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Abstrat. The higher order bundles de�ned by an anhored bundle are onstruted as a naturalextension of the higher tangent spaes of a manifold. We prove that a hyperregular lagrangian(hyperregular a�ne hamiltonian) is a linearizable sub-lagrangian (a�ne sub-hamiltonian) on asuitable Legendre triple.The anhored vetor bundles are natural extensions of Lie algebroids, where thebraket misses. Usually, the anhor is supposed to be linear (as for example in [12℄,[2℄, [24℄), but it an be also onsidered de�ned on a�ne bundles (as in [5℄, [16℄); when itis used in ontrol theory it an only be a bundle map ([3℄, [8℄).As already suggested in [10℄ in the ase of Lie algebroids, the setting of anhoredbundles allows to onsider a lot of extensions of lassial di�erential geometry. In thispaper we are foused on higher order geometry, a entral onept in Ehresman's work. Weonsider anhors de�ned on �bered manifolds. Even in the ase of an a�ne bundle, theanhor is a bundle map, not neessary a�ne. The onstrution of higher order spaes isperformed reursively. Anhored a�ne bundles of higher order are obtained starting froman anhored bundle and using Proposition 3.1. In the partiular ase of the tangent spae,when the anhor is the identity, the higher order tangent spaes are obtained (studied,for example, in [18, 9℄).The higher order tangent spaes, known as higher veloities bundles or bundles ofaelerations, allow to onsider higher order lagrangians and hamiltonians. The loalequivalene problem of Euler and Hamilton equations an be onsidered in the hyperreg-2000 Mathematis Subjet Classi�ation: Primary 55R10, 55R25, 53C60; Seondary 70H50,22A30.Key words and phrases: a�ne bundle, anhored bundle, lagrangian, hamiltonian, Legendremap.The authors are partially supported by the grant MEN-CNCSIS 81/2005.The paper is in �nal form and no version of it will be published elsewhere.[451℄ © Instytut Matematyzny PAN, 2007



452 P. POPESCU AND M. POPESCUular ase (see Ostrogradski Theorem in [1, Chap. 3, Set. 1.4℄). The higher order tangentspaes are used in [9℄ by M. de Leon, performing a systemati study of mehanial sys-tems. They are used also by R. Miron in [20, 18℄, in order to study higher order Finslerand Lagrange spaes. A dual theory of higher order Hamilton spaes was reently studiedalso by R. Miron in [21℄, using similar ideas of Ostrogradski's, but in a slight di�erentway.The a�ne hamiltonian onsidered in the paper is an a�ne setion of a one dimen-sional a�ne bundle (see also [7℄). A similar de�nition for speial a�ne bundles is used in[4, 29℄. An a�ne hamiltonian allows to onstrut natural Legendre maps. In the ase of ahyperregular lagrangian or an a�ne hamiltonian (i.e. when the Legendre map is a di�eo-morphism), the Legendre map is alled a Legendre transformation; it gives a one to oneorrespondene between hyperregular lagrangians and a�ne hamiltonians (see also [7℄).An a�ne setion is used in [17℄�[19℄ in order to onstrut a Legendre map. It makesthe Legendre map as non-anonial assoiated to a lagrangian or a hamiltonian. Theonstrution presented in our paper improves this aspet. In the ase of a onvex la-grangian, the Legendre transformation is onsidered in an equivalent but di�erent wayin [1, Chap. 3, Set. 1.4℄. The onstrution performed below is more general, sine itworks for all hyperregular lagrangians and hamiltonians of higher order. The Legendremap onsidered in [11, 30℄ for a lagrangian on a Lie algebroid has a natural extension tothe higher order spaes, using the onstrutions performed in the paper.A jet formalism for Lie algebroids is given in [15℄. A higher order formalism foranhored bundles is proposed in our paper. One onstruts reursively some higher orderbundles Ek, whih are a�ne bundles Ek → Ek−1, where k ≥ 2 and E1 = E → M isthe initial anhored bundle. The hyperregular lagrangians and hamiltonians on Ek arerelated one to one by means of a Legendre transformation between suitable bundles andthey are viewed as linearizable sub-lagrangians and sub-hamiltonians on Ek−1.Another goal of the paper is to introdue some ideas relevant to the study of singularlagrangians and hamiltonians. A minimal ondition imposed in the paper on a singularlagrangian or hamiltonian is to allow a Legendre �bration on eah �ber. An ingredientused in this ontext is a setion of the Legendre �bration, alled a Legendre setion. Welaim that this is not a restrition in many partiular situations, the Legendre setionoming from some geometri reasons. A Legendre setion gives a Legendre triple, alsode�ned in the paper. The linearization of a Legendre triple is also onsidered as a possi-bility to assoiate a lagrangian or a hamiltonian to a sub-lagrangian or a sub-hamiltonianof the triple, also de�ned in the paper.In order to avoid ompliated notations on �bers, we onsider in the �rst setion theases of a vetor spae and an a�ne spae respetively, giving detailed de�nitions andonstrutions. The ase of a�ne bundles is studied in the seond setion. The higherorder anhored bundles are de�ned in the third setion, where the main result of thepaper (Theorem 3.1) is proved.1. Vetorial and a�ne hamiltonians and lagrangians. First we onsider lagran-gians and hamiltonians on a real �nite dimensional vetor spae V .



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 453A lagrangian (a hamiltonian) on V is a di�erentiable map L : V \V0 → R (respetively
H : V ∗\W0 → R), where V0 ⊂ V (respetively W0 ⊂ V ∗) is a losed subset (for examplean a�ne subspae). If the hessian of L (respetively H) is non-degenerated in everypoint, then the Legendre map (i.e. the di�erential of L or H) is a loal di�eomorphismwe say that L or H is regular. In partiular, if the hessian of L (respetively H) is stritpositively de�ned, then L (respetively H) is regular. If the Legendre map is a globaldi�eomorphism, then we say that L (respetively H) is hyperregular and L is the Legendretransformation. In the hyperregular ase, a lagrangian L and a hamiltonian H are relatedby L(zi) + H(Ωi) = ziΩi.Let us onsider now lagrangians and hamiltonians on a real a�ne spae A, modelledon a real �nite dimensional vetor spae V . The vetorial dual of A is A† = Aff(A, R),where Aff denotes a�ne morphisms. There is a short exat sequene of vetor spaeswhih has the form 0 → R

j→ A† π→ V ∗ → 0.Let R = (o,B) and R′ = (o′,B′) be two a�ne frames, where o, o′ ∈ A and B,
B′ ⊂ V are some bases. We denote by B∗ = {ei}i=1,m ⊂ V ∗ the dual base of V ∗ andby R† = {ẽ0, ẽi}i=1,m ⊂ A† the orresponding base, de�ned by ẽ0 = 1 and ẽi(Ej) = δi

j ,where ej =
−−→
oEj , ∀j = 1, m. Considering the bases R†, (R′)

† ⊂ A†, then ξ ∈ A† has theforms ξ = ωẽ0 + Ωiẽ
i = ω′ẽ0 + Ωi′ ẽ

i′ and the following formulas hold:
Ωi′ = ai

i′Ωi, ω′ = ω + Ωia
i.A lagrangian on A is a di�erentiable map L : A\A0 → R, where A0 ⊂ A is a losedsubset (for example an a�ne subspae). If the hessian of L is non-degenerate we say that

L is regular; in this ase, the Legendre map L (i.e. the di�erential of L) is a loal di�eo-morphism. If the Legendre map is a global di�eomorphism on its image, then we say that
L is hyperregular and L is alled the Legendre transformation. In partiular, if the hes-sian of L is stritly positive de�nite, then L is hyperregular. The Legendre transformation
L : A\A0 → V ∗ an relate a hyperregular lagrangian on A to a hyperregular hamiltonianon V onsidering a point z0 ∈ A\A0 and using the relation L(zi) + H(Ωi) = (zi − zi

0)Ωi,provided that L or H is regular. The onsideration of z0 gives a H, but it is not the onlyone, as we see below. We all a hamiltonian on V a vetorial hamiltonian on A.An a�ne hamiltonian on A is a di�erentiable map h : V ∗\W0 → A†, suh that π◦h =

1V ∗\W0
, where W0 ⊂ V is a losed subset (for example an a�ne subspae). It was alsoonsidered in [7℄. Using an a�ne frame (o,B), then h has the form h(Ωi) = (Ωi, H0(Ωi)).If another a�ne frame (o′,B′) is onsidered, then H ′

0(Ωi′) = H0(Ωi) + Ωia
i. It followsthat

∂2H ′
0

∂Ωi′∂Ωj′ = ai
i′a

j
j′

∂2H0

∂Ωi∂Ωj
,thus the loal funtions H ′

0 and H0 have the same hessian (viewed as a tensor), whihdepend only on h. We all the hessian tensor of H ′
0 and H0 the hessian of h and we saythat h is regular if the hessian is non-degenerate.Let h : V ∗\W0 → A† be an a�ne hamiltonian and onsider a point z0 ∈ A. The fatthat H0(Ωi) − Ωiz

i
0 = H ′

0(Ωi′) − Ωi · (zi
0 + ai) = H ′

0(Ωi′) − Ωia
i
i′z

i′

0 = H ′
0(Ωi′) − Ωi′z

i′

0implies that Hz0
(Ωi) = H0(Ωi)−Ωiz

i
0 de�nes a vetorial hamiltonian. It is easy to see that



454 P. POPESCU AND M. POPESCUthe hessian tensors of h and Hz0
are the same. Thus the vetorial and a�ne hamiltoniansare related by the following result.Proposition 1.1. If z0 ∈ A is a given point and W0 ⊂ V ∗ is a losed subset, then thereis a one to one orrespondene between a�ne hamiltonians and vetorial hamiltonianson V ∗\W0.Notie that the orrespondene de�ned above depends on the given point z0 ∈ A.A given point z0 ∈ A and the anonial duality ϕ : V × V ∗ → R, de�ne the Liouvillemap Cz0

: A × V ∗ → R, given by the formula Cz0
(z, Ω) = ϕ(z − z0, Ω), where z − z0denotes the vetor z0z.1.1. Hyperregular lagrangians and hamiltonians de�ned on open subsets of vetor anda�ne spaes. It is easy to see that an a�ne hamiltonian h is regular i� the vetorialhamiltonian Hz0

is regular. We say that h is hyperregular if Hz0
is hyperregular.Proposition 1.2. Let L : A\A0 → R be a hyperregular lagrangian on the real a�nespae A and L : A\A0 → V ∗\W0 be the Legendre transformation. Then for every point

z0 ∈ A, the map H : V ∗\W0 → R, H(Ω) = Cz0
(L−1(Ω), Ω) − L(L−1(Ω)) is a hyperreg-ular hamiltonian on V ∗\W0 and the hyperregular a�ne hamiltonian h : V ∗\W0 → A†orresponding to the point z0 (aording to Proposition 1.1) does not depend on the point

z0, depending only on the lagrangian L.Proof. Using oordinates, the link between L and H is L(zi)+H(Ωi) = (zi−zi
0)Ωi, where

L−1(Ω)) = ziēi. It is easy to hek (lassial) that H is a hamiltonian. The a�ne hamil-tonian orresponding to the point z0 aording to Proposition 1.1 has the form (Ωi)
h→

(Ωi, H0(Ωi)), where H0(Ωi) = H(Ωi)+zi
0Ωi = ziΩi−L(zi), thus the onlusion follows.A onverse orrespondene follows.Proposition 1.3. Let h : V ∗\W0 → A† be a hyperregular a�ne hamiltonian on thereal a�ne spae A. Consider a point z0 ∈ A, the hyperregular vetorial hamiltonian

H : V ∗\W0 → R orresponding to the point z0 (aording to Proposition 1.1), H :

V ∗\W0 → V \W1 its Legendre transformation and A0 = z0 + W1. Then1. The map H0 : V ∗\W0 → A\A0 given by the formula H0(Ω) = H(Ω) + z0 is adi�eomorphism (alled the Legendre transformation of h).2. The real funtion L : A\A0 → R given by the formula L(z) = Cz0
(z,H−1(z−z0))−

H(H−1(z − z0)) is a hyperregular lagrangian.3. Both H0 and L do not depend on the point z0, depending only on the a�ne hamil-tonian h.Proof. Using oordinates, h has the form (Ωi)
h→ (Ωi, H0(Ωi)) and H(Ωi) = H0(Ωi) −

zi
0Ωi. Thus H(Ω)i = ∂H/∂Ωi = ∂H0/∂Ωi − zi

0, then 1. follows, sine h is regular. Theproof of 2. uses a similar argument as in the lagrangian ase. Using also oordinates, thelink between L and H is also L(z)+H(Ω) = (zi − zi
0)Ωi, where Ω = Ωiē

i = H−1(z− z0).It is also easy to hek (lassial) that L is a lagrangian. If the a�ne hamiltonian hhas the form h(Ω) = (Ωiē
i, H0(Ωi)), then H has the form H(Ω) = H0(Ω) − zi

0Ωi, where
H−1(z−z0) = Ωiē

i = Ω. Thus L(z) = (zi−zi
0)Ωi− H(Ω) = (zi−zi

0)Ωi− H0(Ω)+zi
0Ωi =
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ziΩi+ H0(Ω), thus 2. follows. Using oordinates, from the proof of 1. it follows that thea�ne oordinates of H0(Ω) are (∂H0/∂Ωi), thus H0 depend only on H0 and impliitlyon h. Taking the oordinates (zi) of z ∈ A\A0 of the form zi = ∂H0/∂Ωi and denoting,as before, H−1(z − z0) = Ωiē

i = Ω, we have H(Ω) = z − z0. Using also 2., we have
H0(Ω) = H(Ω) + z0 = z, thus Ω = H−1

0 (z). Sine L(z) = ziΩi+ H0(Ω), the onlusionfollows.1.2. Legendre triples and singular lagrangians and hamiltonians de�ned on subsets ofvetor and a�ne spaes. First we deal with the ase of a (�nite dimensional) vetorspae V . If W ⊂ V is a vetor subspae, we denote by W 0 = {ω ∈ V ∗| ω(v) = 0,

∀v ∈ W}, the polar of W . Analogously, if W ⊂ V ∗ is a vetor subspae, we denote by
W 0 = {v ∈ V | ω(v) = 0, ∀ω ∈ W}, alled also the polar of W .A Legendre triple on V is a triple (X, ϕ, Y ), where X ⊂ V and Y ⊂ V ∗ are losedsubmanifolds and ϕ : X → Y is a di�eomorphism. There are two a�ne bundles:
ξX with base X, projetion πX and �bers the a�ne subspaes x +

(
Tϕ(x)Y

)0 ⊂ V ,
∀x ∈ X and

ηY with base Y , projetion pY and �bers the a�ne subspaes ϕ(y)+
(
Tϕ−1(y)X

)0 ⊂ V ∗,
∀y ∈ Y .The null setions of these a�ne bundles are de�ned by the natural inlusions X ⊂ ξXand Y ⊂ ηY .We say that the Legendre triple is V -linearizable (V ∗-linearizable) if there is an openneighborhood AX ⊂ ξX (respetively BY ⊂ ηY ) of the null setion suh that AX ⊂ V(respetively BY ⊂ V ∗) also as an open set. We say that the Legendre triple is linearizableif it is both V and V ∗ linearizable.A sub-lagrangian (a sub-hamiltonian) on V de�ned by the triple is a di�erentiablemap L : X → R (respetively H : Y → R). A sub-lagrangian L and a sub-hamiltonian

H an be related by L(y) + H(ϕ(v)) = ω(ϕ(v)), ∀v ∈ X, the orrespondene L ↔ H isa bijetion.If the Legendre triple is V ∗-linearizable and L : X → R is a sub-lagrangian, then theformula
H ′(ω) = ω(ϕ−1(pY (ω))) − L(ϕ−1(pY (ω)))gives a hamiltonian H ′ : BY → R.In an analogous way, if we assume that the Legendre triple is V -linearizable and

H : Y → R is a sub-hamiltonian, then the formula
L′(v) = ϕ(πX(v))(v) − H(ϕ(πX(v)))gives a lagrangian L′ : AX → R.A lagrangian L : V \V0 → R is singular if it is not regular. All the singular lagrangiansonsidered in the paper have the image of the Legendre map L(V \V0) ⊂ V ∗ as a losedsubmanifold of V ∗ and the Legendre map L is a submersion onto its image, de�ning theLegendre �bered manifold (L.f.m.) L : V \V0 → L(V \V0); a setion s : L(V \V0) → V \V0of this �bered manifold (i.e. L ◦ s = 1L(V \V0)) is alled a Legendre setion. The image

W = s(L(V \V0)) is a losed submanifold of V \V0 that is transverse to the vertial �bers



456 P. POPESCU AND M. POPESCUof the L.f.m. and L|W : W → L(V \V0) is a di�eomorphism. Conversely, if W ⊂ V \V0is a losed submanifold of V \V0 that is transverse to the vertial �bers of the L.f.m.,interseting eah �ber in only one point, then L|W : W → L(V \V0) is a di�eomorphismand its inverse de�nes a setion s of L.f.m. Thus a Legendre setion of a singular lagrangiande�nes a Legendre triple. The restrition of L to W is a sub-lagrangian of this triple; ifthe triple is V ∗-linearizable, then it de�nes a suitable hamiltonian.Example 0. Let us suppose that L(V \V0) ⊂ V ∗ is a losed hypersurfae and there is a
c ∈ R suh that Lc = {z ∈ V \V0 : L(z) = c} is transverse to all the �bers of L.f.m. Thusthere is a setion of L.f.m. de�ned by s = L−1

|Lc
, giving a Legendre triple.Example 1. If L : R3\{0̄} → R is de�ned by L(x, y, z) =

√
x2 + y2 + z2, then

L(x, y, z) =

(
x√

x2 + y2 + z2
,

y√
x2 + y2 + z2

,
z√

x2 + y2 + z2

)

and L(R3\{0̄}) = {(p1, p2, p3) ∈ R3; p2
1 + p2

2 + p2
3 = 1} ∼= S2. The vertial �bres ofthe Legendre map are all open rays that starts from the origin of R3. Every sphere

Lc de�ned by L = c = const. > 0 de�nes a Legendre setion s : L(R3\{0̄}) → Lc,
(p1, p2, p3) → (cp1, cp2, cp3) suh that (Lc, s,L(R3\{0̄})) is a linearizable Legendre triple.The restrition of L to Lc is a sub-lagrangian that de�nes the hamiltonian H : R3\{0̄} →
R, H(p1, p2, p3) = c

√
p2
1 + p2

2 + p2
3 − c. Notie that in spite that H|L(R3\{0̄}) = 0, this nullsub-hamiltonian de�nes the lagrangian L.Example 2. A similar example an be onsidered for a lagrangian L : R3\N → R de�nedby L(x, y, z) =

√
x2 − y2 − z2, where N = {(x, y, z) ∈ R3; x2 − y2 − z2 ≤ 0}. In this ase

L(R3\N) = {(p1, p2, p3) ∈ R3; p2
1 − p2

2 − p2
3 = 1}. The vertial �bres of the Legendre mapare the open rays that start from the origin and are not in P . The hyperboloid Lc de�nedby L = c = const. > 0 de�nes also a Legendre setion using the same formula. Therestrition of L to Lc is a sub-lagrangian that de�nes the hamiltonian H : R3\N → R,

H(p1, p2, p3) = c
√

p2
1 − p2

2 − p2
3− c. As in the previous example, the null sub-hamiltonian(result from the restrition to L(R3\N)) de�nes the lagrangian L.Example 3. The examples an be generalized onsidering an Ehresmann onnetion onthe L.f.m. of a singular lagrangian, suh that the horizontal bundle of the onnetion isintegrable, de�ning a horizontal foliation suh that the restrition of the projetion Lis a di�eomorphism. Then, for every leaf of the horizontal foliation there is a Legendresetion that has this leaf as its image.Proposition 1.4. Let L be a singular lagrangian, s be a setion of L.f.m. suh that theLegendre triple is V ∗-linearizable. If H is the orresponding hamiltonian and H is itsLegendre∗ map, then:1. The setion s is the restrition of H to L(V \V0), i.e. s = H|L(V \V0).2. The image of H is H(A0) = s(L(V \V0)).Proof. Let us onsider some oordinates (Ωi)i=1,n on V ∗ suh that it is possible to take

(Ωα)α=1,k as loal oordinates on L(V \V0), k ≤ n. Thus a loal parametrization on
L(V \V0) is (Ωα) → (Ωα, fᾱ(Ωα))

α=1,k
,ᾱ=1,n−k.



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 457Let us denote the loal forms of s, π0 and H by
(Ωi)

s→ (sj(Ωi)), (Ωi)
π0→ (Πα(Ωi), fᾱ(Ωi)) and

(Ωi)
H→ Ωjs

j(Πα(Ωi), fᾱ(Ωi)) − L(sj(Πα(Ωi), fᾱ(Ωi)))respetively. Thus
∂H

∂Ωi

= si(Πβ(Ωj), fβ̄(Ωj)) + Ωj

∂sj

∂Ωβ

∂Πβ

∂Ωi

+ Ωj

∂sj

∂Ωβ̄

∂fβ̄

∂Ωi

− ∂L

∂yj

∂sj

∂Ωβ

∂Πβ

∂Ωi

− ∂L

∂yj

∂sj

∂Ωβ̄

∂fβ̄

∂Ωi

= si(Πβ(Ωj), fβ̄(Ωj)),sine using the onstrution of π0 we have
(

Ωj −
∂L

∂yj

)
∂sj

∂Ωβ

(Πβ(Ωj), fβ̄(Ωj)) =

(
Ωj −

∂L

∂yj

)
∂sj

∂Ωβ̄

(Πβ(Ωj), fβ̄(Ωj)) = 0.Then both assertions follow.Sine a hamiltonian on V is a lagrangian on V ∗, similar onsiderations are possiblefor a singular hamiltonian.Let us onsider a real a�ne spae A modeled on a real and �nite dimensional vetorspae V .A Legendre triple on A is a triple (X, ϕ, Y ), where X ⊂ A and Y ⊂ V ∗ are losedsubmanifolds and ϕ : X → Y is a di�eomorphism. As in the previous ase, there are twoa�ne bundles:
ξX with base X, projetion πX and as �bers the a�ne subspaes (

Tϕ(x)Y
)0

+ x ⊂ A,
∀x ∈ X and

ηY with base Y , projetion pY and as �bers the subspaes (
Tϕ−1(y)Y

)0
+ y ⊂ V ∗,

∀y ∈ Y .The null setions of these a�ne bundles are de�ned by the natural inlusions X ⊂ ξXand Y ⊂ ηY .We say that the Legendre triple is A-linearizable (V ∗-linearizable) if there are openneighborhoods AX ⊂ ξX (respetively BY ⊂ ηY ) of the null setion suh that AX ⊂ A(respetively BY ⊂ V ∗) is also an open set. We say that the Legendre triple is linearizableif it is both A and V ∗ linearizable.A sub-lagrangian on A de�ned by the triple is a di�erentiable map L : X → R.If the Legendre triple is V ∗-linearizable, then a sub-lagrangian L : X → R de�nes ana�ne hamiltonian h′ : BY → A†, as follows.Proposition 1.5. Let us suppose that the Legendre triple is V ∗-linearizable and let L :

X → R be a sub-lagrangian. Then for every point z0 ∈ A, the map Hz0
: BY → R,

Hz0
(Ω) = Cz0

(ϕ−1◦pY (Ω), Ω)−L(ϕ−1◦pY (Ω)) is a vetorial hamiltonian on BY and thea�ne hamiltonian h : BY → A† orresponding to the point z0 (aording to Proposition1.1) does not depend on the point z0, depending only on L and ϕ.



458 P. POPESCU AND M. POPESCUProof. We an use similar arguments as in the proof of Proposition 1.2, where we onsider
ϕ instead of L, thus the oordinates (zi) are de�ned by ϕ−1(Ω) = ziēi.As in the ase of a vetor spae, if a lagrangian L : A\A0 → R is not regular,it is singular. A minimal regularity ondition is that the image of the Legendre map
L(A\A0) ⊂ V ∗ is a losed submanifold of V ∗ and the Legendre map L is a submersiononto its image, de�ning the Legendre �bered manifold (L.f.m.) L : A\A0 → L(A\A0);a setion s : L(A\A0) → A\A0 of this �bered manifold is alled a Legendre setion; itfollows that L ◦ s = 1L(V \V0). The image W = s(L(A\A0)) is a losed submanifold of
A\A0 that is transverse to the vertial �bers of the L.f.m. and L|W : W → L(A\A0)is a di�eomorphism. Thus (W,L|W ,L(V \V0)) is a Legendre triple; we say that it is theLegendre triple of s. On the other hand, onsidering a losed submanifold W ⊂ A\A0that is transverse to the vertial �bers of the L.f.m., interseting eah �ber in only onepoint, then L|W : W → L(V \V0) is a di�eomorphism and its inverse de�ne a setion s ofL.f.m., thus (W,L|W ,L(V \V0)) is a Legendre triple; we say that it is the Legendre tripleof W .Corollary 1.1. Let L : A\A0 → R be a singular lagrangian on the real a�ne spae
A, L : A\A0 → L(A\A0) ⊂ V ∗\W0 be its Legendre map and s : L(A\A0) → A\A0be a Legendre setion. We suppose that the Legendre triple of s is V ∗-linearizable. Thenfor every point z0 ∈ A, the map H : V ∗\W0 → R, H(Ω) = Cz0

(s ◦ π0(Ω), Ω) − L(s ◦
π0(Ω)) is a vetorial hamiltonian on V ∗\W0 and the a�ne hamiltonian h : V ∗\W0 → A†orresponding to the point z0 (aording to Proposition 1.1) does not depend on the point
z0, depending only on the lagrangian L and the setion s.An a�ne sub-hamiltonian de�ned by a triple is a di�erentiable map h : Y → A†, suhthat π ◦h = 1Y ; it an be regarded as a setion of the restrition to Y of the a�ne bundle
A† π→ V ∗. Sine Y ⊂ V ∗ a losed subset, it is possible to extend h to a global setion,i.e. an a�ne hamiltonian h′ : V ∗ → A†. Let z0 ∈ A be arbitrary taken and H ′

z0
: V ∗ → Rbe the vetorial hamiltonian orresponding to the point z0 aording to Proposition 1.1.Then the restrition of H ′

z0
to Y , denoted by Hz0

: Y → R, depends only on z0 and h, itdoes not depend on the extension h′.Lemma 1.1. Let us suppose that the Legendre triple is A-linearizable. Then the map
E : AX × Y → R, E(z, Ω) = Cz0

(z, Ω) − Hz0
(Ω) does not depend on z0, it depends onlyon h.Proof. Using oordinates, denote by (zi), (Ωi) and (zi

0) the oordinates of z, Ω and z0respetively. Then E has the loal form (zi, Ωj) → (zi − zi
0)Ωi − (H0(Ω) − zj

0Ωj) =

zjΩj − H0(Ω).We de�ne a lagrangian L : A0 → R using the formula
L(z) = Cz0

(z, ϕ ◦ πX(z)) − Hz0
(ϕ ◦ πX(z)).Using Lemma 1.1 we an prove the following result.Proposition 1.6. Let us suppose that the Legendre triple is A-linearizable. Then thelagrangian L : B → R does not depend on z0, it depends only on h and s.



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 459We are going to prove similar results as stated in Proposition 1.3.Let h : V ∗\W0 → A† be an a�ne hamiltonian on A. Consider a point z0 ∈ A,the vetorial hamiltonian H : V ∗\W0 → R orresponding to the point z0 (aording toProposition 1.1), the Legendre map H : V ∗\W0 → V \W1 and A0 = z0 + W1. Considerthe map H0 : V ∗\W0 → A\A0 given by the formula H0(Ω) = H(Ω) + z0 (alled theLegendre map of h). Using oordinates, h has the form (Ωi)
h→ (Ωi, H0(Ωi)) and H(Ωi) =

H0(Ωi)−zi
0Ωi. It follows that H(Ω)i = ∂H/∂Ωi = ∂H0/∂Ωi−zi

0 and H0(Ω)i = ∂H0/∂Ωi,thus H0 depends only on h.We suppose that H0(V
∗\W0) is a losed submanifold of A and H0 : V ∗\W0 →

H0(V
∗\W0) is a �bered manifold, alled the Legendre∗ �bered manifold (L∗.f.m.) of h.We suppose that a setion s : H0(V

∗\W0) → V ∗\W0 of the L∗..f.m. is given, alled aLegendre∗ setion. Denoting W = s(H0(V
∗\W0)), then s : H0(V

∗\W0) → W is a di�eo-morphism, thus (H0(V
∗\W0), s, W ) is a Legendre triple; we say that it is the Legendretriple of s (or W ).Also, if W ⊂ V ∗\W0 is a losed submanifold that is transverse to the vertial �bers ofthe L∗.f.m., interseting eah �ber in only one point, then H0|W : W → H0(V

∗\W0) is adi�eomorphism and its inverse de�ne a setion s of L∗.f.m., thus (H0(V
∗\W0),H−1

0|W , W )is a Legendre triple; we say that it is the Legendre triple of s (or W ).Corollary 1.2. Let us suppose that the Legendre triple de�ned by a Legendre∗ setion
s is A-linearizable. Then there is a lagrangian that depends only on h and s.Notie that analogous results as stated in Proposition 1.4 an be proved in the a�nease, but we do not need them in that follows.2. Lagrangians and a�ne hamiltonians on a�ne bundles. In this setion westudy lagrangians and a�ne hamiltonians on a�ne bundles in both hyperregular andsingular ases.The hyperregular lagrangians and hyperregular a�ne hamiltonians are anoniallyrelated by Legendre and Legendre∗ transformations in a anonial way. In partiular,a lagrangian on an a�ne bundle and an a�ne setion de�nes a vetorial hamiltonian.This orrespondene lagrangian-vetorial hamiltonian is not anonial, depending on thesetion; it is the situation essentially used in [18, 19℄.In order to study singular lagrangians and singular a�ne hamiltonians, we de�ne Le-gendre triples, sub-lagrangians and (a�ne) sub-hamiltonians. We onsider also a Legendretriple on eah �ber, de�ned by a setion of the Legendre �bered manifold.In that follows E

π→ M is an a�ne bundle and Ē
π̄→ M is the orresponding vetorbundle. We onsider also an open �bered submanifold Ẽ

π̂→ M of the a�ne bundle (i.e.its �bers are open submanifolds of the a�ne �bers). If L : Ẽ → R is di�erentiable, wesay that L is a lagrangian on E.An interesting example is the a�ne bundle T kM → T k−1M , k ≥ 1, where T kM isthe k-tangent spae of a manifold M . Then T 1M → M is the tangent bundle, T 2M → Mis the tangent bundle of order two et. A lagrangian of order k on M is Lk : T kM\s0(M)

→ R, where s0 : M → T kM is the null setion. Lagrangians of order k ≥ 1 that areontinuous on T kM and smooth on T kM\s0(M) are onsidered in [18℄.



460 P. POPESCU AND M. POPESCUIf L : Ẽ → R is a lagrangian, then the Legendre maps on �bers indue the Legendremap, i.e. a �bered manifold map L : Ẽ → Ē∗. Using loal oordinates, we have (xi, yα)
L→

(xi, (∂L/∂yβ)(xi, yα)). It is easy to see that if L is a hyperregular lagrangian, then L isa global di�eomorphism.The Legendre map de�nes an L-morphism of the vertial vetor bundles V E → V Ē∗(alled the vertial Legendre morphism) and expressed in loal oordinates by
(xi, yα, Y β) →

(
xi,

∂L

∂yβ
(xi, yα), Y β ∂2L

∂yβyγ
(xi, yα)

)
.Let Ě

π̌→ M be an open �bered submanifold of the vetor bundle Ē
π̄→ M . An a�nehamiltonian on E is a �bered manifold map h : Ě → E† that is an a�ne hamiltonian

hx : Ěx → E†
x, ∀x ∈ M , i.e. on eah �ber.2.1. Hyperregular lagrangians and hamiltonians. The lagrangian L : Ẽ → R is hyperreg-ular if it is hyperregular on eah �ber.Theorem 2.1. Let L : Ẽ → R be a hyperregular lagrangian. Then there is a hyperregulara�ne hamiltonian h : L(Ẽ) → E† de�ned by L suh that the vertial Legendre morphismis an isometry.Proof. Using Proposition 1.2, the a�ne hamiltonian h has the loal form (pα)

h→
(pα, H0(pα)), where H0 : Ē∗ → R is de�ned using the formula(1) sH0(x

i, pα) = pαHα(xi, pα) − L(xi, Hγ(xi, pα)).Here H is the inverse of the Legendre transformation, H = L−1 and it has the loal form
H(xi, pα) = (xi, Hγ(xi, pα)).If E → M is an a�ne bundle, then the vetor bundle Ē → M , anonially assoiatedwith E, whih an be regarded as a entral a�ne bundle. We denote by Ē∗ → M itsdual vetor bundle. A vetorial hamiltonian de�ned by E is a lagrangian H : Ē∗ → Rde�ned on the entral a�ne bundle Ē∗. If s : M → E is an a�ne setion, then usingProposition 1.1, one an onstrut a one to one orrespondene between vetorial anda�ne hamiltonians on E.Corollary 2.1. Let s : M → Ẽ be an a�ne setion and L : Ẽ → R a hyperregularlagrangian. Then there is a vetorial hamiltonian H : L(Ẽ) → R suh that the vertialLegendre morphism is an isometry and the vertial hessian of H does not depend on thesetion s.In what follows Ě ⊂ Ē∗ is an open �bered submanifold.Theorem 2.2. Let h : Ě → E† be a hyperregular a�ne hamiltonian. Then there is ahyperregular lagrangian L : Ẽ = H(Ě) → R suh that the vertial Legendre∗ morphism isan isometry.Proof. Using Proposition 1.3, the lagrangian L has the form(2) L(xi, yα) = Lα(xi, yα)yα − H0(x

i, Lγ(xi, yα)),



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 461where the a�ne hamiltonian h has the loal form (xi, pα)
h→ (pα, H0(x

i, pα)) and L =

H−1, the inverse of the Legendre∗ transformation and given on eah �ber by Proposi-tion 1.3), has the loal form L(xi, yα) = (xi, Lγ(xi, yα))).Corollary 2.2. Let s : M → E be an a�ne setion and H : Ě → R be a hyperregularvetorial hamiltonian. Then there is a hyperregular lagrangian L : H(Ě) → R on E suhthat the vertial Legendre∗ morphism is an isometry and the vertial hessian of L doesnot depend on the setion s.Notie that the Legendre and Legendre∗ transformations are more natural in the aseof an a�ne hamiltonian and do not depend on a setion s : M → Ẽ; in the ase of avetorial hamiltonian H the Legendre and Legendre∗ transformations depend both onthe setion s.2.2. Sub-lagrangians, sub-hamiltonians and singular lagrangians and hamiltonians. Letus onsider an a�ne bundle E
π→ M and Ē

π̄→ M be its assoiated vetor bundle. We saythat (E′, ϕ, E′′) is an a�ne Legendre triple if the following three onditions are ful�lled:
E′ π′

→ M is a �bered submanifold of E,
E′′ π′′

→ M is a �bered submanifold of Ē∗ π̄′

→ M and
ϕ : E′ → E′′ is an isomorphism of �bered manifolds.If E

π→ M is a vetor bundle, then (E′, ϕ, E′′) is alled a vetorial Legendre triple.We say that the Legendre triple is E-linearizable (Ē∗-linearizable) if the Legen-dre triple indued on every �ber is respetively linearizable (i.e. the Legendre triple
(E′

x, ϕx, E′′
x) is Ex-linearizable, respetively Ē∗

x-linearizable ∀x ∈ M). It is possible thatthere exists an open �bered submanifold E′
0

π′
0→ M of E

π→ M (respetively E′′
0

π′′
0→ M of

Ē∗ π̄→ M) suh that on every �ber (E′
0)x = AE′

x
⊂ ξE′

x
(respetively (E′′

0 )x = BE′′
x
⊂ ηE′′

x
)are also open subsets, ∀x ∈ M . (The notations are as in subsetion 1.2.)We say that the Legendre triple is E-linearizable if it is both E- and Ē∗-linearizable.For a given Legendre triple (E′, ϕ, E′′):A sub-lagrangian is a di�erentiable map L : E′ → R.A vetorial sub-hamiltonian is a di�erentiable map H : E′′ → R.An a�ne sub-hamiltonian is a di�erentiable map h : E′′ → E† that is an a�nesub-hamiltonian hx : E′′

x → E†
x on eah �ber, for every x ∈ M .Examples (of Legendre triples). 1. Let (M, g) be a riemannian manifold, and on-sider the anonial vetor bundle isomorphism g# : TM → T ∗M ; then the triple

(TM, g#, T ∗M) is a vetorial Legendre triple. The quadrati forms g′(X) = g(X, X)and g′′(ω) = g∗(ω, ω) (where g∗ is the dual of g) are a sub-lagrangian, respetively avetorial sub-hamiltonian of this triple. Denoting by S1M → M and S∗1M → M thebundle of unit spheres (S1M ⊂ TM and S∗1M ⊂ T ∗M), then the restrition g#
1 of g# to

S1M de�nes a Legendre triple (S1M, g#
1 , S∗1M). The restritions of the quadrati forms

g′ and g′′ to S1M and S∗1M respetively are a sub-lagrangian, respetively a vetorialsub-hamiltonian of this triple.



462 P. POPESCU AND M. POPESCU2. Let L : T̃M → R be a hyperregular lagrangian suh that L(T̃M) = T̃ ∗M ; then
(T̃M,L, T̃ ∗M) is a vetorial Legendre triple. Notie that we an onsider the more generalexample of an open �bered submanifold E0 ⊂ TM ; if L : E0 → R is hyperregular, then
(E0,L, L(E0)) is a vetorial Legendre triple.3. If L : Ẽ → R is a hyperregular lagrangian, then (Ẽ,L,L(Ẽ)) is a Legendre triple.We an regard L as a sub-lagrangian and its dual a�ne hamiltonian h an be regardedas well as an a�ne sub-hamiltonian.4. Let Ẽ

π̃→ M be an open �bered submanifold of an a�ne bundle E
π→ M and

L : Ẽ → R be a lagrangian suh that, ∀x ∈ M , Lx(Ẽx) ⊂ Ē∗
x is a hypersurfae and thereis c ∈ R suh that L−1(c) ∩ Ẽx := L−1

x (c) is transverse to the �bers of the Legendre�bered manifold Lx : Ẽx → Lx(Ẽx). Then the restritions ϕx, of Lx to L−1
x (c), de�nethe a�ne Legendre triple (L, ϕ,L(Ẽ)). If E

π→ M is a vetor bundle, then (L, ϕ,L(Ẽ))is a vetorial Legendre triple. The next example is a simple partiular ase.5. We use the data from the �rst example and we onsider L = g′1 =
√

g′ : T̃M → R,i.e. g′1(X) =
√

g(X, X). Then L(T̃M) = S∗1M and S1M = L−1
1 is transverse to the�bers of the Legendre �bered manifold on every �ber. Following Example 4 we reoverthe Legendre triple (S1M, g#

1 , S∗1M) already onsidered in the �rst example.Proposition 2.1. If the Legendre triple is E-linearizable (Ē∗-linearizable) and L : E′ →
R is a sub-lagrangian (respetively h : E′′ → E† is an a�ne sub-hamiltonian), thenusing Proposition 1.5 (respetively Proposition 1.6) on eah �ber, one obtain an a�nehamiltonian h : E′′

0 → E† (respetively a lagrangian L : E′
0 → R).In the sequel, the singular lagrangians and hamiltonians indue, on eah �ber, singularlagrangians and hamiltonians as studied in subsetion 1.1.Let Ẽ

π̃→ M be an open �bered submanifold of an a�ne bundle E
π→ M . We say thata lagrangian L : Ẽ → R is singular if there is a Legendre �bered manifold Ẽx → Lx(Ẽx)on eah �ber Ẽx, ∀x ∈ M , de�ning a (global) Legendre �bered manifold Ẽ → L(Ẽ).Additionally, a (global) Legendre setion s : L(Ẽ) → Ẽ is used, induing a Legendresetion sx : Lx(Ẽx) → Ẽx on eah �ber. The Legendre setion s de�nes and is uniquelyde�ned by a Legendre triple (W,L|W ,L(Ẽ)), where W = s(L(Ẽ)) is transverse to the�bers of the Legendre �bration.We say that the lagrangian L is linearizable∗ with respet to the Legendre setion sif the assoiated Legendre triple is Ē∗-linearizable.We follow a similar way using an a�ne hamiltonian. Let Ě

π̃→ M be an open �beredsubmanifold of the vetor bundle Ē∗ π→ M . We say that an a�ne hamiltonian h : Ě → E†is singular if there is a Legendre �bered manifold Ěx → Hx(Ěx) on eah �ber Ěx, ∀x ∈
M , de�ning a (global) Legendre∗ �bered manifold Ě → H(Ě). Additionally, a (global)Legendre∗ setion s : H(Ě) → Ě is used, induing a Legendre setion sx : Hx(Ěx) → Ěxon eah �ber. The Legendre∗ setion s de�nes and is uniquely de�ned by a Legendre triple
(H(W ),

(
H|W

)−1
, W ), where W = s(H(Ě)) is transverse to the �bers of the Legendre∗�bration.We say that the a�ne hamiltonian h is linearizable aording to the Legendre∗ setion

s if the assoiated Legendre triple is E-linearizable.



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 463Corollary 2.3. If the lagrangian L : Ẽ → R is linearizable∗ (the a�ne hamiltonian
h : Ě → E† is linearizable) then using Proposition 1.5 (respetively using Proposition 1.6)on eah �ber, we obtain an a�ne hamiltonian h : E′′

0 → E† (respetively a lagrangian
L : E′

0 → R).3. Higher order anhored bundles. An indutive de�nition of the higher order spaes
T kM is given, for example, in [1, Chap. 3, Set. 1.4℄, where the notation Jk is used for
T kM . We brie�y desribe this onstrution. Using our notations, T 0M = M , T 1M =

TM , π1 : T 1M → T 0M is the anonial projetion and for k ≥ 1, T k+1M is the a�nesubbundle of the tangent bundle TT kM of vetors ξ ∈ TxT kM suh that onsideringthe di�erential πk∗ : TxT kM → Tπ(x)T
k−1M of the projetion πk : T kM → T k−1M ,then πk∗(ξ) = x and πk+1 : T k+1M → T kM is indued by the anonial projetion

TT kM → T kM . Notie that there is an inlusion map hk : T kM → TT k−1M , whih is ana�ne bundle map. The de�nition of T kM is very simple and has a geometri desription.We extend this onstrution, starting from an anhored bundle and onstruting higheranhored bundles. We prove that the hyperregular lagrangians and a�ne hamiltoniansde�ned on these bundles de�ne linearizable triples on suitable tangent bundles.Consider a �bered manifold E
π→ M . An anhor on E is a π-morphism ρ : E → TM . Itan be viewed also as a setion Γ : E → π∗TM of the indued vetor bundle π∗TM , where

TM
p→ M is the tangent bundle of M . Using loal oordinates, (xi, yα)

ρ→ (xi, ρi(xj , yα))and Γ = ρi(xj , yα)∂/∂xi.1) Let E
π→ M be a �bered manifold and X ∈ X (M) be a vetor �eld on the base M .Then X de�nes an anhor on E by the formula ρ(e) = Xπ(e). Using loal oordinates,

(xi, yα)
ρ→ (xi, X(xi)) and Γ = X(xi)∂/∂xi = X.2) The identity morphism of the tangent bundle de�nes a (anonial) anhor ρ =

I : TM → TM . Using loal oordinates, (xi, yj)
I→ (xi, yj) and Γ = yi∂/∂xi. Thisexample an be also interpreted using the Liouville vetor �eld ℓ as follows. The vertialvetor bundle V TM → TM is anonially isomorphi with the vetor bundle p∗TM .Thus the Liouville vetor �eld ℓ of V TM orresponds to the anonial anhor I of TM .Consider some loal oordinates (xi, yj) on TM , whih orrespond to an open set U ⊂ M ,then the Liouville vetor �eld has the loal forms ℓ = yj∂/∂yj as a vertial setion and

Γ = yj∂/∂xj as a setion Γ : TM → p∗TM .4) Any endomorphism F of the tangent bundle de�nes an anhor of the tangent bundle(for example: an almost omplex struture: F 2 = −I, an almost produt struture F 2 = I,or an almost tangent struture F 2 = 0).5) The above example 3) an be extended. Let πk : T kM → T k−1M be the a�nebundle de�ned by the total spae of the tangent bundle of order k . Then the inlusion
hk : T kM → TT k−1M is an anhor. In loal oordinates, as used in [18℄,

(xi, y(1)j , . . . , y(k)j)
hk→ y(1)j ∂

∂xj
+ 2y(2)j ∂

∂y(1)j
+ · · · + ky(k)j ∂

∂y(k−1)jand
Γ = y(1)i ∂

∂xi
+ y(2)i ∂

∂y(1)i
+ · · · + ky(k)i ∂

∂y(k−1)i
.Aording to [9, pg. 81℄ it was �rst onsidered by Tulzyjew in 1975.



464 P. POPESCU AND M. POPESCUConsider a �bered manifold E
π→ M and an anhor ρ : E → TM . We de�ne, ∀e ∈ E,(3) E′

e = {ve ∈ TeE : π∗,e(ve) = ρ(e)} ⊂ TeEand onsider E′ =
⋃

e∈E E′
e, the anonial projetion π′ : E′ → E and the inlusion

Φ : E′ → TE.Proposition 3.1. If E
π→ M is a �bered manifold and E

π→ M is an anhor, then
E′ π′

→ E an a�ne subbundle of TE and Φ is the inlusion morphism.Proof. A vetor �eld X ∈ X (E) is a setion of E′ i� π∗,e(Xe) = ρ(e), ∀e ∈ E. Thus
E′

e ⊂ TeE is an a�ne subspae of onstant dimension, i.e. that of the �ber Ee.Notie that assuming that E
π→ M is an a�ne bundle and the loal oordinateshange on E aording to the formulas x̄i = x̄i(xj), ȳα = gα

β (xj)yβ + vα(xj), then thehange rule of oordinates on �bers of E′ is given by z̄β(xi, yα, zβ) = gβ
γ (xi)zγ + Γ(ȳβ).The above Proposition allows to obtain higher order anhored manifolds En, n ≥ 1,starting from an anhor on E. We de�ne indutively: E1 = E and Proposition 3.1 givesthe manifold En+1 and the inlusion Φn+1 : En+1 → TEn, using En and the inlusion

Φn : En ⊂ TEn−1 for n ≥ 2.In the ase when E = TM and the anhor is the identity on �bers, we obtain theonstrution of Ek = T kM , as onsidered at the very beginning of this setion.Let E
π→ M be an anhored bundle and S : E → E′ be an a�ne setion, wherethe a�ne bundle E′ π′

→ E is given by Proposition 3.1. Then X = Φ ◦ S : E → TEis a vetor �eld, whih is alled a semi-spray on E. If S has the loal form (xi, yα) →
(xi, yα, Sβ(xi, yα)), then the vetor �eld X∈X (E) is given loally by X = ρi(xj , yα)∂/∂xi

+ Sα(xi, yα)∂/∂yα.Let S and T be two semi-sprays and denote by X = Φ ◦ S, Y = Φ ◦ T : E →
TE the orresponding vetor �elds. Considering loal oordinates, one has X = Γ +

Sα(xi, yβ)∂/∂yα and Y = Γ + Tα(xi, yβ)∂/∂yα, where Γ = ρi(xj , yα)∂/∂xi; thus
[X, Y ] =

(
Γ(Tα) − Γ(Sα) + Sβ ∂Tα

∂yβ
− T β ∂Sα

∂yβ

)
∂

∂yα
+ (Sα − Tα)

[
∂

∂yα
, Γ

]
.Considering the a�ne bundle T k+1M → T kM of the tangent bundle of order

k + 1, we have an a�ne map Φk+1 : T k+1M → TT kM . An a�ne setion S : T kM →
T k+1M de�nes a semi-spray of order k, X ∈ X (T kM) by X = Φk+1 ◦ S. If X =

Γ + Si(xi, y(1)i, . . . , y(k)i)∂/∂y(k)i and Y = Γ + Si(xi, y(1)i, . . . , y(k)i)∂/∂y(k)i are two
k-semi-sprays, where

Γ = y(1)i ∂

∂xi
+ y(2)i ∂

∂y(1)i
+ · · · + y(k)i ∂

∂y(k−1)i
,then

[X, Y ] = (Γ(T i) − Γ(Si) + Sj ∂T i

∂y(k)j
− T j ∂Si

∂y(k)j
)

∂

∂y(k)i
+ (Si − T i)

∂

∂y(k−1)i
,sine [∂/∂yα, Γ] = ∂/∂y(k−1)i. Thus the image of the anhor Φk+1 does not span aninvolutive distribution.



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 465A morphism of two anhored bundles E
π→ M and E′ π′

→ M ′, with anhors ρ and ρ′respetively, is a morphism (f, g) of �bered manifolds (i.e. f : M → M ′ and g : E → E′are di�erentiable maps with f ◦π = π′ ◦ g) suh that f∗ ◦ ρ = ρ′ ◦ g, where f∗ denotes thedi�erential of f .Proposition 3.2. The di�erential g∗ : TE → TE′ restrits to a di�erentiable map
g′ : E2 → E′2 and the following diagram is ommutative:

E2 Φ2

−→ TE

↓ g′ ↓ g∗

E′2 Φ′2

−→ TE′Proof. Consider e ∈ E and use (3); we have E2
e = {ve ∈ TeE : π∗,e(ve) = ρ(e)} ⊂

TeE. Using also the morphism onditions, we have π′
∗,g(e)(g∗,e(ve)) = (π′ ◦ g)∗,e(ve) =

(f ◦ π)∗,e(ve) = f∗,π(e)(π∗,e(ve)) = f∗,π(e)(ρ(e)) = ρ′(g(e), thus g∗,e(ve) ∈ E
′(2)
g(e).Notie that ommutativity of the diagram says that (g, g′) is a morphism of anhoredbundles E2 and E′2.Using this Proposition, we obtain the following statement.Proposition 3.3. For k ≥ 2 there is a morphism of anhored bundles (gk−1, gk), from

Ek to E′k, suh that g0 = f and g1 = g, i.e. the diagram
Ek Φk

−→ TEk−1

↓ gk ↓ gk−1
∗

E′k Φ′k

−→ TE′k−1is ommutative.In partiular, the anhor ρ : E → TM is a morphism of anhored bundles, thus weobtain the following statement.Proposition 3.4. For every k ≥ 2 there is a morphism of anhored bundles (ρk−1, ρk),from Ek to T kM , suh that the diagram
Ek Φ̃k

−→ TEk

↓ ρk+1 ↓ ρk
∗

T kM
Φk

−→ TT kMis ommutative.There is a anonial morphism of vetor bundles over Ek−1, T ∗Ek−1 π1→ Ek∗ =

Ek−1×M Ē∗. Using loal oordinates, (xi, y(1)α, . . . , y(k−1)α, p(0)i, p(a)α, . . ., p(k−1)α)
π1→

(xi, . . . , y(1)α, . . . , y(k−1)α, p(k−1)α); it is a surjetion on eah �ber and also a anonialprojetion of an a�ne bundle.Let L : Ẽk → R be a hyperregular lagrangian of order k on the anhored a�nebundle E, where Ẽk is an open �bered submanifold of Ek, and h be the a�ne hamiltonian



466 P. POPESCU AND M. POPESCUgiven by Theorem (2.1), using Legendre transformation. Then the formula
E = p(0)iρ

i(xj , y(1)α) + p(1)αy(2)α + · · · + p(k−2)αy(k−1)α(4)
+ H0(x

i, y(1)α, . . . , y(k−1)α, p(k−1)α)de�nes a global funtion E : Ěk−1 = π−1
1 (L(Ẽk)) → R, where H0 are the loal funtionsde�ned by the a�ne hamiltonian h. We all E the energy of L (or h). Then E is a singularhamiltonian on the manifold Ek−1 and there is a Legendre∗ �bered manifold on eah�ber. We denote below by H and L the Legendre∗ map of E and the Legendre map of Lrespetively.Theorem 3.1. Let s : L(Ẽk) → Ěk−1 be a setion of the �bered submanifold Ěk−1 →

L(Ẽk). Then the following statements hold:1. The image of s is transverse on every �ber to the �bers of the Legendre∗ �bration,giving a Legendre triple (H(Ěk−1) = Ẽk, (H|s(L(Ẽk)))
−1 = s ◦ L, s(L(Ẽk))).2. The Legendre triple de�ned above is linearizable and E is its hamiltonian.Proof. Using loal oordinates, the loal forms of the Legendre∗ �bration of the �ber andthe setion s are:

(xi, y(1)α, . . . , y(k−1)α, (p(0)i, p(1)α, . . . , p(k−1)α)) →
(

xi, y(1)α, . . . , y(k−1)α,

(
ρi(xj , y(1)α), y(2)α, . . . , y(k−1)α,

∂H0

∂pα

(xi, y(1)α, . . . , y(k−1)α, p(k−1)α)

))

and
(xi, y(1)α, . . . , y(k−1)α, (pα))

s→ (xi, y(1)α, . . . , y(k−1)α, (s(0)i, s(1)α, . . . , s(k−2)α, pα))respetively, where the oordinates of z ∈ Ẽk−1 are (xi, y(1)α, . . . , y(k−1)α), the lo-al funtions s(1)α, . . ., s(k−2)α have as variables (xi, y(1)α, . . . , y(k−1)α, pα) and the in-side parentheses denote oordinates on �bers. Thus Hz(Ě
k−1
z ) = Ek

z ⊂ TzẼ
k−1 and

sz(Lz(Ẽ
k
z )) ⊂ Ěk−1

z have as oordinates (y(k)α) → (ρi(xj , y(1)α), y(2)α,. . ., y(k−1)α, y(k)α)and (pα) → (s(0)i, s(1)α, . . ., s(k−2)α, pα) respetively. Using these oordinates, the loalform of (H|s(L(Ẽk)))
−1 is the same as that of s ◦ L, i.e.

(xi, y(1)α, . . . , y(k)α) ↔ (xi, y(1)α, . . . , y(k−1)α, y(1)α, . . . , y(k)α)

→
(

s(0)i

(
xi, y(1)α, . . . , y(k−1)α,

∂L

∂y(k)α

)
, s(1)α, . . . , s(k−2)α,

∂L

∂y(k)α

)
.Thus the �rst assertion follows.Let (X(0)i, X(1)α, . . . , X(k−1)α) and (ρi(xi, y(1)α), y(2)α, . . . , y(k−1)α, y(k)α) be the o-ordinates on �bers in z of a point w ∈ TzẼ

k−1, respetively w0 ∈ Ẽk
z ⊂ TzẼ

k−1, where
z has oordinates (xi, y(1)α, . . . , y(k−1)α). The oordinates onsidered below are ones on�bers.Considering the orrespondene Ẽk

z

L→ T ∗
z Ẽk−1, i.e.

(y(k)α) ↔ (ρi(xi, y(1)α), y(2)α, . . . , y(k−1)α, y(k)α)

Lz→
(

s(0)i, s(1)α, . . . , s(k−2)α,
∂L

∂y(k)α
(xi, y(1)α, . . . , y(k−1)α, y(k)α)

)
,



LAGRANGIANS AND HAMILTONIANS ON AFFINE BUNDLES 467the ondition that w − w0 belongs to the polar of the subspae tangent to Lz(Ẽ
k
z ) at apoint of oordinates (ρi(xi, y(1)α), y(2)α, . . . , y(k−1)α, y(k)α) is:

(X(0)i − ρi(xj , y(1)γ))
∂s(0)i

∂pβ

∂2L

∂yβ∂yα
+ (X(1)γ − y(2)γ)

∂s(0)γ

∂pβ

∂2L

∂yβ∂yα

+ · · · + (X(k−2)γ − y(k−2)γ)
∂s(0)γ

∂pβ

∂2L

∂yβ∂yα
+ (X(k−1)γ − y(k−1)γ)

∂2L

∂yγ∂yα
= 0,thus

(X(0)i − ρi(xj , y(1)γ))
∂s(0)i

∂pβ

+ (X(1)γ − y(2)γ)
∂s(0)γ

∂pβ

+ · · · + (X(k−2)γ − y(k−1)γ)
∂s(0)γ

∂pβ

+ (X(k−1)β − y(k)β) = 0.It follows that
X(k−1)β = y(k)β + (ρi(xj , y(1)γ) − X(0)i)

∂s(0)i

∂pβ

+ (y(2)γ − X(1)γ)
∂s(0)γ

∂pβ

+ · · ·(5)
+(y(k−1)γ − X(k−2)γ)

∂s(0)γ

∂pβ

.Considering all w0 ∈ Ẽk
z and w as above, then w generate the total spae of an a�nebundle ξẼk

z
with projetion w → w0. The zero setion of this a�ne bundle is obtainedonsidering w − w0 = 0̄.Let w′

0 ∈ Ẽk
z have oordinates (ρi(xi, y(1)α), y(2)α, . . . , y(k−1)α, y

(k)α
0 ). For w0 in asmall enough open neighborhood Uw′

0
of w′

0 in Ẽk
z the map (X(0)i, X(1)α, . . . , X(k−2)α,

y(k)α) → (X(0)i, X(1)α, . . . , X(k−2)α, X(k−1)β), where X(k−1)α is given by (5), is a loaldi�eomorphism of two small neighborhoods of (ρi(xj , y(1)γ), y(2)α, . . . , y(k)α). We anonsider (X(0)i, X(1)α, . . . , X(k−2)α, y(k)α) as loal oordinates on ξẼk
z
(as a di�erentiablemanifold) and (X(0)i, X(1)α, . . . , X(k−2)α, X(k−1)β) as oordinates in the vetor spae

TzẼ
k−1, representing the same points of an open subset Vw′

0
⊂ TzẼ

k−1 ∩ ξẼk
z
. The union

Az =
⋃

w′
0∈Ẽk

z
Vw′

0
gives an open neighborhood of Ẽk

z in TzẼ
k−1 ∩ ξẼk

z
(where we anidentify points in TzẼ

k−1 with points in ξẼk
z
). It follows that the Legendre triple is

TẼk−1-linearizable.We prove in what follows that the Legendre triple is T ∗Ẽk−1-linearizable.Let us onsider (p(0)i, p(1)α, . . . , p(k−1)α) and (s(0)i, s(1)α, . . ., s(k−2)α, pα) as oordi-nates on �bers in z of a point Ω ∈ T ∗
z Ẽk−1, respetively Ω0 ∈ sz(Lz(Ẽ

k
z )) ⊂ T ∗

z Ẽk−1,where z ∈ Ẽk−1 has oordinates (xi, y(1)α, . . . , y(k−1)α) and s(0)i, s(1)α, . . ., s(k−2)α areas in the �rst part of the proof.Considering the orrespondene
(pα) ↔ (s(0)i, s(1)α, . . . , s(k−2)α, pα)

H
|s(L(Ẽk))→

(
ρi(xj , y(1)α), y(2)α, . . . , y(k−1)α,

∂H0

∂pα

(xi, y(1)α, . . . , y(k−1)α, p(k−1)α)

)
,the ondition that Ω−Ω0 belongs to the polar of the subspae tangent to Ẽk

z at a point



468 P. POPESCU AND M. POPESCUof oordinates (ρi(xi, y(1)α), y(2)α, . . . , y(k−1)α, y(k)α) is
(p(k−1)α − pα)

∂2H0

∂pα∂pβ

(xi, y(1)α, . . . , y(k−1)α, p(k−1)α)) = 0,thus p(k−1)α = pα.Let us onsider ηsz(Lz(Ẽk
z )) = π−1

1 (Lz(Ẽ
k
z )) ⊂ T ∗

z Ẽk−1 and a projetion of an a�nebundle ηsz(Lz(Ẽk
z )) → sz(Lz(Ẽ

k
z )) given by

(p(0)i, p(1)α, . . . , p(k−1)α) → (s(0)i, s(1)α, . . . , s(k−2)α, p(k−1)α),where s(0)i, s(1)α, . . . , s(k−2)α have as variables (xi, y(1)α, . . . , y(k−1)α, p(k−1)α). But
Lz(Ẽ

k
z ) ⊂ Ēk∗

z is an open subset (sine L(Ẽk) ⊂ Ēk∗ is an open �bered submanifold),thus ηsz(Lz(Ẽk
z )) ⊂ T ∗

z Ẽk−1 is an open subset. It follows that the Legendre triple is
T ∗Ẽk−1-linearizable. A straightforward omputation shows that the loal form of thehamiltonian given using Proposition 1.6 is just E .In the ase when the anhor bundle E

π→ M is the tangent spae TM → M , thenthere is a setion s that depends only on the lagrangian L. It is given by the loal formula
(xi, y(1)i, . . . , y(k−1)i, p(k−1)i)

s1→
(

xi, y(1)i, . . . , y(k−1)i,
∂L

∂y(1)i
(xi, y(1)i, . . . , y(k−1)i, hi), . . . , (k − 1)

∂L

∂y(k−1)i
, p(k−1)i

)
,where hi = (∂H0/∂pi)(x

i, y(1)i, . . . , y(k−1)i, pi) is given by the inverse of the Legendretransformation of L (i.e. (∂L/∂y(k)i)(xi, y(1)i, . . . , y(k−1)i, hi) = pi).
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