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246 A. S. MISHCHENKOProblems of di�erential topology onsidered in the sixties were the soures of non-ommutative geometry. In essene, the desription of topologial and homotopy invariantsof smooth and pieewise linear manifolds was only one solved problem. The typial in-variants for smooth and pieewise linear manifolds were so alled harateristi lasses,whih were known of three types: the Stiefel�Whitney lasses, the Chern lasses and thePontryagin lasses. They are losely related also to vetor bundles.Hene the problem an be formulated as follows: to what extent one or another har-ateristi lass depends on smooth struture of manifolds by means of whih it is deter-mined? As an answer in the �fties it was established that the Stiefel�Whitney lasses arehomotopy invariants. More or less using the same methods one an establish that rationalPontryagin lasses are topologial invariants.As to homotopy invariane of the Pontryagin lasses this problem until now is not learand ontinues to intrigue many mathematiians. This problem �nally was known as theNovikov onjeture and was one of essential soures of the generation of nonommutativegeometry.0.1. From Poinaré duality to the Hirzebruh formula. The Pontryagin lasses are nothomotopy invariant but have lose relation to the problem of a desription of smoothstrutures of given homotopy type. Hene the problem of �nding all homotopy Pontryaginlasses was onsidered vital. In reality, another problem happened to be more natural.From the point of view of a lassi�ation of smooth strutures on a manifold the mostappropriate equivalene relation between manifolds turned out to be so alled internalhomology or bordism of manifolds.In 1945 Pontryagin suggested that internal homology an be desribed in terms of er-tain algebrai expressions in harateristi Pontryagin lasses�the Pontryagin numbers([Pon45℄, 1945), and established that the Pontryagin numbers are invariant with respetto internal homology ([Pon47℄, theorem 3). Using the surgery theory for smooth manifoldsW. Browder and S. Novikov proved that the unique homotopy invariant harateristiPontryagin number oinides with the signature of an oriented ompat manifold withrespet to the Poinaré duality. The formula that identi�es the signature of a manifoldwith a ertain harateristi Pontryagin number is now known as the Hirzebruh for-mula ([Hir53℄), though its speial ase was established by V. A. Rokhlin a year before([Rok52℄).The Poinaré duality and the Hirzebruh formula have a long history, partly on-neted with oming into being of nonommutative geometry and results of the Mosowtopologial shool of the seond half of the 20th entury. The study of these problemsbegan with the prominent paper �Analysis situs� by H. Poinaré in 1895 ([Poi95℄). ThereH. Poinaré in partiular for the �rst time formulated the theorem known now as thePoinaré duality for losed oriented manifolds. Although the omplete statement and theproof of the Poinaré duality were presented onsiderably later, H. Poinaré undoubtedlydisovered the theorem. Certainly H. Poinaré oversimpli�ed the statement. He meantthe oinidene of the Betti numbers that were equidistant from the ends ([Poi95℄, p.490). In any ase the notion of the Betti numbers requires a more preise de�nitionwhih H. Poinaré partly gave in his subsequent papers. There is the exellent paper



K-THEORY OVER C∗-ALGEBRAS 247by P. S. Alexandro� ontaining his speeh devoted to the entennial of H. Poinaré'sbirthday on the speial meeting of the International Congress of Mathematiians (Ams-terdam, 1954) (see [Ale72℄, p. 813). We an hardly add anything more to this exellentharaterization of the ontribution of H. Poinaré to the homology theory of manifolds.We should espeially point out the following new important objets in algebrai topol-ogy: the homology groups (E. Noether, 1925), the ohomology groups (J. Alexander,A. N. Kolomogorov, 1934), duality between them (L. S. Pontryagin). The most signi�-ant event was the reation of harateristi lasses (Stiefel, Whitney, 1935; Pontryagin,1947; Chern, 1948). Everything beame prepared to onnet the Poinaré duality andintegral invariants of harateristi lasses. This onnetion is now known as the Hirze-bruh formula. The Hirzebruh formula gives us an exellent example of the appliationof ategorial methods in algebrai and di�erential topology. After introdution of thenotion of homology group, the Poinaré duality was meant as oinidene of ranks ofhomology groups. For the Betti numbers it was inessential what kind of homology groupswere onsidered�integer or rational, sine the rank of the integer homology groups o-inides with the dimension of the rational homology groups. But the notion of homologygroups allowed to enrih the Poinaré duality by onsidering the homology groups withoe�ients in �nite �elds. Therefore, oinidene of Betti numbers an be interpreted asisomorphism of rational homology groups. Taking into aount the torsion one shouldinterpret the oinidene of the torsion as an isomorphism of new groups. But thesenew groups annot be homology groups beause the torsion oinides in the dimensionsdi�erent from the oinidene of the Betti numbers. This apparent inonsisteny wasunderstood after the reation of the ohomology groups and their relations to the homol-ogy groups. Finally, the Poinaré duality was interpreted as an isomorphism between thehomology groups and the ohomology groups of omplementary dimensions:(1) Hk(M ;Z) ≈ Hn−k(M ;Z).The ruial understanding here is that this isomorphism is not abstrat but is gener-ated by a natural geometri operation. For example, in the ase of the middle dimensionwhere dimM = n = 2m the ondition (1) beomes a trivial one sine(2) Hm(M ;Q) = Hom(Hm(M ;Q), Q) ≡ Hm(M ;Q).But in the equality (1) the isomorphism is not aidental. This isomorphism is generatedby the intersetion operation with the fundamental homology lass [M ]:
∩ [M ] : Hn−k(M ;Q)→ Hk(M ;Q).This means that to the manifold M one an assign the nondegenerate quadrati formwhih has an additional invariant�the signature of the quadrati form.The Hirzebruh formula is the expression of the relation between the signature of themanifold M and some harateristi number of the same manifold M .The Hirzebruh formula says that for a 4k�dimensional orientable ompat losedmanifold X the equality(3) signX = 2k〈L(X), [X]〉



248 A. S. MISHCHENKOholds. Here signX= sign(H2k(X,C),∪) is the signature of the nondegenerate quadratiform in the ohomology groups H2k(X,C), de�ned by the ∪-produt:
([ω1], [ω2])

def
= 〈[ω1] ∪ [ω2], [X]〉 = 〈[ω1 ∧ ω2], [X]〉 =

∫

X

ω1 ∧ ω2.The lass
L(X) =

∏

j

tj/2th(tj/2)is the Hirzebruh harateristi lass de�ned by formal generators tj suh that
σk(t1, . . . , tn) = ck (cTX) ∈ H2k(X;Z),where σk is an elementary symmetri polynomial.There are di�erent ways to generalize the Hirzebruh formula�mainly for non-simplyonneted manifolds whih play a ruial role in di�erent problems of nonommutativegeometry and topology.1. Finite dimensional representations1.1. Finite dimensional unitary representations. LetX be a losed orientable non simplyonneted manifold and let π = π1(X),

fX : X → Bπbe the anonial mapping de�ned up to homotopy that indues an isomorphism of fun-damental groups
(fX)∗ : π1(X)→ π.Consider a �nite dimensional representation
ρ : π → U(N).Using the representation ρ one an onstrut several objets:1) The �at (omplex) vetor bundle ξρ over Bπ, indued by the representation ρ.2) The �at (omplex) vetor bundle ξρ

X over X indued by the same representation
ρ, ξρ

X = f∗Xξ
ρ.3) The ohomology groups H2k(X, ρ) with the loal system of oe�ients indued bythe representation ρ

H2k(X, ρ) = H2k(X, ξρ
X).The ∪-produt indues a nondegenerate Hermitian form in the group H2k(X, ρ):

H2k(X, ξρ
X)×H2k(X, ξρ

X)
∪
−→H4k(X, ξρ

X ⊗ ξ
ρ
X)

〈·,·〉
−→H4k(X,C) ≈ C.The signature of this form will be denoted by

signρX = sign(H2k(X, ρ),∪).It is easy to hek that(4) signρX = 2k〈L(X) ch ξρ
X , [X]〉.Sine ξρ is a �at bundle one has ch ξρ = dim ξρ = N . Hene both the left side and rightside of the formula (4) oinide with that of (3) up to an integer fator N .



K-THEORY OVER C∗-ALGEBRAS 249This means at least that the signature signρX depends only on the dimension ofthe �nite dimensional unitary representation ρ. Nevertheless this ase might be usefulfor further generalizations. Namely one an onstrut at least the right hand side of theformula (4) for more general representations of the fundamental group π.1.2. Finite dimensional unitary representations with respet to a pseudo Hermitian stru-ture of the type (p, q). Consider a representation
ρ : π → U(p, q)into the matrix group U(p, q) that preserves an inde�nite Hermitian nondegenerate formof the type (p, q). Then again one an onstrut the operation of the type ∪ whihgenerates a nondegenerate Hermitian form into middle ohomologies H2k(X; ρ).On the other hand the �at vetor bundle ξρ

X an be split into the diret sum
ξρ
X = ξρ

+ ⊕ ξ
ρ
−,suh that on eah summand the form is (positive and negative) de�nite. Then the Hirze-bruh formula has the following form:

signρX = 2k〈L(X) ch(ξρ
+ − ξ

ρ
−), [X]〉.Here the Chern harater of the bundles ξρ

± may be nontrivial (Lusztig [Lus72, 1972℄).1.3. Finite dimensional unitary representations with respet to a skew Hermitian stru-ture. Taking a skew Hermitian form ϕ on CN and the matrix group Sp(N) whih pre-serves this form one an onsider a representation
ρ : π → Sp(N)and a �at vetor (omplex) bundle ξρ
X . If dimX = 4k + 2 then in the middle dimensionone has a nondegenerate Hermitian form in the group H2k+1(X, ρ) generated by the

∪-produt:
H2k+1(X, ξρ

X)×H2k+1(X, ξρ
X)

∪
−→H4k+2(X, ξρ

X ⊗ ξ
ρ
X)

〈·,·〉
−→H4k+2(X,C) ≈ C.The �at vetor bundle ξρ

X an be split into the diret sum
ξρ
X = ξρ

+ ⊕ ξ
ρ
−,suh that on eah summand the Hermitian form i · ϕ is (positive and negative) de�nite.Then again the Hirzebruh formula has the following form:

signρX = 2k
〈
L(X) ch(ξρ

+ − ξ
ρ
−), [X]

〉(see M. Gromov [Gro95, � 8 1
2 ℄).1.4. Constrution of splitting of �at vetor bundles for alulation of the signature. Forall three ases above a similar onstrution is available and is based on the onstrutionof the Hodge operator.Let X be an oriented ompat manifold, dimX = n, ξ → X be a �at (real) vetorbundle with a (skew)symmetri form 〈•, •〉ϕ in the �ber Rm, that is

〈u, v〉ϕ = ε〈v, u〉ϕ ∈ R, u, v ∈ Rm, ε = ±1,



250 A. S. MISHCHENKOand onstant transition funtions preserve this form. This means in partiular that theform 〈•, •〉ϕ forms a bilinear (skew)symmetri map
ξ ⊕ ξ → ξ ⊗ ξ

ϕ
→1.Consider the de Rham omplex of di�erential forms on the manifold X valued in thebundle ξ:

0→ Ω0(X; ξ)
d
→Ω1(X; ξ)

d
→Ω2(X; ξ)

d
→ · · ·

d
→Ωn(X; ξ)→ 0.The orresponding ohomology omplex

0→ H0(X; ξ)
0
→H1(X; ξ)

0
→H2(X; ξ)

0
→ · · ·

0
→Hn(X; ξ)→ 0possesses the Poinaré duality with respet to the pairing

〈ω1, ω2〉
def
=

∫

X

ϕ(ω1 ∧ ω2), ω1, ω2 ∈ H
∗(X; ξ).This form is nondegenerate and (skew)symmetri. Namely,

〈ω2, ω1〉 = ε(−1)dim ω1·dim ω2〈ω1, ω2〉.We intend to alulate the signature of the form in terms of harateristi lasses.For that let us onsider an analogue of the salar forms generated by a Riemannianmetri g = (gij(x)) on X and a metri tensor u = (uαβ(x)) in the bundle ξ. Fix a loaloordinate system (x1, . . . , xn) = (xi) on X and a basis (e1, . . . , em) = (eα) in the �bersof the bundle ξ. Any di�erential form ω1 ∈ Ω1(X; ξ) an be represented as
ω1 = (1f

α
i (x)eα)dxi.If we have another form

ω2 = (2f
α
i (x)eα)dxi,the salar produt is de�ned as

(ω1, ω2)g,u
def
=

∫

X

((1f
α
i )(2f

β
j )uαβg

ij(x)) dµ,where dµ is the di�erential form whih determines the measure on X, assoiated withthe Riemannian metri gij ,
dµ

def
=
√

det(gij)dx
1 ∧ · · · ∧ dxn.The salar produt (ω1, ω2)g,u is symmetri and nondegenerate.The form (•, •)g,u an be extended to spaes of forms of other dimensions: let ω1, ω2 ∈

Ωk(X, ξ),
ω1 =

∑

i1,i2,...,ik

(∑

α

1f
α
i1,i2,...,ik

(x)eα

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik ,

ω2 =
∑

i1,i2,...,ik

(∑

α

2f
α
i1,i2,...,ik

(x)eα

)
dxi1 ∧ dxi2 ∧ · · · ∧ dxik .Then

(ω1, ω2) =

∫ ( ∑

i1,i2,...,ik

j1,j2,...,jk

(∑

αβ

1f
α
i1,i2,...,ik

(x)2f
β
j1,j2,...,jk

(x)uαβ

)
gi1j1gi2j2 · · · gikjk

)
dµ.



K-THEORY OVER C∗-ALGEBRAS 251Thus on the spae Ω∗(X; ξ) =
⊕n

k=0 Ωk(X; ξ) one has two forms: 〈•, •〉 and (•, •)g,u,both nondegenerate. Hene there is an invertible operator* : Ω∗(X; ξ)→ Ω∗(X; ξ), *k : Ωk(X; ξ)→ Ωn−k(X; ξ),suh that
〈ω1, ω2〉 = (* ω1, ω2)g,u.The metri tensor u an be hosen suh that(5) *n−k · *k = ε(−1)(n−k)kId.Really, any metri tensor v in the bundle ξ de�nes the form

(ω1, ω2)g,v = (Aω1, ω2)g,u.Putting A =
√
|*2|, for the new operator with respet to the form v,

〈ω1, ω2〉 = (*vω1, ω2)g,v,one has the relation *v = A−1*,that is,
(*v)2 = |*2|−1*2.The ondition (5) an be heked at eah point.Further, if ω1 ∈ Ωk, ω2 ∈ Ωn−k−1, then

(*k+1(dkω1), ω2) = 〈dkω1, ω2〉 = (−1)k+1〈ω1, dn−k−1ω2〉

= (−1)k+1(*k(ω1), dn−k−1ω2) = (−1)k+1(d∗n−k−1*k(ω1), ω2),that is, *k+1dk = (−1)k+1d∗n−k−1*kor *k+1dk*n−k = ε(−1)k+1+(n−k)kd∗n−k−1or
δk = ε(−1)nk+1*n−k+1dn−k*k,where

δk = d∗k−1 : Ωk → Ωk−1.In other words
(−1)nk+1+(n−k+1)(k−1)*k−1δk = dn−k*k,or(6) *k−1δk = (−1)(n−k)dn−k*k,and(7) *k+1dk = (−1)(k+1)δn−k*k.Put αk = (−1)

k(k−1)
2 *k. Then
−(αk+1dk + *k−1δk) = (dn−k + δn−k)αk.



252 A. S. MISHCHENKOThis means that on the spae Ω∗ =
⊕

Ωk the relation* (d+ δ) = − (d+ δ) *holds. If n = 4s and ε = 1, then α2 = Id. If n = 4s+ 2 and ε = −1, then again α2 = Id.In both ases the signature of the quadrati form 〈•, •〉ϕ on ohomology, that is, on
Ker(d+ δ) = Ker d ∩Ker δ oinides with the index of the operator

d+ δ : Ω+ → Ω−,where Ω+ and Ω− are the eigenspaes of the operator α, whih orrespond to the eigen-values 1 and −1.2. Continuous family of �nite dimensional representations. Let us onsider aontinuous family of representations(8) ρt : π → U(N), t ∈ T.This family generates a family of quadrati forms on the family of the homology spaes
(H2k(X, ρt),∪).The problem is to desribe this family as a ontinuous family of quadrati forms. For thiswe need to inlude the family (H2k(X, ρt),∪

) into a larger spae (see [Mis01℄).Given a ombinatorial struture on X, let Ck = Ck(X) denote the group of k-dimensional hains of X with oe�ients in CN . Then the representations ρt de�neboundary homomorphisms dk and the Poinaré duality homomorphisms Dk whih areontinuous with respet to t ∈ T :
C0

d1←− C1
d2←− · · ·

dn←− CnxD0

xD1

xDn

C∗
n

d∗

n←− C∗
n−1

d∗

n−1
←− · · ·

d∗

1←− C∗
0The properties are

(9) dk−1dk = 0,

dkDk + (−1)k+1Dk−1d
∗
n−k+1 = 0,

Dk = (−1)k(n−k)D∗
n−k,

D indues an isomorphism in homology groups.Put(10) Fk = ik(k−1)Dk.Then a similar diagram
(11) C0

d1←− C1
d2←− · · ·

dn←− CnxF0

xF1

xFn

C∗
n

d∗

n←− C∗
n−1

d∗

n−1
←− · · ·

d∗

1←− C∗
0has more natural properties(12) dkFk + Fk−1d

∗
n−k+1 = 0, Fk = F ∗

n−k.



K-THEORY OVER C∗-ALGEBRAS 253Consider the one of F , whih is an ayli omplex with respet to the total gradu-ation and the sum of di�erentials d and F :(13) 0←−A0
H1←−A1

H2←− · · ·
H2l←−A2l

H2l+1
←− A2l+1

H2l+2
←− · · ·

H4l←−A4l

H4l+1
←− A4l+1←− 0where(14) Ak = Ck ⊕ C

∗
n−k+1, Hk =

(
dk Fk−1

0 d∗n−k+2

)
.Put

A =

n+1⊕

k=0

Ak = Aev ⊕Aodd,where
Aev =

2l⊕

k=0

A2k, Aodd =

2l⊕

k=0

A2k+1.Then
Aev ≈ Aodd ≈

n⊕

k=0

Ck,and
d+ d∗ + F : Aev → Aoddis an isomorphism.Taking in aount that d = dt, F = Ft one hasTheorem 1.
sign(At) = sign(X, ρt)where At = dt + d∗t + Ft.2.1. New notion of signature for a ontinuous family At : Vt → Vt, Vt ≈ V. There is asplitting

V = V +
t ⊕ V

−
t ,suh that At is positive on V +

t and negative on V −
t . Then

ξ+ =
∐

V +
t , ξ− =

∐
V −

tare subbundles. By de�nition
sign(At) = [ξ+]− [ξ−] ∈ K(T ).Thus

signρt
(X) = sign(dt + d∗t + Ft) ∈ K(T ).We have a generalization of the Hirzebruh formula:(15) K(T ) ∋ signρt
X = 2k〈L(X) chX(ξρt

X×T ), [X]〉 ∈ K(T )⊗Q,where chX(ξρt

X×T ) ∈ H∗(X;K∗(T )⊗Q).



254 A. S. MISHCHENKO3. Algebrai setting. The most general piture for the Hirzebruh formula for orientedsmooth manifolds an be represented as follows (see [Mis70℄, [Mis95℄).Let Ω∗(Bπ) denote the bordism group of pairs (M, fM ). Reall that Ω∗(Bπ) is amodule over the ring Ω∗ = Ω∗({pt}). One an onstrut a homomorphism(16) sign : Ω∗(Bπ)→ L∗(Cπ)whih to every manifold (M, fM ) assigns the element sign(M) ∈ L∗(Cπ), where L∗(Cπ)is the Wall group for the group ring Cπ.3.1. Algebrai onstrution of symmetri signature For ombinatorial manifolds we havea similar ombinatorial diagram
C0

d1←− C1
d2←− · · ·

dn←− CnxD0

xD1

xDn

Cn d∗

n←− Cn−1
d∗

n−1
←− · · ·

d∗

1←− C0where
Ck

def
= Ck(X̃), Ck def

= Ck
0 (X̃) ≈ HomCπ(Ck,Cπ).Here Ck(X̃) means the hain omplex of the universal overing X̃ with respet to theombinatorial struture of X, Ck

0 (X̃) means the ohain omplex with ompat supports,
Cπ is the group ring of the fundamental group π with oe�ients in the �eld C of rational,real or omplex numbers.The homomorphism sign satis�es the following onditions:(a) sign(M) depends only on the homotopy equivalene lass of the manifold M .(b) If N is a simply onneted manifold and τ (N) is its signature then(17) sign(M ×N) = sign(M)τ (N) ∈ L∗(Cπ).We shall be interested only in the groups after tensor multipliation with the �eld ofrational numbers Q, in other words in the homomorphism

sign : Ω∗(Bπ)⊗Q→ L∗(Cπ)⊗Q.One has
Ω∗(Bπ)⊗Q ≈ H∗(Bπ;Q)⊗ Ω∗ ≈ Ωframe

∗ (Bπ)⊗Q⊗ Ω∗where Ωframe
∗ (Bπ) is the so alled �framed� bordisms, that is, bordisms whih are repre-sented by manifolds with trivial normal bundles. Therefore the homomorphism sign anbe onsidered as a produt of two homomorphisms
σ ⊗ τ : H∗(Bπ;Q)⊗ Ω∗ ≈ Ωframe

∗ (Bπ)⊗Q⊗ Ω∗ → L∗(Cπ)⊗Q.Here
σ : H∗(Bπ;Q) ≈ Ωframe

∗ (Bπ)⊗Q→ L∗(Cπ)⊗Q.is the restrition of σ to Ωframe
∗ (Bπ)⊗Q ⊂ Ω∗(Bπ)⊗Q. On the other hand the homo-morphism sign represents the ohomology lass

σ ∈ H∗(Bπ;L∗(Cπ)⊗Q) = Hom (H∗(Bπ;Q), L∗(Cπ)⊗Q)



K-THEORY OVER C∗-ALGEBRAS 255suh that if M is a framed manifold, M ∈ Ωframe
∗ (Bπ), then

sign(M) = σ(M) = 〈f∗M (σ), [M ]〉.The key idea is that for any manifold (M, fM ) the signature an be represented by aversion of the general Hirzebruh formula(18) sign(M, fM ) = 〈L(M)f∗M (σ), [M ]〉 ∈ L∗(Cπ)⊗Q.Indeed, let M = M1 ×M2, M1 ∈ Ωframe
∗ (Bπ), M2 ∈ Ω∗. Then

sign(M) = sign(M1)τ (M2) = 〈f∗M (σ), [M1]〉〈L(M2), [M2]〉

= 〈L(M1 ×M2)f
∗
M (σ), [M1 ×M2]〉 = 〈L(M)f∗M (σ), [M ]〉.3.2. Higher signature. Let x ∈ H∗(Bπ;Q) be an arbitrary ohomology lass. Then thenumber

signx(M, fM ) = 〈L(M)f∗M (x), [M ]〉 ∈ Qis alled the higher signature due to S. P. Novikov. In the ase of an additive funtional
α : L∗(Cπ)⊗Q→ Q the higher signature signx(M, fM ), where x = α(σ) ∈ H∗(Bπ;Q)arises from the Hirzebruh formula (18) above.This gives a desription of the family of all homotopy-invariant higher signatures. Thisobservation is not a diret onsequene from theprevious argument but an be obtainedfrom the theory of non-simply onneted surgeries by [Wal71℄. Indeed, following [Wal71℄one an onstrut an obstrution to the existene of surgery of normal mapping to ahomotopy equivalene whih is desribed as a di�erene of symmetri signatures (16) oftwo manifolds. Therefore all other higher signatures behind x = α(σ) are not homotopyinvariant.4. Funtional version of the Hirzebruh formula. In�nite dimensional repre-sentations. Let C∗[π] be the C∗-group algebra of the group π. Any unitary representa-tion

ρ : π → End(H)of the group π, where H is a Hilbert spae, an be uniquely extended to a representation
ρ : C∗[π]→ End(H)of the algebra C∗[π]. Put A = Im ρ ⊂ End(H), ρ : C∗[π]→ A.By ξρ we denote the vetor bundle over Bπ with the �berA, whose transition funtionsare indued by the ation of the group π on the algebra A by the representation ρ. Thevetor bundle ξρ generates the element of the K-group

ξρ ∈ KA(Bπ).There is a generalization of the Chern harater to vetor bundles over the C∗-algebra
A: chA ξ ∈ H

∗(X;KA(pt)⊗Q).Hene we an write the right side of the formula (4):
? = 2k 〈L(X) chA ξ

ρ
X , [X]〉 ∈ KA(pt)⊗Q.The left side of the formula an be alulated as a symmetri signature of the manifold

X by replaing of rings, indued by the representation ρ, so we obtain the so alled



256 A. S. MISHCHENKOgeneralized Hirzebruh formula for an arbitrary C∗-algebra A:
KA(pt) ∋ signρ(X) = 22k 〈L(X) chA ξ

ρ
X , [X]〉 ∈ KA(pt)⊗Q.5. Smooth version of the Hirzebruh formula. The left side of the Hirzebruhformula (4) is desribed in terms of the ombinatorial struture of the manifold X. Thereis a smooth version of this expression as well. Namely, onsider the de Rham omplex ofdi�erential forms on the manifold X with values in the �at vetor bundle ξρ:(19) 0→ Ω0(X, ξ

ρ)
d
→Ω1(X, ξ

ρ)
d
→ · · ·

d
→Ω4k(X, ξρ)→ 0.It is well known that the ohomology groups of the de Rham omplex (19) are isomorphito the ohomology groups H∗(X, ξρ).The ∪-produt is indued by exterior produt of di�erential forms, so the Hermitianform whih de�nes the Poinaré duality an be determined by(20) 〈ω1, ω2〉 =

∫

X

ω1 ∧ ω2.On the other hand using a Riemannian metri on the manifold X, (ω1, ω2), thePoinaré duality (20) an be determined with a bounded operator ∗:
(ω1, ω2) =

∫

X

ω1 ∧ ∗ω2,where
∗ : Ωk(X)→ Ωn−k(X).Put

α = ik(k+1) ∗ .Then
αdα = −d∗; α2 = 1.Let

Ω+(X) = Ker (α− 1); Ω−(α+ 1).It is evident that
(d+ d∗)(Ω+(X)) ⊂ Ω−(X).Consider the ellipti operator

D = (d+ d∗) : Ω+(X)→ Ω−(X).Then we have
indexD = sign(X).Using the Atiyah�Singer index formula for ellipti operators we have(21) index(D ⊗ ξ) = 2k〈L(X) ch ξ, [X]〉.for arbitrary vetor bundle ξ over the manifold X.If the bundle ξ is �at, that is, if there is a representation ρ suh that ξ = ξρ then

index (D ⊗ ξ) = signρ(X)



K-THEORY OVER C∗-ALGEBRAS 257and we again obtain the Hirzebruh formula:
signρ(X) = index(D ⊗ ξρ) = 22k〈L(X) ch ξρ, [X]〉.6. The notion of almost �at vetor bundle. Combinatorial loal Hirzebruhformula. A naive point of view is that all transition funtions ϕαβ(x), x ∈ Uαβ = Uα∩Uβfor a vetor bundle ξ are almost onstant. Then one an onstrut a so alled almostalgebrai Poinaré omplex of formal dimension n whih onsists of hains and ohainswith values in �bers of the bundle ξ:

C0(ξ)
d1←− C1(ξ)

d2←− · · ·
dn←− Cn(ξ)xD

xD

xD

Cn(ξ)
d∗

n←− Cn−1(ξ)
d∗

n−1
←− · · ·

d∗

1←− C0(ξ)suh that
‖d2‖ ≤ ε, ‖Dd∗ ± dD‖ ≤ ε

‖D‖ ≤ onst, D∗ = ±D.If ε is su�iently small and the number of neighbors for eah ell is bounded then theoperator
d+ d∗ +D : C∗(ξ)→ C∗(ξ)is invertible and a version of the Hirzebruh formula (loal ombinatorial Hirzebruhformula) holds:

signC∗(X, ξ) = 22k 〈L(X) ch ξ, [X]〉 .If moreover the size of all ells is su�iently large then we ome to the notion of almost�at bundle for whih the signature signC∗(X, ξ) is homotopy invariant (see [Gro95℄,[Mis99℄).7. Almost �at bundles from the point of view of C*-algebras (jointly withN. Teleman). Connes, Gromov and Mosovii [CGM90℄ showed that for any almost�at bundle α over the manifold M, the index of the signature operator with values in αis a homotopy invariant of M. It follows that a ertain integer multiple n of the bundle αomes from the lassifying spae Bπ1(M). Geometri arguments show that the bundle αitself, and not neessarily a ertain multiple of it, omes from an arbitrarily large ompatsubspae Y ⊂ Bπ1(M) through the lassifying mapping.For this we modify the notion of almost �at struture on bundles over smooth mani-folds and extend this notion to bundles over arbitrary CW -spaes using quasi-onnetionsof N. Teleman ([Tel04℄).Using a natural onstrution by B. Hanke and T. Shik ([HS04℄), one an present asimple desription of suh bundles as a bundle over a C∗-algebra and larify the homotopyinvariane of orresponding higher signatures.Moreover it is possible to onstrut a so alled lassifying spae for almost �at bundles(see [MT05a℄, [MT05b℄).



258 A. S. MISHCHENKO7.1. Desription of almost �at bundles in terms of C∗-algebras due to B. Hanke andT. Shik. Due to [CGM90℄ an element α ∈ K(M) over a smooth manifold M is alledan almost �at bundle if for any ε > 0 there are two vetor bundles ξ, η with linearonnetions ∇ξ, ∇η suh that:1. α = ξ − η ∈ K(M),2. ‖Θξ‖ < ε, ‖Θη‖ < ε, where(22) ‖Θ‖ = sup
x∈M

{‖Θx(X ∧ Y )‖ : ‖X ∧ Y ‖ ≤ 1},and Θx(X ∧ Y ) = [∇X ,∇Y ]−∇[X,Y ] is the urvature form of the onnetion ∇.If α is an almost �at bundle and β is a trivial bundle then α ⊕ β is also an almost�at bundle. This means that without loss of generality one an onsider elements from
K whih are represented by real vetor bundles.In other words we an onsider two sequenes of vetor bundles ξ = {ξk} and η = {ηk}with �xed onnetions ∇1

k and ∇2
k suh that(23) ξk = ηk ⊕ α,

dimα = d, dim ξk = nk, dim ηn = mk = nk − d.Assume that(24) lim
k→∞

‖Θi
k‖ = 0, i = 1, 2.So instead of a bundle α we shall onsider a �ner struture namely so alled almost�at bundle struture whih onsists of the following:1. Sequenes of bundles ξ = {ξk} and η = {ηk} with �xed onnetions ∇1

k and ∇2
ksuh that(25) lim

k→∞
‖Θi

k‖ = 0, i = 1, 2,2. A sequene of isomorphisms(26) fk : ξk ≈ ηk ⊕ α.The same bundle α may admit several almost �at bundle strutures. We say that twoalmost �at bundle strutures
P = {α; ξ = {ξk,∇

1
k}; η = {ηk,∇

2
k}, f = {fk}}and

′P = {′α; ′ξ = {′ξk,
′∇1

k};
′η = {′ηk,

′∇2
k};

′f = {′fk}},are equivalent if one struture an be obtained from the other struture by a sequene ofthe following operations:1. Passing to a subsequene;2. Homotopy of linear onnetions ∇1
k and ∇2

k in the lass of onnetions whih satisfythe onditions (25), and homotopy of isomorphisms f = {fk};3. Stabilization of all bundles, that is, adding trivial bundles both to ξ = {ξk}, η =

{ηk}, and to α with natural extension of the onnetions ∇1
k and ∇2

k and isomorphisms
f = {fk} to diret sums.



K-THEORY OVER C∗-ALGEBRAS 259An equivalene lass of almost �at bundle strutures is alled an almost �at bundleon the manifold M . Among almost �at bundles a trivial bundle is marked out whih isrepresented by the trivial almost �at bundle struture
P0 = {α0; ξ0 = {ξ0k,∇

1,0
k }; η

0 = {η0
k,∇

2,0
k }, f

0 = {f0
k}},where all bundles α0, ξ0k, η0

k and onnetions ∇1,0
k , ∇2,0

k are trivial and the isomorphisms
f0

k are idential. The set of all almost �at bundles is endowed with the operation ofdiret sum P ⊕′ P, the trivial bundle being the neutral element. So the set Vetaf (M) ofequivalene lasses of almost �at strutures forms a semigroup with respet to the diretsum. The Grothendiek group is denoted by Kaf (M).7.2. Classifying spae for almost �at bundles. The groups Vetaf (M) yield a funtorfrom the ategory of CW -spaes to the ategory of abelian groups. Therefore the naturalquestion arises about existing of lassifying spae for almost �at bundles. This meansthat there should be a spae BAF with �xed almost �at bundle ξB = {ξB
k }, ηB = {ηB

k },
fB

k : ξB
k ≈ η

B
k ⊕α

B suh that any almost �at bundle ξ = {ξk} , η = {ηk}, fk : ξk ≈ ηk⊕αover M an be onstruted by a ontinuous map ϕ : M → BAF up to homotopy.First of all, onsider a desription of almost �at bundles due to [HS04℄ using speialstrutural groups.Put A =
∏∞

i=1K
+, where K+ = K+(H) = C ⊕ K(H) is the algebra of ompatoperators with an adjoined idential operator in the Hilbert spae H. The algebra A is aunital subalgebra in the algebra of all bounded operators B(H), H =

⊕∞
i=1H.Consider a sequene of bundles ξ = {ξk}, dim ξk = nk, and �x oordinate skewproduts on the bundles by transition funtions

ϕk
ij(x) ∈ GL(nk,C), x ∈ Uijfor a hart atlas Ui.Consider the anonial imbedding of GL(nk,C) in the group G(K+) of invertibleelements, by assigning eah matrix Φ ∈ GL(nk,C) to its diagonal extension in theHilbert spae H = Cnk ⊕ (Cnk)⊥ as(27) Φ̃ =

(
Φ 0

0 Id ) ∈ K+(H).Then the sequene ϕk
ij(x) de�nes the funtion

(28) Φij(x)
def
=

∞∏

k=1

ϕ̃k
ij(x) =




ϕ̃1
ij(x) 0 0 0 · · ·

0 ϕ̃2
ij(x) 0 0 · · ·

0 0
. . . 0 · · ·

0 0 0 ϕ̃k
ij(x) · · ·... ... ... ... . . .




∈ G(A).

Consider the quotient algebra Q def
= A/A0, where A0 ⊂ A onsists of elements x ∈ A,

x = {xi ∈ K
+}, suh that(29) lim

i→∞
‖xi‖ = 0.



260 A. S. MISHCHENKOLet Φij(x) ∈ Q be the image of the element Φij(x). Then {Φij(x)} is a family oftransition funtions for a bundle ξQ over the algebra Q.If the funtions ϕk
ij(x) satisfy the ondition of almost �at struture, that is,(30) lim

k→∞
sup

x,y∈Uij

‖ϕk
ij(x)− ϕ

k
ij(y)‖ = 0,then the funtions Φij(x) don't depend on the argument x ∈ X. This means that thebundle ξQ is �at.To an individual bundle α one an assign the bundle αQ over Q, by de�ning thesequene α̃ = {αk}, αk = α, and αQ

def
= α̃Q.Now, onsider an almost �at bundle, that is, sequenes ξ = {ξk} and η = {ηk} with�xed transition funtions

ϕk,s
ij (x), x ∈ Uij , s = 1, 2,for a hart atlas Ui suh that(31) lim

k→∞
sup

x,y∈Uij

‖ϕk,s
ij (x)− ϕk,s

ij (y)‖ = 0, s = 1, 2,and a sequene of isomorphisms(32) fk : ξk ≈ ηk ⊕ α.Let ϕk,1
ij (x) ∈ GL(nk,C), ϕk,2

ij (x) ∈ GL(mk,C), nk = mk + d. Let the bundle α bede�ned by the transition funtions ψij(x) ∈ GL(d,C). Then the diret sum ζk = ηk ⊕ αhas transition funtions χij(x) ∈ GL(nk,C) of the following form(33) χij(x) =

(
ϕk,2

ij (x) 0

0 ψij(x)

)
.Turning to the algebra Q one has three bundles ξQ, ηQ and ζQ and the isomorphism

F : ξQ → ζQ, generated by the sequene (32). On the other hand the bundle ζQ isisomorphi to the diret sum of ηQ and αQ,(34) ξQ
F
≈ ζQ ≈ ηQ ⊕ αQ.The seond bundle is de�ned by the transition funtions Ψij(x),

(35) Ψij(x) =

∞∏

k=1

ψ̃ij(x) =




ψ̃ij(x) 0 0 0 · · ·

0 ψ̃ij(x) 0 0 · · ·

0 0
. . . 0 · · ·

0 0 0 ψ̃ij(x) · · ·... ... ... ... . . .



.

7.3. Simple proof of homotopy invariane of higher signatures of almost �at bundles.Using the desription above one an obtain a simple and elegant proof of the homotopyinvariane of the higher signature of an almost �at bundle, whih was �rst established byA. Connes, M. Gromov and H. Mosovii ([CGM90℄).Namely, if α is an almost �at bundle then the bundles ξQ and ηQ in (34) are �atbundles over the algebra Q. Sine the bundles ξQ and ηQ are �at, the following higher



K-THEORY OVER C∗-ALGEBRAS 261signatures are homotopy invariant:
(36) signx(M) ∈ K∗

Q(pt)⊗Q,

signy(M) ∈ K∗
Q(pt)⊗Q,

x = chQ(ξQ) ∈ H∗(M ;K∗
Q(pt)⊗Q),

y = chQ(ηQ) ∈ H∗(M ;K∗
Q(pt)⊗Q).Hene the higher signature(37) signz(M) ∈ K∗

Q(pt)⊗Q,

z = chQ(αQ) ∈ H∗(M ;K∗
Q(pt)⊗Q),is also homotopy invariant.Consider the homomorphism(38) θ : K∗(M)→ K∗

Q(M),whih assoiates to a �nite dimensional bundle α the bundle αQ over the algebra Q. Inthe paper ([HS04, Proposition 3.5℄) it was shown that(39) K∗
A(pt) =

∞∏

k=1

Z, K∗
Q(pt) =

( ∞∏

k=1

Z
)
/J,where J =

∑∞
k=1 Z. Similarly one an show that the homomorphism (38) for M = ptmaps the group K∗(pt) = Z by the formula(40) θ(a) =

[ ∞∏

k=1

a
]
∈
( ∞∏

k=1

Z
)
/J.Hene the homomorphism(41) θ ⊗Q : K∗(M)⊗Q→ K∗

Q(M)⊗Qis a monomorphism. This ompletes the proof of the homotopy invariane of highersignatures for almost �at bundles sine(42) signz(M) = θ(signu(M)),where u = ch(α).7.4. Geometri onstrution of lassifying spae for almost �at bundles. Almost �at bun-dles (without �xed almost �at struture) are unlikely to be onstruted using a lassifyingspae sine they do not form a homotopy funtor. On the other hand, almost �at bundleswith �xed almost �at struture an be represented by the inverse image of a ontinuousmap into a lassifying spae. Atually, it was shown above that with eah almost �atstruture there is assoiated a pair of �at bundles ξQ and ηQ over the algebra Q and anisomorphism of Q-bundles(43) F : ξQ → (ηQ ⊕ αQ) .The presene of �at bundles ξQ and ηQ and the isomorphism F an be interpretedusing maps into lassifying spaes. Namely, the bundles ξQ and ηQ aording to thede�nition have the strutural group G(Q), whih onsists of all invertible elements of thealgebra Q. In other words, we an onsider the bundles ξQ and ηQ as one-dimensional



262 A. S. MISHCHENKObundles over the algebra Q, with the �ber Q. Therefore the bundles are lassi�ed byontinuous maps from the base M into the lassifying spae BG(Q). Sine the bundles
ξQ and ηQ are �at, we should take as the lassifying spae not BG(Q), but BĜ(Q), where
Ĝ(Q) is the same group G(Q) with disrete topology. The identity map ι : Ĝ(Q)→ G(Q)is ontinuous, whih indues the natural ontinuous map of lassifying spaes(44) Bι : BĜ(Q)→ BG(Q).Let(45) ⊕ : BG(Q)×BG(Q)→ BG(Q)be the map that orresponds to diret sum of bundles. Then the bundles ξQ and ηQan be represented as inverse images of the anonial �at Q-bundle ÊQ over the spae
BĜ(Q) by ontinuous maps

fξ, fη : M → BĜ(Q),(46)
ξQ = f∗ξ (ÊQ), ηQ = f∗η (ÊQ).(47)Sine the bundle ÊQ is the inverse image of the anonial bundle EQ over BG(Q)with respet to the map Bι,(48) ÊQ = B∗

ι (EQ),the presene of the isomorphism (43) means that the maps(49) M
fξ
−→BĜ(Q)

Bι−→BG(Q)and(50) M
fη×fα
−→ BĜ(Q)×BG(K+)

Bι×θ
−→BG(Q)×BG(Q)

⊕
−→BG(Q)are homotopi.The lassifying spae BG(Q) is determined uniquely up to homotopy equivalene.Therefore it is appropriate to replae the spae BG(Q) by the homotopy equivalentspae that is the union of two mapping ylinders(51) B̃G(Q)

def
= (BG(Q) ∪(Bι,0) ([0, 1]×BĜ(Q)))

∪(⊕·(Bι×θ),0)([0, 1]× (BĜ(Q)×BG(K+))),and replae the maps Bι and ⊕ · (Bι × θ) by the imbeddings
(52) i0 = (Id, 1) : BĜ(Q) →֒ ((0, 1]×BĜ(Q)) ⊂ B̃G(Q),

i1 = (Id, 1) : (BĜ(Q)×BG(K+)) →֒

((0, 1]× (BĜ(Q)×BG(K+))) ⊂ B̃G(Q).Consider the spae of ontinuous paths(53) BAF
def
= Γ(BĜ(Q); B̃G(Q); (BĜ(Q)×BG(K+))),that onsists of all ontinuous paths(54) γ : [0, 1]→ B̃G(Q),



K-THEORY OVER C∗-ALGEBRAS 263that start in the subspae B̂G(Q), that is,(55) γ(0) ∈ BĜ(Q) = Im i0,and �nish in the subspae (BĜ(Q)×BG(K+)), that is,(56) γ(1) ∈ (BĜ(Q)×BG(K+)) = Im i1.Eah bundle α, endowed with almost �at struture orresponds to a ontinuous mapfrom M to the spae BAF. Indeed, sine the maps (49) are (50) homotopi, the ompo-sitions i0 · fξ and i1 · (fη × fα) are also homotopi. It follows that there is a ontinuousmap(57) Φ : M × [0, 1]→ B̃G(Q),for whih one has(58) Φ(x, 0) = i0fξ(x), Φ(x, 1) = i1(fη × fα)(x).This means that the map Φ indues a map(59) Φ̃ : M → BAFby the formula(60) Φ̃(x)(t) = Φ(x, t), x ∈M ; t ∈ [0, 1].Conversely, the same formula (60) de�nes two homotopi maps(61) Φ(x, 0) : M → BĜ(Q),

Φ(x, 1) : M → (BĜ(Q)×BG(K+)),whih in turn de�ne a �at struture on the bundle generated by the mapping of theseond omponent of the map Φ(x, 1).Moreover, on the spae BAF there is a bundle, the inverse image of whih under themapping (59) oinides with the �at bundle desribed above.Now we an desribe homotopy properties of the spae BAF using standard Serre�brations. Let us denote by(62) p0 : BAF → BĜ(Q),

p1 = (p′1 × p
′′
1) : BAF → (BĜ(Q)×BG(K+))two standard maps that take eah path γ ∈ BAF to its initial or �nal points with respetto the onditions (55) and (56). The ombined map(63) p = (p0 × p1) : BAF→ BĜ(Q)× (BĜ(Q)×BG(K+))is the Serre �bration whose �ber is the loop spae V = Ω(B̃G(Q)) ≈ Ω(BG(Q)) ≈ G(Q).On the other hand onsider another Serre �bration(64) p̃ = (p0 × p
′
1) : BAF

Γ0−→BĜ(Q)×BĜ(Q),whose �ber is the spae Γ0 = Γ(x0; B̃G(Q);BG(K+)) of paths in the spae B̃G(Q) ≈

BG(Q), that start at a �xed point x0 and �nish in the spae BG(K+)) ⊂ B̃G(Q). The



264 A. S. MISHCHENKOspae Γ0 is foliated by the projetion(65) p′1 : Γ0
V
−→BG(K+),the �ber being the spae of loops V = Ω(BG(Q)) ≈ G(Q)

i0
⊂ Γ0.Lemma 1. The projetion (65) is homotopi to the onstant mapping.In other words the idential mapping of Γ0 is homotopi to ϕ : Γ0 → G(Q), ϕ◦i0 ∼ Id.Proof. The statement of the lemma is equivalent to the injetivity of the homomorphism(38)

θ : K∗(M)→ K∗
Q(M),whih takes a �nite dimensional bundle α to the bundle αQ over the algebra Q. In fat,let (38) be injetive. Consider the bundle ξ over the spae Γ0 generated by the mapping(65). Then θ(ξ) is the bundle over the algebra Q generated by the mapping(66) i′1 · p

′
1 : Γ0 → BG(K+) ⊂ B̃G(Q).This mapping is homotopi to the onstant mapping as the spae Γ0 = Γ(x0;BG(Q);

BG(K+)) is the spae of paths in the spae B̃G(Q) ≈ BG(Q) that start at the �xedpoint x0 and �nish in the subspae BG(K+)) ⊂ B̃G(Q). It follows that we an map eahpath γ to an intermediate point γ(t), 0 ≤ t ≤ 1 (in ontrast to the end point γ(1) in themapping (66)).Conversely, assume that the mapping p′1 is homotopi to a onstant mapping. Let ξbe a bundle over M suh that θ(ξ) is trivial. The bundle ξ is generated by the mapping
q : M → BG(K+)) and the bundle θ(ξ) is generated by i′1 · q : M → B̃G(Q). Sine thebundle θ(ξ) is trivial, the mapping i′1 · q is homotopi to a onstant mapping. This meansthat the homotopy F (x, t), x ∈M , 0 ≤ t ≤ 1, de�nes the mapping F̃ : M → Γ0, and theomposition p′1 · F̃ is equal to q. Consequently, q is homotopi to a onstant mapping.Let ξ be a bundle suh that the bundle θ(ξ) is trivial over the algebra Q, {Ui} be ahart atlas and {ϕij(x) ∈ G(K+)} be transition funtions of the bundle ξ. Without lossof generality we an assume that all transition funtions are unitary, that is, {ϕij(x) ∈

U(K+)}. The triviality of the bundle θ(ξ) means that there are funtions hi(x) ∈ U(Q)suh that(67) [ϕij(x)] = hi(x)h
−1
j (x), x ∈ Uij .The element hi(x) ∈ U(Q) = (

∏
k U(K+))/(

∑
k U(K+)) an be realized as a ontinuoussetion in the group (

∏
k U(K+)) of the form hk

i (x) ∈ U(K+). The ondition (67) an bewritten as(68) lim
k→∞

‖ϕij(x)h
k
j (x)− hk

i (x)‖ = 0.One an use the standard tehnique of the Urysohn lemma for extension of ontinuousfuntions. And, for a su�iently large k, we an deform the funtions hi(x) to funtions
h̃i(x) suh that(69) ϕij(x) = h̃i(x)h̃

−1
j (x), x ∈ Uij .



K-THEORY OVER C∗-ALGEBRAS 265Corollary 1. Lemma 1 shows that eah almost �at bundle over a simply onneted
CW -spae is trivial.Proof. An almost �at struture is de�ned by a ontinuous mapping f : M → BAF. Sinethe omposition p · f : M → BĜ(Q)×BĜ(Q) of the projetion (64) and f is homotopito a onstant mapping for a simply onneted spae M , the mapping f is homotopi toa mapping into a �ber Γ0. The latter is mapped into the spae BG(K+) by means of p′1that is also homotopi to a onstant mapping.8. Fredholm operators for twisted K-theory due to M. Atiyah and G. Segal(jointly with A. Irmatov). In the paper [AS05℄ M. Atiyah and G. Segal have onsid-ered families of Fredholm operators parametrized by points of a ompat spae K whihare ontinuous in a topology weaker than the uniform topology, i.e. the norm topologyin the spae of bounded operators B(H) in a Banah spae H.Therefore, it is interesting to establish whether the onditions, haraterizing familiesof Fredholm operators, from the paper [AS05℄ preisely desribe the families of Fred-holm operators whih form a Fredholm operator over the C∗-algebra A = C(K) of allontinuous funtions on K.It is not supposed by the authors of the paper [AS05℄ that an operator over A admitsthe adjoint operator or in their terminology, ontinuity of the adjoint family.Here we aim to larify the problem of a desription of the lass of Fredholm operatorswhih in general ase do not admit the adjoint operator. For the �rst time, operatorswhih play the role of Fredholm operators and may not have adjoints were onsideredin the paper [MF79℄. Sine the main lass of operators onsidered in the paper [MF79℄is the lass of pseudodi�erential operators for any element of whih the adjoint operatorautomatially is bounded, it follows that existene of the adjoint operator was not theatual question for the main goals of that paper.However, in their paper [AS05℄ the authors have onsidered operators, whih maynot have adjoints, in the form of families of operators ontinuous in the ompat-opentopology, the adjoint families of whih, in general ase, may not be ontinuous.We an show that the lass of Fredholm operators over an arbitrary C∗-algebra, whihmay not admit adjoints, an be extended to a bigger lass. This bigger lass is de�nedby the lass of ompat operators both with and without adjoints (see [IM05℄).In the ase where the C∗-algebra is a ommutative algebra of ontinuous funtions ona ompat spae appropriate topologies in the lassi spaes of Fredholm and ompatoperators in the Hilbert spae an be onstruted. These topologies fully desribe thesets of Fredholm and ompat operators over the C∗-algebra without the assumption ofexistene of bounded adjoint operators over the algebra.
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