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Abstract. This survey of the work of the author with several collaborators presents the way

groupoids appear and can be used in index theory. We define the general tools, and apply them

to the case of manifolds with corners, ending with a topological index theorem.

1. Introduction. Quantum physics, by putting the notion of operator at the very centre

of its mathematical development, generated numerous index problems.

In its simplest form, the index of an operator is a number. It is the difference between

the dimension of the space of solutions of the equation associated to this operator, and

the restrictions it imposes on the image space of this operator:

ind(P ) = dim kerP − dim cokerP.

This has a meaning only if those dimensions are finite, in which case the operator is said

to be a Fredholm operator.

Numerous quantities of mathematics, physics and chemistry identify to the index of

an operator. Index theory is thus a meeting point of several branches of mathematics,

in analysis, topology and geometry. One of the most striking results is the Atiyah-Singer

index theorem, which gives a formula for computing the index of numerous operators, and

has had a deep impact on many mathematical domains (topology, geometry, PDE), as well

as in theoretical physics. This theorem was stated in the context of compact manifolds,
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without boundary. For these manifolds, a pseudodifferential operator is Fredholm if and

only if it is elliptic, i.e. its symbol is invertible.

The problem of its extension to “singular” manifolds has been studied by many re-

searchers since the 70’s, following the work of Atiyah, Patodi and Singer ([2]) in the case

of manifolds with boundary.

This problem is fundamental for applications since it appears in numerous domains

through PDEs on non-compact manifolds. One of the technical difficulties lies in the

fact that an elliptic operator is no longer Fredholm (in general). It leads to important

developments in functional analysis, K-theory, noncommutative geometry.

Among the singular manifolds we examine, manifolds with corners, polyhedral do-

mains play a preeminent role.

The approaches have generally been deeply analytic, focused on the study of pseudo-

differential calculus, with authors like Richard Melrose for the case of manifolds with

corners, Boutet de Monvel, Schulze for manifolds with conical singularities.

The introduction of noncommutative geometry by Alain Connes, in the 80’s, gave

new tools to study these problems through a geometrical approach ([7]). By studying

“pathological” spaces which appear as models in certain areas of theoretical physics,

as the space of leaves of a foliation, A. Connes showed how to define an algebra of

pseudodifferential operators adapted to the setting, how to generalize the analytic index

as well as the notion of regularizing operators. In the smooth case, a regularizing operator,

i.e. an operator whose symbol is null, is compact; in the case of a foliation an operator

of null symbol lives in a C∗-algebra caracterized by Connes as the C∗-algebra of the

“foliation graph”, more precisely the holonomy groupoid of the foliation (see [6]). With

Georges Skandalis, he proved an index formula for foliations, based on the structure of

groupoid ([8]). This was the first time in global analysis that the tools and objects defined

and studied by C. Ehresmann and J. Pradines, the Lie groupoids and algebroids ([31]),

were used. This theory was linked to that of operator algebras thanks to the important

contribution of Jean Renault, who made explicit the framework of groupoid C∗-algebras

([32, 28] for instance).

In [7], A. Connes also gave a very elegant and deep proof of the index theorem (on

manifolds without boundary), by using deformations of groupoids, fully based on non-

commutative geometry. He identified the central role that groupoids play in index theory;

this new approach opened new perspectives to study the index problems for singular man-

ifolds, and further to extend their application domains.

We studied, in our work, where this new approach can lead, and how to apply it to

specific examples.

The first goal was to generalize the constructions of Connes, mainly built in the con-

text of foliations, to more general cases. The problem was to define tools which would

be independent of particular cases of applications. While in global analysis each pseu-

dodifferential calculus is defined in the context of a certain type of manifolds, we wanted

to define once for all the pseudodifferential calculus on a groupoid so that it is sufficient

to define the groupoid adapted to the type of manifold of interest (see section 2.1, and

[27, 23, 24, 22, 25]). The first studies have been made in parallel to and independently of
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those of V. Nistor, A. Weinstein and P. Xu. ([29]). They were limited to the case of Lie

groupoids, possibly admitting manifolds with corners.

With R. Lauter and V. Nistor, we tried to find the most general structure of groupoids

adapted to singular manifolds; the continuous family groupoids (which generalize C∞,0-

foliation groupoids) seem to be good candidates (see section 2.2). This work was done in

[13, 14].

We obtained general results like the definition of the analytic index, the generalized

Atityah-Singer exact sequence, a necessary and sufficient condition for an operator to be

Fredholm (see section 2.4) and also spectral invariance results (see 2.5).

Meanwhile, we constructed in [27, 23, 25] some groupoids adapted to the case of

manifolds with corners. These appear naturally in boundary value problems. They can

be treated under the Atiyah-Patodi-Singer approach (b-calculus, cusp-calculus...) or that

of Boutet de Monvel. We could recover already known pseudodifferential calculi, as the

b-calculus (see section 3.2), and we showed in [22, 25] that it was possible to extend these

to larger classes of manifolds (section 3.3). In this more general context, the analytic

index takes its values in a K-theory group which only depends on the codimension of the

manifold; we computed this group in [15] (see section 3.4)

Another challenge was to understand the topological index, and to extend it to the

case of manifolds with corners; we did that with V. Nistor in [26] (section 3.5).

In this survey we chose to present first the general tools we built, like the pseudodif-

ferential calculus on a groupoid or the analytic index, then the applications to manifolds

with corners. This structure does not follow the chronology.

2. Noncommutative tools of global analysis

2.1. Pseudodifferential calculus on groupoids. In order to understand the role played by

groupoids in pseudodifferential calculus, let us consider first a simple example.

Let X be a smooth compact manifold. Let G = X × X, and κ ∈ C∞
c (G). Then an

operator P : L2(X) → L2(X) can be defined by

Pf(x) =

∫

X

κ(x, y)f(y)dy.

Here κ is the Schwartz kernel of P . Two such operators can be composed together, through

the convolution of their Schwartz kernels. It is possible to extend this by supposing that κ

is no longer a function but a distribution satisfying certain conditions, and L. Hörmander

showed how to define the pseudodifferential operators on a smooth, compact manifold

in this way, by characterizing their Schwartz kernels which are distributions on X × X,

smooth outside the diagonal ([11]).

A. Connes showed that in this case the relevant groupoid is indeed X×X. Recall that

a groupoid is a small category whose morphisms are invertible, this is thus made of two

sets, G and G(0) (the space of units), and of maps called source and range s, r : G → G(0).

The elements γ1, γ2 ∈ G are composable if and only if r(γ2) = s(γ1).

In our case, we have:

G = X × X, G(0) = X, r(x, y) = x, s(x, y) = y,
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r(γ′)
s(γ′) = r(γ)

γ
′ ◦ γ

γ
′

γ

s(γ)

Fig. 1. Composition in a groupoid

(x, y) ◦ (y, z) = (x, z), (x, y)−1 = (y, x).

This is thus totally adapted to the convolution of functions.

The notion of Lie groupoid, introduced by C. Ehresmann, adds to the groupoid defini-

tion some smoothness conditions on the objects: G and G(0) must be smooth manifolds,

the source and range maps, as well as other natural mappings, must be of class C∞.

One can thus define the algebra of pseudodifferential operators on X through distri-

butions on the groupoid G = X × X, smooth outside the “diagonal” of G, i.e. the space

of units G(0) = X. In fact, we showed in [22] that this definition can generalize to any

Lie groupoid.

Another definition of the algebra of pseudodifferential operators on a Lie groupoid,

which is inspired by that of Connes in the setting of foliations, considers families of

operators on the fibers of the groupoid. If x ∈ G(0), let us denote by Gx = s−1(x) the

s-fiber of X. Since G is a Lie groupoid, Gx is a smooth manifold, thus one can define

a pseudodifferential operator Px on each fiber. In addition, the groupoid G acts on the

fibers, and this induces an operator

Ug : C∞(Gs(g)) → C∞(Gr(g)), (Ugf)(g′) = f(g′g).

Definition 1. A pseudodifferential operator on G is a smooth familiy of pseudodifferen-

tial operators on the s-fibers, equivariant with respect to the action of G.

This definition was obtained in collaboration with F. Pierrot in [27]. Meanwhile,

independently, V. Nistor, A. Weinstein and P. Xu gave an analoguous definition in [29].

The pseudodifferential operators form an algebra (of convolution) by imposing support

conditions, for instance if their Schwartz kernels are compactly supported. The algebra

of order 0 pseudodifferential operators is a subalgebra of the multiplier algebra of C∗(G),

thus it is possible to take its norm closure, to obtain a C∗-algebra denoted by Ψ0(G).

The groupoids we consider are always amenable, hence we shall not make any distinction

between the max and min C∗-algebras.

2.2. Groupoids adapted to singular manifolds. The problem with Lie groupoids is that

they do not fit in the setting of singular manifolds, by definition. A possibility, to begin

with, is to enlarge this notion to adapt it to the case of certain singular manifolds. This

approach was used in [22, 23, 25], considering instead of Lie groupoids some differentiable

groupoids whose fibers are smooth, and the space of units is a manifold with corners.
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What is needed, indeed, is that the fibers be smooth, in order to define pseudodifferential

operators on the fibers.

Nevertheless this notion is not sufficient. For instance, the boundary of such a groupoid

does not belong to the same class (the boundary of a square is not a manifold with

corners!). Also, it does not apply to other types of singular manifolds. With R. Lauter

and V. Nistor ([13]) we built the objects and results in a framework which seems to be

the most general for the singular setting: that of continuous family groupoids, introduced

by A. Paterson ([30]).

A continuous family groupoid is basically a groupoid whose space of units is a topolog-

ical space, its s-fibers and r-fibers are smooth manifolds, and it is a continuous family of

s-fibers or r-fibers. This generalizes the case of the holonomy groupoid of a C∞,0 foliation

introduced by A. Connes.

More precisely, a continuous family groupoid is a locally compact topological groupoid

G endowed with a covering by open subsets Ω such that:

• each chart Ω is homeomorphic to two open subspace R
k ×G(0), T ×U and T ′ ×U ′

and the following diagram is commutative:

T ′ × U ′

{{www
ww

ww
ww

Ω
≃oo

r
||xx

xx
xx

xx
x

≃ //

d ""EEEEEEEE T × U

""EE
EE

EE
EE

E

U ′ r(Ω)
=oo d(Ω)

= // U

• each coordinate change is given by (t, u) 7→ (φ(t, u), u) where φ is of class C∞,0, i.e.

u 7→ φ(., u) is a continuous map from U to C∞(T, T ′).

Moreover, the composition and the inversion must be C∞,0. We showed in [13] that it

is possible to define an algebra of pseudodifferential operators for any continuous family

groupoid. In the sequel the groupoids under consideration will always be continuous

family groupoids.

2.3. Atiyah-Singer exact sequence, analytic index and tangent groupoid. As in the clas-

sical case, a pseudodifferential operator has a symbol. More precisely, each operator Px

has a principal symbol in C(S∗Gx). But the union of the tangent spaces of the fibers of G

is the Lie algebroid of G, A(G), whose sphere bundle is denoted by S(G). The principal

symbol is thus a map

σ : Ψ0(G) → C(S∗(G)).

As far as the kernel of the symbol is concerned, it is precisely C∗(G). One obtains

thus an exact sequence that we shall call Atiyah-Singer exact sequence since it generalizes

the classical sequence obtained in the case of a smooth manifold:

0 → C∗(G) → Ψ0(G) → C(S∗(G)) → 0.

Note that if X is a smooth manifold, and G = X × X, then C∗(G) = K and S∗(G) =

S∗(X).

This Atiyah-Singer exact sequence induces the analytic index, inda : K1(S
∗(G)) →

K0(C
∗(G)). Meanwhile, there is an alternative definition, obtained without using the
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algebra of pseudodifferential operators, thanks to a generalization of Connes’ tangent

groupoid.

Let G be a Lie groupoid, its algebroid is the normal bundle of the space of units G(0)

in G. The tangent groupoid of G, denoted by TG, is obtained by gluing A(G) × {0} to

G × (0, 1], through an exponential map. This construction generalizes that of Connes, it

relies mainly on previous work of M. Hilsum and G. Skandalis in [10].

The interest of this construction is in the decomposition of C∗(TG) :

0 → C∗(G × (0, 1]) → C∗(TG)
e0→ C0(A

∗(G)).

Indeed, K∗(C
∗(G × (0, 1])) = 0 so that the K-theory morphism e0,∗ is an isomorphism,

and composing its inverse with e1,∗ one obtains a morphism which is shown to be equal

to the analytic index:

inda = e1,∗ ◦ e−1
0,∗ : K0(A(G)) → K1(C

∗(G)). (1)

Remark 1. One can also consider the restriction of TG to [0, 1),

adG = TGG(0)×[0,1).

The groupoid is called adiabatic groupoid, and also allows to define the analytic index

through a boundary map.

2.4. Total ellipticity. As seen, the analytic index is not a Fredholm index, it does not

take its values in Z. The ellipticity of an operator (the fact that its symbol is invertible)

being insufficient to make it Fredholm, one needs to find other conditions.

The fact that the ellipticity is sufficient in the case of a manifold without boundary

comes from the fact that G = X ×X, and the C∗-algebra of G is the algebra of compact

operators. If X is no longer smooth, one cannot take X × X any longer, since its fibers

would not be smooth, preventing from defining families of pseudodifferential operators on

the fibers. The relevant groupoids will thus be more complex. Nevertheless, it is legitimate

to consider that in a groupoid G on a singular manifold X, the regular part U will be a

saturated open subset in G (i.e. stable under the action of G), and the restriction of G

to U , GU will just be the groupoid of couples U × U . In other words, we assume that a

pseudodifferential calculus on a singular manifold reduces to the classical calculus on the

regular part of the manifold.

Denoting F = X\U , there is a restriction morphism InF : Ψ0(G) → Ψ0(GF ); the

restriction of P to F is defined by InF (P ).

This leads to the following result:

Theorem 1. Let G be a Lie groupoid, X its space of units, and U a saturated open

subset of G(0) such that GU = U × U . Then an order 0 pseudodifferential operator

on G is Fredholm if and only if its symbol is invertible as well as its restriction to the

complementary of U .

This result, which gives a general condition of “total ellipticity”, induces some the-

orems already stated in particular contexts, as for the b-calculus for instance. In this

case, it is shown that an operator is Fredholm if and only if it is elliptic and its indicial
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families are invertible; the latter correspond precisely to the restriction of an operator to

the boundary.

The theorem is proven using groupoid techniques. It is in fact a consequence of the

commutative diagram:

0

��
C∗(GU )

��
0 // C∗(G) //

��

Ψ0(G)
σ0 //

InF

��

C(S∗G) //

��

0

0 // C∗(GF ) //

��

Ψ0(GF ) // C0(S
∗GF ) //

��

0

0 0

This diagram induces the exact sequence:

0 → C∗(GU ) ≃ K → Ψ0(G) → C0(S
∗G) ×C0(S∗GF ) Ψ0(GF ) → 0.

Hence we have two types of index problems: the problems of analytic index, with

values in K∗(C
∗(G)) (which will themselves be distinguished in function of the groupoid

G, several choices being offered), and the problems of Fredholm index, with values in Z.

2.5. Spectral invariance. However, from the point of view of global analysis it is not

satisfactory to reason exclusively at the level of C∗-algebras. One of the problems which

arise thus is to build algebras of pseudodifferential operators containing operators whose

Schwartz kernels have compact support, but which enjoy particular spectral properties.

We indeed expect from such an algebra that it behaves correctly with respect to

parametrix. More precisely, if an operator P is Fredholm, i.e. if it is invertible modulo

the algebra of compact operators, it possesses a quasi-inverse, or parametrix, Q such as

PQ− Id and QP − Id are compact. We wish naturally that the parametrix also belongs

to the algebra of pseudodifferential operators. This problem is solved when the algebra is

stable under holomorphic functional calculus. It has for consequence, in particular, that

its K-theory is the same as that of its norm closure, hence K-theory does not make a

difference between the C∗-algebra and its subalgebra.

The article [14] is completely dedicated to these questions. We clarify constructions

of algebras stable under holomorphic functional calculus, or more precisely we build

sub-algebras stable under holomorphic functional calculus J ⊂ C∗(G), and we show that

I := Ψ0(G) + J is itself stable under holomorphic functional calculus. We give different

types of constructions for J . The first one is based on the use of commutators, and induces

the construction of an algebra containing Ψ0(G) as a dense sub-algebra, and such that its
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elements are pseudodifferential operators on G (and not only limits of pseudodifferential

operators).

Another construction relies on a generalization of the Schwartz spaces of functions

with rapid decay. It is necessary in that case to have a length function with polynomial

growth on G, and we prove that the Schwartz space on G (with respect to this length

function) is stable under holomorphic functional calculus in C∗(G).

These techniques are also applied in the case of manifolds with corners, see farther.

3. Application to manifolds with corners. We now have a set of tools available

for every continuous family groupoid. From then on, to study the global analysis on a

singular variety, it is enough to build a groupoid adapted to this context.

The global analysis on manifolds with corners was studied by R. Melrose and his

co-authors ([18, 19, 21, 16, 17]), following the seminal work of Atiyah, Patodi and Singer

for the manifolds with boundary ([2, 3, 4, 5]). R. Melrose developed the b-calculus, and

studied its structure.

However, his definition forced him to restrict the class of manifolds with corners fitting

in his calculus, and in addition the small b-calculus is not stable under holomorphic

functional calculus.

We showed in [22, 25] how to build a groupoid for the b-calculus in the case of manifolds

with corners, without limitation, and how to build an operator algebra stable under

holomorphic functional calculus. We also built groupoids for the cusp calculi in [14].

These constructions allow to simplify the analysis of the properties of these operator

algebras, by using the general tools of the non-commutative geometry. They also allow

to study new index problems.

At the same time, an approach of the pseudo-differential calculus on manifolds with

boundary was developed by L. Boutet of Monvel, and studied by E. B. W. Schrohe and.

Schulze. In a joint work with J. Aastrup, S. T. Melo and E. Schrohe ([1]) we show how to

identify the algebra of regularizing operators of Boutet de Monvel’s calculus, the Singular

Green Operators, to an ideal of a groupoid algebra.

3.1. Manifolds with corners. Let us recall that a manifold with corners is a manifold

modelled on (R+)n, which will be denoted by R
n
+ in the sequel contrarily to the sometimes

used notation for which R
n
+ = R

n−1 × R+ is a half-space. Moreover R+ = [0, +∞),

R
∗
+ = (0, +∞).

Every point admits a neighborhood diffeomorphic to (R+)k × R
n−k where k is the

codimension, or depth of x. The set of points of the same depth decomposes into a union

of connected components called open faces. The closed faces are the closures of the open

faces.

R. Melrose adds a supplementary condition to define the b-calculus, which is that every

hyperface (open face of codimension 1) of the manifold be embedded in the manifold,

or equivalently, that every hyperface H admit a definition function, namely a smooth

function ρ : X → R+ which is zero over H, and only over H, and the differential of which

is non-zero over H. We shall call such a manifold a manifold with embedded corners. The

figures below are several examples of manifolds with corners.
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Fig. 2. The drop with one corner Fig. 3. The drop with two corners

Fig. 4. The square torus with π/4 twist Fig. 5. The square torus with π/2 twist

Fig. 6. Another manifold with corners

The drop with one corner (figure 2) is not a manifold with embedded corners, because

its only hyperface intersects itself. On the other hand the drop with two corners (figure 3)

is indeed a manifold with embedded corners. The square torus with twisting of π/4

(figure 4) is not either a manifold with embedded corners, it possesses only one hyperface.

On the other hand the square torus with twisting of π/2 (figure 5) is a manifold with

embedded corners, which has two hyperfaces. The last figure is a manifold with embedded

corners.
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3.2. The groupoid of a manifold with embedded corners. We showed in [22, 23] that we

can define a groupoid the pseudo-differential calculus of which corresponds essentially to

the b-calculus. In the case of a manifold with embedded corners X endowed with a family

(ρ1, . . . , ρN ) of definition functions of the faces, a non-canonical but simple definition of

this groupoid is the following one:

Definition 2. Let X be a manifold with embedded corners. Let

Γ̃(X) := {(x, y, λ1, . . . , λN ) ∈ X × X × R
∗
+

N , ρi(x) = λiρi(y), for all i}.

Then the groupoid of the b-calculus, denoted by Γ(X), is the s-connected component of

Γ̃(X) (the s-connected component is the largest open subset containing X).

Let us note that it is possible to give a canonical definition of this groupoid: Γ(X)

is the set of the triples (x, y, α) where x and y are in the same open face F and α is an

isomorphism between the normal at y of F in X, NyF , and NxF . To make the link with

the non-canonical definition, remark that a definition function induces a trivialisation

of NyF and NxF , which are isomorphic to R
k
+ where k is the codimension of F ; the

isomorphism α is then reduced to an element of R
∗
+

k. See [23] for the complete definition.

We obtained the following result:

Theorem 2. The algebra of pseudodifferential operators on Γ(X) whose Schwartz kernel

has compact support is equal to the properly supported b-calculus.

As already stated, the b-calculus is not stable under holomorphic functional calculus.

We studied its regularizing operators, and their decay conditions. It led us to define in

[22] a function length on the groupoid Γ(X), thus to a Schwartz space a little bigger than

the algebra of regularizing operators of the b-calculus, but stable under holomorphic func-

tional calculus ([14]). We were able to characterize the obstruction for the b-calculus to be

stable under holomorphic functional calculus by the fact that its regularizing operators

is of exponential decay, and not polynomial as those of the Schwartz space.

In the same family of pseudo-differential calculi we find the cusp calculus, and more

generally the cn-calculi, introduced by R. Melrose and his co-authors (see [16, 20] for

example). In [14], we built groupoids for these calculi. To simplify let us consider a

manifold with boundary provided with a definition function ρ, and the groupoid

Γn(X) ≃ {(u, v, µ) ∈ X × X × R |µρ(u)n−1ρ(v)n−1 = ρ(u)n−1 − ρ(v)n−1}

(where n ≥ 2). This groupoid induces the cn-calculus. It is homeomorphic to G(X),

but not diffeomorphic. This implies that the pseudo-differential calculi are different, but

nevertheless when we consider the norm closure we obtain isomorphic C∗-algebras.

In this context of cn-calculi, we defined algebras stable under holomorphic functional

calculus, for example by considering a length function leading to a Schwartz space, but

we also showed how to build algebras stable under holomorphic functional calculus for

cusp-calculi, where kernels are smooth (which is not the case for the Schwartz space of

the b-calculus).

3.3. The groupoid of a manifold with (non-embedded) corners. In the case of a manifold

with corners where the hyperfaces are not embedded, we do not have definition functions
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of the faces and the “non-canonical” definition of Γ(X) is not valid any more. However,

the one which uses the isomorphisms can be adapted, and we consider then the groupoid

G(X) as the set of triples (x, y, α) where x and y have the same codimension (they can

be in different faces), and α : NyFy
≃
→ NxFx is any isomorphism.

In the case of a manifold with embedded corners, the groupoid of the b-calculus, Γ(X)

is the s-connected component of G(X). This groupoid possesses interesting properties,

although its complexity is bigger (notably, it is not Hausdorff as soon as the manifold is

of codimension greater than or equal to 2):

Theorem 3. Let X and X ′ be two manifolds of the same maximal codimension. Then

their groupoids G(X) and G(Y ) are equivalent, thus

K∗(C
∗(G(X))) = K∗(C

∗(G(Y ))).

This result is satisfactory, because K∗(C
∗(G(X))) is the receptacle of the analytic

index, it thus says that if we consider the “universal” groupoid G, the analytic index

takes its values in a group which depends only on the codimension of the manifold. It

is a familiar result in the case of smooth manifolds, where the analytic index, being the

Fredholm index, always takes its values in Z.

3.4. The indicial algebra of a manifold with corners. An important step in the study of

the analytic index is to compute the group in which it takes its values. Two cases appear,

as we consider the “universal groupoid” of a manifold with corners, or the groupoid of

b-calculus.

We have just seen that in the case of the universal groupoid the receptacle of the index

only depends on the codimension. With P.Y. Le Gall we identified these groups in [15].

This work is based on an identification of the role played in G(X) by the groups R
n

⋊Sn,

where Sn is the symetric group acting on R
n by permutation of the coordinates.

Indeed, by considering the definition of G(X), an element is a triple (x, y, α), with

α : NyFy
∼
→ NxFx an isomorphism. Now if y is of depth k, we have a trivialisation

NyFy ≃ R
k
+. Let us note that in the case of a manifold with embedded corners, we can

obtain a global trivialisation of the normal bundle of a given face.

Remark 2. It is not the case generally, because the local hyperfaces may not be dis-

tinguishable globally, as in the case of the Klein bottle where the section is a drop: it

is the manifold obtained by gluing both ends of a cylinder of square section, by identi-

fying points through axial symmetry with respect to the diagonal. More precisely, it is

([0, 1] × [0, 1] × R)/Z, where the action of Z is the reflection with respect to a diagonal

on [0, 1] × [0, 1], and the translation by 1 on R: 1 · (a, b, t) = (b, a, t + 1).

The isomorphism α, through these local trivialisations, becomes identified with the

product of a diagonal matrix with strictly positive terms, and a matrix of permutation,

i.e. an element of R
∗
+

k
⋊ Sk.

We were able to put in evidence a relation of recurrence:

0 → K∗(C
∗(Gn)) → K∗(C

∗(R∗
+

n
⋊ Sn)) → K1−∗(C

∗(Gn−1)) → 0

From then on the computation of the groups of the indicial algebra relies on that of the

K∗(C
∗(R∗

+
n

⋊Sn)). Now these groups of K-theory have no torsion, which was established
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by M. Karoubi in his article motivated by our works, [12]. The groups of K-theory thus

can be computed thanks to the Chern isomorphism for discrete groups, by reducing to

the computation of the homology groups.

This led us to the following result:

Theorem 4. K0(C
∗(Gn)) has the form Z

ℓn and K1(C
∗(Gn)) has the form Z

mn , where

ℓn and mn are integers defined by relations of recurrence.

Let us not deprive any longer the reader, the 100th group is:

K0(C
∗(G100)) = Z

115826, K1(C
∗(G100)) = Z

115825.

However we can also consider an analytical index with values in the K-group of the

groupoid of b-calculus. As Γ(X) is an open subgroupoid of G(X),we have the following

factorization:

K∗(C
∗(G(X)))

K∗(A∗(G))

inda

66nnnnnnnnnnnn

inda ((PPPPPPPPPPPP

K∗(C
∗(Γ(X)))

OO

It is thus relevant to know the analytical index with values in K∗(C
∗(Γ(X))).

3.5. Topological index theorem for manifolds with embedded corners. In the case of man-

ifolds with embedded corners, we established a theorem generalizing the theorem of the

topological index theorem of Atiyah-Singer. This result allows to compute more easily

the indicial algebras of the b-calculus.

Let us recall that the topological index theorem of Atiyah-Singer is based on the fact

that we can embed any smooth manifold M in a Euclidian space R
n, and if we denote by

ι this embedding there is a mapping ι! : K0(T ∗M) → K0(T ∗
R

n) called the Gysin map.

We can then define the topological index as the compound indR
n

a ◦ ι! : K0(T ∗M) → Z

(where indR
n

a is in fact an isomorphism). The topological index theorem gives the equality

of the analytical index and the topological index. It can be useful to represent this result

through the following diagram:

Z Z

K0(T ∗M)

indM

a

OO

ι! // K0(T ∗
R

n).

indR
n

a

OO

The index theorem indicates that this diagram is commutative.

A natural question is the following one: in the case of a manifold with embedded

corners M , how to generalize this result?

More exactly, we wish to prove that if we have an embedding of manifolds with

embedded corners ι : M →֒ X, there is also a commutative diagram as the previous one:
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K∗(C
∗(Γ(M))) −−−−→ K∗(C

∗(Γ(X)))

indM

a

x





x





indX

a

K0(A∗
M )

ι!−−−−→ K0(A∗
X)

(2)

Beyond the commutativity of the diagram, we wish to build a manifold with embedded

corners X such that

• M embeds inside,

• the indicial algebras K∗(C
∗(Γ(M))) and K∗(C

∗(Γ(X))) are isomorphic,

• the analytic index of X is an isomorphism.

Indeed, it will mean that the analytical index of M relies in fact on the map ι! which is

topological. We call a manifold with corners X satisfying these properties a classifying

space of M .

We showed in [26] that the diagram commutes, and how to build such manifolds. We

can give sufficient conditions for the manifold X so that it satisfies the conditions above:

• the faces of M are traces on M of faces of X,

• faces of M and X are one-to-one,

• finally open faces of X are Euclidian spaces.

The first two conditions lead to the fact that the groupoids Γ(M) and Γ(X) are

equivalent, which implies that their C∗-algebras are Morita equivalent, and finally their

indicial algebras are isomorphic.

Besides, the fact that the open faces are Euclidian spaces lead to the fact that the

analytical index of X is an isomorphism.

The commutativity of the diagram is a priori non-natural, because the horizontal

arrows of the diagram are not of the same nature. To ensure the commutativity, we

thus avoided considering these maps separately, and it was made possible thanks to the

tangent groupoid, which allows to define the analytic index (see the equality (1) page

226).

More exactly, as in the theorem of Atiyah-Singer, we decompose the embedding ι by

considering a tubular neighborhood U of M in X. We then have to consider a diagram

related to a fibration U → M , and the second concerning the inclusion U → X. This

technique was also used in the case of the etale groupoids by M. Hilsum and G. Skandalis

in [10].

The second diagram is naturally commutative, but for the first one it is necessary to

use a double deformation, that is a deformation of the tangent groupoid (which is itself a

deformation) of U . Here is roughly how to define this double deformation: G := G1⊔G2⊔G3

where
G1 := AU × {0} × [0, 1], G2 := AM ×M U ×M U × (0, 1] × {0},

G3 := G(U) × (0, 1] × (0, 1].

We can define several evaluation maps, at s = s0, t = t0, and we prove that the

mappings in K-theory e1,0 and e0,0 are isomorphisms. From then on, it is possible to
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t

sAU

G
1

=
A

U
×

[0
,
1
]

G(U)

G2 = AM×M U ×M U × (0, 1]

Fig. 7. The groupoid G

consider indU
a as the composition e1,1 ◦ e−1

0,0 (we can represent it on the diagonal of the

square above), and we can also decompose this mapping along the lower and the right

sides of the square (at t = 0 and s = 1). Modulo a Morita equivalence, it supplies the

Gysin map and the analytical index of M , and the commutativity is direct.

Remark 3. Although it is not handled in [26], let us note that it is possible to generalize

the theorem which ensures the commutativity of the diagram in the case of continuous

family groupoids such that G(U) = G(M) ×M×M (U×U).

As regards the existence of a manifold with embedded corners satisfying the conditions

expressed previously, we propose in [26] a construction. It is based on an embedding ϕ of

M in a space R
n and on the choice of functions of definition of the hyperfaces ρ1, . . . , ρp.

The embedding is a refinement of that obtained by considering ϕ ×
∏

i=1..n ρi.

3.6. Fredholm index for manifolds with embedded corners. We evoked up to here the

analytic index for manifolds with corners, which is not a Fredholm index because the

regularizing operators are not compact. As we saw in theorem 1, an order 0 operator is

totally elliptic if it is elliptic and its restriction on the boundary, called indicial operator

within the framework of b-calculus, is invertible.

In that case, it is possible to consider the Fredholm index though a groupoid, as in

proposition 3 of [13].

We are going to give a slightly different version, based on the tangent groupoid rather

than on the adiabatic groupoid, then show how the topological index theorem is translated

in this frame.

Let G be a continuous family groupoid, and TG = A(G) ∪ G × (0, 1] be its tangent

groupoid. We suppose, as in theorem 1, that there is an open saturated subset U of G(0)

such that GU = U × U ; let F be the complement of U . Thus

TG = A(G) ∪ GF × (0, 1] ∪ U × U × (0, 1].

Consider the open sub-groupoid

G′ = A(G) ∪ GF × (0, 1) ∪ U × U × (0, 1]
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(we removed GF × {1}). Denote G1 = A(G) ∪ GF × (0, 1). Then U × U × (0, 1] is an

open sub-groupoid of G′, the K-theory of which is trivial, thus there is an isomorphism

α : K∗(C
∗(G1)) → K∗(C

∗(G′)). If we compose it with the evaluation at 1, we obtain a

mapping denoted by indf :

indf = e1 ◦ α : K∗(C
∗(G1)) → K∗(C

∗(U × U)) = Z.

Let ρ be the evaluation map on A(G) : ρ : C∗(G1) → C∗(A(G)).

In [13] we showed that we can associate to every Fredholm differential operator P

a canonical class [P ] ∈ K0(C
∗(G1)) such that ρ∗([P ]) = [σ(P )], and indf ([P ]) is the

Fredholm index of P . The map indf is thus crucial for the Fredholm index.

Remark 4. We can improve this result (for manifolds with boundary for the moment)

by using the works of C. Debord and J. M. Lescure ([9]). Indeed, the groupoid G1 is KK-

equivalent to their “tangent space” ([9], remark 4). A totally elliptic pseudo-differential

operator leads then to an element of the K-homology of the manifold with conical singu-

larities associated. Now the K-duality indicates that this K-homology is isomorphic to

the K-theory of C∗(G1). We thus obtain a class [P ] ∈ K0(C
∗(G1)) as previously, but for

any pseudodifferential operator, not only differential operator.

To compute indf , we can use a variant of the topological index theorem. Indeed, this

one is based on a deformation of the tangent groupoid, which if we restrict it to the

sub-groupoid G1 yields a commutative diagram:

Z Z

K0(C
∗(G1(M))))

indM

a

OO

β // K0(C
∗(G1(X))).

indX

a

OO (3)

In case X is a classifying space of M , the analytical index of X is an isomorphism, thus

the adiabatic groupoid of X, adG(X) = A(G) ∪ G × (0, 1) has trivial K-theory. Since

G1 = adG(X) ∪ U × U × {1},

the evaluation at 1 yields a K-theory isomorphism. Thus the map indX
f is an isomorphism,

and we have the theorem:

Theorem 5. Let M be a manifold with embedded corners, and X be the classifying space

of M . Then indM
f = indX

f ◦ β, where indX
f is an isomorphism.

This result will be developed in a subsequent article.
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[11] L. Hörmander, The Analysis of Linear Partial Differential Operators. III, Grundlehren

Math. Wiss. 274, Springer-Verlag, Berlin, 1994.

[12] M. Karoubi, Equivariant K-theory of real vector spaces and real projective spaces, Topol-

ogy Appl. 122 (2002), 531–546.

[13] R. Lauter, B. Monthubert, and V. Nistor, Pseudodifferential analysis on continuous family

groupoids, Doc. Math. 5 (2000), 625–655.

[14] R. Lauter, B. Monthubert, and V. Nistor, Spectral invariance of certain algebras of pseu-

dodifferential operators, J. Inst. Math. Jussieu 4 (2005), 405–442.

[15] P.-Y. Le Gall and B. Monthubert, K-theory of the indicial algebra of a manifold with

corners, K-Theory 23 (2001), 105–113.

[16] R. Mazzeo and R. B. Melrose, Pseudodifferential operators on manifolds with fibred bound-

aries, Asian J. Math. 2 (1998), 833–866.

[17] R. Melrose and V. Nistor, K-theory of C∗-algebras of b-pseudodifferential operators, Geom.

Funct. Anal. 8 (1998), 88–122.

[18] R. B. Melrose, Transformation of boundary problems, Acta Math. 147 (1981), 149–236.

[19] R. B. Melrose, The Atiyah-Patodi-Singer Index Theorem, A K Peters, Wellesley, MA,

1993.

[20] R. B. Melrose, Fibrations, compactifications and algebras of pseudodifferential operators,

in: Partial Differential Equations and Mathematical Physics (Copenhagen, 1995; Lund,

1995), Progr. Nonlinear Differential Equations Appl. 21, Birkhäuser Boston, Boston, MA,
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