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Abstract. The higher order bundles defined by an anchored bundle are constructed as a natural
extension of the higher tangent spaces of a manifold. We prove that a hyperregular lagrangian
(hyperregular affine hamiltonian) is a linearizable sub-lagrangian (affine sub-hamiltonian) on a
suitable Legendre triple.

The anchored vector bundles are natural extensions of Lie algebroids, where the
bracket misses. Usually, the anchor is supposed to be linear (as for example in [12],
[2], [24]), but it can be also considered defined on affine bundles (as in [5], [16]); when it
is used in control theory it can only be a bundle map ([3], [8]).

As already suggested in [10] in the case of Lie algebroids, the setting of anchored
bundles allows to consider a lot of extensions of classical differential geometry. In this
paper we are focused on higher order geometry, a central concept in Ehresman’s work. We
consider anchors defined on fibered manifolds. Even in the case of an affine bundle, the
anchor is a bundle map, not necessary affine. The construction of higher order spaces is
performed recursively. Anchored affine bundles of higher order are obtained starting from
an anchored bundle and using Proposition 3.1. In the particular case of the tangent space,
when the anchor is the identity, the higher order tangent spaces are obtained (studied,
for example, in [18, 9]).

The higher order tangent spaces, known as higher velocities bundles or bundles of
accelerations, allow to consider higher order lagrangians and hamiltonians. The local
equivalence problem of Euler and Hamilton equations can be considered in the hyperreg-
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ular case (see Ostrogradski Theorem in [1, Chap. 3, Sect. 1.4]). The higher order tangent
spaces are used in [9] by M. de Leon, performing a systematic study of mechanical sys-
tems. They are used also by R. Miron in [20, 18], in order to study higher order Finsler
and Lagrange spaces. A dual theory of higher order Hamilton spaces was recently studied
also by R. Miron in [21], using similar ideas of Ostrogradski’s, but in a slight different
way.

The affine hamiltonian considered in the paper is an affine section of a one dimen-
sional affine bundle (see also [7]). A similar definition for special affine bundles is used in
[4, 29]. An affine hamiltonian allows to construct natural Legendre maps. In the case of a
hyperregular lagrangian or an affine hamiltonian (i.e. when the Legendre map is a diffeo-
morphism), the Legendre map is called a Legendre transformation; it gives a one to one
correspondence between hyperregular lagrangians and affine hamiltonians (see also [7]).

An affine section is used in [17]-[19] in order to construct a Legendre map. It makes
the Legendre map as non-canonical associated to a lagrangian or a hamiltonian. The
construction presented in our paper improves this aspect. In the case of a convex la-
grangian, the Legendre transformation is considered in an equivalent but different way
in [1, Chap. 3, Sect. 1.4]. The construction performed below is more general, since it
works for all hyperregular lagrangians and hamiltonians of higher order. The Legendre
map considered in [11, 30] for a lagrangian on a Lie algebroid has a natural extension to
the higher order spaces, using the constructions performed in the paper.

A jet formalism for Lie algebroids is given in [15]. A higher order formalism for
anchored bundles is proposed in our paper. One constructs recursively some higher order
bundles E*, which are affine bundles E¥ — E*~' where k > 2 and E' = E — M is
the initial anchored bundle. The hyperregular lagrangians and hamiltonians on E* are
related one to one by means of a Legendre transformation between suitable bundles and
they are viewed as linearizable sub-lagrangians and sub-hamiltonians on E*~1.

Another goal of the paper is to introduce some ideas relevant to the study of singular
lagrangians and hamiltonians. A minimal condition imposed in the paper on a singular
lagrangian or hamiltonian is to allow a Legendre fibration on each fiber. An ingredient
used in this context is a section of the Legendre fibration, called a Legendre section. We
claim that this is not a restriction in many particular situations, the Legendre section
coming from some geometric reasons. A Legendre section gives a Legendre triple, also
defined in the paper. The linearization of a Legendre triple is also considered as a possi-
bility to associate a lagrangian or a hamiltonian to a sub-lagrangian or a sub-hamiltonian
of the triple, also defined in the paper.

In order to avoid complicated notations on fibers, we consider in the first section the
cases of a vector space and an affine space respectively, giving detailed definitions and
constructions. The case of affine bundles is studied in the second section. The higher
order anchored bundles are defined in the third section, where the main result of the
paper (Theorem 3.1) is proved.

1. Vectorial and affine hamiltonians and lagrangians. First we consider lagran-
gians and hamiltonians on a real finite dimensional vector space V.
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A lagrangian (a hamiltonian) on V is a differentiable map L : V\Vy — R (respectively
H:V*\Wy — R), where Vy C V (respectively Wy C V*) is a closed subset (for example
an affine subspace). If the hessian of L (respectively H) is non-degenerated in every
point, then the Legendre map (i.e. the differential of L or H) is a local diffeomorphism
we say that L or H is regular. In particular, if the hessian of L (respectively H) is strict
positively defined, then L (respectively H) is regular. If the Legendre map is a global
diffeomorphism, then we say that L (respectively H) is hyperregular and L is the Legendre
transformation. In the hyperregular case, a lagrangian L and a hamiltonian H are related

Let us consider now lagrangians and hamiltonians on a real affine space A, modelled
on a real finite dimensional vector space V. The wvectorial dual of A is AT = Aff(A,R),
where Aff denotes affine morphisms. There is a short exact sequence of vector spaces
which has the form 0 — R 4 AT 5 v* — 0.

Let R = (0,B) and R’ = (0/,B’) be two affine frames, where o, o' € A and B,
B’ C V are some bases. We denote by B* = {ei}i:L—m C V* the dual base of V* and
by RT = {&°, éi}i:m C A" the corresponding base, defined by é° = 1 and &'(F;) = 5;,
where e; = O—E;, Vj = 1, m. Considering the bases R, (72')]L C Af, then ¢ € AT has the
forms & = wé + ;& = w'e® + Qi/éi/ and the following formulas hold:

Qi =alf, W =w+a".

A lagrangian on A is a differentiable map L : A\ Ay — R, where Ay C A is a closed
subset (for example an affine subspace). If the hessian of L is non-degenerate we say that
L is regular; in this case, the Legendre map L (i.e. the differential of L) is a local diffeo-
morphism. If the Legendre map is a global diffeomorphism on its image, then we say that
L is hyperregular and L is called the Legendre transformation. In particular, if the hes-
sian of L is strictly positive definite, then L is hyperregular. The Legendre transformation
L: A\Ag — V* can relate a hyperregular lagrangian on A to a hyperregular hamiltonian
on V considering a point zy € A\ Ag and using the relation L(z%) + H(£;) = (2 — 28),
provided that L or H is regular. The consideration of zy gives a H, but it is not the only
one, as we see below. We call a hamiltonian on V' a vectorial hamiltonian on A.

An affine hamiltonian on A is a differentiable map h : V*\Wy — AT, such that Toh =
Ly«\w,, where Wy C V is a closed subset (for example an affine subspace). It was also
considered in [7]. Using an affine frame (o, B), then h has the form h(£;) = (Q;, Ho(£;)).
If another affine frame (o, B') is considered, then H{(Q;/) = Ho(;) + Q;a’. It follows
that

O?H|, i 0% Hy
o0 o — N gniand
thus the local functions H| and Hj have the same hessian (viewed as a tensor), which
depend only on h. We call the hessian tensor of H|, and Hj the hessian of h and we say
that h is regular if the hessian is non-degenerate.

Let h: V*\Wy — A' be an affine hamiltonian and consider a point zy € A. The fact
that Ho(Q;) — Qizh = H)(Qur) — Qi - (26 + a') = H)(Qr) — Qalizl = HY(Qr) — Qo2
implies that H,, (Q;) = Ho(€2;)—;2{ defines a vectorial hamiltonian. It is easy to see that
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the hessian tensors of h and H,, are the same. Thus the vectorial and affine hamiltonians
are related by the following result.

PRrROPOSITION 1.1. If zg € A is a given point and Wy C V* is a closed subset, then there
is a one to one correspondence between affine hamiltonians and vectorial hamiltonians

on V\Wj.

Notice that the correspondence defined above depends on the given point zy € A.

A given point zy € A and the canonical duality ¢ : V x V* — R, define the Liouwville
map C,, : A x V* — R, given by the formula C, (z,Q) = ¢(z — 20,2), where z — z
denotes the vector Zjz.

1.1. Hyperregular lagrangians and hamiltonians defined on open subsets of vector and
affine spaces. It is easy to see that an affine hamiltonian h is regular iff the vectorial
hamiltonian H,, is regular. We say that h is hyperregular if H,, is hyperregular.

PROPOSITION 1.2. Let L : A\ Ay — R be a hyperregular lagrangian on the real affine
space A and L : A\Ay — V*\Wy be the Legendre transformation. Then for every point
20 € A, the map H : V*\Wy — R, H(Q) = C,,(L7YQ),Q) — L(L7YQ)) is a hyperreg-
ular hamiltonian on V*\Wy and the hyperregular affine hamiltonian h : V*\Wy — Al
corresponding to the point zg (according to Proposition 1.1) does not depend on the point
zo, depending only on the lagrangian L.

Proof. Using coordinates, the link between L and H is L(2%)+H(Q;) = (2 —2})$2;, where
L71(Q)) = 2%;. Tt is easy to check (classical) that H is a hamiltonian. The affine hamil-

tonian corresponding to the point zg according to Proposition 1.1 has the form (£2;) L

(4, Ho(%)), where Ho(Q;) = H () +25Q; = 2°Q; — L(2"), thus the conclusion follows. m
A converse correspondence follows.

PROPOSITION 1.3. Let h : V\Wy — A" be a hyperregular affine hamiltonian on the
real affine space A. Consider a point zy € A, the hyperreqular vectorial hamiltonian
H : VX\Wy, — R corresponding to the point zy (according to Proposition 1.1), H :
V*\Wy — V\W; its Legendre transformation and Ag = zo + W1. Then

1. The map Hy : V\Wy — A\ Ay given by the formula Ho(2) = H(Q) + 20 is a
diffeomorphism (called the Legendre transformation of h).

2. The real function L : A\ Ay — R given by the formula L(z) = C,, (2, H 1 (2 — z0))—
H(H (2 — 20)) is a hyperregular lagrangian.

3. Both Hg and L do not depend on the point zy, depending only on the affine hamil-
tonian h.

Proof. Using coordinates, h has the form (2;) 2, (Q, Ho(€;)) and H(Q;) = Ho(9;) —
28Q;. Thus H(Q)! = OH/0; = OHy/0S; — 2}, then 1. follows, since h is regular. The
proof of 2. uses a similar argument as in the lagrangian case. Using also coordinates, the
link between L and H is also L(z) + H(Q) = (2% — 2{)Q;, where Q = Q&' = H™1(2 — 20).
It is also easy to check (classical) that L is a lagrangian. If the affine hamiltonian h
has the form h(Q) = (&, Hy(€2;)), then H has the form H(Q2) = Hy(Q) — 2{(2;, where
H Y (z—20) = Q&' = Q. Thus L(z) = (2' —2)Qi— H(Q) = (2° —28)Q— Ho(Q) + 25 =
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2"+ Ho(Q), thus 2. follows. Using coordinates, from the proof of 1. it follows that the
affine coordinates of Hy(Q2) are (0Hy/0%;), thus Ho depend only on Hy and implicitly
on h. Taking the coordinates (z%) of 2 € A\ Ap of the form 2* = 0Hy/9Q; and denoting,
as before, H™1(z — 29) = Q;&" = Q, we have H(2) = z — 2. Using also 2., we have
Ho () = H(Q) + 20 = 2, thus Q = Hy *(2). Since L(z) = 2'Q;+ Hy(Q2), the conclusion
follows. m

1.2. Legendre triples and singular lagrangians and hamiltonians defined on subsets of
vector and affine spaces. First we deal with the case of a (finite dimensional) vector
space V. If W C V is a vector subspace, we denote by W° = {w € V*| w(v) = 0,
Vv € W}, the polar of W. Analogously, if W C V* is a vector subspace, we denote by
WY ={veV|w) =0, Vwe W}, called also the polar of W.

A Legendre triple on V is a triple (X, 9,Y), where X C V and Y C V* are closed
submanifolds and ¢ : X — Y is a diffeomorphism. There are two affine bundles:

&x with base X, projection mx and fibers the affine subspaces x + (TW(I)Y)O cV,
Vz € X and

Ny with base Y, projection py and fibers the affine subspaces ¢(y) + (wal(y)X)O c Vv,
VyeY.

The null sections of these affine bundles are defined by the natural inclusions X C £x
and Y C ny.

We say that the Legendre triple is V -linearizable (V*-linearizable) if there is an open
neighborhood Ax C &x (respectively By C ny) of the null section such that Ax C V
(respectively By C V*) also as an open set. We say that the Legendre triple is linearizable
if it is both V' and V* linearizable.

A sub-lagrangian (a sub-hamiltonian) on V defined by the triple is a differentiable
map L : X — R (respectively H : Y — R). A sub-lagrangian L and a sub-hamiltonian
H can be related by L(y) + H(¢(v)) = w(e(v)), Yv € X, the correspondence L « H is
a bijection.

If the Legendre triple is V*-linearizable and L : X — R is a sub-lagrangian, then the
formula

H'(w) = w(ep™H(py (w))) = Ll¢ ™ (py (w)))
gives a hamiltonian H' : By — R.

In an analogous way, if we assume that the Legendre triple is V-linearizable and
H :Y — R is a sub-hamiltonian, then the formula

L'(v) = ¢(mx (v))(v) — H(p(mx(v)))
gives a lagrangian L' : Ax — R.

A lagrangian L : V\V — R is singular if it is not regular. All the singular lagrangians
considered in the paper have the image of the Legendre map £(V\Vy) C V* as a closed
submanifold of V* and the Legendre map L is a submersion onto its image, defining the
Legendre fibered manifold (L.f.m.) L : V\Vy — L(V\Vp); a section s : L(V\V)) — V\T}
of this fibered manifold (i.e. Lo s = 1.(y\v,)) is called a Legendre section. The image
W = s(L(V\Vp)) is a closed submanifold of V\V; that is transverse to the vertical fibers
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of the L.fm. and Ly : W — L(V\V}) is a diffeomorphism. Conversely, if W C V\Vj
is a closed submanifold of V\Vj that is transverse to the vertical fibers of the L.fm.,
intersecting each fiber in only one point, then Ly : W — L(V\Vp) is a diffeomorphism
and its inverse defines a section s of L.f.m. Thus a Legendre section of a singular lagrangian
defines a Legendre triple. The restriction of L to W is a sub-lagrangian of this triple; if
the triple is V*-linearizable, then it defines a suitable hamiltonian.

EXAMPLE 0. Let us suppose that £(V\Vy) C V* is a closed hypersurface and there is a
¢ € Rsuch that L. = {z € V\Vp : L(z) = ¢} is transverse to all the fibers of L.f.m. Thus
there is a section of L.f.m. defined by s = E‘_Ll , giving a Legendre triple.

ExAMPLE 1. If L: R3\{0} — R is defined by L(z,y,2) = /22 + y2 + 22, then
x y z
L(x,y,2) = ( , ) )
( ) Va2 +y?+ 22 a2 +y? + 22 (a2 4y + 22
and L(R3\{0}) = {(p1,p2,p3) € R3 p? + p3 + p2 = 1} = S2. The vertical fibres of
the Legendre map are all open rays that starts from the origin of R3. Every sphere
L. defined by L = ¢ = const. > 0 defines a Legendre section s : £L(R3\{0}) — L.,

(p1,p2,p3) — (cp1,cpz, cp3) such that (L., s, L(R3\{0})) is a linearizable Legendre triple.
The restriction of L to L, is a sub-lagrangian that defines the hamiltonian H : R3\{0} —

R, H(p1,p2,p3) = c\/P? + p3 + p3 — c. Notice that in spite that H\z®3\fo) = 0, this null

sub-hamiltonian defines the lagrangian L.

EXAMPLE 2. A similar example can be considered for a lagrangian L : R®*\ N — R defined
by L(z,y,z) = /22 — y? — 22, where N = {(z,y, 2) € R3; 22 —y? — 22 < 0}. In this case
L(R3\N) = {(p1, p2,p3) € R3; p? —p3 — p3 = 1}. The vertical fibres of the Legendre map
are the open rays that start from the origin and are not in P. The hyperboloid L. defined
by L = ¢ = const. > 0 defines also a Legendre section using the same formula. The
restriction of L to L. is a sub-lagrangian that defines the hamiltonian H : R3\N — R,

H(p1,p2,p3) = c\/p? — p3 — p% —c. As in the previous example, the null sub-hamiltonian
(result from the restriction to £(R3\NN)) defines the lagrangian L.

EXAMPLE 3. The examples can be generalized considering an Ehresmann connection on
the L.f.m. of a singular lagrangian, such that the horizontal bundle of the connection is
integrable, defining a horizontal foliation such that the restriction of the projection £
is a diffeomorphism. Then, for every leaf of the horizontal foliation there is a Legendre
section that has this leaf as its image.

PROPOSITION 1.4. Let L be a singular lagrangian, s be a section of L.f.m. such that the
Legendre triple is V*-linearizable. If H is the corresponding hamiltonian and H is its
Legendre® map, then:

1. The section s is the restriction of H to L(V\Vy), i.e. s = H|zov\vy)-

2. The image of H is H(Ag) = s(L(V\W)).
Proof. Let us consider some coordinates (Qz’)i:ﬁ on V* such that it is possible to take
(Q2a),-17 as local coordinates on L(V\Vp), k& < n. Thus a local parametrization on

LV\V) is (2a) = (Qa, fa(Qa))

a=T@=1n—Fk’
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Let us denote the local forms of s, mg and H by
() = (7()), () = (Wa(), fa(€2)) and
() 4 Q7 (Ta (), fa()) = L5 (Ta(), fa()))
respectively. Thus
O0H ds? Ol 0s’ 0f3
ory, = * (W) S0 + 050507+ Yige o,
8L 83J 81'1[3 8L 8sJ afg
8y3 g 08, 8yj 895 0Q;
= s (Is(Y), f3(2))),
since using the construction of my we have

0L\ 0s’ OL\ 0s’
(- 55 ) o 1o (90). S50 >>=(ﬂj—a—yj)@mg(ﬂj),fg(ﬂm=0.

Then both assertions follow. m

Since a hamiltonian on V is a lagrangian on V*, similar considerations are possible
for a singular hamiltonian.

Let us consider a real affine space A modeled on a real and finite dimensional vector
space V.

A Legendre triple on A is a triple (X, ¢,Y), where X C A and Y C V* are closed
submanifolds and ¢ : X — Y is a diffeomorphism. As in the previous case, there are two

affine bundles:

&x with base X, projection mx and as fibers the affine subspaces (T¢(E)Y)O +x C A,
Vx € X and

ny with base Y, projection py and as fibers the subspaces (Tgfl(y)Y)O +y C V¥,
VyeY.

The null sections of these affine bundles are defined by the natural inclusions X C £x
and Y C ny.

We say that the Legendre triple is A-linearizable (V*-linearizable) if there are open
neighborhoods Ax C £x (respectively By C ny) of the null section such that Ax C A
(respectively By C V*) is also an open set. We say that the Legendre triple is linearizable
if it is both .4 and V* linearizable.

A sub-lagrangian on A defined by the triple is a differentiable map L : X — R.

If the Legendre triple is V*-linearizable, then a sub-lagrangian L : X — R defines an
affine hamiltonian b’ : By — AT, as follows.

PROPOSITION 1.5. Let us suppose that the Legendre triple is V*-linearizable and let L :
X — R be a sub-lagrangian. Then for every point zp € A, the map H,, : By — R,
H,,(Q) = C,, (¢ topy(Q),Q)— L(p~Lopy (Q)) is a vectorial hamiltonian on By and the
affine hamiltonian h : By — Al corresponding to the point 2y (according to Proposition
1.1) does not depend on the point 2, depending only on L and .
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Proof. We can use similar arguments as in the proof of Proposition 1.2, where we consider
¢ instead of £, thus the coordinates (%) are defined by p~1(Q2) = z%¢;. m

As in the case of a vector space, if a lagrangian L : A\Ay — R is not regular,
it is singular. A minimal regularity condition is that the image of the Legendre map
L(A\Ag) C V* is a closed submanifold of V* and the Legendre map L is a submersion
onto its image, defining the Legendre fibered manifold (L.f.m.) L : A\Ay — L(A\Ayp);
a section s : L(A\Ag) — A\Ap of this fibered manifold is called a Legendre section; it
follows that £ os = 1.\1,)- The image W = s(L(A\Ap)) is a closed submanifold of
A\Aj that is transverse to the vertical fibers of the L.fm. and Ly : W — L(A\Ao)
is a diffeomorphism. Thus (W, Ly, L(V\Vp)) is a Legendre triple; we say that it is the
Legendre triple of s. On the other hand, considering a closed submanifold W C A\ A4,
that is transverse to the vertical fibers of the L.f.m., intersecting each fiber in only one
point, then Ly : W — L(V\1}) is a diffeomorphism and its inverse define a section s of
L.fm., thus (W, Ljw, L(V\Vy)) is a Legendre triple; we say that it is the Legendre triple
of W.

COROLLARY 1.1. Let L : A\Ay — R be a singular lagrangian on the real affine space
A, L A\Ay — L(A\Ay) C V*\Wy be its Legendre map and s : L(A\Ay) — A\ Ao
be a Legendre section. We suppose that the Legendre triple of s is V*-linearizable. Then
for every point zg € A, the map H : V\Wy — R, H(Q) = C,,(s o m(),Q) — L(s o
70(82)) is a vectorial hamiltonian on V*\Wy and the affine hamiltonian h : V*\Wy — AT
corresponding to the point zo (according to Proposition 1.1) does not depend on the point
Zo, depending only on the lagrangian L and the section s.

An affine sub-hamiltonian defined by a triple is a differentiable map h : ¥ — Af, such
that moh = ly; it can be regarded as a section of the restriction to Y of the affine bundle
AT L V*. Since Y C V* a closed subset, it is possible to extend h to a global section,
i.e. an affine hamiltonian b’ : V* — A", Let 2y € A be arbitrary taken and H, V"R
be the vectorial hamiltonian corresponding to the point zg according to Proposition 1.1.
Then the restriction of H;O to Y, denoted by H,, : Y — R, depends only on 2y and A, it
does not depend on the extension h’.

LEMMA 1.1. Let us suppose that the Legendre triple is A-linearizable. Then the map
E:Ax xY =R, E(2,Q) = C,,(2,Q) — H,, () does not depend on zy, it depends only
on h.

Proof. Using coordinates, denote by (z%), (€;) and (z§) the coordinates of z, and zp
respectively. Then E has the local form (z%,Q;) — (2' — 28)Q — (Ho(Q2) — 20Q;) =
Zij — Ho(Q) ]

We define a lagrangian L : Aj — R using the formula
L(Z) = CZO (Za ¥ o T‘—X(Z)) - HZU (90 © 7TX(Z))'
Using Lemma 1.1 we can prove the following result.

PROPOSITION 1.6. Let us suppose that the Legendre triple is A-linearizable. Then the
lagrangian L : B — R does not depend on zq, it depends only on h and s.
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We are going to prove similar results as stated in Proposition 1.3.

Let h : V¥\Wy — A’ be an affine hamiltonian on A. Consider a point z, € A,
the vectorial hamiltonian H : V*\W,; — R corresponding to the point zy (according to
Proposition 1.1), the Legendre map H : V*\Wy — V\W; and Ay = 29 + W;. Consider
the map Ho : V*\Wy — A\ Ay given by the formula Ho(Q) = H(Q) + 2o (called the
Legendre map of h). Using coordinates, h has the form (€2;) 2, (Q4, Hy(£2;)) and H(;) =
Ho(Qi) —ZéQZ It follows that H(Q)Z = 8H/8QZ = 8H0/8QZ —26 and Ho(Q)l = 8H0/8Q“
thus Hy depends only on h.

We suppose that Ho(V*\Wpy) is a closed submanifold of A and Hy : V*\Wy —
Ho(V*\Wy) is a fibered manifold, called the Legendre* fibered manifold (L*.fm.) of h.
We suppose that a section s : Ho(V*\Wy) — V*\Wy of the L*..fm. is given, called a
Legendre* section. Denoting W = s(Ho(V*\Wy)), then s : Ho(V*\Wy) — W is a diffeo-
morphism, thus (Ho(V*\Wy), s, W) is a Legendre triple; we say that it is the Legendre
triple of s (or W).

Also, if W C V*\W, is a closed submanifold that is transverse to the vertical fibers of
the L*.f.m., intersecting each fiber in only one point, then Hojy : W — Ho(V*\Wp) is a
diffeomorphism and its inverse define a section s of L*.f.m., thus (Ho(V*\Wy), Ha“l,v, W)
is a Legendre triple; we say that it is the Legendre triple of s (or W).

COROLLARY 1.2. Let us suppose that the Legendre triple defined by a Legendre* section
s 18 A-linearizable. Then there is a lagrangian that depends only on h and s.

Notice that analogous results as stated in Proposition 1.4 can be proved in the affine
case, but we do not need them in that follows.

2. Lagrangians and affine hamiltonians on affine bundles. In this section we
study lagrangians and affine hamiltonians on affine bundles in both hyperregular and
singular cases.

The hyperregular lagrangians and hyperregular affine hamiltonians are canonically
related by Legendre and Legendre* transformations in a canonical way. In particular,
a lagrangian on an affine bundle and an affine section defines a vectorial hamiltonian.
This correspondence lagrangian-vectorial hamiltonian is not canonical, depending on the
section; it is the situation essentially used in [18, 19].

In order to study singular lagrangians and singular affine hamiltonians, we define Le-
gendre triples, sub-lagrangians and (affine) sub-hamiltonians. We consider also a Legendre
triple on each fiber, defined by a section of the Legendre fibered manifold.

In that follows £ = M is an affine bundle and E 5 M is the corresponding vector
bundle. We consider also an open fibered submanifold E 7, M of the affine bundle (i.e.
its fibers are open submanifolds of the affine fibers). If L : E > Ris differentiable, we
say that L is a lagrangian on F.

An interesting example is the affine bundle 7*M — T* 1M, k > 1, where T*M is
the k-tangent space of a manifold M. Then T'M — M is the tangent bundle, T2M — M
is the tangent bundle of order two etc. A lagrangian of order k on M is L¥ : T*M\sq(M)
— R, where sq : M — T¥M is the null section. Lagrangians of order k& > 1 that are
continuous on 7% M and smooth on T%M\sy(M) are considered in [18].
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If L : E — R is a lagrangian, then the Legendre maps on fibers induce the Legendre
map, i.e. a fibered manifold map £ : E — E*. Using local coordinates, we have (2%, y%) £
(2%, (OL/0y?)(z?,y®)). It is easy to see that if L is a hyperregular lagrangian, then £ is
a global diffeomorphism.

The Legendre map defines an £-morphism of the vertical vector bundles VE — V E*
(called the vertical Legendre morphism) and expressed in local coordinates by

; . OL , 0’L
i, B [y O Jpa'a' B i,
(et V) = (e ) Y G ) )

Let £ 5 M be an open fibered submanifold of the vector bundle F I M. An affine
hamiltonian on E is a fibered manifold map h : E — ET that is an affine hamiltonian
hy : B, — Ej;, Va € M, i.e. on each fiber.

2.1. Hyperregular lagrangians and hamiltonians. The lagrangian L : E — R is hyperreg-
ular if it is hyperregular on each fiber.

THEOREM 2.1. Let L : E — R be a hyperregular lagrangian. Then there is a hyperreqular
affine hamiltonian h : L(E) — ET defined by L such that the vertical Legendre morphism
1S an isometry.

Proof. Using Proposition 1.2, the affine hamiltonian h has the local form (p,) LA
(Pa, Ho(pa)), where Hy : E* — R is defined using the formula

(1) sHo(z',pa) = paHO‘(xi,pa) — L(2', H" (2", pa))-

Here H is the inverse of the Legendre transformation, H = £~! and it has the local form
H(a',pa) = (2, H7 (2", pa)). =

If E — M is an affine bundle, then the vector bundle E — M, canonically associated
with F, which can be regarded as a central affine bundle. We denote by E* — M its
dual vector bundle. A wectorial hamiltonian defined by E is a lagrangian H : £* — R
defined on the central affine bundle E*. If s : M — F is an affine section, then using
Proposition 1.1, one can construct a one to one correspondence between vectorial and
affine hamiltonians on F.

COROLLARY 2.1. Let s : M — E be an affine section and L : EF—>Ra hyperregular
lagrangian. Then there is a vectorial hamiltonian H : L(E) — R such that the vertical
Legendre morphism is an isometry and the vertical hessian of H does not depend on the
section s.

In what follows £ C E* is an open fibered submanifold.

THEOREM 2.2. Let h : E — E' be a hyperregular affine hamiltonian. Then there is a
hyperregular lagrangian L : E = H(E) — R such that the vertical Legendre® morphism is
an isometry.

Proof. Using Proposition 1.3, the lagrangian L has the form
(2) L(a',y*) = La(a',y* )y — Ho(a", L, (2", y)),
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where the affine hamiltonian h has the local form (z%, p,) A, (Pa, Ho(2%,po)) and L =
H~!, the inverse of the Legendre* transformation and given on each fiber by Proposi-
tion 1.3), has the local form L(z*,y®) = (z*, L, (z%,y))). =

COROLLARY 2.2. Let s : M — E be an affine section and H : E — R be a hyperreqular
vectorial hamiltonian. Then there is a hyperreqular lagrangian L : H(E) — R on E such
that the vertical Legendre® morphism is an isometry and the vertical hessian of L does
not depend on the section s.

Notice that the Legendre and Legendre* transformations are more natural in the case
of an affine hamiltonian and do not depend on a section s : M — E; in the case of a
vectorial hamiltonian H the Legendre and Legendre® transformations depend both on
the section s.

2.2. Sub-lagrangians, sub-hamiltonians and singular lagrangians and hamiltonians. Let
us consider an affine bundle E 5 M and E 5 M be its associated vector bundle. We say
that (E', ¢, E") is an affine Legendre triple if the following three conditions are fulfilled:

E' ™ M is a fibered submanifold of E,

B” it M is a fibered submanifold of E* = M and
¢ : E' — E" is an isomorphism of fibered manifolds.

If E5 M is a vector bundle, then (E’, p, E") is called a vectorial Legendre triple.

We say that the Legendre triple is FE-linearizable (E*-linearizable) if the Legen-
dre triple induced on every fiber is respectively linearizable (i.e. the Legendre triple
(E!, vz, EY) is E,-linearizable, respectively E* linearizable Vo € M). It is possible that

there exists an open fibered submanifold E| Y MofES M (respectively E{f 7r—> M of
E* T M) such that on every fiber (E}), = Ap: C &gy (respectively (Ey), = Bry C npr)
are also open subsets, Vo € M. (The notations are as in subsection 1.2.)
We say that the Legendre triple is E-linearizable if it is both E- and E*-linearizable.
For a given Legendre triple (E’, ¢, E"):

A sub-lagrangian is a differentiable map L : E/ — R.

A wvectorial sub-hamiltonian is a differentiable map H : £ — R.

An affine sub-hamiltonian is a differentiable map h : E” — ET that is an affine
sub-hamiltonian h, : E! — El on each fiber, for every x € M.

ExAMPLES (of Legendre triples). 1. Let (M,g) be a riemannian manifold, and con-
sider the canonical vector bundle isomorphism ¢# : TM — T*M; then the triple
(TM, g#,T*M) is a vectorial Legendre triple. The quadratic forms ¢'(X) = g(X, X)
and ¢"(w) = ¢g*(w,w) (where g* is the dual of g) are a sub-lagrangian, respectively a
vectorial sub-hamiltonian of this triple. Denoting by S'M — M and S*'M — M the
bundle of unit spheres (S'M C TM and S**M C T*M), then the restriction gf& of g7 to
S1M defines a Legendre triple (S'M, gf&, S*LM). The restrictions of the quadratic forms
¢’ and ¢” to S'M and S*'M respectively are a sub-lagrangian, respectively a vectorial
sub-hamiltonian of this triple.
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2. Let L : TM — R be a hyperregular lagrangian such that E(m) = f”‘\]_\//[; then
(fM, L, f*\.f_\//./) is a vectorial Legendre triple. Notice that we can consider the more general
example of an open fibered submanifold Ey C TM; if L : Ey — R is hyperregular, then
(Eo, L, L(Ey)) is a vectorial Legendre triple.

3.If L : E — R is a hyperregular lagrangian, then (E, £, £(E)) is a Legendre triple.
We can regard L as a sub-lagrangian and its dual affine hamiltonian h can be regarded
as well as an affine sub-hamiltonian.

4. Let E 5 M be an open fibered submanifold of an affine bundle £ = M and
L : E — R be a lagrangian such that, Yz € M, £, (Ex) C E? is a hypersurface and there
is ¢ € R such that L=Y(c) N E, := L;'(c) is transverse to the fibers of the Legendre
fibered manifold £, : E, — Ew(Ex) Then the restrictions ¢,, of £, to L;'(c), define
the affine Legendre triple (£, ¢, L(E)). If E 5 M is a vector bundle, then (£, ¢, L(E))
is a vectorial Legendre triple. The next example is a simple particular case.

5. We use the data from the first example and we consider L = g} = /¢’ : T™M — R,
ie. ¢1(X) = v/9(X,X). Then E(va) = S*'M and S'M = L' is transverse to the
fibers of the Legendre fibered manifold on every fiber. Following Example 4 we recover
the Legendre triple (S*M, gf&, S*L M) already considered in the first example.

PROPOSITION 2.1. If the Legendre triple is E-linearizable (E*-linearizable) and L : E' —
R is a sub-lagrangian (respectively h : E" — E' is an affine sub-hamiltonian), then
using Proposition 1.5 (respectively Proposition 1.6) on each fiber, one obtain an affine
hamiltonian h : Elj — ET (respectively a lagrangian L : E}, — R).

In the sequel, the singular lagrangians and hamiltonians induce, on each fiber, singular
lagrangians and hamiltonians as studied in subsection 1.1.

Let E 5 M be an open fibered submanifold of an affine bundle E = M. We say that
a lagrangian L : E — R is singular if there is a Legendre fibered manifold E, — £, ( )
on each fiber E,, Va2 € M, defining a (global) Legendre fibered manifold E — L(E).
Additionally, a (global) Legendre section s : L(E) — E is used, inducing a Legendre
section s, : L, (Ex) — E, on each fiber. The Legendre section s defines and is uniquely
defined by a Legendre triple (W, Ljw, L( E)), where W = s(L(E)) is transverse to the
fibers of the Legendre fibration.

We say that the lagrangian L is linearizable® with respect to the Legendre section s
if the associated Legendre triple is E*-linearizable.

We follow a similar way using an affine hamiltonian. Let E 7, M be an open fibered
submanifold of the vector bundle E* = M. We say that an affine hamiltonian h : E — ET
is singular if there is a Legendre fibered manifold E, — H, (EI) on each fiber E,, Vz €
M, defining a (global) Legendre* fibered manifold E — H(E). Additionally, a (global)
Legendre* section s : H(E) — F is used, inducing a Legendre section s, : H,(E,) — E,
on each fiber. The Legendre* section s defines and is uniquely defined by a Legendre triple
(H(W), (H|W)_1 ,W), where W = s(H(E)) is transverse to the fibers of the Legendre*
fibration.

We say that the affine hamiltonian h is linearizable according to the Legendre* section
s if the associated Legendre triple is E-linearizable.
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COROLLARY 2.3. If the lagrangian L : E — R is linearizable* (the affine hamiltonian
h:E — E'is linearizable) then using Proposition 1.5 (respectively using Proposition 1.6)
on each fiber, we obtain an affine hamiltonian h : E — ET (respectively a lagrangian

L:E,—-R).

3. Higher order anchored bundles. An inductive definition of the higher order spaces
T*M is given, for example, in [1, Chap. 3, Sect. 1.4], where the notation J* is used for
TkM. We briefly describe this construction. Using our notations, 7°M = M, T'M =
TM, m : T"M — TOM is the canonical projection and for k > 1, T*+t1M is the affine
subbundle of the tangent bundle TT*M of vectors & € T,T*M such that considering
the differential 7wy, : Tp,T*M — T,r(m)Tk_lM of the projection 7, : TFM — TF-1M,
then m;.(¢) = x and 7oy : TFT'M — T*M is induced by the canonical projection
TT*M — T¥*M. Notice that there is an inclusion map hy, : T*M — TT*~'M, which is an
affine bundle map. The definition of T*M is very simple and has a geometric description.
We extend this construction, starting from an anchored bundle and constructing higher
anchored bundles. We prove that the hyperregular lagrangians and affine hamiltonians
defined on these bundles define linearizable triples on suitable tangent bundles.

Consider a fibered manifold E = M. An anchoron E is a m-morphism p : E — TM. Tt
can be viewed also as a section I : E — 7*T'M of the induced vector bundle 7*T M, where
TM 2 M is the tangent bundle of M. Using local coordinates, (2%, y®) 2 (z, p (27, y®))
and I' = p' (a7, y*)0/0x".

1) Let E = M be a fibered manifold and X € X(M) be a vector field on the base M.
Then X defines an anchor on E by the formula p(e) = X (). Using local coordinates,
(z',y*) 5 (2%, X(2%) and T' = X (2%)0/9z" = X.

2) The identity morphism of the tangent bundle defines a (canonical) anchor p =
I : TM — TM. Using local coordinates, (z%,y’) EN (z,y7) and T' = y'0/dz". This
example can be also interpreted using the Liouville vector field ¢ as follows. The vertical
vector bundle VI'M — TM is canonically isomorphic with the vector bundle p*T'M.
Thus the Liouville vector field ¢ of VI'M corresponds to the canonical anchor I of T'M.
Consider some local coordinates (2%, 47) on T M, which correspond to an open set U C M,
then the Liouville vector field has the local forms £ = y79/0y’ as a vertical section and
I'=y'0/0x7 as a section I': TM — p*TM.

4) Any endomorphism F of the tangent bundle defines an anchor of the tangent bundle
(for example: an almost complex structure: F> = —I, an almost product structure F? = I,
or an almost tangent structure F? = 0).

5) The above example 3) can be extended. Let 7 : TFM — TF~1M be the affine
bundle defined by the total space of the tangent bundle of order k£ . Then the inclusion
hy : TFM — TT*=1M is an anchor. In local coordinates, as used in [18],

i (1) iy s i 9o @ 0 i O
(', y" 7,y Sy 97 + 2y By (7 +-- 4 ky By
and
9 , ,
_ om0 (i e )
=y pye +y By + -+ ky e

According to [9, pg. 81] it was first considered by Tulczyjew in 1975.
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Consider a fibered manifold E = M and an anchor p : E — TM. We define, Ve € F,
(3) E. ={v. € T.E : myc(ve) = ple)} CT.E

and consider £’ = |J
. F —>TE.

ccr EL, the canonical projection 7’ : E' — E and the inclusion

PROPOSITION 3.1. If E 5 M is a fibered manifold and E = M is an anchor, then

E’ L E an affine subbundle of TE and ® is the inclusion morphism.

Proof. A vector field X € X(E) is a section of E' iff 7, .(X.) = p(e), Ve € E. Thus
E! C T.E is an affine subspace of constant dimension, i.e. that of the fiber E,.. m

Notice that assuming that £ - M is an affine bundle and the local coordinates
change on E according to the formulas z° = z%(27),y* = gg(xj)yﬁ + v*(27), then the
change rule of coordinates on fibers of E’ is given by 2°(x?,y*, 2%) = gg(wi)z'y +T(77).

The above Proposition allows to obtain higher order anchored manifolds E™, n > 1,
starting from an anchor on E. We define inductively: E! = E and Proposition 3.1 gives
the manifold E™*! and the inclusion ®"*+! : E**t! — TE™ using E™ and the inclusion
" En c TE™ ! for n > 2.

In the case when ' = T'M and the anchor is the identity on fibers, we obtain the
construction of E* = T*M, as considered at the very beginning of this section.

Let E 5 M be an anchored bundle and S : E — E’ be an affine section, where

the affine bundle E’ LN FE is given by Proposition 3.1. Then X = &0 S5 : F —- TE
is a vector field, which is called a semi-spray on E. If S has the local form (z%, %) —
(z%,y*, SP(x?,y%)), then the vector field X € X (E) is given locally by X = p’(27, y*)d/0x
+ S¥(zt, y*)0/y~.

Let S and T be two semi-sprays and denote by X = ®0 S, Y = doT : F —
TE the corresponding vector fields. Considering local coordinates, one has X = I' +

Se(z%, y?)0/0y™ and Y =T + T%(z%,y?)0/0y*, where I' = p(z7,y*)d/dx; thus

ys dy® ) dy~ oy’

Considering the affine bundle T**'M — T*M of the tangent bundle of order
k + 1, we have an affine map ®**! : T*+1A — TTKM. An affine section S : TFM —
TF+H1M defines a semi-spray of order k, X € X(T*M) by X = ®*T1o S If X =
I+ Siat,yMi . y®)9/0y*) and Y = T + S (zt, yM, ..., 9099 /0y ) are two
k-semi-sprays, where

(X,Y] = <F(T“)I‘(Sa)+5ﬁaTa TﬁaSa>a+(S“TQ){ 0 I‘}

.0 .0 ) 0
— ()i (2)i o (k)i ~
F=y oz Y By (i oty §yh—Di’
then
, ) . 9T .98t 0 , . 0
— AN ( ] _T73J T _ NN____ ~
X.¥) = (0(0) = D(S) + 87 5 = T ) s + (8 = T e

since [0/0y*,T] = 9/9y* =V, Thus the image of the anchor ®**! does not span an
involutive distribution.
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A morphism of two anchored bundles E 5 M and E’ Lt M’', with anchors p and p
respectively, is a morphism (f, g) of fibered manifolds (i.e. f: M — M’ and g: E — E’
are differentiable maps with fom = 7’0 g) such that f.op = p’og, where f. denotes the
differential of f.

PROPOSITION 3.2. The differential g, : TE — TE’' restricts to a differentiable map
g : E? — E"? and the following diagram is commutative:

2
E2 2. TF
lg 1 9«

2
El2 ‘I’_> TE/

Proof. Consider e € E and use (3); we have E? = {v. € T.E : m.c(ve) = ple)} C
T.E. Using also the morphism conditions, we have 7, . (gs.e(ve)) = (7" 0 g)se(ve) =

2
(f © 71-)*,e(ve) = f*,ﬂ'(e) (W*,e(ve)) = f*,w(e) (p(e)) = p’(g(e), thus g*,e(ve) S E;((e))- L]
Notice that commutativity of the diagram says that (g, ¢’) is a morphism of anchored

bundles E? and E’2.
Using this Proposition, we obtain the following statement.

PROPOSITION 3.3. For k > 2 there is a morphism of anchored bundles (g8=1, g*), from
E* to E'*, such that ¢° = f and g* = g, i.e. the diagram

gk 2 pphe
L g Lgbt
E/k _/k) TElkfl

18 commautative.

In particular, the anchor p : E — TM is a morphism of anchored bundles, thus we
obtain the following statement.

1

PROPOSITION 3.4. For every k > 2 there is a morphism of anchored bundles (p*~1, p*),

from E* to T*M, such that the diagram

gr 2L gk
Lprt Lok
"M 2L TR M
18 commutative.

There is a canonical morphism of vector bundles over EF~1 T*pk—1 I pkx —
E*=1 x 3y E*. Using local coordinates, (z?, y(M, ..., yF=De P(0)i» Pla)as -+ P(k—1)a) LEY
(1:7'7 et y(l)a, et y(kil)a

projection of an affine bundle.

, P(k—l)a)§ it is a surjection on each fiber and also a canonical

Let L : E¥ — R be a hyperregular lagrangian of order k on the anchored affine
bundle F, where E* is an open fibered submanifold of E*, and h be the affine hamiltonian
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given by Theorem (2.1), using Legendre transformation. Then the formula

(4) & =pyir' (@, yM*) + p1yay@* + - + p_2)ayt I

+ HO(wia y(l)a7 e ’y(k—l)a7p(k71)a)
defines a global function € : E*~! = 77} (L(E¥)) — R, where Hy are the local functions
defined by the affine hamiltonian h. We call £ the energy of L (or k). Then & is a singular
hamiltonian on the manifold E*~1 and there is a Legendre* fibered manifold on each
fiber. We denote below by H and £ the Legendre® map of £ and the Legendre map of L
respectively.

THEOREM 3.1. Let s : E(Ek) — E*=1 be a section of the fibered submanifold E*—1 —
L(E*). Then the following statements hold:

1. The image of s is transverse on every fiber to the fibers of the Legendre* fibration,
giving a Legendre triple (H(E*~1) = E*, (H\s(c(Ek)))_l =soL, s(L(EY))).
2. The Legendre triple defined above is linearizable and & is its hamiltonian.

Proof. Using local coordinates, the local forms of the Legendre* fibration of the fiber and
the section s are:

(l)a’ o 7y(k—l)oz

b

(@', y Py F T (Do) Pyas - - - > Plk—1)a)) — (»Ti,y

OH, i a —1)a
7—0(‘T?y(1) 7"'7y(k 2 ap(k:—l)a)>>

(0 (Do 2)a (k—1)e
<p($,y )y Yy o

and

(xi’ y(l)a7 s ’y(k—l)a7 (pa)) = (:Cia y(l)a’ s 7y(k—1)o¢, (S(O)i7 SMyasr -+ s(k72)o¢apa))
respectively, where the coordinates of z € EF~! are (zf,yMe ., yk=De)  the lo-
cal functions s(1)q, ..., S(k—2)o have as variables (zf,yMe . y*k=De p ) and the in-
side parentheses denote coordinates on fibers. Thus H,(EF~1) = EF C T.EF=1 and
5.(L.(E¥)) ¢ E¥1 have as coordinates (y*)) — (pi(x7,y(Me), y@ea yl=Dea g k)a)
and (p) — (5(0)i> S(1)ar - - +» s(k,g)mpa) respectively. Using these coordinates, the local
form of (H‘s(ﬁ(ék)))_l is the same as that of so L, i.e.

(xzﬂ y(l)a’ A 7y(k)a) - (xz7 y(l)a’ M) y(k_l)a7 y(l)a’ M) y(k)a)

7 « —1)a aL 8L
- <s(0)i <£L’ 7y(1) 1 y(k % ’ ay(k)a > yS(Vas - -+ S(k—2)as ay(k)a ) ’

Thus the first assertion follows.
Let (X xMWa  x(E=Dea)y and (pi(2?,yMe), yPe, . yE=De g (k) he the co-
ordinates on fibers in z of a point w € T, E*~!, respectively wy € Ef C T.E*1, where

2z has coordinates (z°, yMe ,y(kfl)a). The coordinates considered below are ones on
fibers.
Considering the correspondence E¥ £ T:EF1 ie.
(y(k)a) JEN (pi(.’bi, y(l)a)7 y(2)oc’ o 7y(k71)a, y(k)a)
oL

L. i « 1o @
= <S(O)ia S()ar - -+ » S(k—2)a 8y(—k)a(gj 7y(1) Yoo 7y(k 1) ,y(k) )) ,
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the condition that w — wy belongs to the polar of the subspace tangent to £, (Ef) at a
point of coordinates (p*(z?,yMVe),yPe, .. yE—De yF)e) i

. 2 2

(X _ (i, y(m))%;ﬁ a;ﬂaLya L x y(2)7)6;(Tf2’7 ajﬂaLya

b (X027 y(k—2)7)% 8;28Lya (x =D _ y(k—m)ay‘?ji;w _o,
thus
(X _ (g 1)) B0 v y@m Pon

s Ips
e (X2 o D500 s sy g,
Ops
It follows that
(5)  XE-D8 4098 | (pi(ad 40— x50 o xwm Py
Ipp Ips

95(0)y

+(y*—Dr — x(k=2)y
( o

Considering all wg € E~§ and w as above, then w generate the total space of an affine
bundle &£z, with projection w — wg. The zero section of this affine bundle is obtained
considering w — wo = 0.

Let w), € E* have coordinates (pi(xi,y(l)a),y(Q)o‘,...7y(k_1)"‘,y(()k)a). For wy in a
small enough open neighborhood Uy, of w} in Ef the map (X(O)i, XWa o x(k=2)a
yFey - (xOi x W x (k=2 X (k=1)F) where X*~1 is given by (5), is a local
diffeomorphism of two small neighborhoods of (pi(z7, y™M)7), y@e . y*>) We can
consider (X (07 x(Wa X (k=2 K)oy a5 ocal coordinates on £E§ (as a differentiable
manifold) and (X7 x(MWe x(k=2)e x (k=15 a5 coordinates in the vector space
T,EF—1 representing the same points of an open subset V,,; C T.E*1n féf The union
A, = Uw’erﬁ Vi, gives an open neighborhood of E¥ in T.E*1n g (where we can
identify points in T,E*~! with points in 13 E’;)' It follows that the Legendre triple is
T E*1linearizable.

We prove in what follows that the Legendre triple is T*E*~1linearizable.

Let us consider (p(o)i;P(1)a; - - - ,p(k,})a) and (5(0)i, S(1)as - - - s(k,g)%,pa) as c0~0rdi—
nates on fibers in z of a point Q € TXE*~! respectively Qg € s.(L,(EY)) Cc TrE* 1,
where z € E*~! has coordinates (z*,yM, ... y*=1De) and 5(0)i> S(1)as -+ S(k—2)a aTe

as in the first part of the proof.
Considering the correspondence

(Par) < (8(0)is S(1)as - - - » S(k—2)as Par)

Hs £k 7 j @ [e% —1l)o aH
I3(£(BR) (p (27, y D), y@a  yk=Da IO

" (xi7y(1)a7.“7y(’f—1)0¢7p(k1)Q))7
(6%

the condition that 2 — € belongs to the polar of the subspace tangent to E’f at a point
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of coordinates (pi(x?, y(Me),y@e . ylk=Da yk)ay g
0%Hy

i (Da (k—1)
rgaapﬁ(xy T

(p(kfl)a _pa) ) ) a7p(k71)a)) =0,

thuS P(s_1)0 = P
Let us consider n,_, (pr)) = 7Y (L. (EY)) € T*E* 1 and a projection of an affine

bundle 1, . zr)) — 5.(L.(E¥)) given by

(p(O)ivp(l)ou s 7p(k71)a) - (S(O)i) SMyas -+ S(k*Z)avp(kfl)a)v

where 5(0yi, S(1)as - -+ > S(k—2)a have as variables (zf,yMDe . ,y(kfl)a,p(k,l)a). But
L.(E*) C E¥* is an open subset (since £L(E¥) C E** is an open fibered submanifold),
thus Ns.(c.(Br)) © T:E*=1 is an open subset. It follows that the Legendre triple is

T*E*~1linearizable. A straightforward computation shows that the local form of the
hamiltonian given using Proposition 1.6 is just £. m

In the case when the anchor bundle E = M is the tangent space TM — M, then
there is a section s that depends only on the lagrangian L. It is given by the local formula

F=D7 pie—1)i)

s , . . 9L . o oL
SN (xl,y(l)’7...,y(k_1)’, —(wl,y(l)’, . ..,y(k_l)’,h’)7...,(k -1 )7

(:L’Z’y(l)l’ i "y

ay(l)z 6y(k}71)i7p(k71)i

where h' = (0Hy/0p;)(x?, yVi, ..., y*=Di p,) is given by the inverse of the Legendre
transformation of L (i.e. (OL/dy ™) (x?, y(Mi ... y*k=Di pt) = p,).
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