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Abstract. The geometric understanding of Cartan connections led Charles Ehresmann from the

Erlangen program of (abstract) transformation groups to the enlarged program of Lie groupoid

actions, via the basic concept of structural groupoid acting through the fibres of a (smooth)

principal fibre bundle or of its associated bundles, and the basic examples stemming from the

manifold of jets (fibred by its source or target projections).

We show that the remarkable relation arising between the actions of the structural group

and the structural groupoid (which are mutually determined by one another and commuting)

may be viewed as a very special (unsymmetrical !) instance of a general fully symmetric notion

of “conjugation between principal actions” and between “associated actions”, encapsulated in a

nice “butterfly diagram”. In this prospect, the role of the local triviality looks more incidental,

and may be withdrawn, allowing to encompass and bring together much more general situations.

We describe various examples illustrating the ubiquity of this concept in Differential Geom-

etry, and the way it unifies miscellaneous aspects of fibre bundles and foliations.
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We also suggest some tracks (to be developed more extensively elsewhere) for a more effi-

cient implementation of the basic principle presently known as “internalization”, pioneered by

Ehresmann in his very general theory of “structured” categories and functors, towards the more

special but very rich and far-reaching study of the above-mentioned Lie groupoid actions.

Still now, due to misleading and conflicting terminologies, the latter concept seems too often

neglected (and sometimes misunderstood) by too many geometers, and has long been generally

ignored or despised by most “pure categorists”, though it will be presented here as one of the

gems of Ehresmann’s legacy.

1. General introduction

1.1. Structural groupoid. In this lecture we intend to focus on one of the turning points in

Charles Ehresmann’s work: we mean, when dealing with the theory of principal bundles,

the introduction, parallel to that of the structural group, of the structural groupoid1. The

actions, on the bundle, of the group (global action, transitive along the fibres) and the

groupoid (partial action from fibre to fibre, transitive) are commuting. Together with

the study of the category of jets (and more specifically the groupoid of invertible jets),

this led him to the basic idea (rediscovered much later by various authors) of considering

(small) internal groupoids (more generally categories) in various (large) “structuring”

categories, originally and basically the category of [morphisms between] manifolds. In

particular this yields an inductive definition of multiple (smooth) groupoids, which play

an important, though too often hidden, role.

This unifying concept involves a very far-reaching intertwining between algebra and

geometry.

Ehresmann also stressed the interest of choosing the source and target maps and / or

the so-called “anchor map” [MK] (i.e. target-source map, which we prefer to call, more

suggestively, “transitor”) in suitable subclasses of the “structuring” category. We shall

show it is convenient to impose on these subclasses some suitable stability properties of

a very general nature, and propose various choices unifying various theories. We point

out that the stability properties we need are very easily satisfied in the topos setting,

but one gets much wider ranging theories (especially when aiming at applications to

Differential Geometry) when not demanding the structuring category to be a topos, which

would require much more special properties, not satisfied in Dif for instance.

1.2. Interpretations of the unsymmetrical situation. We note that the concepts of struc-

tural group and groupoid (denoted just below by H and G) have a strongly intuitive

(geometrical or “physical”) interpretation. When interpreting the elements of the princi-

pal2 bundle P (regarded as frames) as “measures of some events” or “observations”, the

1Note that nowadays these are often known too as gauge group and gauge groupoid [MK],
rather conveniently though ambiguously, since these terms possess also, according to the
authors, quite different (and conflicting) meanings (especially in Physics, in gauge theories
[BGT, NGTP]), which are related to the (local or global) automorphisms of the structure,
or to its local trivializations. For this reason we shall avoid these too ambiguous terms, keeping
here Ehresmann’s original terminology.

2Actually these interpretations will become perhaps clearer and more flexible when dealing
with associated bundles, to be described below (9.3.2).
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fibres, which are also the elements of the base B or the objects of the groupoid G, may be

viewed as “observers” (or disjoint classes of observations), while the base B itself makes

up a class of interconnected observers, defining a “coherent point of view”. The structure

of the principal bundle P is then interpreted as allowing a “change in point of view”.

In that respect, the unique object of the group would play the role of an abstract

(privileged!) “universal observer”, and the group H itself of an “absolute” gauge reference.

In other contexts, such as Galois theory or renormalization theories, this group is often

interpreted as an “ambiguity” group.

Alternatively, from this absolute viewpoint, the base space B may be interpreted as

an abstract absolute universe (arising from “experimental” coherence of observations, and

picturing some emerging “objective reality”), liable to evolve globally (or alternatively

to be observed in various states) under the global action of H.

On the other hand the groupoid G (with base B) allows direct comparisons (here

uniquely determined by a pair of observations) between the fibres of the various (rela-

tive) observers, without using the medium of the absolute observer. However the latter

(relative) comparisons actually involve the isotropy groups3.

A (global) trivialization, when it happens to exist, of G, or equivalently a (global)

section of the principal fibration p : P → B, yields an absolute comparison, hence a

“classical” universe, for which one would have P = B×H, while in general the “objective

universe” B is constructed as just a quotient of the “space of observations” P . However

it should be noted that the choice of such a section (even when it does exist globally)

is not determined by the sole data of the principal fibration, and constitutes an extra

datum: it is parametrized by the group of maps from B to H, which is not in general a

finite dimensional Lie group, unlike H itself.

An infinitesimal connection may be described in geometrical terms as a (generally non-

integrable) field of infinitesimal jets of trivializations, or equivalently of local sections4

of the “transitor” τG = (βG, αG) : G → B × B, or of p : P → B. This yields absolute

comparisons only along some given path, depending upon the path.

Now the transition between the two previous “points of view” (absolute and relative)

is realized by means of the projections of the bundle P onto the bases of the group H and

3This is Ehresmann’s terminology, which is perfectly convenient. They are called “coherence
groups” in van Est’s papers [vE]; they make up what is called rather ambiguously and improperly
the inner groupoid in [MK].

4Ehresmann would favour the complementary interpretation as jets of retractions on target
fibres (β-fibres). However, favouring the sectional interpretation, we showed in [P 1967, P 1968]
that the basic geometric features of infinitesimal, and more specifically linear, connections, such
as curvature, torsion, covariant differentiation, parallel transport, exponential map, are not only
preserved and generalized, but better understood, when replacing the banal groupoid B × B of
pairs of points of the base B (ubiquitous though hidden!) by a (visible, and possibly non-locally
trivial) Lie groupoid G, and the transitor or anchor map τG : G → B × B (a surmersion iff
G is locally trivial and transitive) by a base-preserving surmersive morphism f : G′ → G,
then specializing to the case when this morphism is the canonical projection sG : SG → G

of Ehresmann’s infinitesimal prolongation SG (jets of bisections) (see Rem. 2.1.2.1 below). See
Rem. 2.2.5.2 below for examples of non-locally trivial groupoids in which connections in this
sense might be useful.
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of the groupoid G (the latter being B, and the former a singleton!), and by the basic fact

that the group and the groupoid induce on P (by pulling back along these projections)

the “same” (here trivial and trivialized) groupoid K = H × (P × P ) with base P (more

precisely isomorphic groupoids).

From a purely algebraic point of view, this describes a Morita equivalence between the

structural group H and the structural groupoid G. But in Ehresmann’s internal setting,

this may acquire a lot of different more precise “smooth” meanings, depending on the

above-mentioned various choices. It is also a special case (isomorphism) of the “generalized

morphisms” in the sense of Skandalis and Haefliger5 (cf. [H]), which indeed may be

interpreted as a very geometric description of the arrows of the category of fractions [GZ]6

in which the smooth equivalences (between smooth groupoids) are formally inverted, i.e.

turned into actual isomorphisms (cf. [P 1989, P 2004]).

This (trivial) groupoid K with base P (which is the core of the structure, and might

be called the “conjugation groupoid”) inherits from the two projections a very rich extra

structure, which may be recognized as a particular instance of a very special and inter-

esting structure of smooth double groupoid (indeed a “double equivalence relation”). In

the purely algebraic context, this structure has been described in the literature under

various names and equivalent ways: rule of three, affinoid (A. Weinstein), pregroupoid

(A. Kock). See also [P 1985].

1.3. Restoring symmetry. Now it turns out that all the essential features of this descrip-

tion remain still valid (and indeed are better understood) when replacing the starting

structural group H by a (possibly non-transitive) groupoid (with base C, no longer a

singleton!), and then the situation becomes perfectly symmetrical, or reversible (up to

isomorphisms)7(section 9). Note that now the core K is itself generally no longer trivial.

In the purely algebraic (hence also topos) setting, this symmetric situation has been de-

scribed in several equivalent ways by A. Kock8 , in the language of torsors (which we call

here principal actors) and bitorsors.

The symmetry of the situation will be fully apparent when drawing what we call the

“butterfly diagram” (see below 9.2.1).

In the “physical” interpretation, we can say that we have two classes of observers (or

two correlated “coherent points of view” or “descriptions”), now placed on equal footings

5At least in the purely topological setting, i.e. when forgetting the smoothness. It should be
noted that in this framework the local triviality conditions seem to bring about some difficulties
in the general definition of the composition of these generalized morphisms; these difficulties are
more easily mastered in the smooth setting, via the diagrammatic description we propose here,
which relies on Godement theorem.

6It is worth noting that such a geometric description is specific of the present situation, and
quite different from the so-called “calculus of fractions”, available under general conditions [GZ]
which are not fulfilled here [P 1989].

7This concept of a fully symmetrical presentation of “conjugate principal actions” had been
sketched a very long time ago in an unpublished communication [P 1977], and presented in some
other oral communications. We seize here the opportunity of giving further developments and
explanations.

8See his contribution to the present Conference.
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in the absence of a privileged “absolute” point of view, and a transition between two

“conjugate points of view”, determined by the two projections:

B
p
≺ P

q
≻ C.

The orbits of the action of one of the two conjugate groupoids on P become the objects

of the other one.

In spite of the “coherence” of observations, encapsulated in the groupoid K (induced

on P by both G and H along p and q), it is no longer possible to construct a privileged

“objective reality” in the restricted sense described above: the framework of “orbital

structures” [P 1989, P 2004] is then better adapted.

We also note that it is no longer demanded the groupoids to be transitive even when

they are (topologically!) connected (this means that possibly certain pairs of observers

cannot compare their observations, though belonging to the same class), nor also the

rank of the anchor map to be constant (then the isotropy groups are allowed to vary, and

this might be thought of as modeling symmetry breaks or phase changes [NGTP]).

Indeed, though, from a purely algebraic point of view, any groupoid is the disjoint

sum of its transitive components or orbits (each one being individually equivalent to a

group9), the topology and the smoothness involve a very subtle and deep interconnection

between these components, which in our opinion, would deserve a better understanding

and exploration from a geometrical (and physical) point of view (see [P 2003]).

For instance one of the simplest invariants arising from this interconnection is the

“fundamental group” of the orbit space, constructed along different and independent

ways by Haefliger [H] and van Est [vE] (for a universal characterization of this group,

see [PA] and [P 1989]). In this prospect the classical fundamental group would just arise

from the interconnection of the topology of a space with the banal groupoid structure on

its set of pairs); this has been advocated by R. Brown for a very long time (see [BRO]).

We shall give in 9.4 various geometric examples of this unifying (purely diagrammatic)

situation (and more general ones), which encompasses (among others) the construction of

associated bundles, the realization of a non-abelian cocycle, including Haefliger cocycles,

the construction of the holonomy groupoids of foliations, and the Palais globalization of

a local action law [Pal].

Due to the necessity of making choices, we shall not describe here the corresponding

infinitesimal situation, which of course was Ehresmann’s main motivation for introducing

the structural groupoid, in order to understand the meaning of “infinitesimally connect-

ing” the fibres. This will be tackled by other lecturers at the present Conference (notably

[MA] and [Lib]).

1.4. Prospects. Our conclusion will be that the transition, from the Kleinian conception

of Geometry as the study of transformation groups or group actions, to the Ehresmannian

enlarged point of view, consisting in considering Lie groupoid actions, involves a concep-

tual revolution which parallels (and possibly might model) the physical revolution from

9There lies the origin of the still widespread disinterest for groupoids among many “cate-
gorists”, who are forgetting than (even from a purely algebraic point of view), classifying objects
does not imply classifying morphisms!
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the classical concept of an absolute universe to the modern visions about our physical

space. Better qualified observations may be found in R. Hermann’s comments [ECOM,

(VII)].

It might well be that this revolution arising from Ehresmann’s prophetic visions is not

enough well understood presently, and is liable to come out into unexpected developments.

2. From discrete group actions to structured groupoid actions

or from Erlangen program to Ehresmann’s program

2.1. From transformation groups to Lie group actions and transformation pseudogroups

2.1.1. Lie group actions. As is well known, the modern conception of Geometry was

formulated in a very global and essentially algebraic way by F. Klein in his Erlangen

Program (1872) as the study of invariants of some specific transformation group acting

(often transitively) on an abstract set.

Then, with the emergence of the general concepts of structures and morphisms, it

was progressively realized that it is convenient to endow the set and the group itself with

some specific extra structures of the same species, which are intimately related by the

action. The latter should be “compatible” with these structures, in a sense to be made

precise below.

Remark 2.1.1.1. As we are aiming basically at differentiable structures, it will be convenient

for our purpose to consider this structure on the group as an extra datum, and we shall not argue

here about the existence of those structures on such a group (such as compact-open topologies

for instance) which may arise in an intrinsic way from the very structure of the space on which

it acts. That sort of discussions involves specific properties of the structuring category (such

as the property of being or not “cartesian closed” [McL]) and leads to important but technical

and specific problems which are quite different in the topological and in the smooth cases for

instance, and should not be mingled with the very general and simple notion of (“structured”)

action we are considering and developing here. This attitude allows to completely short-circuit

the difficulties and controversies which arose at the very birth of fibre bundles about the role of

the structural group (see M. Zisman’s comments on that point in [ECOM, (II)]).

More precisely the action has to be described in terms of morphisms of the “structuring

category” (which is often Dif or Top), as well as the group law. Such a formulation

remains algebraic, in spite of the added extra structures, via the categorical language.

This is one of the simplest instances of “internalization” of an algebraic structure, which

Ehresmann extended later to groupoids, categories and more general action laws.

Basic examples of such added structures are topological or smooth (i.e. differentiable

manifold) structures. Then morphisms are continuous or smooth maps, and this means

that one is considering topological or Lie groups (in the modern global sense), acting

continuously or smoothly on a topological space or a manifold.

2.1.2. Pseudogroups vs groupoids. Such a conception is highly global, hence rigid.

As a differential geometer, and with various motivating examples in mind, Ch. Ehres-

mann realized the need for what he called local structures, for which he was led to

introduce very general definitions. Then the localization of the concept of transformation

group brought him to produce a precise definition of the general notion of transformation
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pseudogroup. The pseudogroups play a basic role in the general fundamental concept of

atlas.

We shall not dwell at length upon what will be considered here as an intermediate

step10, for which we refer to the contribution of André Charles Ehresmann addressed for

the present proceedings, and also to J. Benabou’s comments in [ECOM, (X)]. We just

mention (as an anticipation of what follows) that the so-called complete pseudogroups

may be considered as special cases of étale topological (or smooth) groupoids ; this means

that they can be endowed with a topology (or a manifold structure) such that the source

(and target) projections are étale (i.e. are local homeomorphisms or diffeomorphisms).

We recall also that any pseudogroup may be “completed” by the general process of

“sheafification” or “germification” giving rise to a sheaf, or equivalently an étale space,

starting from a presheaf. This allows to deal only with “complete” pseudogroups (in

Ehresmann’s sense).

We point out too that a (complete) transformation pseudogroup has to be considered

as a localization of a discrete (or abstract) transformation group rather than of a general

Lie group action, and is in this respect much more special than the general concept of

structured groupoid action which is stressed in the sequel11, and which goes far beyond.

It is worth noting too that any (possibly non-complete) transformation pseudogroup

might be viewed also as a groupoid in a quite different way, taking as objects the domains

of the transformations (which are generally open sets), and using the strict composition

law for local transformations. But this latter groupoid does not admit a finite dimensional

manifold structure; it will not be considered here.

Remark 2.1.2.1. Though this is out of the scope of the present lecture, let us mention, again

to avoid frequent and persistent confusions between general groupoids and pseudogroups (see

Rem. 2.2.5.1 below about Lie pseudogroups), that (in the opposite direction) the localization

of a (topological) groupoid leads to the pseudogroup of what we think convenient to call the

“local translations” associated to the so-called local bisections, i.e. local sections of both source

and target maps. Of course, in the case of a group, one recovers the (automatically global!)

translations, whence our terminology. (This relation between groupoids and pseudogroups might

be stated more precisely in terms of adjointness.)

10In our opinion this is not the most original part of Ehresmann’s work, since it might be
rewritten essentially in the better known language of (pre)sheaves (see for instance [GOD, T]),
which was developed later in parallel ways.

11In “modern” category theory (see A. Kock’s comments [ECOM, (VII)]), this concept
might be (in principle!) described in terms of the so-called “internal presheaves” and “discrete
(op)fibrations”. In our opinion these highly unfortunate terminologies, though well established in
Category Theory and in Algebraic Geometry and Topology (see for instance [GIR, Ja, Jb]), are
completely misleading as soon as one is interested in topological categories or groupoids (intro-
duced much earlier by Ehresmann), and cannot be used by differential geometers (who anyway
generally ignore it!), since the main interest of this internalization for the study of fibre bundles
is to allow non-discrete fibres and non-étale groupoids! So that such a terminology makes it
virtually impossible to understand the drastic change from pseudogroups to general groupoids.
Unfortunately again, as we shall see below, Ehresmann’s terminology is equally misleading for
different reasons!
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This pseudogroup was introduced and used by Ehresmann as the local prolongation of the

groupoid (together with the infinitesimal prolongations, when infinitesimal jets are replacing

germs, which he calls “local jets”, giving rise to non-étale topologies and groupoids), and (more

or less partially) rediscovered much later by many authors under various names (for instance

C. Albert’s “glissements”; see also [MK]).

2.2. From pseudogroups and Lie group actions to Lie groupoid actions: a turning point

2.2.1. Fibre bundles. Though implicitly present in previous works of Ehresmann, the

general concept of fibre bundle (espace fibré) was introduced explicitly by Ehresmann in

1941 [EOC, /14/] in collaboration with J. Feldbau (and independently from N. Steen-

rod).

This concept evolved throughout Ehresmann’s work, and one can guess it played

the role of a mainspring for this work. For more detailed historical comments about this

evolution, we refer to the precious comments by Ehresmann himself [EOC, /136/], and by

M. Zisman and A. Haefliger in [ECOM, (II), (IX)], while the applications of this concept

in Differential Geometry are described in P. Libermann’s comments [ECOM, (IV)]. This

reflects the richness of the concept. For the modern “classical” presentation, we refer to

N. Bourbaki [VAR].

In [EOC, /14/] there is no topology on the structural group, while it becomes a

topological group in [EOC, /15/ and /16/] (see comments in Rem. 2.1.1.1 about this

point), and the problem of the reduction of the structural group arises in [EOC, /16/],

while in [EOC, /18/] the emphasis is put only on the local triviality. The definition by

means of a pseudogroup and an atlas is emphasized in [EOC, /20/].

We note that in these previous works the local triviality conditions are automatically

involved in the very definitions and are considered as a basic ingredient of the struc-

ture.

2.2.2. Structural groupoid. A turning point occurs in [EOC, /28/] with the appearance

of the structural groupoid suggestively denoted by PP−1 (here P is interpreted as a

bundle of frames, and the corresponding co-frames belong to P−1), viewed as a quotient

of P × P (by the diagonal action of the structural group), with its manifold structure,

and its (partial) transitive action on the bundle.

The arrows of this structural (small!) groupoid are isomorphisms between the fibres of

the bundle, commuting with the “vertical” (global) non-transitive action of the structural

group along the fibres.

This concept makes explicit the leading geometrical idea underlying the early work

of 1938 [EOC, /10/], and will lead to the geometric formulation of higher order connec-

tions in [EOC, /46/]. Since we are focusing here on the global aspects rather than the

infinitesimal ones, we refer to C.-M. Marle’s and P. Libermann’s lectures [MA, Lib] to

explain how this concept allowed Ehresmann to formalize the geometric ideas implicit in

E. Cartan’s works on infinitesimal connections.

2.2.3. Generalized fibrations. From now on Ehresmann will consider that the essence

of a (generalized) fibration consists in the datum of a small groupoid (more generally a
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category) acting12 on a space, with some extra structures (notably topological or smooth),

assumed to be “compatible”, in a suitable sense, with such an algebraic datum.

(This conception will be discussed in more details in the sequel.)

Remark 2.2.3.1. Indeed we have intendedly added “small” (this just means that the objects

as well as the arrows of the groupoid are belonging to sets13) in the previous statement, in

order to stress that a (small) groupoid has to be thought as a fairly mild (though fundamental)

generalization of a group rather than a special case of (large) category. On the contrary Ehres-

mann, who was at the same time and on a parallel way deeply involved in formulating a very

general theory of “structures” (in which the properties of forgetful functors between “large”

categories play a basic role14), attached the utmost importance to connecting the formal aspects

of the theory of fibred spaces and of the emerging theory of “species of structures”, adopting and

extending unfortunately the language of the latter to the former15.

We are convinced that this had historically disastrous consequences, and largely explains the

misunderstanding which occurred with a large part of the mathematical community.

In actual fact we think that, in spite of certain common formal aspects, the most interesting

problems are seldom the same in the two theories, so that a too strictly parallel and common

treatment results in obscuring and weakening rather than enriching both of them. (For instance

the search for universal arrows is uninteresting when all arrows are invertible, while, on the other

hand, the groupoids have essentially the same specificity among categories as groups among

monoids, and also equivalence relations among preorders, and nobody would claim that group

theory is nothing else than a specialization of the more general theory of monoids, and that

equivalence relations are just a trivial special case of the more general preorder relations.)

Moreover at that age the main stream of “categorists” were not prepared to the concept

of “internalization” (which was rediscovered and popularized much later), being focused on the

12As emphasized below (8.7.2), this action may be described by a groupoid morphism (a
functor). But, as above-mentioned, categorists would call this functor a “discrete (op)fibration”.
This creates an inextricable mess! More generally the more and more widespread intrusion in
Category Theory of (pre-existing and well established!) topological terms (such as connected,
discrete, undiscrete, compact, closed, fibred, foliated, and so on) for naming purely algebraic
properties, has disastrous outcomes when dealing with Ehresmann’s topological (and smooth)
categories, since such terms acquire in this latter framework two quite independent and conflicting
meanings. We of course definitely reject here such misuses.

13We recall that, introducing the language of universes U, it is always possible to deal only
with U-small categories, allowing U to vary when needed (this corresponds to a kind of “change
in scale”). When U is a universe, its elements are called small sets while its subsets are large sets.
This avoids to speak of “classes”, for which there is no universally accepted detailed axiomatics
available. (Actually it seems that Ehresmann was thinking in a language of universes though
most of its written work uses a language of classes).

14For instance Bourbaki’s axiom of “transport de structure” may be interpreted by saying
that the (large) groupoid of bijections between sets acts on the class of sets endowed with a
structure.

15Personally we think the contrary would have been much preferable: for us it seems more
comfortable from a psychological point of view to regard a functor as a special case of the
(informal) general concept of morphism between certain kinds of algebraic structures (where the
term “morphism” suggests some suitable kind of “compatibility” with these structures), than
to consider a morphism of groups (or small groupoids) as a special instance of a functor; but
Ehresmann felt the opposite (as many pure “categorists” do).
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Hom point of view, while on the other hand many “working mathematicians” felt some distrust

of what was often considered as “abstract nonsense”; so that the basic and simple concept of

structural groupoid, with its action on the bundle (and its smooth extra structure), disguised as

a (more or less degenerate) instance of very abstract and general “species of structure”, remained

largely ignored, in spite of its deep geometrical significance and usefulness, and is still far from

being as widely understood and used as it should be in our opinion.

This point of view is clearly emphasized in [EOC, /37/ and /44/] (and later in [EOC,

/111/]), and related to this basic example of fibre bundle consisting of the manifold of

infinitesimal jets Jr(Vn, Vm), fibred by the source (resp. target) projection on Vn (resp.

Vm) and the action of the groupoid of invertible jets on the source (resp. target) side.

2.2.4. Ehresmann’s program. One can realize that most of Ch. Ehresmann’s subsequent

work was devoted to finding the most general definitions and theorems arising from the

previous basic situation. This will be referred to in the sequel as “Ehresmann’s program”,

and the above presentation stresses how clearly it parallels and enlarges Erlangen program

in order to include (notably) the understanding of infinitesimal connections, following

closely the early geometric ideas of [EOC, /10/].

2.2.5. Topological and differentiable categories and groupoids. The precise conditions of

“compatibility” in the above formulation when the extra structure is a topology or a

manifold structure were described in 1959 [EOC, /50/], and the basic differentiable case

was emphasized in [EOC, /103/] in 1967.

These will be discussed more thorougly in the sequel. Roughly speaking they can be

conveyed by saying that the algebraic groupoid structure as well as its action have to be

described by morphisms of topological spaces or manifolds.

In particular this leads to the basic concepts of topological and Lie groupoids.

Remark 2.2.5.1. Ehresmann’s differentiable (here frequently called also smooth) groupoids are

nowadays known as Lie groupoids, following A. Weinstein and P. Dazord [CDW] (1987). A

detailed up-to-date presentation by K. Mackenzie (including this new terminology, which we use

here throughout) became recently available in textbook form in [MK].

However recall that, till 1987, this latter term was kept by various authors for the special

case of locally trivial (or equivalently locally transitive) transitive groupoids (which are essentially

the structural groupoids of locally trivial principal bundles, as recalled below). This change in

terminology seems to be widely accepted nowadays, but of course it may be a source of confusion

when reading ancient papers (notably Ngo van Que, A. Kumpera, et al., including the old version

of [MK], published precisely in 1987).

The present terminology is now coherent with the terminology we had introduced in 1967

for the corresponding infinitesimal objects, in the general (possibly non-locally transitive) case,

under the name of Lie algebroids [P 1967] (while such infinitesimal objects had been considered

previously by C. Ehresmann and P. Libermann, more or less implicitly, only in the original

locally trivial case).

A basic example of (non-étale!) such Lie groupoids is the groupoid of r-jets of local diffeo-

morphisms of a manifold B, which Ehresmann used to denote by Πr(B). He used them for a

geometrical definition of certain partial differential equations systems, viewed as smooth sub-

groupoids G of some Πr(B). Then the (local) solutions of such a system make up a complete

pseudogroup, which Ehresmann named a Lie pseudogroup. As explained in Rem. 2.1.2.1, the



GROUPOID GEOMETRIES 97

germs of solutions, with the étale topology, may be regarded as making up a (very special, since

étale!) Lie groupoid S.

Unfortunately B. Malgrange in 2001 [Mal] introduced this same generic term of Lie groupoid

(or D-groupoid) only with this very restricted and special meaning of Lie pseudogroup (germs

of solutions), and only in the analytic case (more precisely he considers “analytic manifolds”

which are possibly non-smooth, i.e. admitting some singularities). Due to the importance of this

work, this terminology is becoming widespread in this area.

This may be especially confusing and misleading in the very important and interesting special

case of finite type Lie pseudogroups, studied by Ehresmann in 1958 (cf [EOC, /48/], where a very

general and powerful version of Palais theorem was stated and proved in a very elegant way, as

an application of this theory, using E. Cartan’s closed subgroup theorem: see [Lib]): this names

the case when the defining system of equations G may be chosen (possibly after “prolongation”)

in such a way that there exists a unique germ of solution through each point of G. Then G

(equations) and S (germs of solutions) have the same underlying set (and algebraic structure

of groupoid), but two quite different structures of Lie groupoids in the general sense, the former

non-étale (which encapsulates a rich information), the latter finer and étale (whith the germ

topology of the Lie pseudogroup).

Remark 2.2.5.2. It should be noted that the local triviality is then reflected by a special

property (namely transitivity and local transitivity) of the structural groupoid and may

be easily withdrawn (together with the local description by means of atlases) in order to

encompass more general situations in which the main basic facts remain still valid, and

which may cover many other interesting applications. Ehresmann pointed out explicitly

that this allows the fibres to vary (we shall come back to this point below), in contrast

with the locally trivial case.

It may be proved [P 1985, P 2003] that on any Lie groupoid there is defined (in a

universal way) a finer manifold structure (determining a Štefan foliation [ST]) which

turns it into a locally trivial Lie groupoid (the latter is then the sum of its locally triv-

ial transitive components)16. This allows us to say that Ehresmann’s concept of dif-

ferentiable groupoids gives a precise meaning to the concept of (generalized) principal

bundle in which the structural group may “vary smoothly”, which, we guess, might and

should play an important role in Physics for gauge theories (see R. Hermann’s com-

ments [ECOM, (VII)]) in the interpretation of symmetry breaks and phase changes

[BGT, NGTP].

Note that the (“vertical”) variation of the isotropy group dimension is counterbal-

anced by the opposite (“horizontal”) variation of the orbit dimension. This may be viewed

as a refined process of smoothly blowing up a singularity, which results in attaching to

it an emerging group “measuring” it.

We think that the precise general mechanisms of this remarkable “compensation” are

not presently well enough understood, and we are convinced that it is of the utmost impor-

tance to clear them up (a special case is known as Weinstein’s conjecture). Very interesting

and typical examples of this situation are known:

16In the case of an étale Lie groupoid (in particular a pseudogroup) this new structure is
always uninteresting since discrete!
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• A. Connes’s tangent groupoid [NCG];

• the groupoids associated to manifolds with edges and corners (see A. Weinstein’s

survey [W] and B. Monthubert’s lecture [MH]);

• the holonomy groupoid of a regular foliation (introduced by Ehresmann in the more

general context of topological foliations: see our comments in [P 2003]), which de-

scribes the smooth variation of holonomy galoisian coverings of the leaves; a com-

plete characterization of such groupoids under the name of “graphoids” (because

they behave locally like pure graphs, in spite of their non-trivial isotropy) is given

in [P 1984], among those groupoids for which the transitor (or anchor map) is an

immersion;

• more generally all the previous examples are special instances of “convectors” (or

“quasi-graphoids”) which I introduced in 1985 (in collaboration with B. Bigonnet

[PB, P 1985]), when studying the holonomy of certain Štefan foliations, to desig-

nate those groupoids for which the pseudogroup of bisections or local translations

(Rem. 2.1.2.1) is faithfully represented (via the anchor map or “transitor”) by local

diffeomorphisms of the base, thus sharing properties of both graphs and pseudo-

groups.
• A typical (though very elementary) special example is the smooth (and even complex

analytic) non-transitive groupoid G describing the (non-free) action of the multiplicative

group C
∗ on C, for which 0 is an isolated fixed point. The isotropy group of 0 is C

∗. This

groupoid G defines an atlas for an orbital structure in the precise sense introduced in

[P 1989, P 2004]. This orbital structure is not trivial: it has just two orbits, but the orbit

{0} has C
∗ for its isotropy group17.

Though, as a smooth groupoid, G is far from being trivial nor locally trivial (the Štefan

foliation alluded to in Rem. 2.2.5.2 has just two leaves, one open and one closed), its

underlying manifold structure is just the product C
∗ × C, and the source map αG, which

is the canonical projection, determines a trivial principal fibration with structural group

C
∗ (as well as the target map βG).

In spite of the lack of local triviality for G, its canonical Ehresmann’s prolongation SG

(jets of bisections: see footnote in 1.2) is canonically isomorphic to the product of G by

a Lie group, and sG : SG → G admits a canonical section, which is a connection in the

generalized sense alluded to in this footnote18.

When dropping the origin, G induces on the punctured complex plane the banal groupoid

C
∗ × C

∗.

Adding a second fixed point ∞, this action may be extended to the Riemannian sphere

Ċ = P1(C), with an action groupoid Ġ. There are now three orbits.

One can also note than by blowing up 0 ∈ C, one gets the Möbius strip M = Ĉ. The

action of C
∗ extends (still non-freely!) on this blow up. The action groupoid Ĝ (with base

M : now the base has been blown up!) defines an atlas for a different orbital structure; the

isotropy group of the singular orbit is now Z2. One might also blow up ∞ ∈ Ċ, which

yields now the real projective plane P2(R), or both 0 and ∞, and introduce the analogous

groupoids.

17Starting from R, one can define analogously an orbital structure with three orbits: 0, +,−.
18The connections recently proposed by A. Connes for describing the structure of space-time

seem to be of this type, with one more complex dimension.
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Such objects are implicit in the elementary theory of functions of one complex variable19.

One might also resume the previous constructions when restricting the action of the mul-

tiplicative group C
∗ to its subgroup U(1). The action groupoid is now a subgroupoid H

of G. Its orbits are concentric circles. These are the leaves of a Štefan foliation, and H is

its (generalized) holonomy groupoid in the sense introduced in [P 1985].

When blowing up anew the origin in the base, one now recovers the (regular) canonical

foliation of the Möbius strip M by means of winding circles, and its (classical) holonomy

groupoid Ĥ with base M = Ĉ. The orbit space may be interpreted now as the “folded

line”.

A lot of other interesting examples arise when considering various subgroups of the complex

projective group and various covers of the previous groupoids.

2.3. From Lie groupoids to structured groupoids

2.3.1. Structured categories. Ehresmann realized that the previous basic examples, as

well as other ones he had encountered (ordered categories, double categories) had to be

viewed as special examples of what he called “structured” categories and groupoids [EOC,

/63/], better known nowadays among categorists as internal categories and groupoids (see

[ECOM, (XI) and (XII)] for more detailed explanations and comments on this terminol-

ogy).

Essentially this just means that, when describing the purely algebraic situation, con-

sisting of the groupoid composition law and the groupoid action (as well as the corre-

sponding axioms), by means of suitable diagrams of maps (verifying certain conditions),

the compatibility conditions may be expressed by demanding these maps to be mor-

phisms of the “structuring category” (which may be Top or Dif, or other large cate-

gories).

2.3.2. Dealing with partial composition and action laws. However the problem is that,

though this might seem at first sight a straightforward generalization of what was said

above in 2.1.1 about group actions, it turns out that, in the interesting situations, espe-

cially in Dif, very serious technical (and conceptual) difficulties arise from the fact that

one has to deal now with composition laws (and action laws) which are only partially

defined, and the diagrammatic expression of the axioms may be also less obvious. More

precisely the data and the axioms involve the consideration of certain pullbacks (i.e. fi-

bred products instead of products), and these pullbacks may fail to exist in general as

actual objects of the considered category; then certain conditions (for instance of locally

constant or maximal rank), intended to ensure the needed existence of these pullbacks,

look at first sight very specific to special categories, and may seem to have no counterpart

in more general categorical contexts.

It seems that essentially most of Ehresmann’s subsequent work was devoted to discover

definitions and theorems general and precise enough to encompass all the interesting

examples he knew, and peculiarly to bypass or circumvent the special difficulties inherent

to the basic category Dif.

19It would be probably enlightening to make explicit all the groupoids which are implicitly
used in the (much more sophisticated) constructions described in [RAMAR].
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2.4. Trails for pursuing Ehresmann’s program

2.4.1. Necessity for further developments. In spite of the huge volume of published pa-

pers (see [EOC]), Ehresmann’s program as defined above is clearly uncompleted, and in

the last papers the smooth case seems to be progressively neglected or put aside (or at

least outside the general theory).

Moreover a great part of these publications are very hard to read, due to their ter-

minology and very heavy notations deliberately chosen out of the main mathematical

stream, as well as the lack of motivating examples, supposed to be obvious for the reader

(see also the comments we made in footnotes of 2.1.2 and 2.2.3 and in Rem. 2.2.3.1).

This is extensively explained and commented in [EOC] by André Charles Ehresmann,

who accomplished remarkable efforts to yield translations, keys and examples in order to

make this considerable work more widely accessible.

However a great part of it seems to remain widely unknown, misunderstood, or poorly

understood, though we think it might bear oversimplifications and geometric enlighten-

ments in many areas and are open towards very important developments.

2.4.2. Objectives. The aim of the present lecture is twofold:

• emphasizing some leading ideas of Ehresmann’s program which in our opinion have

not been widely enough understood presently by the main stream of “working

mathematicians”, particularly differential geometers, though we think they should

be a basic asset for the mathematical community;

• suggesting some technical improvements in the presentation, the terminology20, the

notations and the formalism, trending to a more efficient implementation and to

getting more precise if, at least apparently, slightly less general statements.

Many developments will require further research.

2.4.3. “Right” generality versus “maximum” generality [McL]. As an overall remark, it

may be observed that the search for maximum generality may have two contradictory

effects, according to the way it is implemented:

• It is certainly highly beneficial when the more general theory actually includes the

original one as a special case, and is able moreover:

– to bear a new insight and a better understanding of the efficiency of the former

theory;

– to generate new applications in the same field or in new ones;

– to unify seemingly very distant various fields, thereby creating fruitful connec-

tions and comparisons.

• It may be harmful if the generality is acquired at the expense of too much weakening

the original theory and loosing some of its essential results.

20As was pointed out above, the very simple concept of Lie groupoid action (as a mild but
necessary and very important generalization of a Lie group action) seems presently completely
overshadowed by equally unfortunate terminologies introduced independently (and in conflicting
ways) by Ehresmann and by “modern” categorists.
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2.4.4. The basic leading ideas we wish to stress, and which emerge from the above

presentation (and appeared progressively throughout the whole of Ehresmann’s work),

are essentially:

• the necessity (particularly in Topology and Differential Geometry) of enlarging the

global concept of group actions into the concept of “fibred” actions, by which we

mean here groupoid actions ;

• the powerful general principle of “internalization”, which consists in describing the

previous purely algebraic (and set-theoretic) situation (namely groupoid actions)

by means of suitable diagrams keeping sense in sufficiently general “structuring”

categories, including notably Top and Dif.

This “categorical algebraization” tends to supply as much as possible unified ex-

pressions of the “compatibility” between the purely algebraic conditions and the

various extra structures proceeding from the “structuring category”, such as Top

or Dif. It turns out that judicious choices of the alluded diagrams (here indeed

lies the core of that kind of approach) may lead to very powerful and illuminating

unifying methods.

2.4.5. As to the suggested technical improvements, developed through the next sec-

tions, they bear on the following points (mainly inspired by applications to Differential

Geometry):

• about the definition of structured groupoids and particularly Lie groupoids, we pro-

pose:

– a simplified version of the diagrams used for describing the algebraic structure

of groupoids (stressing the specificity of groupoids among categories);

– an axiomatization of the properties needed for the subclass to which the source

projection is demanded to belong, covering a very wide range of categories used

by “working mathematicians”, and ensuring the existence of all the needed

pullbacks (though not all pullbacks).

• as to groupoid actions :

– a simple diagrammatic description, liable of immediate internalization;

– a wide-ranging definition of the concept of principal action obtained by inter-

nalization of the notion of free action; this important and fruitful concept was

progressively overshadowed in Ehresmann’s work by the most general notion

of generalized fibration;

– a symmetric description of conjugate and associated actions of the structural

group and groupoid on the bundle and on its fibres leading to a unified pre-

sentation of a very wide range of basic geometric situations and examples.

2.4.6. We had earlier opportunities of describing a large part of these technical im-

provements notably in [P 1989, P 2003, P 2004] to which we refer for more precisions,

explanations and developments. We shall recall here what is necessary for notations and

for understanding how they are tied up to what we name Ehresmann’s program.
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Then we shall insist on what we call the conjugation of principal or associated actions

(9.2.4), since, though this presentation was introduced a very long time ago [P 1975],

we expounded it only in oral lectures, and we think it points out a basic property of

the original genuine fibre bundles, which was forgotten, or at least hidden, in subsequent

Ehresmann’s generalized definition.

It is also intimately related with the subject of A. Kock’s lecture at the present

Conference [K], and offers for it an “internalized” point of view.

3. Is Dif really a “bad” category

or rather a fecund model for “working mathematicians”?

3.1. Has Dif to be “improved”? It is commonly admitted that the category Dif, consist-

ing of [smooth maps between] smooth21 manifolds, has bad intrinsic properties, as well as

the forgetful functor towards Set. Ehresmann himself shared this opinion, and, as being

basically a Differential Geometer, was much worried with that problem. Indeed, though

involved in the search of wide-ranging general concepts, he devoted a lot of energy in

keeping contact with the basic applications to manifolds and jets.

A widespread attitude among differential geometers has long been to conclude that

Category Theory is uninteresting and useless, at least for their main field of interest.

Another widespread standpoint consists in embedding Dif into a “better” category,

preferably a topos [GIR, Ja, Jb], or at least a cartesian closed category [McL]. This was

done in countless ways by various authors, among which (since this is out of the scope of

the present lecture) we shall just mention three:22

• Ehresmann’s very general processes of completions, enlargements, expansions and

others, for which we refer to [EOC] and to André’s comments;

• J.-M. Souriau’s approach by means of diffeologies ; for an application illustrating

this approach we refer to the contribution of P. Iglesias [IGL];

• the Kock-Lawvere approach called Synthetic Geometry, for which we refer to A.

Kock’s comments [ECOM, (VIII)].

Though we do not deny the interest of those sorts of approaches when suitably run,

we point out as an overall drawback or danger that they may lead to introduce a huge

quantity of pathological objects (for instance not only spaces of leaves of regular foliations,

but quotients by arbitrary equivalence relations) which are generally out of control and

often quite uninteresting from a differentiable standpoint, and we think that this type

of method should be completed by developing characterizations of the “true” manifolds

among these objects, and techniques for getting precise results about these, rather than

“general” results about “more general” objects.

21We use freely and loosely the term “smooth” as an abbreviation for “differentiable” with an
unspecified class of differentiability. As in [VAR] the manifolds are not assumed to be Hausdorff
when not expressly mentioned.

22We might have mentioned too for instance Frölicher’s approach by means of curves (which
is close to Souriau’s approach, as well as Chen’s approach by “smooth spaces”), and Sikorski’s
approach by means of “differential spaces”, which uses the dual point of view of functions, now
prevailing in non-commutative geometry [NCG].
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Indeed one may seriously wonder whether it is really desirable for a differential geome-

ter to be able to “solve” very general and unnatural problems of (co)limits by introducing

artificial and formal “solutions”, when neither the problem nor the solution own the least

kind of compatibility with the smoothness of the initial data. It seems more natural that

he deals primarily with those sorts of singular spaces which, though liable to be very wild,

take their origin from smooth data (spaces of leaves of foliations are typical examples, as

well as manifolds with corners).

3.2. Dif as an exemplary category?

3.2.1. Good monics and good epis. This leads us to propose a quite different approach

(initiated in [P 1975], and explained also in [P 2003, P 2004], to which we refer for more

details and examples), which will be developed more extensively elsewhere. Our opinion

is that the reason why Dif (as well as the forgetful functor towards Set) is considered

as “bad” from a categorical viewpoint derives from the fact that originally the main

founders of Category Theory had quite different and distant models in mind, essentially

the categories Set and Top and the categories stemming from Algebra, Algebraic Topol-

ogy, Homological Algebra, and later Algebraic Geometry, and the basic concepts (such as

general (co)limits, epis and monics) were coined for those models, as well as the axiom-

atizations which led notably to the concepts of abelian categories and toposes.

When compared to these sorts of models, Dif looks poor, since for instance few general

(co)limits (notably pullbacks and pushouts) do exist and the general epis and monics may

be pathological.

However one may observe that D = Dif is endowed with two distinguished subcat-

egories of monics and epis respectively, namely the subcategory Di of embeddings (in

the sense of [VAR])23 and the subcategory Ds of surmersions (i.e. surjective submersions

[VAR]), which play a basic role in the definition of Lie groupoids (as well as throughout

Differential Geometry).

These subcategories have some remarkable stability properties (essentially stated in

[VAR]24) which are not all simultaneously satisfied (in an unspecified category) when

considering all25 general monics and epis (nor any of the general variants the categorists

were led to introduce, such as split, strict, regular . . . ) in general categories, but turn

23When dealing with Hausdorff manifolds, one has to consider proper (i.e. closed) embed-
dings in order to fulfill the alluded stability properties.

24These formal properties are indeed intimately linked with variants or consequences (in-

cluding Godement theorem [SLALG, VAR]) of the implicit function theorem, in other words

with the fact that, for the arrows of Di and Ds, the local model coincides with the linear model.

Since this is the essence of differentiability, it is not amazing that, though these properties look

very mild, they are able to encapsulate, as extra data, some essential properties of Dif that are

not satisfied in the most general abstract categories.
It is highly remarkable that, in many other categories used by “working mathematicians”,

the same simple formal properties are able to encapsulate some other specific basic theorems.
25For instance the product of two epimorphisms is in general no longer an epimorphism, but

this stability property is satisfied by (surjective) open maps (though not by general identification
maps), or (surjective) proper maps, or surmersions.
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out to be (not quite obviously) satisfied by all the monics and epis in the (important and

wide-ranging) cases of abelian categories as well as toposes (and of course Set).

3.2.2. Internalization. We also observed that these properties are precisely those which

ensure the existence of the pullbacks (and also a few pushouts) needed for the very

definition of Lie groupoids, and for all the basic constructions occurring in the theory of

Lie groupoid actions, as it will be described below.

One may even say that there exists a kind of very powerful empirical and heuristic

“meta-principle of internalization” asserting that translating the algebraic constructions

of the theory of groupoid actions in terms of suitable commutative diagrams drawn in Set,

and stressing the injections, surjections, and pullbacks (and also certain pushouts), allows

a “quasi-automatic” internalization in the categories where these stability properties are

fulfilled (hence particularly in any topos, but also in Dif, which is not a topos, and has

not to be embedded beforehand, in a more or less artificial way, into a topos, using such

an approach).

3.2.3. Selecting good limits. Moreover these properties remain still valid for numerous

variants of these distinguished monics or epis.

One can say that the extra data of Di and Ds operate as a good choice of subobjects,

quotients, pullbacks and pushouts, focusing on a class of problems considered as interesting

from the smooth standpoint, and preventing from getting lost among too general and too

wild objects.

These problems are described by specific equivalence classes of diagrams involving

arrows of D, Di and Ds and possibly certain pullbacks (and pushouts). It is not demanded

that these diagrams possess an actual limit inside the categoryD. Indeed one might realize

that the introduction of such a limit (in the general sense of Category Theory) would

often involve a crucial loss of information. For instance we think that the space of leaves

of a foliation is better viewed (and indeed more precisely defined) as an equivalence class

of foliations in the sense introduced by P. Molino [Mol], or equivalently as a Morita

equivalence class of certain smooth groupoids (in a precise smooth sense), rather than as

a universal quotient in the most general categorical meaning (cf. [P 2004]).

For instance such a quotient would exist as an actual object in the category of diffe-

ologies in the sense of J.-M. Souriau; these two approaches lead in natural ways to two

non-equivalent definitions of the fundamental group of this object, and it turns out that

the former notion is strictly better adapted than the latter.

3.2.4. Categories for working mathematicians. We also observed that, very remarkably,

a very wide variety of categories used by “working mathematicians” may analogously

be endowed (often in a quite non-obvious way, and in multifarious ways) with two such

distinguished subcategories.

It is also very important to observe that, when dealing with categories of commutative

diagrams (and primarily commutative squares26) of the original category, there arise (a

lot of) natural candidates for special monics and epis which inherit (often in a rather

26Called “quatuors” (i.e. quartets) in Ehresmann’s terminology.
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non-obvious way) the above-mentioned stability properties, thus creating various new

examples.

In the present framework this applies basically to the category of [morphisms between]

Lie (more generally structured) goupoids and their actions. This leads also to an inductive

approach of higher order structures (multiple structured groupoids).

We think this approach is exactly in Ehresmann’s spirit, as a specialization of the

general principles he introduced, which is directly adapted to his main fields of interest

in Geometry.

This leads to what we have called “diptychs” [P 1975], for which we refer to [P 2004,

P 2003], but we recall now some basic definitions and notations for reader’s convenience

(we intend in a near future to weaken slightly our axioms in order to be able to include

a lot of important other structures, such as Riemannian or Poisson manifolds).

4. A brief review of diptych approach. At first reading, the technical details may be

skipped, just retaining roughly that the following machinery (presented in some details in

[P 2004], and we intend to develop more extensively in future papers), is aiming at allow-

ing to replace (injections) / (surjections) of Set by ([closed] embeddings) / (surmersions)

in Dif[Haus] and more generally by (“good” monomorphisms) / (“good” epimorphisms)

in nice categories including very wide-ranging examples, for a more efficient implemen-

tation of Ehresmann’s program.

4.1. (Co)(pre)diptych data and axioms, dip-pairs

4.1.1. Definitions. A prediptych, denoted by D = (D;Di,Ds), or sometimes loosely by

D alone, is a triple in which:

• D is a category;

• Di /Ds is a subcategory of D, the arrows of which are denoted generally by arrows

with a triangular tail / head such as ⊲ ≻ / ⊲ , or ◮ ≻ / ◮ , and so on

(here / is written loosely for resp.).

Moreover it is demanded that:

(i) Di ∩ Ds = D∗,

where D∗ denotes the subgroupoid of invertible arrows (called isomorphisms).

• D is called a diptych if D is equipped with the extra data of finite non-void products,

and if the following extra conditions are satisfied:

(ii) Di and Ds are stable under products ;

(iii) (a) / (b) the arrows of Di /Ds are monos / epis (called “good”);

(iv) (a) (h = gf ∈ Di)⇒ (f ∈ Di) (“strong α-stability”);

(b) ((h = gf ∈ Ds) & (f ∈ Ds))⇒ (g ∈ Ds) (“weak β-stability”);

(v) (“transversality”, denoted by Ds ⋔ Di):
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(a) (“parallel transfer”):

given s ∈ Ds, and i ∈ Di with common target B, there exists a pullback square

A′ ⊲
i′

≻ A

pb

B′

s′
▽

⊲
i
≻ B

s
▽

with moreover s′ ∈ Ds, i′ ∈ Di, as pictured;

(b) (conversely: “descent”, or “reverse transfer”):

given a pullback square as above, but assuming now i′ ∈ Di, and s,s′ ∈ Ds

(with just given i ∈ D), one concludes i ∈ Di;

(vi) pullback squares with all four arrows in Ds are pushouts [McL] too: such squares

will be called s-exact squares27.

Since, for D fixed, there may exist on it a great variety of interesting (pre)diptych

structures, it may be convenient to say that (D′,D′′) is a (pre)dip-pair on D whenever

(D;D′,D′′) is a (pre)diptych.

The most interesting diptychs will be Godement diptychs (and Godement dip-pairs),

to be defined below (8.3.5).

Any category D may always be considered (implicitly), with its trivial prediptych struc-

ture (not a diptych in general):

(triv.pred) (D;D∗,D∗).

corresponding to the trivial prediptych pair (D∗,D∗).

One may also consider the following canonical prediptych structures:

(i-pred, s-pred) [D]i =
def

(D;D,D∗) and [D]s =
def

(D;D∗,D) .

The product of two prediptychs D×D′ may be defined in an obvious way, but may not

be a diptych when D and D′ are, though this is always true when D and D′ have terminal

objects (this implies that the objects of D ×D′ are the products of their components).

4.1.2. Standard and split diptychs. The basic diptych:

Set = (Set; Inj, Surj)

has very special additional properties, which are not required for general diptychs.

• A diptych will be called standard when good monos and epis consist of all monos

and epis. For a given category, the existence of a standard diptych structure on this

category is a very special property.

• If moreover all monos and epis are split [McL], the diptych will be called split. (Thus

Set is standard and split.)

Note that if (Di,Ds) is a dip-pair, the same is true for (Di,D
spl
s ), where Dspl

s denotes the

class of split arrows of Ds .

27Called perfect squares in our previous papers.
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4.1.3. Remarks about axioms and definitions

1. In future papers, and with many important new examples in mind, the equality in axiom (i)

will be weakened into an inclusion, thus defining also good isomorphisms. We shall also

introduce in the data an involution in D, which here would be trivial.

2. The existence of the void product (i.e. of a terminal object), is not required in general, in

view of basic examples ; when it does exist, it will be denoted by a plain dot • (though it

has not to be a singleton), and the diptych is then called augmented.

Though, in many examples, not only there exists a terminal object •, but moreover the

canonical arrows A ⊲ • are in Ds, this property is not required in general. Then those

objects A owning this latter property will be called s-condensed. (In the examples below

this may mean: non-empty and moreover connected, compact, finite, maximum...)

As a consequence of the axioms, it turns out that whenever A is s-condensed, then, for

any object B, one has:

(A × B
pr2

⊲ B) ∈ Ds.

More generally, an object A will be called s-basic when the previous condition is satisfied

for B = A (see below 8.3.3). (For instance, in the standard diptych Set, ∅ is s-basic though

not s-condensed!)

A diptych D will be called s-augmented when it has a terminal object and moreover all

its objects are s-condensed (see 6.4.2 below).

3. Axiom (iv) (a) yields for each arrow A
f
→ B of D a canonical “graph factorization”:

(graph) A ⊲
(idA,f)

≻ A × B
pr2≻ B

through Di (and through Ds when A is s-condensed).

This applies in particular to f = 1A and sounds like a separation property for A: see

[P 2004] for weakening symmetrically this axiom and then introducing the general notion

of “i-scattered” objects (which however is not the dual of s-condensed).

4. Property Ds ⋔ Di of axiom (v) means roughly that the arrows of Di can be pulled back

and pushed out along the arrows of Ds; together with the other axioms (and using the

previous remark), it implies the properties Ds ⋔ D and Ds ⋔ Ds, which notably yield

sufficient conditions for the existence of certain pullbacks.

Those special pullbacks constructed by pulling back along an arrow of Ds will be called

briefly special pullbacks.

All such pullbacks satisfy the following condition (keeping the above notations):

(ipb) ((s′, i′) : A
′

⊲ ≻ B
′ × A) ∈ Di.

5. As shown by elementary examples in Dif, other useful pullbacks may exist, for instance

those deriving from the standard transversality condition [VAR], but also many other

ones defined by “nice” intersections; however “pathological” ones may also exist, arising

from “bad” intersections (though they own the standard universal property of general

pullbacks [McL]); it turns out that, in our diptych context (and particularly for Dif : see

for instance a useful application in [P 1986]), the efficient notion is what we call “good pull

back squares”, by which we shall mean those pullback squares (in the standard categorical

sense) which furthermore satisfy the (ipb) condition just above (see 6.1.1 below). This

notion is stable by finite products. All special pullbacks (4) are good.

6. Axiom (vi) turns out (in presence of the other axioms) to be equivalent (see [P 2004]) to

demanding the arrows in Ds to be strict epis, i.e. coequalizers [McL].
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7. In many applications the category D is endowed with a forgetful functor p : D → Set

which is faithful ; then any morphism f : A → B is uniquely determined by the triple

(p(f), A, B) and A, B may be interpreted as “structures” on the underlying sets p(A),

p(B); one can speak then of a “concrete” diptych, a familiar and intuitive situation. But

in view of interesting examples, we shall avoid as much as possible such an assumption,

trending to work “without points”, though keeping in mind the concrete situation.

8. It should be noted that the axioms look nearly self-dual, though they are not thoroughly,

and this is important for the most interesting applications, which are seldom self dual (see

for instance the basic symmetric simplicial category below in 5.3.4).

The dual (or opposite) of a prediptych D is defined as:

(dualpred) D
op = (Dop; (Ds)

op
, (Di)

op), i.e. (Dop)i = (Ds)
op

, (Dop)s = (Di)
op;

A prediptych D is called a co-diptych if its dual prediptych is a diptych: when making

explicit the data and axioms for a co-diptych, one has to switch product / coproduct,

epi /mono, pullback / pushout.

4.2. Prediptych morphisms and (well) exact diptych morphisms. A (pre)diptych mor-

phism, or briefly (pre)dip-morphism:

f : D′ → D ,

with D′ = (D′;D′
i,D

′
s), D = (D;Di,Ds), is a functor f : D′ → D such that one has:

(predipmor) f(D′
i) ⊂ Di, f(D′

s) ⊂ Ds .

(These conditions vanish when D′ is the trivial prediptych structure (4.1.1) on D′.)

A diptych morphism is called exact (or dip-exact when there is some risk of confu-

sion with much stronger notions of exactness [McL]) if moreover it preserves the special

pullbacks (4.1.3 (4)).

This type of condition might be regarded as a special case of “preservation of second

order diptych data”; this would enable to consider more flexible and more various notions

of exactness: see 6.3 below.

This does not imply the preservation of finite products, not required! When finite non-

void products are preserved too, the morphism is called well exact. Nothing is required

about preservation of void products (terminal objects), whether they exist or not in D

or D′.

(Well) (exact) (pre)diptych morphisms define large categories denoted by Predip,

Dip, DipEx, DipWEx.

5. A few examples of diptychs. Checking all the axioms for the following examples

may be rather lengthy, and of unequal difficulty, but most of them rely on more or less

classical results of each theory.

Other examples may be found in [P 2004], but we slightly change and improve our

notations, and we focus on what is necessary for our present purpose.

5.1. Main example and its variants: Dif. Apart from Set (4.1.2) the basic example for

our present purpose will be (using the terminology of [VAR]):

Dif = (Dif ;Emb ,Surm) ,
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where Dif is the category of [morphisms between] differentiable manifolds, Emb the

subcategory of embeddings, Surm the subcategory of surmersions (= surjective submer-

sions). It is augmented but not s-augmented: note that “s-condensed” (Rem. (2) in 4.1.3)

just means here “non-empty”.

Various subcategories of Surm may also be used for good epis, demanding from surm-

ersions extra properties, such as being: split (= right invertible), étale, “retro-connected”

(by which we mean that the fibres are connected, hence the inverse image of any connected

subset is still connected)28.

This actually defines various sub-diptychs, denoted by:

Dif(spl), Dif(ét), Dif(r.c), Dif(r.n−c).

For the full subcategory of Hausdorff manifolds, one has to use closed (or proper)

embeddings (see the comments of 4.1.3 (3)), which yields:

DifH = (DifHaus;PrEmb,Surm) .

Then one may demand the surmersions to be also proper [and étale] (which, by a

classical theorem of Ehresmann, implies they are locally trivial fibrations [finite covers]),

and this defines:

DifH(prop), [DifH(fin.cov)].

According to the above various choices for Ds, the meaning, for a manifold, of being

“s-condensed’ ’ in the sense of Rem. 4.1.3 (2) may be: non-empty and moreover discrete,

connected, n-connected, compact, finite, etc. One notices that the condition of being

non-empty is dropped for s-basic objects.

5.2. Other large diptychs. We refer to [P 2004] for examples with topological spaces,

Banach spaces, vector bundles... We just stress that, in the category Top, one cannot

take as arrows of Ds all the identification maps (not stable by products!) but one can

take the open ones (with possibly many variants): the diptych we get in this way will be

denoted by Top.

It is remarkable that any topos or abelian category may be endowed canonically with

a “standard” diptych structure (4.1.2), (and also a standard co-diptych one), taking for

Di and Ds all the monomorphisms and all the epimorphisms (as in Set): the statements

and the proofs of most (not all) of the non-obvious axioms may be found for instance

in (or deduced from) [Ja] and [McL]. That is no longer possible for any general category

(notably for Dif).

We think this explains why it seems easier (from the point of view of a “pure cate-

gorist”) to work within toposes, but it is much more efficient, though no more difficult, for

a “working mathematician”, to use diptych structures, which allow to encapsulate some

crucial and sensible extra information, while granting wider-ranging applications.

We feel that the existence, for a given category, of a diptych structure on it, is an im-

portant property of this category, which makes it suitable for “working mathematicians”.

28More generally, as a consequence of (non-obvious) theorems proved by G. Meigniez (see
[MG]), it is possible to replace connected by n-connected. (We hope to apply this important
fact, which encapsulates some deep properties, in future papers.)
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Note that the (large) category Poset of (partially)29 ordered sets and monotone

functions has a standard diptych structure, denoted by Poset, and also a co-diptych

structure.

5.3. Small (pre)diptychs. Small, and even finite (often non-concrete: cf. Rem. 4.1.3 (7))

(pre)diptychs will be also of interest in the sequel. Here D will be a small category T

(called “type of diagram” below).

5.3.1. Preordered sets, finite ordinals. A (partially30) preordered set (E,≤) may be re-

garded as a (very special) category T , in which all arrows are both monos and epis.

The standard diptych structure (4.1.2) cannot exist, but in the degenerate case of an

equivalence relation.

For a, b ∈ E, their [co]product means just their g.l.b. [l.u.b.] or meet a ∧ b [join a ∨ b]

[McL]. It is defined for any pair whenever (E,≤) is a lattice, and notably when the

preorder is total.

When such is the case, the trivial prediptych (T ; T∗, T∗) is a (non-standard) diptych,

as well as (notably) [T ]i and [T ]s (defined in 4.1.1).

For any n ∈ N
⋆ we denote by

(ord) n = [n− 1] = {0 < 1 < . . . < n− 1} (= [0, n[⊂ N)

the corresponding (non-empty) ordinal, possibly viewed as a trivial small diptych.

Forgetting the order, one denotes by
×
n or 〈n − 1〉 the banal groupoid of pairs n × n

(corresponding to the trivial total preorder). We have the inclusion of categories:

[n− 1] = n ⊂
×
n = 〈n− 1〉 .

It may be sometimes suggestive and useful to write:

1 = [0] = ⋆⋆⋆ , 2 = [1] =↓↓↓ ,
×
2 = I

For instance the ordinal 2 = {0 < 1} has three canonical diptych structures, denoted

by: 2 (the trivial one), [2]i, and [2]s, pictured respectively by:

0 ≻ 1 , 0 ⊲ ≻ 1 , 0 ⊲ 1 .

Taking products, we get nine diptychs, for which we introduce transparent geometrical

notations, for instance:

(5.1) ��� = 2×2, ���
i

= [2]i×2, ���
s

= [2]s×2, i��� = 2× [2]i, s���
i

= [2]i× [2]s · · ·

pictured by the following diagrams:

· ≻·

·g ≻·g
≻

·⊲ ≻·

·g⊲ ≻·g
≻

· ⊲·

·g ⊲·g
≻

· ≻·

·g

▽

≻·g

▽

≻

·⊲ ≻·

·▽⊲ ≻·▽
≻ · · ·

29We recall that in Bourbaki’s terminology [ENS] (pre)order means partial (pre)order.
30See previous footnote.
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5.3.2. Groupoid data: Υ. The prediptych generated by the following diagram (no longer

a preorder), denoted by Υ, will be used for describing structured groupoids:

(Υ) 2 δ ⊲ 1 α ⊲
≺ ω ⊳ 0

where α ω is the unit of the object 0 (see 5.3.4 below for more precision).

5.3.3. Simplicial category: ∆,∇∇∇. The non-empty finite ordinals n = [n − 1] of 5.3.1

are the objects of the simplicial category ∆. Its arrows (order preserving maps) may be

viewed as exact diptych morphisms. 1 is a terminal object.

Though, when including also the empty ordinal 0, we get a monoidal category [McL]

(here denoted by ∆̇, and called “augmented”), ∆ has neither products nor coproducts,

hence no diptych structure, but a canonical (standard) prediptych structure, denoted by:

∆ = (∆;∆i,∆s)

defined by the injective and surjective morphisms.

Indeed the useful prediptych will be the dual one (4.1.3 (8)):

∇ = (∇∇∇;∇∇∇i,∇∇∇s), where ∇∇∇ = ∆op, ∇∇∇i = (∆s)
op, ∇∇∇s = (∆i)

op.

(It may be sometimes useful to embed ∆ in the diptych of finite preordered sets.)

5.3.4. Symmetric simplicial category: FFF, `̀̀. More important indeed (for defining struc-

tured groupoids31) than ∆ and ∇∇∇, will be the category FFF32: it has the same objects as ∆

(non-empty finite ordinals), but, forgetting the order, its arrows are all the set-theoretic

maps between the underlying finite cardinals. We call it the symmetric simplicial cate-

gory.

We recall (5.3.1) the embedding:

n ⊂
×
n ,

where
×
n denotes the banal groupoid

×
n of pairs (such an object will be thought below as

modeling all the commutative diagrams in groupoids with n vertices). The arrows of FFF

may be then regarded as (degenerate) groupoid morphisms.

Observe injections and surjections define on FFF a (standard) diptych structure:

(FFF;FFFi,FFFs),

which is s-augmented in the sense of Rem. 4.1.3 (2), with terminal object 1, but this will

not be the most important one for the sequel.

Much more important for our purpose will be its co-diptych structure (Rem. 4.1.3 (8)),

defined by considering co-products and amalgamated sums, instead of products and fibred

products; we denote this co-diptych structure by F.

The dual diptych (which plays a basic role for groupoids) is denoted by:

` = (`̀̀; `̀̀i, `̀̀s) with `̀̀ = FFFop, `̀̀i = (FFFs)
op, `̀̀s = (FFFi)

op.

31As above-mentioned we focus here on specific properties of structured groupoids. It might
happen that our approach could be extended to Ehresmann’s structured categories (with nec-
essarily much weaker properties), replacing the products data by a monoidal structure, in order
to include ∇∇∇, but this out of our present scope.

32Often denoted by Φ in the literature.
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It has no terminal object (hence cannot be s-augmented), but 1 is now an initial object,

and moreover any object n is an n-th iterated product of 1.

Considering the full subcategories of ∇∇∇ or `̀̀ generated by the objects p or
×
p for

0 ≤ p − 1 ≤ n, we get the truncated prediptychs (in which the products are no longer

defined): ∇[n] or `[n].

We have canonical prediptych embeddings :

∆ ⊂ F, Υ ⊂ ∇[2] ⊂ ∇ ⊂ `.

With the notations used by [McL] for the canonical generators of the simplicial category

∆, the prediptych Υ (described in 5.3.2) is precisely identified with the dual of the

following sub-prediptych of F (remind n = [n− 1], cf. 5.3.1):

(fff) 3 ≺ δ2
0 ⊳ 2 ≺ δ1

1 ⊳
σ1
0 ⊲ 1

It should be noted that the pair (α, α) has a pullback in `̀̀, but not in ∇∇∇.

When adding the empty ordinal 0, we shall speak (in a slightly improper way) of

augmented simplicial categories and use the notations:

∆̇, ∇̇∇∇, ḞFF, ˙̀̀̀ .

[The slight ambiguity of this terminology comes from the fact that the standard diptych on the

category ḞFF is no longer s-augmented, since now “ s-condensed” (Rem. 4.1.3 (2)) would mean

“non-empty”! On the other hand ˙̀ becomes now an “ s-augmented diptych”, with 0 as terminal

object33 (see also 6.4.3 below), and this is a property of the co-diptych structure Ḟ of ḞFF.]

5.3.5. Butterfly diagram type. We introduce now a prediptych which will occur fre-

quently in the sequel. Here n may be regarded as just a second (distinct) copy of the

ordinal n (indeed it should be endowed with the reverse order, but this is immaterial in

the present context). We use notations of [McL] for the canonical generators of the sim-

plicial category (canonical injections and surjections), and denote by ι1, ι2 the canonical

injections of 2 into 4 = 2 + 2. The prediptych pictured by the right diagram below is

defined as the dual (= opposite) of the left one; it will be denoted by ⊲⊳⊲⊳⊲⊳ and called the

butterfly diagram type (see 8.4 below for explaining its role for groupoids and notations).

3 3

4
σ
3
2

⊲⊳
σ 3
0

2

δ2
0

△

f

⊲
ι2

≻

2

δ2
2

△

f

≺
ι1

⊳

3 3

4 ≺
ι
top

⊳⊲
ιbot

≻

2

δ

▽

⊳
̟
bot

2

δ

▽
̟ top

⊲

5.3.6. Some canonical endomorphisms of `. As will be seen below (8.4), dip-exact endo-

functors of the canonical diptych ` (and their natural transformations) define natural

canonical operations on structured groupoids (and this will explain the following nota-

tions : see 8.4 below).

We shall denote by EEE0 the monoid of endo-functors of FFF, and by EEE the category

(with base EEE0) of its endomorphisms, i.e. natural transformations γ : Γ
�
→ Γ′ between

33The (slight but basic) dissymmetry of diptych axioms stresses this basic dissymmetry
between 0 and 1, but we shall let the philosophers argue about Being and Nothingness!
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such endo-functors (now regarded as objects), endowed with the composition law which

is called vertical in [McL].

However, to be coherent with our future conventions introduced below for diagrams

(7.1.5), we shall switch the names of horizontal and vertical compositions in the present

terminology.

By duality the identity map from `̀̀ to FFF (“reversing the arrows”, which is a contra-

variant functor) determines a bijection between endo-functors Γ, Γ′ of the category `̀̀

and natural transformations γ : Γ
�
→ Γ′ on the one hand, and the corresponding objects

denoted by
∗
γ :

∗∗

Γ
�
←

∗∗

Γ′ for the dual category FFF on the other hand, and one notices

that this bijection is horizontally contravariant and vertically covariant (with our present

conventions).

More precisely, denoting now by ∃∃∃0 the monoid of endo-functors of `̀̀ and by ∃∃∃ the

category of its endomorphisms, endowed with what we prefer to call here the horizontal

law, the previous bijection determines two isomorphisms:

• a covariant isomorphism denoted by: ∗∗ : ∃∃∃0 ↔ EEE0;

• a contravariant isomorphism: ∗ : ∃∃∃ ↔ EEE.

The following three endo-functors of FFF (and their dual associates), which turn out

to be exact, and which indeed extend to the augmented category ḞFF , will be of special

importance.

• To each object n of ḞFF, there is attached an involutive arrow in ḞFF, the “mirror map”

ςn : n→ n, which “reverses the order” (p 7→ n− 1− p). This defines an involutive

automorphism of FFF (or ḞFF):

(Mirror) Σ : FFF↔ FFF ,

preserving the objects and taking any arrow f : m→ n to Σf =
def

ςn ◦ f ◦ ςm , and

then an involutive natural isomorphism n 7→ ςn (between functors):

(mirror) ς : Id
�
←→ Σ .

We shall omit here the ∗∗ for the dually associated objects.

(Note Σ induces an automorphism of ∆ ⊂ FFF, but ς is no longer defined.)

• The (right / left) “shift endo-functors”34
∗∗

∆ /
∗∗

∇∇∇ of FFF (or ḞFF) are defined by:

(n 7→ 1 + n, λ 7→ id1 + λ) / (n 7→ n + 1, λ 7→ λ + id1) .

They are endowed with natural “shifting” transformations (from the identical func-

tor):
∗∗

∆ ≺
�

∗

δ

Id /
∗∗

∇∇∇ ≺
�

∗

δ

Id .

34The use of symbol ∆ seems rather traditional for denoting the simplicial category (aug-
mented in [McL]), and respected here. However this symbol and its dual ∇ are now given, here
and in the sequel, operator significances having a very strong geometric flavour evoking com-
mutative triangles (which will be progressively revealed). The risk of confusion seems negligible,
according to the context.
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which are defined (using Mac Lane’s notations [McL] for the canonical generators

of the simplicial category) by:

n 7→ δn =
def

δn
0 : n→ 1 + n / n 7→ δn =

def
δn
n : n→ n + 1 .

By duality this yields for ˙̀ exact endo-functors and natural transformations:

∆
�

δ
≻ Id / ∇∇∇

�

δ
≻ Id ,

One has: ∇∇∇ = Σ ◦∆ ◦Σ.

• The “doubling” or “co-squaring” endo-functor of ḞFF is defined by:

n 7→ n + n, λ 7→ λ + λ ,

and is endowed with natural transformations defined by the co-diagonal and the

canonical injections into the co-product:

n← n + n (= 2n), n→ n + n← n .

By duality ones gets for ˙̀ an exact endo-functor ���,35 and natural transformations,

which we denote by:

Id
�

ι
≻ ���, Id ≺

�

̟bot
���

�

̟top
≻ Id .

One can also write a canonical butterfly type diagram in the category ∃∃∃ (see below 8.4

for the definition of the natural transformations ιbot and ιtop and the significance of this

diagram for structured groupoids):

∆∆∆ ∇∇∇

��� ≺

�

ι
top

⊳⊲
�

ι bot

≻

Id

δ �

▽

⊳

�

̟
bot

Id

δ �

▽

�

̟ top

⊲

.

5.3.7. Canonical representation of `̀̀. It may be convenient to get some concrete representation

of the abstract category `̀̀.

Let us denote by CLat the category of [morphisms between] complete lattices, which has a

standard (i.e. injections, surjections) (4.1.2) diptych structure CLat. Then one defines a functor:

P
∗ : `̀̀ → CLat

as follows (denoting by f : q → p an arrow of FFF and by f : p → q the dually associated arrow

of `̀̀ = FFF
op, and using power sets and inverse images):

P
∗(p) =

def
2p = P(p) ; P

∗(f) =
def

f
−1 : P(p) → P(q) .

(Observe that identifying A ∈ P(p) = 2p with its characteristic map a : p → 2 = {0, 1}, then

B = f−1(A) is interpreted just as b = a ◦ f).

Then it is a lengthy but elementary exercise in set theory to prove what follows:

35This symbol has been used above (5.3.1) with a quite different meaning to denote the
(concrete) category 2 × 2. The context should avoid confusion.
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• P∗ : ` → CLat → Set is a faithful well exact diptych morphism (4.2) (called the canonical

embedding).

• P∗ : ` → Set may be identified with the symmetric nerve (see below 8.1) of the banal

groupoid
×

2 (= 2 × 2) of pairs of elements of the set 2 = {0, 1}.

When f : q ⊲ p is a surjection in FFF (defining an equivalence relation on q), the good

mono f : p ⊲ ≻ q in `̀̀ is represented (using P∗) by the embedding onto the subset of saturated

subsets of q. When f : q ⊲ ≻ p is an injection, the associated good epi f : p ⊲ q is

represented by the surjection “trace” of a subset of p on the image of f in p.

6. Squares in a diptych. A preliminary study of squares is needed for being able to

study below more general diagram morphisms. (We modify and improve notations of

[P 2004].)

6.1. Three basic properties of squares in a (pre)diptych.

6.1.1. Definitions and notations. It turns out that, in a given prediptych D, the following

three types of commutative squares (introduced in [P 1985, P 1989, P 2004] with different

names and notations) will play a basic role in the present diptych framework36. Here a

(commutative)37 square of D, with the notations of the diagrams just below, will be

called:

• an ipb-square if condition (ipb) of Rem. 4.1.3 (4) above is satisfied, which reads

here:

(ipb) A′ ⊲
(f ′,u)
≻ B′ ×A ;

• a gpb-square or good pullback (see Rem. 4.1.3 (5) above) if moreover it is a

pullback (or cartesian) square [McL];

• an spb-square if the pair (v, f) admits a good pullback38 and moreover the canon-

ical factorization is in Ds, i.e. one has:

(spb) A′ (f ′,u)
⊲ B′ ×

B
A ⊲ ≻ B′ ×A .

Note that: (gpb)⇔
(
(ipb) & (spb)

)
.

The ipb, gpb, spb -squares will be tagged respectively by �̌,
⋄

�, �̂ as follows:

36The underlying purely algebraic properties are more or less classical in various contexts,
with unsettled terminologies.

37If the opposite is not expressly mentioned, all squares are commutative (“quatuors”, i.e.
quartets, in Ehresmann’s terminology).

38Observe this is, somewhat unsymmetrically, not demanded for an ipb-square (in spite of
the symmetrical terminology), but is notably automatically verified in the frequent cases when
f or v is in Ds (“special” ipb-squares).
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A′ u
≻ A

�̌

B′

f ′

g

v
≻ B

f

g

A′ u
≻ A

⋄
�

B′

f ′

g

v
≻ B

f

g

A′ u
≻ A

�̂

B′

f ′

g

v
≻ B

f

g
.

It follows from axioms (iii)(b) and (vi) that spb-squares with f and v (hence also,

using Ds ⋔ Ds, f ′ and u) in Ds are pushouts.

6.1.2. Some remarks. Observe these properties are obviously stable by transposition (i.e.

diagonal symmetry); this enables doubling the following remarks.

Note that, by axiom (iv)(a): (u ∈ Di)⇒ (ipb).

One has also obviously:
(
(v ∈ D∗) & (u ∈ Ds)

)
⇒ (spb).

There are also useful (horizontal or vertical) “parallel transfer” properties:

• in an ipb-square: (f ∈ Di)⇒ (f ′ ∈ Di); in an spb-square: (f ∈ Ds)⇒ (f ′ ∈ Ds).

The property on the left relies on the graph factorization of any given square:
u

A′
(f ′,u) ≻B′ ×A pr2 ≻A

≻

⋄

�

B′

f ′

g
⊲ (1B′ ,v) ≻B′ ×B

(1B′×f)

g
pr2 ≻

≻
B

f

g

v

≻

,

using axioms (ii) and (iv)(a). The right property relies on Ds ⋔ D (4.1.3 (4)).

The composition of squares gives rise to remarkable stability properties, on which the

constructions of the next section rely. We cannot list here these properties, which may

be proved in a purely diagrammatic way, using only diptych axioms. They are stated in

[P 1985] (Prop. A2) with a different terminology, and in a more restrictive context.

6.2. Näıve, main and canonical diptych structures for squares in a diptych. Here D =

(D;Di,Ds) will be a diptych (though the most obvious properties extend to prediptychs).

We shall not give the (very geometric) proofs of the statements asserted in this section,

since they are sometimes lengthy, but never very hard, once the suitable, sometimes

(hyper)cubic, diagrams have been drawn, chasing and juggling with the two compositions

of squares and with diptych axioms.

6.2.1. A piece of notation for squares. We denote by �D39 (or sometimes �
hor
D, contrast-

ing with
vert

� D, when more precision is required) the category of (commutative) squares

with the horizontal composition law (the objects are vertical arrows). The symbol � is

functorial; this means that any functor f : D → D′ extends to a new functor:

(sq.funct) � f : � D → � D′ .

39Ehresmann’s very geometric and useful notation. This is actually a basic example of double
category, with the horizontal and vertical composition laws satisfying the interchange law. The
precise relation with the notation introduced in 5.3.1 for denoting the category 2 × 2 (5.1) will
appear in formula (sq) of 7.1.5 (2).
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Let Dv, Dh be two subcategories of D, which below may be D, Di or Ds: without

extra notification the symbols h and v are allowed to take independently the values i,

s, or blank. In what follows, transparent conventions will point to constraints on the

vertical / horizontal arrows of a square. We denote by:

v�
h
D

the set of squares with vertical arrows (= source and target objects) in Dv and horizontal

arrows in Dh. This defines a subcategory of � D, and actually a double subcategory (i.e.

stable by both horizontal and vertical compositions).

Taking h = i / s and v = blank, or v = i / s and h = blank, the corresponding squares

will be called hi /hs−, or vi /vs-squares respectively.

Adding now an extra constraint of type (ipb), (gbp), or (spb), one can prove that the

following additional constraints still define double subcategories of � D:

v �̌
h
D, v

⋄

�
h
D, s �̂

h
D, v �̂

s
D .

There are a lot of useful diptych structures on � D and subcategories.

6.2.2. Näıve diptych structure for squares. First of all we get a rather obvious näıve

diptych structure on � D (which will not be the most useful one in the sequel) by taking

as good monos / epis the hi / hs-squares (6.2.1), i.e.:

�
näıve

D =
def

(� D; �
i
D, �

s
D) .

One has two obvious forgetful functors (projections onto the top / bottom arrow of

the square):

(top / bot) πtop / πbot : �
näıve

D→ D ,

which are well exact (4.2) dip-morphisms (but not faithful).

We have also a well exact faithful dip-embedding D
ι
→ �

näıve
D, identifying an object

with its unit and an arrow with a vertically degenerate square (in which this arrow is

horizontally doubled).

6.2.3. Main and canonical diptych structures for squares. For the sequel, it will be now

necessary to be able to add vertical constraints, needed for studying what will be called

dip-diagram morphisms in D.

Relying on axiom (iv)(a), we get first a full subdiptych, corresponding to the vertical

inclusion Di ⊂ D:

(i-sq.näıve-dip) i�
näıve

D = (i� D; i�
i
D, i�

s
D).

We might also consider the näıve PRE-diptych corresponding to the vertical inclusion

Ds ⊂ D:

(s-sq.näıve-predip) s�
näıve

D = (s� D; s�
i
D, s�

s
D).

But it turns out (due to the important dissymmetry of axiom (iv)) that looking for

a needed diptych structure on the full subcategory s� D demands a stricter choice for

good epis in order to construct the required fibred products for the vertical s-arrows
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regarded as objects of s� D; for this purpose, it is suitable to strengthen the condition

on hs-squares, using the spb- or gpb-squares just introduced for that purpose (relying on

6.1.2).

Actually, for the sequel, the most important diptych structure on squares (called main)

will be:

(sq.spb-dip) �ˆD = (� D; �
i
D, �̂

s
D),

(from now on the convention for superscripts on the left hand side will be that left / right

superscripts describe constraints for defining the good monos / epis). Note that, since

(after 6.1.2) one has �
i
D = �̌

i
D, one might write as well, equivalently but more sym-

metrically, the main diptych structure for squares as:

(sq.main-dip) �
main

D =
def

ˇ�ˆ D = (� D; �̌
i
D, �̂

s
D) .

One proves this gives rise now to two full subdiptychs (adding vertical constraints):

(i-sq.main-dip) i�
main

D = (i� D; i�
i
D, i �̂

s
D)

(s-sq.main-dip) s�
main

D = (s� D; s�
i
D, s �̂

s
D) .

One may also replace the spb condition for good epis by the stronger condition gpb,

thus getting:

(sq.maiN-dip) �
maiN

D =
def

�
⋄

D =
def

(� D; �
i
D,

⋄
�
s
D)

and analogously the full subdiptychs:

(i-sq.maiN-dip) i�
maiN

D =
def

i�
⋄

D =
def

(i� D; i�
i
D, i

⋄
�
s
D)

(s-sq.maiN-dip) s�
maiN

D =
def

s�
⋄

D =
def

(s� D; s�
i
D, s

⋄
�
s
D).

One can strengthen also the conditions for good monos, demanding them to be spb, or

equivalently gpb, and get various combinations for dip-pairs, such as, for instance (with

transparent conventions about upper case letters!):

(sq.MaiN-dip) �
MaiN

D =
def

⋄
�

⋄
D = (� D;

⋄

�
i
D,

⋄

�
s
D)

Finally these diptychs induce diptych structures on certain subcategories of � D, and

one gets notably the important subdiptychs:

(spb-dip) �̂ D = ( �̂D; �̂
i
D, �̂

s
D) = ( �̂D;

⋄
�
i
D, �̂

s
D) ,

(gpb-dip)
⋄
� D = (

⋄
�D;

⋄
�
i
D,

⋄
�
s
D) ,

and the full subdiptychs (s-spb-dip) and (s-gpb-dip) below:

s �̂ D = ( s �̂D; s

⋄
�
i
D, s �̂

s
D ), s

⋄
� D = ( s

⋄
�D; s

⋄
�
i
D, s

⋄
�
s
D).
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One observes that the above diptych structures on �̂D and
⋄

�D and their subcategories

are induced both by the näıve and main diptych structures: they will be called the canon-

ical diptych structures, and denoted by:

�̂
can

D,
⋄
�
can

D .

Note all these new square symbols define endo-functors of Dip (4.2). This allows to

summarize the above constructions of diptych structures for categories of squares, using

more condensed symbolic writings (omitting D), such as:

�
näıve

=
def

(� ; �
i

, �
s
) �

main
=
def

�ˆ= (� ; �
i

, �̂
s
) (=ˇ� )̂

�
maiN

=
def

�
⋄

= (� ; �
i

,
⋄
�
s
) �

MaiN
=
def

⋄
�

⋄
= (� ;

⋄
�
i

,
⋄
�
s
)

�̂
can

=
def

(�̂ ; �̂
i

, �̂
s
)

⋄

�
can

=
def

(
⋄

� ;
⋄

�
i

,
⋄

�
s
) .

6.3. Second order diptych data: weak and strong exactness. Given a diptych structure

D on a category D, the extra choice of a diptych structure on � D may be interpreted

as “second order diptych data” on D and denoted by D. The choices described in the

previous section are then denoted briefly by:

D
näıve

, D
main

, D
maiN

, D
MaiN

.

Given a functor f : D → D′, one then has the notion of second order diptych mor-

phism: f : D→ D
′ , by which we mean that f : D→ D′ is a dip-morphism and moreover

� f : � D → � D′ is a dip-morphism too, with respect to these extra choices. This

defines a new category DDDip.

Then the condition for a diptych morphism of being exact in the sense defined in

4.2 (preservation of special pullbacks) may be expressed by saying f : D
maiN
→ D

′

maiN
is a

second order diptych morphism, but this allows to introduce a variety of new notions, by

combining various choices for D and D′.

One observes that any dip-morphism f : D → D′ gives rise to a second order dip-

morphism f : D
näıve
→ D

′

näıve
(and this remains valid for any of the four previous choices for

D, keeping the näıve choice for D′). This defines the (full and faithful) näıve embedding

Dip ⊂ DDDip .

One notes also that a second order dip-morphism f : D
maiN
→ D

′

maiN
implies a second order

dip-morphism f : D
main
→ D

′

main
(or equivalently f : D

maiN
→ D′

main
): this weaker latter notion

might be called weak exactness. There is also a stronger notion when f : D
MaiN
→ D

′

MaiN
is

a dip-morphism, which may be called strong exactness.
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6.4. Triangularly degenerate squares

6.4.1. Definition of s-objects. Let s▽D denote the subcategory of s� D for which the

lower horizontal arrow is a unit, with its canonical embedding:

ιtop : s▽D → s� D .

Its objects, which are the arrows of Ds, will be called s-objects. It is endowed with a

canonical diptych structure, denoted by s▽D, which is induced both by the näıve and the

main diptych structures on s� D.

The (non-full) embedding ιtop is well exact for both the näıve and the main diptych

structures on s� D.

6.4.2. s-localization, s-augmentation. Now let us fix an object Q of D and consider the

full subcategory s▽
Q

D of “s-objects over Q”, (i.e. with target Q), or briefly “ s-Q-objects ”.

It can be checked that this is an s-augmented diptych in the sense of 4.1.3 (2), called the

“ s-localization of D over Q ”. But the existence of products (which here are not obtained

from products of squares!) derives from the fibred products over Q (which becomes a

terminal object in the new category).

Precisely the canonical embedding into s� D is dip-exact for both näıve and main

diptych structures, but not well exact (it does not preserve products).

We have an obvious faithful forgetful functor (forgetting the terminal object Q):

(top) πtop
Q : s▽

Q

D→ D ,

which is dip-exact, but not (in general) well exact. There is now (in general) no embedding

of D into s▽
Q

D.

Nevertheless, in the special case when the given diptych D is already s-augmented

(4.1.3 (2)), then one gets canonical diptych isomorphisms by means of:

(s-augm.dip) D
ι
top
•
≈ ≻ s▽

•
D

π
top
•
≈ ≻ D .

More generally the objects of s▽
•
D may be identified with the s-condensed objects of

4.1.3 (2), and πtop
• defines a well exact full dip-embedding.

6.4.3. The case of `. Let us take D = ` (5.3.4) (which is not augmented, but possesses

an initial object 1). Here the s-1-objects are just the pointed (or marked) objects (with

a distinguished element).

Moreover there are two canonical pointings, taking as the distinguished element of

n = [n − 1] the minimum one 0 (or alternatively the maximum one n − 1). It is easy

to check that this defines a well exact (but non-full) diptych embedding (“adding zero”

denoted by⊙ , or adding a maximum) of the s-augmented diptych ˙̀ (5.3.4) (which, as was

just observed, may be identified with s▽
0

˙̀ ) into s▽
1

`, while the (faithful non-full) forgetful

functor (“forgetting” the zero pointing!) πtop
1 is not an isomorphism. Summarizing (and

adding at each end well exact full diptych embeddings), one has:

(augm+shift) ` ⊂ ˙̀ (≈ s▽
0

˙̀ )
⊙
≻ s▽

1

`
π

top
1≻ ` ⊂ ˙̀ .
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One can recover the shift endo-functor ∆ of ` (5.3.6) or its extension to ˙̀ by composing

three of these maps.

The interest of the (non-full) shift embedding, exact though not well exact, derives

from the fact that it enables to express the objects n of `̀̀, not only as iterated products

of 1, but, for n ≥ 3, as iterated fibred products over 1 (deriving themselves from products

in s▽
1

`̀̀). This will be basic for groupoids, since these will be defined as diagrams which

preserve pullbacks, but in general not products (8.2.1).

7. Diptych structures for diagram morphisms. In the next section, our “structured

groupoids” will be defined (using their nerves) as “diagrams” of a certain type in a

“structuring category” D, more precisely a diptych D. We need some general preliminary

study of such diagrams and morphisms between these diagrams. This study relies on our

previous study of squares.

7.1. Small diagrams in a (“structuring”) category:
•

T (D) and
−→
T (D)

7.1.1. Geometric notations and terminology for diagram morphisms. When we are given

a small category T (“type of diagram”) and a (possibly large) category D (“structuring

category”), we denote40 here by:

•
•

T (D) (objects) the (large) set of functors from T to D, called here “ diagrams of

type T in D ”;

•
−→
T (D) (arrows) the (large) category of natural transformations [McL] between these

functors, (which means just commutative diagrams connecting two such diagrams),

called here “diagram morphisms of type T in D ”.

For picturing and interpreting these diagram morphisms in various ways, we refer to

the comments in 7.1.5, 7.1.3 and 7.1.4 below, and to the figure hereafter (Fig. 1), which

displays an example of diagram morphism (only generators of T are figured, and the

“connecting arrows” are dashed, for better legibility; a diagram morphism is a natural

transformation, but may also be regarded as a functor between various categories, or as

a double functor between certain double categories).

We note that the arrows of
−→
T (D) are defined by a collection of commutative squares

(indexed by T ): this is expressed more precisely by the relation (Diag-switch) below

(7.1.5). This remark will be exploited in 7.1.6 below in order to define various subcate-

gories of
−→
T (D) deriving from the study made in 6.

The notations are coined in order to emphasize the functorial behaviour of the symbols
•

T and
−→
T with respect to the objects D (and to the arrows D → D′)41.

40Here we give up the classical [McL] notation Cat(T ,D) for
•

T (D), and the exponential

notation DT = Funct(T ,D) for
−→
T (D), and we slightly modify and simplify the notations of

[P 2004], in order to make them more transparent and coherent.
41Being more precise and explicit about such functors would require some discussion of

“sizes” of the universes involved, which would be here pedantic and irrelevant for our purpose,
since we just wish to introduce convenient notations for [morphisms between] diagrams of various
types, in order to make transparent the twofold functorial behaviours.
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·
·≺ ·
≻

·g≺
≻

· ≺ ·

≻

·g

· ≺ ·

≻

T

T

T1
≻

t ↓ ·

T2

≻
D

2× T ≻ D
T × 2 ≻ D

T ≻
vert

�D
2× T =====⇒ � D

·
·≺ ·
≻

·≻

·g≺
≻

·≺≻ ·
≻
≻

·g≺
≻
≻

· ≺ ·

≻

·g · ≺≻ ·

≻

≻

·g≻

· ≺ ·
≻

T1 · ≺≻ ·

≻

≻

D T2

�

t ≻

2 0
<

≻ 1

T1, T2 ∈
•

T (D) t : T1
�
−→ T2 ∈

−→
T (D)

Fig. 1. Scheme of a “diagram morphism” t between “diagrams T1, T2 of type T ” in the “struc-
turing” category D (7.1.1, 7.1.3, 7.1.5, 7.1.4)

7.1.2. Iterated diagrams and interchange law. Now we can compose such functorial sym-

bols, supposing we are given a second small category S.

We rewrite, with the previous language and notations, some well known canonical

isomorphisms, which yield a remarkable relation between diagrams of types S, T , and

S × T , entailing a kind of commutativity (or interchange) isomorphism 	. One has, for

arrows, i.e. diagram morphisms (omitting D), the canonical isomorphisms:

(Int.ch)
−→
S ◦
−→
T =

−−−−→
S × T

	
←→

−−−−→
T × S =

−→
T ◦
−→
S ,

hence also, at the objects (i.e. diagrams) level:

(int.ch)
•

S ◦
−→
T = (S × T )•

	
←→ (T × S)• =

•

T ◦
−→
S

(related to Ehresmann’s interchange law (“loi d’ćhange”) for double categories or

groupoids).

Taking S = T and iterating our functors n times, we get:

(
−→
T )n =

−→
T n and (T n+1)• =

•

T ◦
−→
T n ↔ (T n)• ◦

−→
T .

7.1.3. Picturing a product category. It is convenient to picture an arrow w = (f, g) of the

product category S × T (with f : a→ b, g : c→ d), by the diagonal of a (commutative)

square, thought in a vertical plane, with two directions, called longitude (dashed) and

latitude (dotted)42 (see 7.1.5):

42Ehresmann’s geometrical terminology.
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(prod)

(a,c) (f,1c) ≻(b,c)

(a,d)

(1a,g).........g

.........

(f,1d) ≻(b,d)

(1b,g)........g

.........(f,g)

≻

.

This square has the very special property of being uniquely determined by any pair of

adjacent edges, and also by its diagonal. In the absence of terminal objects, it may not

be a pull back, though its two components are both trivial pullbacks.

Though this is a purely graphic convention, it will be natural to call 	 the inter-

change or “switching” or transposition isomorphism (in the matrix sense, i.e. a diagonal

symmetry).

One can observe too that the product category S×T has also a (very special) natural

double category structure (in Ehresmann’s sense43), transparent through the above rep-

resentation, defined by latitudinal and longitudinal compositions. Each arrow w = (f, g)

of S×T admits (in a twofold way, according to the orders of the factors) a unique factor-

ization through the (dotted or dashed) subcategories S0 × T and S × T0 (which are the

bases of the two category structures); such an arrow w may be identified with a double

functor (i.e. respecting both composition laws):

ẅ : ��� = 2× 2⇒ S × T .

When both S × T and � D are regarded as double categories, any (simple) functor

V : S × T → D may be regarded as defining a double functor :

V̈ : S × T ⇒ � D, ẅ 7→ V ◦ ẅ : ���⇒ D.

7.1.4. Example: path functors. When T is a finite ordinal n = [n− 1] (5.3.1)44,

(path) D[n−1] = Dn =
def

•
n (D)

is just the set of paths (or strings) in D with length n − 1 and n vertices, while −→n (D)

consists of morphisms between two such paths. This may be written functorially:

(nerve) ( )[n−1] = ( )n =
•
n

One has, by (int.ch) and (Int.ch):

(−→q )[p−1] = (−→q )p =
•
p ◦ −→q = (p× q)•

	
←→ (q× p)• =

•
q ◦ −→p = (−→p )q = (−→p )[q−1]

(double nerve)

−→p ◦ −→q =
−−−→
p× q

	
←→

−−−→
q× p = −→q ◦ −→p .

It may be convenient to consider more generally paths of diagrams, setting:

(Path-Diag) (
−→
T )[n−1] =

def

•
n ◦
−→
T = (n× T )•

	
←→ (T × n)• =

•

T ◦ −→n .

43This means two category composition laws satisfying the interchange law [McL].
44We recall that, with our notations, n is the cardinal of the ordinal n = [n− 1]. This shift

is traditional and unavoidable when dealing with simplicial objects [McL].



124 J. PRADINES

These paths define the nerve of the category
−→
T (D), while the double nerve is asso-

ciated to the double category � D. Disregarding the questions of “sizes”, the previous

formula might be interpreted as attaching to any small category T (called here “type of

diagrams”) a simplicial object [McL] n 7→ (
−→
T )[n−1] in the “category of all categories”

[McL]. One has by construction:

(
−→
T (D))[n−1] = (

−→
T )[n−1](D) = (n× T )•(D)

	
←→

•

T (−→n (D)).

Special cases (n = 1,2) of these “path functors” are the forgetful “objects” and

“arrows” functors (which forget a part of the categorical data D : the arrows for the

former, the composition law for the latter). One has (still omitting D):

(obj, arr, sq)
•
1 =

•
⋆⋆⋆ = ( )[0],

−→
1 = −→⋆⋆⋆ = Id,

•
2 =

•

↓↓↓= ( )[1],
−→
2 =

−→
↓↓↓ =

def
�
hor

,

where notations 1 = ⋆⋆⋆ and 2 =↓↓↓ of 5.3.1 are used, and �
hor
D45 denotes, for more precision

(6.2.1), the category of commutative squares in D with the horizontal composition (see

Rem. 7.1.5 below). One has also more generally, specializing (int.ch), (Int.ch) and (Path-

Diag):

(diag, Diag) (
−→
T )[0] =

•

T , (
−→
T )[1] = (2× T )•

	
←→ (T × 2)• =

•

T ◦ �
hor

.

Using the remarks in 7.1.3, this allows to regard also an arrow t of
−→
T (D) as a double

functor ẗ, when regarding both 2× T and � D as double categories :

ẗ : 2× T ===⇒ � D .

7.1.5. Remarks: diagram morphisms as diagrams of squares

1. Though the way of picturing the arrows of a category has no mathematical content,

it is unavoidable to make it precise for getting mental images, which are necessary

for memorizing and phrasing intricate situations. When a single category is being

considered, it will be often (not always) comfortable to think originally its arrows

“horizontally”. But as soon as a second category is involved, it is often necessary to

be able to “switch” the directions of arrows, using pairs of terms such as horizon-

tal / vertical or longitudinal / latitudinal (Ehresmann), which have to be interpreted

in a relative rather than absolute sense.

Note for instance that the composition law in
−→
T (D) is called “vertical” in [McL]

(though sometimes pictured horizontally!), but will be often better thought and

written here horizontally, the diagrams of type T (which are the objects of this

category) having then to be pictured “vertically” by means of their images in D

(indexed by T ), and the connecting arrows “horizontally” (see Fig. 1 above). How-

ever we stress that this implies “switching” the direction of the diagrams when

passing from
•

T (D) to
−→
T (D).

45Ehresmann’s suggestive notation for what he called “quatuors”, i.e. quartets. The more
classical (much less suggestive) exponential notation in [McL] is D2, called “category of arrows
of D ” (which should not be confused with D2 = D ×D !).
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Notably the bijection (Diag): (
−→
T )[1]

	
←→

•

T ◦� implies a switching in the notations

between horizontal and vertical diagrams.

• Precisely we shall agree that, by “abus de notation”,
•

T (� D) on the right

hand side denotes functors from T to the vertical category of squares, and later

these are composed horizontally, using the alternative horizontal composition

of squares, in order to recover the composition law of the left hand side. These

conventions will be implicit throughout whenever writing:

(Diag-switch)
−→
T ↔

•

T ◦ � .

This will lead below (7.1.6) to the convention:
−→
T =

�

T .

2. The above formula (Diag) (7.1.4) means the useful fact that (when disregarding the

composition of diagram morphisms) any morphism (arrow) between diagrams of

type T in D may be interpreted as a diagram (object), in a twofold way : either as

a diagram of new type T × 2 (≈ 2 × T ) in the same category D, or alternatively

as a diagram of the same type T in the new vertical category
vert

�D of squares of D

(see above Fig.1).

The latter interpretation enables then to recover the composition law by using the

alternative (horizontal) composition law of squares. This will be used systematically

in the next section for transferring properties of squares to general diagrams of

type T .

Taking T = 2, one recovers the description of commutative squares, when forgetting

their two composition laws:

(sq)
(
� D

)
[1]
≈ (2× 2)•(D) =

•

��� (D), or briefly
(
�
)
[1]
≈

•

��� ,

where � is interpreted in the left hand sides as the operator
−→
2 (7.1.4), while the boldface

��� in the right hand sides is picturing the product category 2× 2 (notation of 5.3.1). All

these geometric notations are at once very precise and coherent, while yielding an easy

handling of more intricate diagrams.

Note that we shall be led below (see also 5.3.6, above), to assign to the square symbols

some special meanings for groupoids; the context should avoid confusion.

7.1.6. Defining subcategories of the category
−→
T (D) of diagram morphisms. The corre-

spondence (Diag-switch) of the previous paragraph 7.1.5 (1) allows to transfer many

definitions, introduced in section 6 about squares, to morphisms between diagrams of

general type T (the case of squares corresponding to T = 2). We recall that this corre-

spondence uses successively the vertical and horizontal composition laws of � D.

The following general scheme may be used to define various subcategories of
−→
T (D).

We consider various symbols Ξ assigning to D (in a functorial way) double subcategories

ΞD of � D (i.e. stable by both vertical and horizontal laws). This may be denoted

symbolically by: Ξ ⊂ � .
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One has to agree that, for Ξ = • ⊂ � , one has •D = D “written vertically”

(horizontally degenerate squares, which become units for the horizontal law).

Then the definition of the right hand side of (Diag-switch) (7.1.5) (1) assigns, to each

such symbol Ξ (in a functorial way) a (special) subcategory of the left hand side, denoted

by:
−→
T (D) ⊃

Ξ

T (D)↔
•

T (ΞD) ⊂
•

T (� D)

or symbolically (having to agree that
�

T =
−→
T , as announced in 7.1.5):

(subsq-switch)
−→
T ⊃

Ξ

T ←→
def

•

T ◦ Ξ ⊂
•

T ◦� .

7.1.7. Application to prediptychs. Particularly, in the case when D = (D;Di,Ds) is a

prediptych, then, using notations of 6.2.1, the previous considerations apply notably to

the symbols:

Ξ = �
h

, �̌
h

,
⋄
�
h

, �̂
h

, v�, v�
h
, · · · ,

where the symbols h, v may take the values i, s, or blank.

Then we introduce the following shortened notations (extending
�

T =
−→
T ):

(spec.sq)
−→
T
h

=
def

�
h

T ,
−̌→
T
h

=
def

�̌
h

T , and analogously

⋄
−→
T
h

,
−̂→
T
h

,

which allow to describe, in a functorial and transparent way, various styles of constraints

and ways of combining them (bearing either on the horizontal connecting arrows or on

some global properties), imposed on the squares connecting two diagrams of the same

type T .

Symbols such as
−̌→
T ,
−̂→
T ,

⋄
−→
T , · · · have then to be regarded as defining functors with

domain Predip (4.2).

7.2. (Pre)dip-diagrams in a (pre)diptych.

7.2.1. Definition of
•

T(D) and
−→
T (D). T is now a fixed small (pre)diptych and D a (pos-

sibly large) (pre)diptych. We are going to describe some constructions attached to T

depending functorially on D. We recall that any categories T and D may (and will) be

regarded as trivial prediptychs (4.1.1).

First we introduce the subclasses :

(predipdiag, dipex)
•

Tex(D) ⊂
•

T(D) ⊂
•

T (D)

and subcategories :

(predipDiag, dipEx)
−→
T ex(D) ⊂

−→
T (D) ⊂

−→
T (D) ,

where the symbols
•

T(D) and
•

Tex(D) mean respectively (pre)dip-morphisms from T to D

and dip-exact morphisms (4.2) (in other words (pre)dip-diagrams and exact diagrams of
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type T in D), and the over arrows denote the full subcategories generated by such objects

((pre)dip-diagram morphisms).

More generally, following the ideas of 6.3 about the interpretation of dip-exactness,

one might introduce also second order diptych data T and D on T and D (which would

have been either the “näıve” or the “maiN” ones just above), then define analogously

•

T(D) ⊂
•

T(D) ⊂
•

T (D)

as the subclasses of first and second order diptych morphisms, and finally consider the

full subcategories thus generated:

−→
T (D) ⊂

−→
T (D) ⊂

−→
T (D) .

The symbols
−→
T or

−→
T now give rise to functors defined on the categories Predip (4.2) or

Dip (6.3) as their domains.

Next we are looking for defining endo-functors of (Pre)dip, which requires defining

(pre)diptych structures on the categories of diagrams arising in (predipDiag, dipEx) just

above.

7.3. Näıve and main diptych structures on categories of diagrams

7.3.1. General method. The outline of the general process for constructing new (pre)-

diptychs, attached to the small (pre)diptych T, and to the (pre)diptych D, will be the

following (using the scheme 7.1.6 for notations).

We consider a double set of symbols [Ξ] =
vert

Ξ
hor

= (vΞ
h
) (where the arguments h, v may

take independently the values i, s, blank, and vΞ
h

= vΞ ∩ Ξ
h

). It is understood that each

such symbol attaches functorially to the (pre)diptych D a double subcategory vΞ
h

D ⊂ � D

as in 7.1.6, and that this yields a “double prediptych” structure on Ξ D: this means that

Ξ
h

D / vΞ D defines a horizontal / vertical prediptych structure Ξ
hor

D /
vert

Ξ D, on Ξ D when

h / v takes the values (blank; i, s). One may write symbolically (omitting D):

Ξ
hor

= (Ξ; Ξ
i
, Ξ

s
),

vert

Ξ = (Ξ; iΞ, sΞ) .

Then (taking into account successively first the vertical diptych structures and the

definitions of 7.2.1, second the horizontal law for defining the composition, as explained

in 7.1.5), we can define the triple:

(
•

T (
vert

Ξ D);
•

T (
vert

Ξ
i

D),
•

T (
vert

Ξ
s

D))

and this defines, by applying (subsq-switch) of 7.1.6 , a triple of subcategories of
−→
T (D) ⊂

−→
T (D), which is the announced prediptych. With shortened notations analogous to those

introduced in 7.1.7 (spec.sq), we shall denote this prediptych by:

[Ξ]

T(D) =
def

(
Ξ

T(D);
Ξ

T
i
(D),

Ξ

T
s
(D)) .



128 J. PRADINES

or symbolically:

(predip-switch)
[Ξ]

T =
def

(
Ξ

T;
Ξ

T
i
,

Ξ

T
s
)←→

def
(
•

T ◦
vert

Ξ ;
•

T ◦
vert

Ξ
i

,
•

T ◦
vert

Ξ
s

) .

This triple defines a symbol
[Ξ]

T (depending on the data [Ξ] =
vert

Ξ
hor

), which determines an

endo-functor of Predip, with the symbolic correspondence explained above:

[Ξ]

T ←→
def

•

T ◦
vert

Ξ
hor

.

Using this general scheme, we are now looking for various basic (pre)diptych struc-

tures on certain subcategories of
−→
T (D) and

−→
T ex(D) (introduced in 7.1.6), canonically and

functorially associated to the (pre)diptych data on the categories D, T .

7.3.2. Näıve (pre)diptych structure for diagram morphisms. Here T denotes just a small

category regarded as a trivial prediptych (4.1.1), and
vert

Ξ
hor

=
vtriv

�
hnäıve

, by which we mean the

horizontal näıve diptych of 6.2.2 and the vertical trivial prediptych.

Then the previous scheme defines the näıve prediptych structure on
−→
T (D), which

actually is still a diptych when D is. Explicitly:
−→
T

näıve
(D) =

def
(
−→
T (D);

−→
T
i
(D),

−→
T
s

(D)),

or more briefly and symbolically:

(Diag näıve (pre)dip)
−→
T

näıve
=
def

(
−→
T ;
−→
T
i
,
−→
T
s

) ,

where (as defined in 7.1.6 (spec.sq))
−→
T
i
(D) /

−→
T
s

(D) denotes the subcategory of those

diagram morphisms for which all the connecting (“horizontal”) arrows are taken from

Di /Ds.

Taking T = 2, this is coherent with the notations (sq.näıve-dip) of 6.2.2:

(sq.näıve (pre)dip) �
näıve

D =
def

(� D; �
i
D, �

s
D).

The switch correspondence reads here:

(Diag näıve (pre)dip)
−→
T

näıve
←→
def

•

T ◦
vtriv

�
hnäıve

.

This is an endofunctor of the category Dip, attached to any type of diagram T .

7.3.3. Square description for dip-exact diagram morphisms. Here T = (T ; Ti, Ts) is again

also a small prediptych, and D = (D;Di,Ds) still a (possibly large) prediptych, and we

consider, as in 7.2.1, predip-diagrams and morphisms:
•

T(D) ⊂
•

T (D) and
−→
T (D) ⊂

−→
T (D) .

These symbols
•

T and
−→
T (attached to the prediptych T) are functorial with respect to

the prediptychs D [and predip-morphisms].

Still interpreting a diagram morphism f as a functor from T to the (vertical !) cate-

gory of squares (7.1.5), the conditions for a diagram morphism being a predip-diagram
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morphism may be written, with our notations:

f(Ti) ⊂ i� D, f(Ts) ⊂ s� D.

This may be expressed by saying f is still a prediptych morphism from the prediptych

T to the (here simple, not double) näıve prediptych
vnäıve

� D of 6.2.2 (but written here

vertically ; it was the trivial structure in the previous paragraph!). So we have now the

symbolic correspondence (for functors on prediptychs):

(predip-Diag switch)
−→
T ↔

•

T ◦
vnäıve

� .

Now if moreover T and D are both diptychs, then it is possible (and necessary for

the applications of the next section) to consider the dip-exact diagrams of type T, i.e.

the exact46 diptych morphisms from T to D (4.2), and morphisms between such exact

diagrams. (Observe that this new constraint is of global nature, meaning thereby that it

involves several arrows of T together). We recall the notations of 7.2.1:

(dipex, dipEx)
•

Tex(D) ⊂
•

T(D) ⊂
•

T (D) and
−→
T ex(D) ⊂

−→
T (D) ⊂

−→
T (D).

In this way we have now attached, to each small diptych T, new symbols
•

Tex and
−→
T ex,

still functorial with respect to diptychs D (more precisely associating to diptychs certain

classes or categories, in a functorial way). It may be proved (using cubical diagrams and

diptych axioms) that the basic correspondence between diagram morphisms and diagrams

of squares is still valid for exact diagrams:

(dipEx switch)
−→
T ex ↔

•

Tex ◦
vnäıve

� .

7.3.4. Main diptych structures for morphisms between exact diagrams. We suppose here

that both T and D are still diptychs (not only prediptychs!) and are now looking for the

announced diptych structures on the categories
−→
T (D) and

−→
T ex(D).

The basic point is that the näıve diptych structure on
−→
T (D), defined in 7.3.2, induces

on
−→
T (D) and

−→
T ex(D) only prediptych structures, denoted by

−→
T

näıve
(D) and

−→
T ex

näıve

(D), which

are not in general diptych structures47, hence are rather irrelevant for our purpose.

But it turns out that this drawback may be removed when replacing on squares the

horizontal näıve diptych structure by one of the main ones, introduced for this purpose

46We recall this means (in the dip-sense) preserving special pullbacks(4.1.3 (4)) (but in
general not products, nor other limits or co-limits).

47Essentially because of the parallel transfer requirements for pullbacks. This has important
consequences for the existence of pullbacks for Lie groupoids, which demands some “spb” type
conditions on morphisms (unnecessary in the purely algebraic case). These conditions, which are
happily often satisfied in most applications, are widely ignored in the literature, where it is very
often implicitly admitted that, since the pullbacks are always algebraically defined for groupoid
morphisms, it should be enough to add existence conditions for the pullbacks of manifolds in
order to get pullbacks for Lie groupoids; but the point is that the submersion requirements for
the source maps demand more care, and our stronger spb type requirements (which indeed are
ubiquitous in various theories) yield the suitable conditions!
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in 6.2.2, following the general process explained above for defining prediptych structures

(7.3.1), which now may be proved to be actually diptychs.

This enables to attach to any small diptych T (diagram type) several symbols, which

now associate functorially a diptych to a diptych by means of the switch correspondence:

(maindipDia)
−→
T

main
←→
def

•

T ◦
vnäıve

�
hmain

,
−→
T

maiN
←→
def

•

T ◦
vnäıve

�
hmaiN

,
−→
T

MaiN
←→
def

•

T ◦
vnäıve

�
hMaiN

,

inducing on exact diagrams:

(maindipEx)
−→
T ex

main

←→
def

•

Tex ◦
vnäıve

�
hmain

,
−→
T ex

maiN

←→
def

•

Tex ◦
vnäıve

�
hmaiN

,
−→
T ex

MaiN

←→
def

•

Tex ◦
vnäıve

�
hMaiN

.

If for instance one makes the second definition explicit, this very condensed nota-

tion means, using (dipex-Diag switch) of 7.3.3 (in order to express the conditions that

the source and target have to be vertically written exact dip-diagrams) and our usual

switching conventions of 7.2.1 for horizontal / vertical laws:

−→
T ex

maiN

(D)←→ (
•

Tex(
vnäıve

� D);
•

Tex(
vnäıve

�
i

D),
•

Tex(

vnäıve

⋄

�
s

D)) ,

where the subscripts i and s mean that the horizontal arrows have to be taken from Di

or from Ds.

These symbols obey certain rules of composition and interchange analogous to (Int.ch)

in 7.1.2, but much more caution is needed for precise statements. For instance, though

one can still define (among others) correspondences such as:

•

Sex ◦
−→
T ex

main

	
←→

•

Tex ◦
−→
S ex

main

and
−→
S ex

main

◦
−→
T ex

main

	
←→

−→
T ex

main

◦
−→
S ex

main

,

it is no longer possible to identify:
•

Sex ◦
−→
T ex

main

with (S× T)•
ex
.

7.3.5. Some important subdiptychs. It turns out that most of the previous diptychs in-

duce useful subdiptychs on the subcategories defined by the symbols

−̌→
T
h

,
−̂→
T
h

,

⋄
−→
T
h

(h = i, s) introduced in 7.2.1. These may be denoted for instance by: (

⋄
−→
T
s

)ex

main

, etc.

7.3.6. Scholium. The statements that, starting with a given diptych, the previous con-

structions yield actually new diptychs require indeed a very large number of checkings,

which cannot be detailed here; just a part of them are straightforward, though none of

them is really very hard48. But they are made once and for all, and all these checkings

48Though (hyper)cubic diagrams are often basically needed: a cube in D encapsulates three
commutative squares in � D (chasing with the two composition laws and the interchange law),
and that is very powerful for deriving properties of the faces, since each face is involved in two
such commutative squares.
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are encapsulated and summarized in the statements. These statements point out highly

remarkable stability properties of diptych structures.

The point is that, thanks to these stability properties, these constructions may be

iterated indefinitely and lead to more and more intricate types of diagrams which it

would be very hard to handle and study directly, and to which all the general results

established using only diptych axioms apply immediately. This will be used below for

various kinds of structured groupoids.

8. Structured groupoids and structured actions

8.1. (Symmetric) nerves of small groupoids (Grothendieck). The (“well known”) char-

acterization of categories and groupoids among simplicial objects, i.e. contravariant func-

tors49 from ∆ ⊂ FFF (notations of 5.3.3) towards Set, by some pushout / pullback properties

of their nerves seems to be generally attributed to Grothendieck [GRO], though it does

not seem to be very explicit in this reference. (In what follows we often work with the

dual categories ∇ ⊂ `̀̀∇ ⊂ `̀̀∇ ⊂ `̀̀ in order to avoid contravariant functors and co-diptychs whenever

possible.)

This algebraic characterization is particularly well adapted for an application of the

general “meta-principle of internalization” alluded to in 3.2.2, and enables to transfer

“automatically” a large variety of algebraic constructions for groupoids to a huge number

of structured contexts (including basically Lie groupoids).

Recall that the nerve of a (let us say here small) category G associates (in a functorial

way) to each object [n − 1] = n = {0 < . . . < n − 1} (⊂
×
n = 〈n− 1〉 ) of ∇∇∇ ⊂ `̀̀ (5.3.1,

5.3.3) the set G[n−1] of paths of length n − 1 (hence n vertices) in G, and this actually

allows to identify G with some (covariant!) functor:

(nerve) G :∇∇∇→ Set, n 7→ G[n−1] ,

in other words, using the terminology of 7.1.1, some diagram of type ∇∇∇ in Set.

We recall also (7.1.4) that each path u ∈ G[n−1] may be viewed in turn as defining a

functor:

[u] : n→ G.

Now when the category G is a groupoid (i.e. all its arrows are invertible), the path u

generates also a commutative diagram 〈u〉 in G with n vertices, which allows to extend

the previous functor as follows (notations of 5.3.4):

〈u〉 :
×
n→ G.

and then the nerve functor extends to a functor (which we call here the symmetric nerve)

defined on the dual `̀̀ of what we called above the symmetric simplicial category FFF (5.3.4):

(sym.nerve) G : `̀̀ → Set,
×
n 7→ G〈n−1〉 .

In other terms this identifies any groupoid G with some diagram of type `̀̀ in Set.

49Sometimes called presheaves.
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Now the remarkable Grothendieck’s characterization of groupoids among such “sym-

metric simplicial objects” is that they preserve pullbacks of `̀̀. Of course these pullbacks

come dually from pushouts of the symmetric simplicial category FFF50.

One may also observe that all the pushouts of FFF are generated (when composing

squares) by the “elementary squares” expressing the classical canonical relations be-

tween the canonical generators δm
i and σn

j of the simplicial subcategory ∆ (see [McL]

for instance) and it is enough to demand preserving the corresponding dual elementary

pullbacks51 of `̀̀.

Using now the canonical diptych structure ` on `̀̀ defined in 5.3.4 (the dual of which, F,

is the co-diptych structure of FFF)52, this can be expressed quickly in our diptych language

by saying that (4.2):

• groupoids may be identified with dip-exact diagrams of type ` in Set .

Thus, with the notations of 7.2.1, Grothendieck’s characterization allows to identify

the category of groupoid morphisms (alias functors between groupoids) with the category

of dip-exact diagram morphisms of type ` in the standard diptych Set , i.e. with:

(Set-Groupoids)
−→
` ex(Set) .

8.2. Structured groupoids as groupoids in a diptych

8.2.1. Definition of D-groupoids [morphisms ]. By application of our meta-principle of

internalization, we are now in a position to define groupoids [morphisms ] in any, possibly

large and possibly non-concrete (Rem. 4.1.3), given diptych D (called the structuring

diptych), just replacing Set by D, as being dip-exact diagram [morphisms ] of type ` in

D. So we shall set, using the definitions (dipex, dipEx) of 7.2.1:

(D-Groupoids) gpd(D) =
def

•

` ex(D), Gpd(D) =
def

−→
` ex(D),

or, more briefly and more functorially (omitting the diptych D):

(gpd, Gpd) gpd =
def

•

` ex , Gpd =
def

−→
` ex .

The elements of the class gpd(D) are called D-groupoids, and the arrows of the (large)

category Gpd(D) are called D-groupoid morphisms (or functors).

8.2.2. Elementary description. The exactness property implies that the nerve functor

is uniquely determined by various subcategories53 (more precisely sub-prediptychs) of `,

50We recall again that many authors use the notation Φ for our category FFF of finite cardinals.
51Looking more precisely at the structure of `̀̀ through its dual FFF (using for instance its

description in [McL], and some general stability properties of pullback or pushout squares), one
can see that it is enough to preserve the special pullbacks (4.1.3 (4)), and this allows to apply
our precise definition of dip-exactness introduced in 4.2.

52We insist on the fact that the products in the diptych ` we are considering come from
set-theoretic co-products of FFF.

53These can be interpreted as sketches (esquisses) in Ehresmann’s sense. The comparison of
various possible choices with our choice Υ would lead to interesting developments, which cannot
be made here. They rely on the remarks in 6.4.3, which enable to “generate” (in various ways)
the objects and arrows of `̀̀ by means of pullbacks over 1.
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notably ∇[2] and Υ (5.3.2, 5.3.3, 5.3.4). This allows notably to identify a groupoid G

with a certain diagram of type Υ:

∆G δG ⊲ G αG ⊲
≺ ωG ⊳ B

(the axioms of groupoids being then expressed, briefly though abstractly, by the condition

that this diagram extends to an dip-exact diagram of type `, the “symmetric nerve”); in

other words G is uniquely defined by the sole data:

(G, B, ωG, αG, ∆G, δG) ,

where B = G〈0〉 (base, objects), G = G〈1〉 (arrows), ∆G = G〈2〉 (commutative trian-

gles)54, and αG, ωG, δG (source map55, unit map, division map) are determined by the

embedding Υ ⊂ `̀̀ described in 5.3.4. One can check (mimicking the set-theoretic case, in

which case one can write δG(y, x) = yx−1) that it is then possible to recover, in a purely

diagrammatic way, the projections π1, π2 : ∆G ⊲ G (or equivalently the embedding

∆G ⊲ ≻ G × G), the inverse map ςG, the target map βG and the multiplication (or

composition) map γG (which make up the classical data), as other parts of the symmetric

nerve.

The arrow τG = (βG, αG) : G → B × B is generally known as the anchor map,

following K. Mackenzie, but will be called here, more significantly, the transitor, since it

encapsulates the (in)transit ivity properties of G, and, at least when B is “s-basic” in the

sense defined above in 4.1.3 or below in 8.3.3, defines a groupoid morphism or functor.

The squares below are both s-exact squares (4.1) in D:

∆G
π1

⊲ G
⋄
�

G

π2
▽ αG

⊲ B

αG
▽

∆G
δG

⊲ G
⋄
�

G

π2
▽ βG

⊲ B

αG
▽

.

The left one enables to identify ∆G with ∧∧∧G, the pullback of the pair (αG, αG).

Note that now G〈3〉 = � G (commutative squares in G), which might be regarded

also as the pullback
∧
||| G of three copies of αG . Note also that, in the case of groupoids,

the projections πtop / πbot of 6.2.2 become now equivalences (to be developed below).

8.2.3. Co-groupoids. Given a prediptych D, if D happens to be a co-diptych (Rem.

4.1.3 (8)), a Dop-groupoid will be called a D-co-groupoid.

8.3. Degenerate D-groupoids. One of the interests of the notion of groupoid is to create

a link between different notions which appear as degeneracies in various directions.

8.3.1. Pluri-groups. A D-groupoid G is called a D-group if G〈0〉 = • (terminal object,

supposed to exist). This implies :

(plg) αG = βG.

54Recall that, for groupoids, we use what is called here the (extended) symmetric nerve G〈n〉

rather than the customary nerve G[n], for which G[2] would mean “paths of length 2”.
55Of course here the term “map” is used loosely for naming an arrow of D, possibly not a

set-theoretic map.
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More generally G will be called a D-pluri-group56 when condition (plg) is satisfied.

This is one basic degeneracy of groupoids.

8.3.2. Null groupoids and null morphisms. For any object B, the constant diagram is a

D-groupoid, denoted by B̊ (and sometimes loosely B), called the null groupoid associated

to B: one has (B̊)〈n−1〉 = B for all n ∈ N∗.

This determines a full and faithful embedding:

D →֒ Gpd(D) .

A null morphism will be defined as a morphism with null source or target.

8.3.3. s-basic objects and banal D-groupoids. Note that, given an object B, our axioms

do not demand the projections pri : B × B → B to be good epis, though this is often

true (see Rem. 4.1.3 (2) for sufficient conditions). When this condition is satisfied, the

object B will be called s-basic. Then it defines a D-groupoid with base B, denoted by
×

B

(or loosely B × B), called the banal groupoid57 associated to the s-basic object B, for

which (
×

B)〈n−1〉 =
def

Bn (powers of B), and, if G is a D-groupoid with s-basic base B, the

transitor defines a D-groupoid morphism:

τG : G→
×

B .

A banal groupoid is a well exact (4.2) diagram of type ` in D. When B is s-condensed

(4.1.3 (2)), this diagram may be “augmented”, i.e. extended to a diagram of type ˙̀ .

8.3.4. Principal D-groupoids and principal morphisms. In our diptych framework the

notion of regular equivalence on a manifold B [VAR, SLALG] extends immediately, by

our general meta-principle, as being the datum of a good epi B
q

⊲ Q, i.e. (6.4.2) an

object of the s-augmented diptych s▽
Q

D.

The previous construction of 8.3.3 then applies to the s-condensed object q of s▽
Q

D.

Composing with the forgetful functor πtop
Q , this yields a (degenerate) D-groupoid R,

defined by R〈n−1〉 =
n

×
Q

B (iterated fibred product over Q), loosely written R = B ×
Q

B.

This generalizes the graph of a regular equivalence relation, and this is the second basic

degeneracy for D-groupoids.

This groupoid has the property that the (symmetric) nerve may be augmented, which

means that the exact diagram of type ` extends to a still dip-exact (not well exact in

general!) diagram of type ˙̀ : 0 goes to Q (cf. 5.3.4).

Note that q : R→ Q̊ is a null D-groupoid morphism.

Such an “augmented D-groupoid” will be called principal (over Q).

56In the case of Set-groupoids, this just means a sum of groups. Some authors, such as
Douady-Lazard [DOULAZ], have extended the term group to this case, but this may be con-
fusing. The alternative term “multi-group” might also create confusion with a special case of
Ehresmann’s multiple categories, a quite different notion.

57Of course, for above-mentioned reasons, we have to proscribe terminologies such as dis-
crete / coarse instead of null / banal, though these are widespread in the literature.
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Principal D-groupoids over Q derive from banal s▽
Q

D-groupoids by the (exact) forgetful

functor πtop
Q of 6.4.2.

The null groupoid B̊ may be viewed as the special case q = idB .

The banal groupoid of an s-condensed (which implies s-basic) object (4.1.3) may be

viewed as the special case Q = • (terminal object, which is then supposed to exist).

A D-groupoid morphism R → G will be called principal when its source R is a

principal D-groupoid. Basic examples are the right and left “division morphisms”:

δG : ∆G→ G , δG :∇∇∇G→ G .

Given a groupoid G, the previous construction applies notably to the source / tar-

get map αG / βG : G〈1〉 ⊲ G〈0〉, and this endows G〈2〉 with two canonical principal

D-groupoid structures (with base G) over G〈0〉, denoted by ∆G /∇∇∇G.

8.3.5. Godement groupoids, Godement’s axiom, Godement diptychs. By its very defini-

tion, a principal D-groupoid R over Q gives rise to an s-exact square (4.1.1):

R
βR

⊲ B
⋄
�

B

αR
▽ q

⊲ Q

q
▽

,

which implies the transitor to be a good mono in D:

(God) τR : R ⊲ ≻ B ×B .

We shall say that a D-groupoid R is a Godement D-groupoid when its transitor has

that property τR ∈ Di, and that Godement’s axiom is satisfied in D or that D is a

Godement diptych when conversely any Godement D-groupoid is principal.

Following [SLALG] (and [VAR]), Godement’s theorem may be expressed in the present

language by the property that Dif is a Godement diptych.

Now we have observed the remarkable fact that most of the diptychs used by “work-

ing mathematicians” and quoted in the above examples (including toposes and abelian

categories) are Godement.

Moreover it is also remarkable that most of the above constructions for getting diptych

structures on categories of diagrams (particularly of groupoids) in a diptych yield new

Godement diptychs when starting with a Godement diptych. This cannot be developed

and stated more precisely here, and we refer to [P 2003, P 2004] for more explanations,

and to future papers.

8.4. Canonical (or universal) groupoids. The definitions may be applied with D = `,

and one has, with the notations of 5.3.6:

gpd(`) ⊂ ∃∃∃0 and Gpd(`) ⊂ ∃∃∃ .

`-groupoids [morphisms] are [natural transformations between] exact endo-functors

of ` . They correspond bijectively by duality (see 5.3.6)to [natural transformations be-

tween] endofunctors Γ of FFF preserving injections, surjections and pushouts.



136 J. PRADINES

By right composition with the symmetric nerves, they operate in a functorial way

on D-groupoids. (More generally any diagram in the category Gpd(`) gives rise to a

diagram of the same type in Gpd(D)).

For instance (referring to the examples studied in 5.3.6) one has:

• The “tautological” `-groupoid III, taking for Γ the identical functor Id of FFF. It oper-

ates identically on D-groupoids. One has: III〈n−1〉 = n (the base is 1, the arrow set

is 2).

It should be carefully noted that, though this groupoid would become banal when

considered as a ˙̀ -groupoid (defined by the embedding of `̀̀ in ˙̀̀̇̀̇ ), however (in spite

of its very näıve appearance) it is neither banal nor principal as a `-groupoid (which

would imply the degeneracy of all D-groupoids!).

• The null groupoid O, associated to the constant endofunctor 1, endowed with the

morphism:

ω : O→ III ,

associated by duality to the natural transformation (null constant map):

∗
ω : Id→ 1,n 7→ (n

0
→ 1) .

Its effect on a D-groupoid G yields the unit law :

ωG : OG→ G ,

where OG = B̊ is the null groupoid attached to the base B = G〈0〉.

• The “shift” (or “triangle”) `-groupoids ∆,∇∇∇, associated to the “shift functors” of

FFF, endowed with canonical groupoid morphisms:

δ : ∆→ III , δ :∇∇∇ → III .

These groupoids are principal (over 1), but not banal (see 6.4.2, 6.4.3, and 8.3.4)!

One has ∆〈n−1〉 = 1 + n = n + 1 =∇∇∇〈n−1〉: the base is 2, the “arrows object” is 3.

The action on a D-groupoid G yields (this explains the notations: see 8.3.4) the

right and left “division” morphisms:

(div) δG : ∆G→ G , δG :∇∇∇G→ G ,

where ∆G and ∇∇∇G are principal (over G). When D = Set, these are the maps

defined by:

δG(y, x) = yx−1 (αy = αx) , δG(y, x) = y−1x (βy = βx) .

• The“square” `-groupoid ���58, endowed with the following canonical groupoid mor-

phisms:

ι : III→ ��� , III
πtop

←−−−���
πbot

−−−→ III .

One has ���〈n−1〉 = 2n: the base is 2 and the arrows object is 4.

The action on a D-groupoid G yields (whence the notations):

G
ιG−−→ � G, G

π
top
G←−−− � G

πbot
G−−−→ G .

58Not to be confused with the category 2×2, for which we used the same symbol in (5.3.1).
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Just as the tautological groupoid, it is neither banal nor principal (the augmented

functor is no longer `̀̀ -valued, since 0 + 0 = 0 !).

• The“mirror” `-groupoid Σ, neither banal nor principal, isomorphic to the tautolog-

ical groupoid by the “mirror” isomorphism ς : III→ Σ. The action on a D-groupoid

G yields the inverse map (a D-groupoid isomorphism):

ςG : G
≈
≻ Gop.

In the category Gpd(`) ⊂ ∃∃∃, there is a basic diagram of type ⊲⊳⊲⊳⊲⊳:

∆∆∆ ∇∇∇

��� ≺

ι
top

⊳⊲
ι bot

≻

III

δ @

▽

⊳

π
bot

e©

III

@ δ

▽

π top

e©

⊲

.

The tags @ and e© (which mean actor and equivalence) will be explained below.

The morphisms ιbot and ιtop derive by duality (as explained in 5.3.6) from the natural

transformations associating to the object n the maps n+n → 1 + n and n+n → n + 1

defined respectively by 0n + idn and idn + 0n, where 0n means here the 0 constant map

from n to the terminal object 1 = {0} of FFF.

Composing on the left with any D-groupoid G (still interpreted as an exact mor-

phism from ` to D) this diagram gives rise to the following “canonical butterfly diagram”

(functorial with respect to G and to D-groupoid morphisms):

(can.but)

∆G ∇∇∇G

��� G
≺

ι
top

G

⊳⊲
ι bot
G

≻

GGG

δG @

▽

⊳

π
bot

G

e©

GGG

@ δG

▽

π top
G

e©

⊲

.

• The transparent geometric notations are of course suggestive of the set-theoretic

case, where the abstract objects G〈n−1〉 are sets, the elements of which are pictured

by commutative diagrams with n vertices (successively vertices, edges, triangles,

squares, . . .), while the maps between these objects are interpreted by iterating

operations consisting in dropping some vertex (and the corresponding adjacent

arrows), or on the contrary doubling some vertex and the corresponding adjacent

arrows, and adding a degenerate unit arrow. The oblique sequences may be regarded

as very special cases of short exact sequences of groupoids (cf. [P 1986]).

It should be noted that any exact endofunctor of `, notably ∆,∇∇∇,���, operates also on

the former butterfly diagram by right composition, as well as the natural transformations

between them (using here the alternative monoidal composition law of ∃∃∃, called horizontal

in [McL] and vertical here), giving rise to a lot of interesting objects. In particular one

gets in this way a “double butterfly diagram” (a diagram of type ⊲⊳⊲⊳⊲⊳ × ⊲⊳⊲⊳⊲⊳, which it would
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be difficult to draw explicitly and study directly), which will not be studied here. All of

this deserves further studies which are out of our present scope.

8.5. Various examples. We refer to the examples of diptychs with notations given in

section 5, and particularly 5.2.

1. Taking successively (see 5.1): D = Dif, DifH, Dif(ét), Dif(r.c), Dif(r.1−c), we get no-

tably, among many other variants:

(a) Ehresmann’s differentiable (or briefly smooth) groupoids, nowadays called Lie

groupoids (Rem. 2.2.5.1);

(b) the Hausdorff Lie groupoids (the ωG embedding of the base is closed);

(c) the étale Lie groupoids (called S-atlases by van Est in [vE]); any (classical)

atlas of a manifold B determines a (very special) principal étale groupoid

over B, which leads to regard general D-groupoids as generalized atlases (see

[P 1989, P 2004] for a development of this point of view); note that here s-basic

means discrete, and the banal groupoids have to be (topologically!) discrete;

(d) the α-connected Lie groupoids (i.e. the fibres of the source map α are con-

nected: this is the right generalization of connected Lie groups), including the

holonomy groupoids of regular foliations ([P 1966]); here s-basic means con-

nected;

(e) the α-simply connected Lie groupoids (this is the right generalization of simply

connected Lie groups: [P 1966]).

2. For D = Top (i.e. using the open surjections as good epis, see 5.2), one gets those

Ehresmann’s topological groupoids for which the source (and then target) maps are

open, which are certainly the most useful (though not the most general) ones.

3. Starting with D = Dif (or variants), let VB(D) be the diptych structure on the

category of (morphisms between) smooth vector bundles, defined by using spb-

squares for defining the good epis: then the VB(D)-groupoids are the “vector bun-

dle groupoids” introduced in [P 1986] (where a dual object is constructed inside

this category). It seems that these groupoids should be the natural framework for

studying linear representations.

4. For D = Poset, ones gets Ehresmann’s ordered groupoids.

5. One can take for D any topos or abelian category with its standard diptych structure

(i.e. all monos / epis are “good”). This gives rise to an unlimited and very rich range

of examples, thus handled in a unified way.

6. As above-mentioned we hope that a slight modification of our diptych axioms,

without weakening their efficiency (introducing for D “good isomorphisms” and

an “involution”), will enable us to include in the same unified treatment new basic

examples, such as Riemannian groupoids, Poisson groupoids, and perhaps measured

groupoids.

8.6. New examples derived from functoriality. (See [P 2004] for more details and devel-

opments). Thanks to the functorial way we defined D-groupoids, it is obvious that:
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• Any dip-exact morphism Φ : D→ D′ defines (by left composition) a functor:

Gpd(Φ) : Gpd(D)→ Gpd(D′) ,

and any natural transformation ϕ : Φ
�
→ Φ′ defines a natural transformation:

Gpd(ϕ) : Gpd(Φ)
�
→ Gpd(Φ′).

This may be applied for instance to many forgetful functors, whenever they are

dip-exact.

• Any [natural transformation between] endo-functors of DipEx defines a [natural

transformation between] endofunctors of Gpd.

For instance, with the notations of the above example (3), one can prove that the

“tangent functor” (which associates to any manifold B its tangent bundle TB)

defines indeed such an endofunctor of DipEx (the choice of our good epis using

(spb) condition was made for that purpose):

T : D 7→ VB(D),

where D may be one of the variants for Dif, and we have natural transformations

(“zero section” and “canonical projection to the base”) connecting T with the “zero

functor” 0 (by which any manifold B may be identified with a null vector bundle

0B):

0
0
→ T

t
→ 0.

Then we know immediately that, for any D-groupoid G, its tangent space has a

canonical structure of VB(D)-groupoid59, with canonical morphisms:

G
0G→ TG

tG→ G ,

and that this construction is functorial in G (identified with 0G).

8.7. D-groupoids morphisms; D-actors, D-action laws

8.7.1. Description of D-groupoid morphisms and notations. We are in the general sit-

uation described in 7.3.3, 7.3.4, with many special properties deriving from T = `. We

cannot make an exhaustive study here but just gather some needed facts.

We fix some shortened notations. The diptych D is fixed. Let f : H → G be a D-

groupoid morphism. We define (for n ∈ N) Hn = H〈n〉, Gn = G〈n〉, E = H0, H =

H1, ∆H = H2, B = G0, G = G1, ∆G = G2. We have a family of horizontal “connecting”

arrows of D, f〈n〉 = fn : Hn → Gn, which turns out to be uniquely determined by f = f1.

They determine “connecting” squares in D, which will be called hi/vi, or hs/vs when

their horizontal / vertical arrows belong to Di or Ds. All these squares are generated by

vertical composition of vi or vs squares (more precisely the vertical arrows may be taken

as being the opposite (or dual) of the canonical generators of the simplicial category).

A D-natural transformation may be defined as D-morphism from H to � G.

59On the contrary it is by no means obvious (as proved by A. Weinstein et al. [CDW], using
symplectic structures) that the cotangent space has such a structure. In [P 1988], this is derived
from a more general quite unexpected and remarkable general duality property of Gpd(VB(D)),
which does not use any symplectic structure.
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8.7.2. Special morphisms: hyper- and hypo-actors, (partial) action laws. It turns out

that f ∈ Di implies fn ∈ Di for all n (then all the connecting squares are ipb-squares,

and f will be called an i-morphism), and f ∈ Ds implies f0 ∈ Ds (f will be called an

s-morphim if all the connecting arrows fn belong to Ds). These define subcategories of

Gpd, denoted by iGpd and sGpd.

In order all the vs connecting squares (8.7.1) to be respectively gpb, ipb, spb (6.1.1),

it is enough that this property is satisfied by the square a(f) below:

H f ≻ G

a(f)

E

αH

▽

f0 ≻ B

αG

▽

.

(In the gpb and ipb cases, one can prove that the property is then actually satisfied

by all the connecting squares). Then the D-groupoid morphism f is called respectively

an @-morphism (or D-actor), @̌-morphism (or D-hypo-actor), @̂−morphism (or D-hyper-

actor)60. A (hyper)-actor is an s-morphism iff f0 ∈ Ds, and is then called an s-hyper-actor,

tagged by
@̂

⊲ .

• The (seemingly very natural) term actor (functor describing an act ion law, sub-

stituted here to the proscribed “classical” terminology “discrete (op)fibration”!)61

stresses in a straightforward way that, when D = Set, such a morphism or functor

f : H → G is associated (in an essentially bijective way) to an action law λ of

the groupoid G on (f0 : E → B), obtained by composing λ = βH ◦ ϕ−1, as shown

below:
λ

G×
B

E ≺
ϕ=(f, αH)

≈ H
βH

⊲ E≻
.

Conversely the groupoid structure on the domain of λ is derived from its graph

embedding62:

λ̂ : G×
B

E ≻ G× (E × E), (g, x) 7→ (g, (λ(g, x), x)) .

(More precisely λ̂ takes its values in the fibre product G ×
B×B

(E×E)). The definition

of a groupoid action law is precisely expressed by the property that the image of

λ̂ be a subgroupoid of the groupoid G ×
×

B

×

E. In the general case, according to our

general meta-principle of internalization, we shall define λ = βH ◦ ϕ−1 as the D-

60We slightly modify the terminology (in-actors, ex-actors) of our previous papers. Ehres-
mann’s terminology for our hypo-actors was “well faithful”, while our actors were called “fonc-
teurs d’hypermorphismes” in his book “Catégories et structures” (see our remark 2.2.3.1).

61While our hyper-actors are known classically as “(op)fibrations”, in the categorical sense.
62We modify the order of the factors in order to systematically write the source on the right

and the target on the left.
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action law associated to the D-actor f : H → G. The most important case is when

one has (E ⊲ B) in Ds (D-s-actors, D-s-action laws), but the definitions remain

meaningful in the general case.

This generalization of group action laws was introduced by Ehresmann.

• The terminology of hypo-actor is also very natural, since the definition means that

the previous map ϕ, instead of being an isomorphism, is now a good mono. Then

the map βG = λ ◦ ϕ may be interpreted as a (special) partial action law : see 9.3.4

below for the problem of globalizing such a partial action law.

Such special morphisms will be tagged by the symbols @, @̌, @̂; they define subcat-

egories of Gpd and sGpd, denoted by @Gpd, @̌Gpd, @̂Gpd, and s@Gpd, s@̌Gpd,

s@̂Gpd.

We refer to [P 1989] for various statements which can be proved diagrammatically

in the diptych context, notably concerning the existence of pullbacks; in particular the

pullbacks along any s-hyper-actor f always exist.

8.7.3. Special morphisms: inductors, equivalences, and extensors. We wish now to “in-

ternalize” the algebraic notions of fullness and faithfulness.

Analagously to the square a(f) of 8.7.2, we can consider the square t(f) built from

the transitors (keeping the notations of 8.7.1, and setting p = f0 : E → B):

H f ≻ G

t(f)

E × E

τH

g

p×p - B ×B

τG

g

.

Then f : H→ G will be called: i-faithful, s-full, a D-inductor, depending on whether

the square t(f) is ipb, spb, gpb (6.1.1). Note that any hypo-actor is i-faithful.

In the third case we can say H is induced by G along f0 = p : E → B. When moreover

one has p ∈ Ds, f will be called an s-equivalence (or s-inductor).

To “internalize” the general algebraic notion of equivalence, we need a diagrammatic

description of essential (or generic) surjectivity. This is achieved by means of the following

diagram, which always does exist:

f b

H u ≻ p∗(G) q ≻ G βG ⊲≻ B≻

⋄

�

E

a

▽

p ≻

α
H

⊲
B

αG

▽

.

Then f will be called essentially-s whenever one has b ∈ Ds. One can prove that this

implies the existence of a D-groupoid H’ = p∗∗(G) induced by G along p, with a canonical

factorization h : H→ H’. Then (mimicking and “internalizing” the algebraic definition)

f is called a D-equivalence whenever h is an isomorphism and f is essentially-s. When

moreover f is an i-morphism, one speaks of an i-equivalence.
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A D-equivalence will be tagged by
e©
≻ .

Finally f will be called an s-extensor whenever it is s-full and moreover one has p ∈ Ds.

This implies that f is an s-hyper-actor (8.7.2) (hence an s-morphism).

An s-extensor will be tagged by
ê©

⊲ .

We explain now why this (non-classical) terminology seems very natural.

For an s-extensor f, the kernel N exists as a D-groupoid, and is defined by the following

pullback (which turns out to be a pushout too):

N ⊲ B̊

⋄
�

H
g

▽

f

ê© ⊲ G

ωG

g

▽

.

It is a normal63 subgroupoid of H (and moreover principal (8.3.4) in the case of an

s-equivalence). Then

E̊ ⊲ ≻ N ⊲ ≻ H ⊲ G

may be called a short exact sequence of D-groupoids, since, from the underlying algebraic

point of view (in the set-theoretic case), this is the obvious exact generalization64 of the

quotient of a group by a normal subgroup (the only slight difference is that one has to

consider the two-sided cosets NxN instead of the left or right ones in the case of groups,

or more generally plurigroups (8.3.1)). The purely diagrammatic proof of these facts

given in [P 1986] remains valid in any Godement diptych. Then the functor f describes

the extens ion of G by N, whence our terminology.

8.7.4. D-groupoid morphisms as groupoids in � D. The general discussion of 7.3.3 ap-

plies with T = `, though some of the statements below require extra verifications.

The basic correspondence (dipEx switch) of 7.3.3 reads now:

Gpd(D)↔ gpd(
vnäıve

� D) ,

and means that giving a D-groupoid morphism is equivalent to giving a groupoid struc-

tured by the category of squares of D, endowed with its näıve diptych structure. (Note

that even for D = Set, this gives an interesting algebraic interpretation of groupoid mor-

phisms).

Using 6.2.2 and 6.2.3, we can get also interpretations for the special morphisms intro-

63It is worth noting that, for a subgroupoid N, the algebraic condition of normality bears
only on the isotropy groups of N.

64Which however seems strangely widely despised or underestimated in the literature, in spite
of its basic simplicity and importance among the various kinds of more sophisticated quotients
(systematically studied notably in Ehresmann’s book, in the more general context of categories,
as solutions of various universal problems, and, in the smooth framework, in [MK], where the
study of our s-hyperactors, named fibrations, is privileged).
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duced in 8.7.2 (D is omitted):

@Gpd↔ gpd(

vcan
⋄

� ) , @̌Gpd↔ gpd(
vnäıve

�̌ ) , @̂Gpd↔ gpd(
vcan

� ) ,(8.1)

s@Gpd↔ gpd (

vcan

⋄
�
s

) , i@Gpd↔ gpd (

vcan

⋄
�
i

), s@̂Gpd↔ gpd (
vcan

�
s

) .

8.7.5. Canonical diptych structures on the category of D-groupoids. Applying now the

discussion of 7.3.4 (maindipEx) with T = `, we can get various diptych structures on the

category of groupoid morphisms and on various subcategories, for which we introduce

special notations:

Gpd =
def

Gpd
main

=
(
Gpd; iGpd, s@̂Gpd

)
↔ gpd ◦

vnäıve

�
hmain

(8.1)

Gpd(@) =
def

Gpd
maiN

=
(
Gpd; iGpd, s@Gpd

)
↔ gpd ◦

vnäıve

�
hmaiN

.(8.2)

For instance these formulas mean that, for the main diptych structure on the category of

D-groupoid morphisms, one should take as good epis the s-hyper-actors (8.1), while it is

possible also to take the s-actors (8.2). One may also observe, for more symmetry, that

the good monos will be automatically hypo-actors, i.e. one may replace iGpd by i@̌Gpd

and write Gpd = i@̌Gpd
s@̂.

There are also several interesting subdiptychs. Among others:

@̂Gpd =
def

(
@̂Gpd; i@Gpd, s@̂Gpd

)
↔ gpd ◦

vcan

�̂
hcan

(8.3)

@̂Gpd(@) =
def

(
@̂Gpd; i@Gpd, s@Gpd

)
↔ gpd ◦

vcan

�̂
hMaiN

(8.4)

@Gpd =
def

(
@Gpd; i@Gpd, s@Gpd

)
↔ gpd ◦

vcan

⋄
�

hcan
.(8.5)

This means notably that the canonical diptych structure (which is just induced by the

näıve one in those special cases) is suitable for the special subcategories of actors, and

hyper-actors. (Actually the extra condition demanded for good monos, reduces indeed to

just being an i-morphism. Recall also, for more symmetry: i@̂Gpd = i@Gpd).

It is also highly remarkable that starting with a Godement diptych D, the previous

constructions yield a variety of new Godement diptychs, but this cannot be developed

here.

8.8. Double groupoids. We cannot discuss here thoroughly the general problem of “in-

ternalizing” the notion of double groupoids, which certainly deserves future research and

further developments. We just mention briefly a few tracks; these lead to a huge variety

of unequivalent more or less restrictive notions, which are of interest even in the purely

algebraic (i.e. set-theoretic) context.
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Using the “double nerve”, one may consider predip-diagrams ` × ` → D, preserving

“horizontal” and “vertical” pullbacks. This defines two D-groupoid structures satisfying

Ehresmann’s interchange law.

Alternatively (but here in a more restrictive way), following the basic observation

made by Ehresmann in the purely algebraic context, one may also iterate or compose the

functors Gpd or Gpd@ introduced in 8.7.5. But even when taking D = Set, this defines

interesting classes of special double groupoids (considered by various authors).

The objects of (Gpd)2(Set) satisfy certain special “filling conditions” considered no-

tably by Ronnie Brown.

The more special objects of (Gpd@)2(Set) (for which double arrows are uniquely defined

by their two sources, or alternatively by the source for one law and the target for the

other law) are particularly important and interesting in our present context.

In the special case when moreover the two groupoid laws are both principal, they have

been called affinoids by A. Weinstein and pregroupoids by A. Kock, who presents them

in his lecture [K] in the underlying algebraic context (see also [P 1985] and [P 2003]).

These objects have a third category structure, the composition law of which (mixed or

oblique law) is suggested by the following diagram:

· �............ · � ·

(NW) NE

·
?

..........
� ·

?
� ·

?

SW (SE)

·
?
� ·

?
�............ ·

?

..........

,

where the dotted arrows and the corresponding (NW) and (SE) “squares” (picturing

“double arrows”) are built by the basic property; the oblique composite of the given NE

and SW “squares” is then the big “square” defined by applying the exchange law to the

four small “squares”.

In the present context these notions become meaningful (and may be studied in a

purely diagrammatic way) when replacing Set by any diptych D.

9. Principal actions; conjugate and associate actions. It was initially planned to

give longer development to the present section, which illustrates the general methods

described above. Since the preliminary sections are more meaty than expected, we have

to postpone further details to future papers, and will be content with presenting the main

leading ideas.

9.1. Diagrammatic description of Ehresmann’s constructions

9.1.1. Classical principal fibrations According to the description, as given in [VAR], of a

(smooth) principal fibration in Ehresmann’s original sense, let p0 : P → B be a principal
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fibration with base B and structural group H (a Lie group with underlying manifold H)

acting65 smoothly and freely66 on P .

The base B is the orbit space of this action, which defines on P a regular equivalence

relation; the graph of this equivalence relation is the manifold S = P ×
B

P , and we have

a (smooth) isomorphism:

ϕ−1 : H × P
≈
→ S, (h, x) 7→ (h · x, x) .

Let us set q = pr1 ◦ ϕ : S → H.

Now, relying on Godement’s theorem ([SLALG, VAR]), and using the language intro-

duced in 8.7.2 and 8.3.4, it is readily seen that we can summarize, in a highly condensed

and very simple way, all the data, definitions and axioms (including the local triviality

conditions), as given in [VAR], by saying that S has a principal D-groupoid structure S

(taking D = Dif, or DifH (5.1)) with base S0 = P , and:

(ppl.act) q : S
@

⊲ H

is a principal D-s-actor67 (8.7.2, 8.3.4). One observes that the canonical factorization of

q : S
j
→ K = H × (P × P )

v
→ H, where j = (q, τS) and v = pr1, may be read in the

category of smooth groupoids:

(left wing) S ⊲
j
≻ K = H×

×

P
v

e© ⊲ H .

S may be viewed as a normal subgroupoid embedded by j in the (trivial and trivialized)

groupoid K (since the condition of normality bears only on the isotropy groups, which

vanish here, S being principal), and v as a (trivial) s-equivalence of groupoids (8.7.3).

We note also that one has K ≈ S × P (as manifolds).

9.1.2. Diagrammatic description of Ehresmann’s structural groupoid. Let us remind that

Ehresmann’s structural groupoid G may be defined as the quotient of P × P by the

diagonal action of H; more precisely, as a D-groupoid, it may be regarded as a quotient

of the banal (8.3.3) groupoid R =
×

P. Its base is G0 = B (quotient of P by the action of

H). Moreover the canonical projection defines a principal D-s-actor :

(conj.act) p : R
@

⊲ G

65Contrary to the tradition, we consider only left action laws, using the fact that any right
action law (h, x) 7→ x · h may be described by the left action law h · x = x · h−1. A right action
law of H may be also considered as a left action law of Hop, using the canonical isomorphism

ςH : H
≈
→ Hop, h 7→ h−1.

66And properly when one wants to deal only with Hausdorff manifolds, but the definitions
(and constructions) remain meaningful when these assumptions are dropped simultaneously.

67One should note that, in our terminology, “principal” includes simultaneously an algebraic
condition (the action is free), and several topological (more precisely smooth) conditions encap-
sulated via Godement’s theorem and the precise definitions of structured groupoids and actors.
Briefly said, we introduce the notion of D-principal action as the “diptych internalization” of
the purely algebraic notion of free action, via a diagrammatic description of such an algebraic
object. The goal of this section is to show that this encapsulates a very rich extra information!
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and one checks immediately that the associated action law (8.7.2) is precisely the (tran-

sitive) action law of G on (p0 : P → B) introduced by Ehresmann. One has R ≈ G×
B

P .

The canonical factorization of p is now:

(right wing) R ⊲
i
≻ K’ = G×

×

B

×

P
u

e© ⊲ G .

with j = (p, τR), and u = pr1.

Now we let the reader check (using associativity of fibre products) that one has a

canonical isomorphism (by means of which we identify K and K’):

K ≈ K’ .

This allows to gather the previous left and right wings into a beautiful butterfly diagram

(precisely a diagram of type ⊲⊳⊲⊳⊲⊳ (5.3.5) in Gpd(Dif)):

(conj)

S R

K ≺

i
⊳⊲

j

≻

H

q @

▽

⊳

v

e©

G

@ p

▽

u

e©

⊲

.

The symmetry of the diagram may be achieved by setting H0 = C = • (the base of a

group is a singleton!) and noting that q0 is the canonical map P ⊲ • . This allows to

write products × as fibred products ×
•

= ×
C

. As explained in the introduction, the fact

that the corresponding equivalence relation is the coarse one makes it “invisible”, and

hides the symmetry.

The main source of dissymmetry lies here in the fact that q0 is split (though non-

canonically !), while p0 is not in general: when it is, the principal fibration is called triv-

ializable (a trivialization being a choice of a section of p0). One may say that one wing is

trivial while the other one is only locally trivial. In a certain sense the local triviality of

this original situation leads to wrong tracks that hide the fundamental simplicity of the

situation, which will be more apparent in the general situation as described below.

Moreover one observes that S = Keru and R = Kerv, so that the two diagonals may

be viewed as (degenerate) short exact sequences of D-groupoids (8.7.3).

This means that the structural groupoid G might be also described (up to a uniquely

defined isomorphism) as the quotient of the heart K of the butterfly by the normal

subgroupoid S.

We shall express this relation between the principal actions of the structural group and

the structural groupoid onto the principal bundle P by saying that they are conjugate.

This is indeed a very special case of a general symmetric relation described below.

We shall not go further without restoring the symmetry, and forgetting the (local)

transitivity and triviality conditions. Even the notion of associate bundles will become

much clearer in the general context.
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Moreover the above presentation, suitable for an immediate application of our meta-

principle of internalization, allows now to forget and bypass the set-theoretic construc-

tions, and leads to very wide-ranging notions in the diptych framework.

9.2. General conjugation of principal morphisms. From now on D will be a Godement

diptych (8.3.5). For the sake of simplicity, we shall also add to the definition of D-groupoids

the condition that the base is an s-basic object (4.1.3 (2), 8.3.3) (when D = Dif this

would eliminate just the empty groupoid). This allows to use freely the banal groupoid

associated to any object of D, and to consider the transitors τ (or anchor maps) as

D-groupoid morphisms.

For general notations and conventions concerning a D-groupoid morphism f : H→ G,

we refer to 8.7.1. In particular f determines a map between the bases f0 : E → B, and a

map between the arrows objects f = f1 : H → G.

Most of the situations presented here are indeed special instances of more general

ones, introduced in [P 1989] in order to interpret the generalized morphisms in the sense

of Skandalis-Haefliger [H], as fractions obtained by inverting the s-equivalences (and

actually all the D-equivalences). More precisely we encounter here only the generalized

isomorphisms, also known as Morita equivalences. Though written in the differentiable

framework, the presentation given in [P 1989] was designed in order to extend to the

Godement diptychs framework.

9.2.1. Butterfly diagram of a principal morphism. We assume here H is principal (8.3.4)

and this is stressed by writing now H = R, R0 = P , and f = r : R→ G. This means we

have (τR : R ⊲ ≻ P × P ) ∈ Di. We suppose moreover one has:

(r0 : P ⊲ B) ∈ Ds .

We do not need to assume r to be an actor for being able to build a butterfly dia-

gram (more precisely a diagram of type ⊲⊳⊲⊳⊲⊳ in the category Gpd(D)) as in the previous

subsection:

(conj.but)

R R’

K ≺

i’
⊳⊲

i

≻

G

r

▽

⊳

q

e©

G’

r’

▽

q’
e©

⊲

.

It is defined as follows:

• i = (r, τR) : R→ K = G×
×

B

×

P ;

• q = pr1 (it is an s-equivalence);

• G’ = K//R (which denotes the two-sided quotient of K by the normal subgroupoid

R (8.7.3)), and the projection q’ : K→ G’ is an s-equivalence;

• R’ = Kerq, with the embedding i’.

The base of K has two projections: B ⊳
q0

P
q′
0 ⊲ B′ (with q0 = r0, q′0 = r′0). We have

again oblique short exact sequences of D-groupoids, and each wing is determined by the

other one up to a unique isomorphism.
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9.2.2. Conjugation butterflies. More generally a diagram of type ⊲⊳⊲⊳⊲⊳ as above will be

called a conjugation butterfly whenever:

• q and q’ are s-equivalences (8.7.3), with R = Kerq’, R’ = Kerq (i and i’ being

the canonical embeddings).

The (principal) D-morphisms r and r’ are then called conjugate (by means of this dia-

gram). By definition of s-equivalences we have two isomorphisms :

G×
×

B

×

P ≺
(q, τK)
≈ K

(q’, τK)
≈ ≻ G’ ×

×

B’

×

P

9.2.3. Conjugation functor and its properties. The previous construction is functorial: to

a square in � Gpd(D) connecting two s-principal morphisms, there corresponds functori-

ally a diagram morphism of type ⊲⊳⊲⊳⊲⊳ in Gpd(D) (which would be pictured by a “thickened”

butterfly, adding a third dimension).

It is readily seen that such a conjugation butterfly diagram determines a self-adjoint

functor in the full subcategory of � Gpd(D) generated by the s-principal D-morphisms

(viewed as special objects of this category).

So, to any s-principal morphism (or to any square connecting two such s-principal

morphisms) this functor associates an s-principal morphism (or a square), which will be

called its mirror image.

This functor has very remarkable properties, which may be proved diagrammatically

(as interesting exercises!), and might be checked more directly in the set-theoretic case,

i.e. when D = Set. These properties lead to very interesting and powerful constructions,

which certainly have to be exploited more extensively; we are going to sketch just a few

of them.

• When G is s-transitive (i.e. τG ∈ Ds), so is G’. When D = Dif, this character-

izes the transitive locally trivial smooth groupoids (earlier called Lie groupoids till

1987: cf. Rem. 2.2.5.1)68. The correspondence between the structural group and the

structural groupoid, recalled in 9.1.1, is a very special instance of this general prop-

erty. However in our present framework, this appears as an extra property, which is

not basic for most constructions.

• When r is a principal s-actor, so is r’; this is the situation alluded to in the intro-

duction and on which we focus now.

9.2.4. Conjugation of principal actors. We shall not develop further the study of conju-

gation for the general principal morphisms, though it may be of interest.

Indeed the situation becomes geometrically much richer (and in direct connection

with our present subject) in the case of principal actors. Actually the conjugate of an

actor is an actor, as mentioned just above.

68It should be noted that, in the smooth case, the properties of local triviality are reflected
(relying on Godement’s theorem) by a very simple property of the transitor τ , which allows an
immediate “internalization” in our framework of Godement diptychs. In the purely topological
context, there is no such simple characterization, and the local triviality becomes a cumbersome
condition, with very poor stability properties.
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As stated in [P 1989], this situation is characterized by the (symmetric) condition

that δK induces an isomorphism:

(transv) δK : ∆K ⊃ R×
α

R’
≈
→ K .

Then R and R’ are called in [P 1989] transverse subgroupids of K.

This gives rise to a very rich geometrical situation which can be described in vari-

ous equivalent ways. Indeed the underlying algebraic situation is exactly the situation

described in A. Kock’s lecture [K] (using the language of torsors and pregroupoids), but

our diagrammatic description allows to transfer it into any Godement diptych, while

enlightening the computations by a geometric vision.

Actually the data of the two principal subgroupoids R and R’ of K, satisfying such

a transversality condition, define on the underlying object K of the groupoid K an ex-

tra structure, which may be described equivalently as a rule of three on its base P ,

or alternatively as this special double groupoid structure arising in 8.8 as the struc-

ture of an object of (Gpd@)2(Set)), admitting the groupoid structure of K as its mixed

law.

This cannot be detailed in the present account, which aims at stressing the leading

principles arising from Ehresmann’s concepts. We shall be content with reprinting below

the following figure (Fig. 2), extracted from [P 2003], which pictures the underlying set-

theoretic situation, with its strong geometric perfume, while suggesting the diagrammatic

description.

The remarkable fact is that the whole structure arises from the data of principal (i.e.

very degenerate) groupoids. (In the same way, one notes that any groupoid structure

G arises from a degenerate groupoid ∆G, and an equivalence relation on ∆G, to know

δG : ∆G ⊲ G, i.e. again a degenerate groupoid, thus illustrating the slogan that all

the structured groupoids arise from principal ones and from Godement’s axiom).

Now we display some remarkable examples of the corresponding properties of a square

and its mirror (i.e. conjugate) image (the vertical arrows are s-principal morphisms,

connected by the horizontal arrows); the reflection is horizontal:

(a)

S ≻ R

⋄

�

H

s @

▽
f
≻ G

@ r

▽

←

∣∣∣∣∣→

S’ @ ≻ R’

H’

s’ @

▽ f ’

@ ≻ G’

@ r’

▽

(b)

S @ ≻ R

⋄
�

H

s @

▽ f

@ ≻ G

@ r

▽

←

∣∣∣∣∣→

S’ @ ≻ R’

⋄
�

H’

s’ @

▽ f ’

@ ≻ G’

@ r’

▽
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(c)

S e© ≻ R

H

s @

▽ f

e© ≻ G

@ r

▽

←

∣∣∣∣∣→

S’ @ ≻ R’

H’

s’ @

▽ f ’

≈ ≻ G’

@ r’

▽

G’ ⊲
⊲B

′

y• •x •α(g′) (
K

P
▽▽

)
e©

q′

⊲

(
G’

B′
▽▽

)

y′•
�

k

•x′

g′

? •β(g′)

P q′
0 ⊲ B′

� gG

B
▽▽

(
G

B
▽▽

)

e© q

▽

q0

▽

β(g)
•

α(g)
• B

y = g ⊳ x x′ = g′▽x

y′ = g ⊳ x′ = g′▽y

α(k) = x β(k) = y′

q∗∗0 (G) ≈ K ≈ q′0
∗∗

(G’)

g = q(k) g′ = q′(k)

Fig. 2. Conjugation of two principal actors

9.3. A few examples and applications

9.3.1. The canonical butterfly. The canonical butterfly (canbut), encountered in 8.4,

and which we reproduce here for convenience, may be obtained by applying the previous

∆G ∇∇∇G

��� G
≺

ι
top

G

⊳⊲
ι bot
G

≻

GGG

δG @

▽

⊳

π
bot

G

e©

GGG

@ δG

▽

π top
G

e©

⊲

construction to the canonical principal actor δG : ∆G→ G attached to any D-groupoid

G. Its conjugate is δG. The corresponding action laws are the left and right69 translations

69More precisely the left action law associated to the right translation by the process ex-
plained above.
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of G on B
αG← G

βG

→ B (the symmetry is fully apparent in this example, which, though

trivial, is basic).

9.3.2. Associate bundles. Let us look at the second mirror correspondence (b) between

squares (which is a consequence of property (a)). Considering r and r’ as fixed, we get

(by building pullbacks) a correspondence (conjugation) between (possibly non-principal)

G-actors f (or action laws) and G’-actors f ’ (or action laws).

In the classical case recalled in 9.1.1, one can check that we recover in this way the

correspondence between a given action of the structural group on a “fibre type” E (base of

H), and the associate action, introduced by Ehresmann, of the structural groupoid on the

so-called “associate bundle” (see also [VAR] for instance, for the classical presentation),

which here is constructed as the base E′ of H’.

In the general case, these associate action laws play perfectly symmetric roles, and

are determined by one another.

Note that, when this second action, corresponding to the second actor f, is itself also

principal, the properties of the squares are preserved by transposition. This gives rise to

a second mirror image (obtained by “vertical” reflections). This “kaleidoscopic” situation

leads to very interesting questions, which we intend to examine elsewhere (its seems that

a triple periodicity arises).

9.3.3. Conjugating horizontal arrows. Given any (“horizontal”) arrow f : H → G of

Gpd(D), we can pullback the (“vertical”) canonical principal actor δG : ∆G @ ⊲ G

along f, and consider the mirror image of this pullback square (not a pullback in general

when f is no longer an actor!) and this defines a correspondence f 7→ fc, which has very

interesting properties.

First we note that when f is any G-actor, i.e. an actor with target G (not supposed

to be principal here), this correspondence defines a new G-actor by property (b), and

this determines an interesting involution which will not be studied here.

We give now another important application to the “activation” of a groupoid mor-

phism, relying on properties (a) and (c).

9.3.4. “Activation” of a D-groupoid morphism. Let us start with a definition. Given

a D-groupoid morphism f : H → G we define an activation of f as a (commutative)

diagram:

(activ)
H1

H f ≻
h1

≻

G

f1
@

≻
,

where (as indicated by the tagging) f1 is an actor.

Such an activation Ĥ is called universal if it factorizes any other given activation H’,

as shown by the dotted arrow in the following diagram:

(univac)

H’

Ĥ

g

........

H f ≻

h’

≻

ĥ
≻

G

f ’
@

≻
f̂

@
≻

.
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The following wide-ranging result (where the above notations are used) extends an alge-

braic one to the structured context:

Theorem 9.3.4.1. Let f : H→ G be an i-faithful D-morphism. Then:

1. f admits an (essentially unique) universal activation f = f̂ ◦ ĥ, for which moreover

ĥ is an equivalence.

2. f is a hypo-actor iff ĥ is an i-equivalence.

3. f is a hyper-actor iff ĥ is an s-equivalence.

We just indicate briefly how to build the diagram on which the proof of (1) relies.

One starts with the big gpb square (written on the left) obtained by pulling back δG
along f, and one considers its right mirror image (to which property (a) applies). It is

not in general a pullback, but may be factorized into a gpb square and a triangularly

degenerate (on the bottom edge) square. Then one considers the left mirror image of this

factorization: this yields a horizontal factorization of the big left square, and property

(c) applies. Then the decomposition of the bottom arrow is the desired one. Look at the

following scheme below. The universal property is left to the reader, as well as the other

statements.

S e© ≻ R @ ≻ ∆G
≻

⋄
�

⋄
�

H

@ s

▽ ĥ

e© ≻ Ĥ

r @

▽
f̂

@ ≻ G

δG @

▽

f

≻

←

∣∣∣∣∣→

@

S’ @ ≻ R’ @ ≻ ∇G
≻

⋄
�

H’

@ s’

▽

======== H’

r’ @

▽ f ’

@ ≻ G

δG @

▽

f ’

@

≻

9.4. A few examples of universal activations

9.4.1. Homogeneous spaces. When applying the previous construction to the inclusion

of an embedded subgroupoid G’ ⊂ G, one just gets the canonical action of G on the

(one-sided !) quotient of G by G’, which does exist (using Godement’s axiom) as an

object of D (not a groupoid), and which extends obviously the theory of homogeneous

spaces in the case of groups. In particular, δG may be regarded as the universal activation

of ωG.

9.4.2. Palais’ globalization of partial action laws. A much more interesting example is

a generalization of R. Palais’ theory of globalization of partial action laws [Pal]. It is

important to note that this theory holds in Dif (not DifH!) (5.1). Of course this causes

no problem in our framework. This might be one reason of extending the definitions of

principal fibrations and the basic constructions to non-Hausdorff manifolds. (Classically

these are rejected, by demanding the action of the structural group to be proper [VAR], as

leading to too exotic objects; however these objects do exist, and are nowadays recognised

to be important, notably in non-commutative geometry. Of course, with our presentation,

all the constructions which rely only on our Godement diptych properties remain valid).



GROUPOID GEOMETRIES 153

It turns out that the condition introduced by Palais for his so-called globalizable partial

actions, may be expressed by the fact that the “graph embedding” λ̂ we described in 8.7.2

for (global) action laws still defines a D-subgroupoid H. Now ϕ : H ⊲ ≻ G ×
B

E is no

longer an isomorphism in general, but an arrow of Di [even more, in Palais’ context, it

is an open (but non-closed !) embedding (but that is not necessary in our framework)];

this is precisely, in this Dif context, the definition of our hypo-actors (which is the special

case (2) of the previous theorem), and one can check that Palais’ globalization (though

it may look very specific and ad hoc) may be actually regarded as a special instance of

the previous very general result.

9.4.3. Cocycles and Haefliger cocycles. We go on working in D = Dif, and not DifH (since

we need open embeddings). An open covering U = (Ui)i∈I of a (possibly non-Hausdorff)

manifold B may be described diagrammatically in the following way. We set U =
∐

i∈I Ui,

which has an étale surjective projection on B and we regard R = U ×
B

U as a principal

(étale) D-groupoid (with base U) (which is equivalent to the null groupoid B̊).

Following the terminology of [VAR], a (non-abelian) cocycle, attached to U , with

values in G (a Lie group), is nothing else than a principal D-morphism of D-groupoids

g : R→ G .

Moreover two cocycles are cohomologous [VAR] iff the corresponding D-morphisms

are isomorphic (in the sense of D-natural transformations between functors, see 8.7.1).

Now such a formulation makes sense for any kind of D-groupoid G. So, taking for G a

pseudogroup Γ, which, as explained in 2.1.1, may always be completed (by considering its

germs) and then identified with an (étale!) D-groupoid, this general definition contains

also, by another specialization, the notion of the so-called Haefliger cocycles.

Coming back to the case of groups, we let the reader check that the universal activation

of g leads precisely to “the” (the quotation marks are to remind that one has to work

up to isomorphisms) principal fibration associated to the isomorphy class of g.

The construction applies also to Haefliger cocycles, and leads then to the construction

of the associated foliation and its holonomy pseudogroup, but precise formulations require

some more care, and that will be another story.

We would hope to tease some reluctant geometers with showing that “abstract non-

sense” may have unexpected connections with very concrete Geometry, which of course

Ehresmann would know perfectly, though sometimes taking pleasure in holding these

connections secrete, and kept for Zeus.

10. Conclusion. The main messages we would like to stress, stemming from Ehres-

mann’s legacy, would be the following:

• Graphs of equivalence relations and groups are dissymetrical degeneracies of group-

oids in which a part of deep reality becomes invisible, and the continuity of the link

between various incarnations of this reality is broken.

• Life is possible in “bad” categories, and it may even be comfortable and pleasant.
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• If you are able to write diagrams, then you can make Geometry while making Alge-

bra, and, in this way, live two lives simultaneously: this is the essence of Ehresmann’s

meta-principle of “internalization”.
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Top. et Géom. Diff., Amiens XVI-3 (1975), 301–306.

[P 1977] J. Pradines, Lois d’action principales conjuguées, Congr. Int. du G.M.E.L., Palma

de Mallorca, 1977, unpublished communication.

[P 1984] J. Pradines, Feuilletages: holonomie et graphes locaux, C.R.A.S. Paris 298 (1984),

297–300.

[P 1985] J. Pradines, How to define the graph of a singular foliation, Cahiers Top. et Géom.
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