(h)ft(a)σ(h)−1, it is easy to see that Ft is ahomomorphism.Let i : ΦU (Γ) → G be the inlusion and ΦU,t = F1−t ◦ i ◦ ΦU . The bundles Π[ΦU,0] =

Π[ΦU ] and Π[ΦU,1] are isomorphi (ompare [3℄) so that M is di�eomorphi to the totalspaeM1 of Π[ΦU,1]. Sine ΦU,1(Γ) ∼= H, the holonomy group ofM1 is �nite. This �nishesthe proof of Theorem 1.Example 1. Let β be any irrational multiple of π and let
fβ : R3 ∋ (x, y, z) → (x cosβ − y sinβ, x sinβ + y cosβ,−z) ∈ R3.Consider the homomorphism ρ : π1(S

1) → O(3) arrying a generator of π1(S
1) onto

fβ and Mβ = M [ρ]. Then ΦU = ρ and ΦU (Γ)
0
∩ ΦU (Γ) = 〈f2

β〉, but the arising exatsequene 1 → 〈f2

β〉 → 〈fβ〉 → Z2 → 1 is not split.4. Di�eomorphism lasses of f-manifolds and �at bundles. Theorem 2 will bederived from the following (f. [8, Corollary 7.1.5℄ and [9, Proposition 9℄).Lemma 3. If X is a losed �at manifold, then the number of isomorphism lasses of
s-dimensional riemannian �at bundles over X is �nite.Proof. The proof of Lemma 3 onsists of two steps. In the �rst we show that there isa �nite overing U1, . . . , Ul of X suh that any riemannian �at bundle over X admitstransition funtions onstant on eah intersetion Ui ∩ Uj . To ahieve this goal, take
δ ∈ (0, 1

2
diam (X)), smaller than the injetivity radius of X, and a δ-net x1, . . . , xl. Let

Uj be the open geodesi ball of radius δ with enter in xj . Clearly ⋃l
j=1

Uj = X. Let τcdenote the parallel translation along a urve c in E(ξ). By the �atness of ξ, τc dependsonly on the homotopy lass of c in the set of paths keeping the endpoints �xed. Fixshortest geodesi segments ci, i > 1, joining x1 to xi and a basis v1, . . . , vs of E(ξ)x1
.Consider vk(xi) = τci

(vk), x ∈ Ui, the unique shortest geodesi cix joining xi to x and
σi

k(x) = τci
x
(vk(xi)).The loal setions σi

k determine loal trivializations
gi : E(ξ)|Ui

→ Ui × E(ξ)xi
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k=1
akσ

i
k(x) onto (x,

∑s

k=1
akσ

i
k(xi)). Let gij = g−1

j gi be the transition fun-tions assoiated with our loal trivializations and let hξ be the holonomy homomorphismof ξ, indued by the �at metri on ξ. Clearly gij(σ
i
k(x)) = σj

k(x) and hξ(γ) = τγ for
γ ∈ π1(X).In order to show that gij an be written as hξ(γij) note that

σj
k(x) = τ

c
j
x
(vk(xj)) = τ

c
j
x
(τcj

(vk)).The produt of paths (cix)−1, c−1

i , cj , and cjx is a loop dx. If γij is the homotopy lassof dx, then
σj

k(x) = τdx
(σi

k(x)) = τγij
(σi

k(x)) = hξ(γij)(σ
i
k(x)),as laimed.Using our overing, it is easy to �nish the proof. Let

A = {(i, j) ∈ {1, . . . , l}2 : Ui ∩ Uj 6= ∅}and let W be the set of all maps ψ : A→ O(s) suh that the funtion arrying nonemptyintersetions Ui ∩Uj onto ψ(i, j) is a oyle. By the above, eah riemannian �at bundleover X admits a oyle belonging to W. The limit of oyles is a oyle so that W is alosed subset of the ompat set Map (A,O(s)) and thus W has �nitely many onnetedomponents.Proof of Theorem 2. By the third Bieberbah theorem (see [2, h. 2, Theorem 5.5℄,[11, h. 3, Theorem 3.3.2℄), the set of di�eomorphism lasses of losed �at k-manifolds(k ≤ m) is �nite and thus it su�es to prove that the set of di�eomorphism lasses off-m-manifolds, homotopy equivalent to a �xed losed �at manifold X, is �nite. Thisfollows immediately from Lemma 3.Remark 1. The onlusion of Lemma 3 does not hold for arbitrary manifolds and �atbundles. To see this take a losed orientable surfae Xg of genus g greater than 1. By[4, Corollary, p. 215℄, [5, Appendix C℄, Xg is the base spae of a 2-dimensional orientable�at vetor bundle ξ whose Euler lass e(ξ) belongs to H2(Xg,R) − {0}. Given a posi-tive integer k let ξk be the tensor produt of k opies of ξ, treated as a omplex linebundle. Sine e(ξk) = c1(ξ
k) = ke(ξ), there are in�nitely many isomorphism lasses of2-dimensional �at vetor bundles over Xg.Corollary 1. There is a onstant C(m) suh that every m-dimensional f-manifold

M is di�eomorphi to a f-manifold M1 whose holonomy group has order not greaterthan C(m).For an estimate of C(m) we refer to [10, Corollary 6.5℄. Wilking's paper ontains adiret proof of Corollary 1. It is obvious that Corollary 1 implies Theorems 1 and 2.
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