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1. Introdution. The problem of equivalene of submanifolds of homogeneous spaesof Lie groups was extensively treated by F. Cartan by his method of moving frames [2℄.A basi idea of Cartan's method is that for su�iently high k, G-ontat of order k (see�4) implies G-equivalene. In other words, for eah homogeneous spae M there exists aninteger k, depending on the dimension p, suh that if two submanifolds S and S of samedimension p have G-ontat of order k, then there exists g ∈ G suh that gS = S. Cartantreated several important geometrial examples and proved in eah ase the existene of k.Essentially, Cartan's method of proving the existene of the element g ∈ G onsistsin using the uniqueness of solution of a system of �rst order di�erential equations as inFrobenius theorem. Cartan's theory has been the subjet of interest of a great number ofauthors (see for example [4℄, [5℄). However, they all redue the proof of the existene ofthe element g ∈ G to the uniqueness of solution of a �rst order di�erential system whereasit seems more natural and geometrial to deal diretly with a higher order di�erentialsystem.The notion of ontat element as de�ned by Ehresmann [3℄ allows a geometrial for-mulation of the theorem of existene and uniqueness of solution of higher order ompletelyintegrable di�erential systems whih is a straight forward generalization of Frobenius the-orem (theorem 1). It is the uniqueness of this theorem that we use to solve the problemof G-equivalene. As a result, the regularity onditions on the submanifolds S and S,whih are neessary for the theorem of equivalene to hold (theorem 3), an be givena simple and geometrial de�nition, valid in any homogeneous spae M . Also, in themethod of moving frames, the invariants of a submanifold S of M are de�ned attahingspeial higher order frames to the points of S, [2℄, [5℄. These frames are onstruted bysubtle geometrial arguments valid for a �xed homogeneous spae whereas we onstrut2000 Mathematis Subjet Classi�ation: Primary 53A55; Seondary 53C30.[201℄ © Instytut Matematyzny PAN, 2007



202 A. A. M. RODRIGUESthe invariants of S as the elements of a omplete set of invariants of the orbits of G atingon a manifold of higher order ontat elements.The equivalene problem may be posed for two immersions f, h : S → M of adi�erentiable manifold S. f and g are equivalent if there exists g ∈ G suh that h = Lg ◦fwhere Lg(x) = gx, x ∈ S. This �xed parametrization theorem has been treated by J. A.Verderesi [7℄ by means of a higher order di�erential system de�ned in a manifold of jets.The paper ends with a neessary and su�ient ondition for a submanifold S of Mto be an open set of an orbit of a Lie subgroup K of G.This paper is a summary of a leture delivered at the 7th Conferene on Geometryand Topology of Manifolds at B�dlewo. Proofs will appear elsewhere.2. Contat elements. All manifolds and maps onsidered in this paper are assumed tobe di�erentiable of lass C∞. If M and N are manifolds and f : M → N is a map, theindued map on tangent spaes at points a ∈ M and b = f(a) ∈ N will be denoted by
fa : TaM → TbN . Given integers p, k ≥ 0, p ≤ dimM , Jk,pM denotes the manifold of all
k-jets of rank p whose soure is the origin of R

p and whose target is any point of M . Let
GLk

R
p be the Lie group of invertible k-jets whose soure and target are at the origin of

R
p. By de�nition, a ontat element of order k and dimension p of M is an equivalenelass of Jk,pM under the equivalene relation: for X, Y ∈ Jk,pM , X ∼ Y if there exists

Z ∈ GLk(Rp) suh that Y = X ◦Z. The set of ontat elements of order k and dimension
p of M is a di�erentiable manifold denoted by Ck,p(M). C0,p(M) identi�es naturally with
M [3℄.For 0 ≤ k′ ≤ k there is a natural projetion πk

k′ : Ck,p(M) → Ck′,p(M). If k′ = 0,we write πk : Ck,pM → M instead of πk
0 . The �ber of Ck,pM over a ∈ M is denotedby Ck,p

a M . If p is the dimension of M , Ck,p
a M has only one element whih is denoted by

Ck
aM and is alled the ontat element of order k of M at the point a ∈ M .Given a submanifold S of M , S ⊂ M , and an integer p, 0 ≤ p ≤ dimS, there is anatural injetion of Ck,pS into Ck,pM . If p is the dimension of S, omposing the map

a ∈ S → Ck,p
a S ∈ Ck,pM with the injetion Ck,pS → Ck,pM , we de�ne an injetion

Ck : a ∈ S → Ck
aS ∈ Ck,pM . The image of this injetion is denoted by CkS ⊂ Ck,pM .Two submanifolds S and S of M of the same dimension p have ontat of order k at aommon point a if Ck

aS = Ck
aS.3. Completely integrable di�erential systems of higher order. A di�erentialsystem of order k ≥ 1 and dimension p de�ned over a manifold M is a submanifold

Ωk of Ck,pM suh that the projetion πk : Ωk → M is of rank equal to the dimensionof M . An integral manifold of Ωk is a submanifold S of M of dimension p suh that
Ck

xS ∈ Ωk for all x ∈ S. For X ∈ Ck,pM , let FX be the �ber of X by the projetion
πk

k−1 : Ck,pM → Ck−1,pM . The symbol σ(X) of Ωk at the point X ∈ Ωk is by, de�nition,the vetor spae
σ(X) = TXΩk ∩ TXFX .Let Xk+1 ∈ Ck+1,pM , Xk = πk+1

k (X), and let S be a submanifold of M suh that
Xk+1 = Ck+1

a S , a ∈ S. Then, C1
Xk(CkS) depends only on Xk+1 and not on the hoie



SUBMANIFOLDS OF HOMOGENEOUS SPACES 203of S. Hene, there is a natural imbedding
Λ

k,1
: Ck+1,pM → C1,p(Ck,pM)whih maps Xk+1 into C1

Xk(CkS). By de�nition, the �rst prolongation of the di�erentialsystem Ωk is the subset Ωk,1 of Ck+1,pM de�ned by
Ωk,1 = (Λ

k,1
)−1[C1,p(Ωk) ∩ Λ

k,1
(Ck+1,pM)].Sine πk+1

k = π1
0 ◦Λk,1, it follows that πk+1

k maps Ωk,1 into Ωk. If S is an integral manifoldof Ωk then, Ck+1
x S ∈ Ωk,1 for every x ∈ S. Hene, a neessary ondition for the existeneof an integral manifold of Ωk going through every point of Ωk is that the projetion

πk+1
k : Ωk,1 → Ωk be surjetive.Theorem 1. Let Ωk ⊂ Ck,pM be a di�erential system of order k ≥ 1 and let X ∈ Ωk bea ontat element suh that1) σ(X) = {0};2) The image of Ωk,1 by the projetion πk+1

k : Ωk,1 → Ωk is a neighborhood of X in Ωk.Then, there exists an integral manifold S of Ωk suh that X ∈ CkS. Moreover, if S and
S′ are integral manifolds of Ωk suh that X ∈ CkS ∩CkS′, there exists a set W whih isan open neighborhood of X in CkS and CkS′.Theorem 1 is a geometrial version of the theorem of existene and uniqueness ofsolutions of ompletely integrable systems of partial di�erential equations of order k ≥ 1.Taking suitable oordinates in Ck+1,pM and Ck,pM , the existene of integral manifoldsof Ωk redues to the existene of solutions of a ompletely integrable system of partialdi�erential equations [6℄.4. Contat of submanifolds. Let G be a Lie group ating transitively on the manifold
M . Two submanifolds S and S of M of same dimension p, have G-ontat of order pat points a ∈ S and a ∈ S if there exists g ∈ G suh that ga = a and gS and S haveontat of order k at the point a . S and S have G-ontat of order k ≥ 0 if there existsa di�eomorphism φ : S → S suh that for all x ∈ S, S and S have ontat of order k atpoints x and φ(x) = g(x)x . We say in this ase that φ makes ontat of order k of Sonto S . S and S are G-equivalent if there exists g ∈ G suh that gS = S. S and S areloally G-equivalent at points a ∈ S and a ∈ S if there are open neighborhoods of a and
a in S and S whih are G-equivalent.The ation of G on M extends to an equivariant ation on the manifold Ck,pM ofontat elements of order k and dimension p of M . For a point x ∈ M , let Ck

xS, Gk
x and

dk(x) denote respetively the ontat element of order k of S at the point x, the isotropysubgroup of G at the point Ck
xS and the dimension of Gk

x. We all Gk
x the isotropysubgroup of order k of the point x of S. Put X = Ck

xS and let hk(x) be the dimensionof the vetor spae TX(GX) ∩ TXCkS where CkS is the submanifold of Ck,pM of allontat elements of order k of S and TX(GX) and TXCkS are the tangent spaes of theorbit GX and of CkS at the point X.For k′ ≤ k, dk(x) ≤ dk′

(x) and hk(x) ≤ hk′

(x). Hene, there exists an integer k ≥ 1suh that dk(x)dk−1(x) and hk(x) = hk−1(x). We say that a ∈ S is a k-regular point of
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S under the ation of G if there exists k ≥ 1 suh that1) dk(a) = dk−1(a) and hk(a) = hk−1(a);2) dk(x) and hk(x) are onstant for x varying in a neighborhood of a in S.The order of a is the least integer satisfying onditions above. If a is a k-regular point of
S then ga is a k-regular point of gS.Theorem 2. Let S, S be two submanifolds of M of same dimension p. Let a ∈ S and
a ∈ S be two points. Assume that a is a k-regular point of S and that there exists aontinuous map ϕ : V → G, de�ned in a neighborhood V of a in S, suh that ϕ(a).a = a,
ϕ(x).x ∈ S and ϕ(x).Ck

xS = Ck
ϕ(x)S for all x ∈ V . Then, there exist open neighborhoods

W and W of a and a in S and S whih are G-equivalent.The proof of theorem 2 is based on the uniqueness statement of theorem 1.We assume in theorems 3, 4, 5, 6, 8 that the ation of G on M is proper and that His a losed subgroup of G. Let L be the union of all G-orbits of Ck,pM of type H that is,orbits whose isotropy subgroups are onjugate to H. Denote by L/G the quotient spaeof L by the orbits and by π : L → L/G the natural projetion. It is known [1℄ that L and
L/G are di�erentiable manifolds and that (L, L/G, π) is a loally trivial �ber bundle.Let f : S → S be a di�eomorphism suh that S and S have G-ontat of order k ≥ 1at orresponding points x ∈ S and x = f(x) ∈ S and let a ∈ S and a = f(a) ∈ S be twopoints. Considering suitable ross setions of the �ber bundle (L, L/G, π), one an provethe existene of a neighborhood V of a in S and of a di�erentiable map ϕ : V → G suhthat ϕ(x).x = f(x) and ϕ(x).Ck

xS = Ck
xS. Hene, theorem 2 an be restated as follows:Theorem 3. Assume that the ation of G on M is proper and that there exists k ≥ 1suh that1. a ∈ S is a k-regular point.2. The isotropy subgroups of Ck

xS are onjugate in G for all x ∈ S.3. There exists a di�eomorphism f : S → S suh that S and S have G-ontat oforder k at orresponding points.Let a ∈ S be suh that f(a) = a. Then S and S are loally G-equivalent at points a and a.Theorem 4. Assume that S and S are onneted and that there exists an integer k ≥ 1suh that:1. x ∈ S is a k-regular point of S and hk(x) = 0 for all x ∈ S.2. The isotropy subgroups of Ck
xS are onjugate in G for all x ∈ S.3. There exists a di�eomorphism f : S → S suh that S and S have G-ontat oforder k at orresponding points.Then, f is the restrition to S of the translation by an element g of G : f = Lg|S.Consider again the �ber bundle (L, L/G, π). There exists a �nite number of realvalued di�erentiable funtions ρ̃i, 1 ≤ i ≤ r, de�ned in L, suh that two ontat elements

X, X ∈ L are in the same �ber of L if and only if ρ̃i(X) = ρ̃i(X), 1 ≤ i ≤ r. Given asubmanifold S of M of dimension p, and assuming that the orbits of Ck
xS are of type Hfor all x ∈ S, one an pull bak the funtions ρ̃i by the map σk : x ∈ S → Ck

xS ∈ L.



SUBMANIFOLDS OF HOMOGENEOUS SPACES 205The set of funtions ρi = ρ̃i ◦ σk, 1 ≤ i ≤ r, is a omplete set of G-invariants of order
k of the submanifold S of M . Often the invariants an be de�ned in a natural way andhave deep geometrial meaning as for instane, the urvature and torsion of urves andthe prinipal urvatures of surfaes in R

3.Assuming that the isotropy subgroups of Ck
xS and Ck

xS are of type H for all x ∈ Sand x ∈ S, omplete sets of invariants of order k, ρi and ρi an be de�ned in S and S.The ondition hk(x) = 0 in theorem 4 is then learly equivalent to stating that the rankof di�erentials dρi, 1 ≤ i ≤ r , is p at every point x ∈ S One an then restate theorems3 and 4 in the following way.Theorem 5. Let a ∈ S be a k-regular point of S, k ≥ 1. Assume the following onditionsare satis�ed:1. The isotropy subgroups of Ck
xS and Ck

xS are onjugate for all x ∈ S and x ∈ S.2. There exists a di�eomorphism f : S → S suh that
ρi = ρi ◦ f, 1 ≤ i ≤ r.Then, S and S are loally G-equivalent at points a = f−1(a) and a.Theorem 6. Let S, S be two onneted submanifolds of M and let k ≥ 1 be suh that1. Every point x ∈ S is k-regular.2. The isotropy subgroups of Ck

xS and Ck
s S are onjugate for all x ∈ S and x ∈ S.3. There exists a di�eomorphism f : S → S suh that

ρi = ρi ◦ f, 1 ≤ i ≤ r.4. The rank of di�erentials dρi, 1 ≤ i ≤ r, is p at every point x ∈ S.Then, f is the restrition to S of the left translation by an element of G: f = Lg|S.Let us assume that S is an open set of an orbit of a Lie subgroup K of G. Then,
hk(x) = p and the isotropy subgroups of Ck

x are onjugate for all x ∈ S and k ≥ 0. Henethere exits k ≥ 1 suh that every x ∈ S is a k-regular point of S. Conversely,Theorem 7. A neessary and su�ient ondition for a onneted submanifold S of Mto be an open set of an orbit of a Lie subgroup K of G is the existene of k ≥ 1 suh thatfor all x ∈ S, x is a k-regular point of S and hk(x) = p.Assuming that the ation of G on M is proper and that the isotropy subgroups oforder k of points of S are onjugate, a omplete set of invariants of order k an be de�nedon S. Clearly, hk(x) = p for every x ∈ S if and only if the invariants are onstant on S.Therefore, the following orollary to theorem 7 holds.Theorem 8. Assume that the ation of G on M is proper and that S is onneted. Assumealso that for some integer k ≥ 1, every point of S is k-regular and all isotropy subgroupsof order k of points of S are onjugate. Then, a neessary and su�ient ondition for Sto be an open set of an orbit of a Lie subgroup of G, is that the invariants of order k of
S be onstant.
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