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Abstract. We present a survey of recent results concerned with generalizations of the classical
Riemann-Hilbert transmission problem in the context of loop spaces. Specifically, we present a
general formulation of a Riemann-Hilbert problem with values in an almost complex manifold
and illustrate it by discussing two particular cases in more detail. First, using the generalized
Birkhoff factorization theorem of A. Pressley and G. Segal we give a criterion of solvability for
generalized Riemann-Hilbert problems with coefficients in the loop group of a compact Lie group.
Next, we present a visual example of solution to a Riemann-Hilbert problem with values in the
immersed loop space of three-dimensional sphere. Finally, we describe a geometric construction
of Fredholm structures on loop groups and relate them to the canonical Fredholm structures on
Kato Grassmannians.

Introduction. The aim of this paper is to present a survey of recent developments
which emerged in the framework of a geometric approach to Riemann-Hilbert problems
suggested in [3], [4] and further developed in [5], [6], [31], [21], [22], [23], [7], [8]- Most
of those developments can be naturally formulated in terms of loop groups and, more
generally, of certain loop spaces. It is the arising interplay between loop spaces and
Riemann-Hilbert problems that we are going to describe and advocate.

It should be noted that the settings and results presented below owe much to discus-
sions and joint investigations with B. Bojarski (cf. [7], [8]). Actually, the present paper
only covers a part of the results presented in a joint talk of B. Bojarski and the present
author at the “Geometry and topology of manifolds” conference in Bedlewo in May 2005.
The results presented here were obtained by the present author independently and an-
nounced in [23], [24], [25]. The other results mentioned in the foregoing talk were obtained
jointly with B. Bojarski and will be presented in a forthcoming joint publication.

It should be added that different aspects of Riemann-Hilbert problems were discussed
in joint papers of B. Bojarski and A. Weber [9], [10]. The author uses this opportunity
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to thank Professor B. Bojarski for inspiring cooperation and supporting the idea of this
publication. Thanks also go to G. Misiolek for several useful discussions on the geometry of
loop groups and detailed comments on his results from [28], [29] which strongly influenced
our discussion of Fredholm structures on loop groups given in Section 4.

To provide some general background and motivation for our considerations, notice
first that loops are actually involved in the very formulation of the Riemann-Hilbert
transmission problem. Indeed, nondegenerate matrix functions on a simple closed contour
can be naturally interpreted as loops in general complex linear group GL(n,C). Thus
loops in GL(n,C) can be thought of as coefficients of the classical Riemann-Hilbert
problems. As was shown in [21], [22], one can formulate a natural analog of Riemann-
Hilbert problem where coefficients are taken from the group of regular loops in a compact
Lie group. A considerable part of the classical theory can be extended to this setting and
in the present paper we present a solvability criterion in terms of the so-called generalized
Birkhoff factorization developed in [31].

Another type of generalization of Riemann-Hilbert problem arises in relation to Gro-
mov’s theory of pseudoholomorphic mappings between almost complex manifolds [19].
Along these lines, a general definition of linear conjugation problem in the context of
almost complex manifolds was suggested in [24], [25] which gave a wide extension of
the classical Riemann-Hilbert problem. If the almost complex manifolds in question are
finite-dimensional, a version of Fredholm theory for such linear conjugation problems can
be derived from Gromov’s results. When the source manifold is just the Riemann sphere
CP! one obtains Fredholm theory for analytic discs in almost complex manifolds, which
is a straightforward generalization of the classical Fredholm theory for Riemann-Hilbert
problem.

As a natural next step, it seems reasonable to consider such problems in the case
when a target manifold is infinite dimensional. As was observed in [31], [7], loop groups
and restricted (Kato) Grassmannians often have natural almost complex structures so it
seems natural to consider Riemann-Hilbert problems for functions with values in such
spaces. This is the second type of generalized Riemann-Hilbert problems, called loopy
Riemann-Hilbert problems, which we consider in this paper.

Recall that, as was revealed in [3], [4], many geometric aspects of classical linear
conjugation problems with sufficiently regular (differentiable, Holder) coefficients can be
formulated and successfully studied in terms of restricted Grassmannians and loop groups.
Thus our loopy Riemann-Hilbert problems reveal new geometric aspects of the classical
Riemann-Hilbert problem. It should be added that some problems of modern mathemat-
ical physics (such as construction of instantons in Yang-Mills theory [1]) appear closely
related to our Riemann-Hilbert problems with values in loop spaces. For this reason we
believe that the setting suggested below may appear useful and deserves consideration
by its own.

Let us now say a few words about the structure of the paper. We begin by recall-
ing necessary definitions and auxiliary results about loop spaces and Riemann-Hilbert
problems. In particular, we give a general formulation of Riemann-Hilbert problems in
the context of almost complex manifolds. Generalized Riemann-Hilbert problems with
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coefficients in loop groups are discussed in section 2. In section 3 we give some explicit
examples of solutions to Riemann-Hilbert problems with values in loop spaces. In con-
clusion we give an explicit construction of Fredholm structures on loop groups and relate
them to the canonical Fredholm structures on the Kato Grassmannians constructed in [8].

1. Preliminaries on loop spaces and Riemann-Hilbert problems. We begin with
recalling a few basic concepts and definitions. Let X be a topological space and T = S*
be the unit circle. Recall that the free loop space LX of X is defined as the set of all
continuous maps T — X endowed with the compact-open topology [14]. If g € X is a
distinguished point then the based loop space 2X is defined as the set of all those loops
which send the number 1 € T to the distinguished point z.

We are only interested in the case when X = M is a smooth (infinitely differentiable)
manifold of positive dimension. Then one can also consider subspaces consisting of loops of
a fixed regularity class (C*, Holder, Sobolev). All of them are referred to as loop spaces
of M and denoted by symbols LM or QM decorated by appropriate indices and/or
exponents.

It is well known that loop spaces of Riemannian manifold M carry a number of
interesting geometric structures. In particular, they often have natural complex or almost
complex structures [31], [26] and they can also be endowed with various natural metrics
induced from the metric on M. Of the main interest for us is the case when M = G is a
compact Lie group with a left-invariant metric [14].

Then loop spaces LG and QG endowed with pointwise multiplication of loops become
infinite-dimensional topological groups. Groups of such type are called loop groups [31].
One can obtain Banach Lie groups by considering only loops of appropriate regularity
class (e.g., Sobolev).

The group of based loops 2G has a natural complex structure for which the opera-
tor J is defined as the Hilbert transform on the Lie algebra of QG [31]. Almost complex
structures on loop spaces of three-dimensional manifolds were introduced by J.-L. Brylin-
ski [12] and L. Lempert [26]. We use those structures to formulate the Riemann-Hilbert
problem for loop valued functions.

Another aim we pursue in this paper is to show that loop groups can be endowed
with so-called Fredholm structures [15]. Such structures were first constructed using the
generalized Riemann-Hilbert problems introduced in [21]. Now we wish to show that the
same structures can be constructed using the riemannian exponential mapping on loop
groups. This construction is presented in section 4. Fredholm structures on loop groups
have already been discussed in the literature (see, e.g., [17], [21], [8], [25]). However
our construction, which relies on the properties of Riemannian exponential mapping
established in [28], [29], essentially differs from the approaches used in preceding papers
on the same topic.

We give now a formulation of Riemann-Hilbert problem in the context of almost
complex manifolds appropriate for the topics considered below. Before doing so, notice
that there exist nowadays a number of commonly used concepts of Riemann-Hilbert
problem. We only deal with Riemann-Hilbert problems considered as boundary value



414 G. KHIMSHIASHVILI

problems for holomorphic functions. A general formulation of Riemann-Hilbert problem
of such type was given in [24]. Here we elaborate upon the definition from [24] so that it
becomes applicable to holomorphic functions of one complex variable with values in loop
spaces of certain types.

Recall that an almost complex structure J on a smooth manifold M is defined as a
smooth family of linear operators J, = J(p) in tangent spaces T,M,p € M, such that
Jg = —1I (here and in the sequel I always denotes the identity mapping of the corre-
sponding space). In particular, each complex manifold (for example, C" or CP") has a
canonical complex structure defined by the operator of multiplication by 2 in each tangent
space. The concept of holomorphic mapping between complex manifolds is generalized in
the context of almost complex manifolds as follows.

Consider two almost complex manifolds (M, J) and (N, J'). A differentiable mapping
F : M — N is called holomorphic if its differential dF' intertwines the given almost
complex structures, namely:

for each p € M. Sometimes such mappings are called pseudo-holomorphic (cf. [19]) but
we prefer to omit the prefix “pseudo” since this cannot lead to a misunderstanding in
the sequel. As is well known, the local description of such mappings is closely related to
Bers-Vekua equation and generalized analytic functions [19], [5].

It is easy to verify that, for finite-dimensional complex manifolds, the above definition
gives the usual concept of holomorphic mapping. In particular, taking a domain in the
complex plane endowed with the canonical complex structure we get a concept of holo-
morphic function of one complex variable with values in an almost complex manifold V.
If M or/and N are infinite-dimensional complex manifolds modeled on complex Banach
spaces, proving equivalence of the two definitions of holomorphic map requires some care
but we need not discuss here those nuances.

If M is a one-dimensional complex manifold (Riemann surface) then the image of a
holomorphic mapping M — N is called a holomorphic curve in N. In particular, if M is a
domain in C, such an image is called an analytic disc. If M = CP is the Riemann sphere
then its holomorphic images are called holomorphic spheres. Obviously, a holomorphic
sphere is a union of two analytic discs glued along their boundaries. In the third section
we present an example of such situation in the loop space of a 3-sphere.

In order to formulate Riemann-Hilbert problem in almost complex setting, suppose
moreover that M is decomposed into two (open) parts M, M_ by a smooth divisor
(hypersurface) T'. Introduce the function spaces as follows. For an open subset U C M,
let A(U, N) denote the set of all mappings defined and continuous in U taking their
values in N and holomorphic in U. Fix finally a continuous mapping (current) ® on T’
with values in a subgroup G of infinite-dimensional Lie-Frechet group Diff N consisting
of smooth diffeomorphisms of N.

Then Riemann-Hilbert problem defined by quintiple (M, N,T', G, ®) is formulated as
the problem of describing the totality of pairs (X4, X_) € A((M4+,N) x A(X_,N))
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satisfying the following condition on divisor I':

(2) Xi(p) =2(p)(X-(p), peT,

where ®(p) acts on X_(p) as an element of Diff N. Notice that by taking M = C,T" =
{|]z| = 1}, N = C",G = GL(n,C), and some (n X n)-matrix-function on I" in the role
of ®, one obtains a classical version of Riemann-Hilbert problem called the problem of
linear conjugation (cf. [30], [4], [22]). If we take M = C,T" = {|z| = 1} and N equal to a
complex representation space of a compact Lie group G, then we come to the generalized
linear conjugation problem considered in the next section.

Thus we see that each pair of almost complex manifolds (M, N) yields a collection
of analytic problems whose nature strongly depends on the geometry and topology of
the manifolds and group G considered. The classical theory of Riemann-Hilbert problem
and singular integral equations appears as a particular case of this general scheme. In a
short review like this one it makes no sense to discuss the general scheme in depth so we
just describe some new aspects and phenomena appearing when N is taken to be a loop
space with an almost complex structure. The most natural examples are given by groups
of loops in a compact Lie group [31] and immersed loop spaces of 3-folds [12]. Up to our
knowledge, Riemann-Hilbert problems of the above type have never been discussed in
the literature even for these concrete examples so in the sequel we make an attempt to
fill this gap.

It appears more convenient to use a little bit more geometric language. Namely, in
complete analogy with the finite-dimensional setting, while dealing with Riemann-Hilbert
problems in loop spaces one is inevitably led to considering images of holomorphic
mappings of discs into a given loop space. Thus it becomes necessary to deal with analytic
discs in certain loop spaces which could be called loop-valued analytic discs in order to
distinguish them from the usual analytic discs in finite-dimensional complex manifolds.
For brevity, we call them loopy analytic discs. Similar geometric objects in loop spaces of
3-folds were earlier considered by J.-L. Brylinski [12] and L. Lempert [26] and appeared
to be related to interesting geometric constructions. We use this terminology and related
constructions in section 3.

2. Riemann-Hilbert problems with coefficients in loop groups. In this section
we describe a generalization of the linear conjugation problem introduced in [21] and
further investigated in [22], [23]. Consider the Riemann sphere P = C decomposed as
the union of the unit disc Dy, unit circle T, and exterior domain D_, which contains
the infinite point co denoted by N (“North Pole”). The main innovation is to permit
coefficients from a loop group. More precisely, we take functions on the circle with values
in a compact Lie group G as coefficients and search for piecewise holomorphic mappings
with values in a given representation space of G. The precise statement of the problem is
given below, and the rest of the section is devoted to its investigation. It appears that in
the case of a compact Lie group G one can develop a reasonable theory analogous to the
classical one which relies on the recent generalization by A. Pressley and G. Segal [31] of
the well-known factorization theorem due to G. Birkhoff [30]. It is easy to indicate several
natural regularity classes for coefficients which guarantee that the problem is described
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by a Fredholm operator in corresponding functional spaces. A natural framework for
our discussion is provided by a generalized Birkhoff factorization theorem and Birkhoff
stratification of a loop group so we present first some auxiliary concepts and results.

Let G be a connected compact Lie group of the rank p with the Lie algebra A. As
is well known [31], each of such groups has a complexification G¢ with the Lie algebra
Ac = A®C. This fact is very important as it provides complex structures on loop groups
and this is the main reason why our discussion is restricted to compact groups. Let LG
denote the group of continuous loops in G endowed with the point-wise multiplication
and usual topology [31]. We need some regularity conditions on loops and for the sake
of simplicity let us first assume that all loops under consideration are (at least once)
continuously differentiable. For an open set U in P let A(U,C") denote the subset of
C (f] ,C™) formed by those vector-functions which are holomorphic in U. Assume also
that we are given a fixed linear representation r of the group G in a vector space V. For
our purposes it is natural to assume that V is a complex vector space. Notice that for a
compact group one has a complete description of all complex linear representations [31].

We are now in the position to formulate the problem we are interested in. Namely,
having fixed a loop f € LG, the (homogeneous) generalized linear conjugation prob-
lem (GLCP) R; with coefficient f is formulated as a question about the existence and
cardinality of pairs (X, X_) € A(D;,V) x A(D_,V) with X_(N) = 0 satisfying the
transition condition on T’

(3) Xi(2) =r(f(2)) - X_(2).
For any loop h on V' we obtain also an inhomogeneous problem Ry, (with the right-
hand side h) by replacing the transition equation (3) by the condition

(4) X1 (2) =r(f(2) - X-(2) = h(2).

In other words, we are interested in the kernel and cokernel of the natural linear
operator Ty expressed by the left-hand side of the formula (4) and acting from the space
of piecewise holomorphic vector-functions on P with values in V into the loop space LV.
To avoid annoying repetition, when dealing with the inhomogeneous GLCP it will always
be assumed that the loop h is Holder-continuous, which is a usual assumption in the
classical theory [30].

REMARK 1. In the particular case when G = U(n) is the unitary group we get that
G¢ = GL(n,C) is the general linear group. If we take r to be the standard representation
on C”, then we obtain the classical linear conjugation problem. Note that even in this
classical case one obtains a plenty of such problems at the expense of taking various
representations of U(n), and the result below can be best illustrated in this situation.

Needless to say, the same picture is observed for all groups but as a matter of fact
only irreducible representations of simple groups are essential. Moreover, the exceptional
groups of Cartan’s list will also be excluded and the remaining groups will be termed as
“classical simple groups”. It would not be appropriate to reproduce and discuss here all
necessary concepts and constructions from the theory of Lie groups. All necessary results
on Lie groups, in a form suitable for our purposes, are contained in [31] and we repeatedly
refer to this book in the sequel.
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Let f be a loop on G. We would like to associate with f some numerical invariant
analogous to the classical partial indices [30]. To this end let us choose a maximal torus
T? in G and a system of positive roots. Then following [31] one can define the nilpotent
subgroups Ngt of G¢ whose Lie algebras are spanned by the root vectors of A¢ corre-
sponding to the positive (respectively negative) roots. We also introduce subgroups LT
of LG¢ formed by the loops which are the boundary values of holomorphic mappings of
the domain B, (respectively B_) into the group Gc, and the subgroups N* consisting
of the loops from L™ (respectively L_) such that f(0) belongs to Ny (respectively f(N)
belongs to N ). The following fundamental result was proved in [31].

DECOMPOSITION THEOREM. Let G be a classical simple compact Lie group, and H =
L3(T, Ac) be the polarized Hilbert space with H = H, & H_, where H, is the usual
Hardy space of boundary values of holomorphic loops on Ac. Then we have the following
decomposition of the groups of based loops LG:

(i) LG is the union of subsets Bk indezed by the lattice of holomorphisms of T into
the mazximal torus TP.

(#5) Bk is the orbit of K - Hy under N~ where the action is defined by the usual
adjoint representation of G. Every By is a locally closed contractible complex submanifold
of finite codimension dyi in LG, and it is diffeomorphic to the intersection L; of N™
with K - L] - K~ where LT consists of loops equal to the unit at the infinite point N.

(iii) The orbit of K - Hy under NT is a complex cell Cx of dimension dx. It is
diffeomorphic to the intersection L}; of NT with K-L] -K~', and meets By transversally
at the single point K - H .

(iv) The orbit of K - Hy under K - L] - K~ is an open subset Ur of LG, and the
multiplication of loops gives a diffeomorphism from By x Ck into Uk.

Recall that in the classical case this result reduces essentially to the Birkhoff factor-
ization theorem for matrix loops [30].

Let us introduce the corresponding construction in our setting. Namely, for a loop f
on G the (left) Birkhoff factorization will be called its representation in the form

(5) f=F-H-f,

where f, belongs to the corresponding group L¥G and H is some homomorphism of T
into T?. Now it is evident that the points (ii) and (iv) of the theorem imply the following
existence result.

PROPOSITION 1. Every differentiable (and even Holder class) loop in a classical simple
compact group has a factorization.

Note that we could also introduce the right factorization with the reversed order of f
and f_ and the result would also be valid. Our choice of the factorization type is consistent
with the problem under consideration. Taking into account that any homomorphism H
from (5) is determined by a sequence of p integer numbers (ki,...,k,), we get that this
sequence can be associated with any loop f. These natural numbers are called (left)
G-ezponents (or partial G-indices) of f. Their collection will be denoted K (f).
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It is easy to prove that K(f) does not actually depend neither on the terms of the
representation (5) nor on the choice of the maximal torus. For a given maximal torus the
proof of this fact can be obtained as in the classical case, while the independence on the
choice of a maximal torus follows from the well-known fact that any two maximal tori
are conjugate [31]. The exponents provide basic analytical invariants of loops and also
permit a topological interpretation.

PROPOSITION 2. Two loops lie in the same connected component of LG if and only if
they have the same sum of exponents.

This follows easily from the contractibility of subgroups L* and the point (ii) of the
Decomposition Theorem.

REMARK 2. In the classical case when G = U(n) we obtain the usual partial indices, and
Proposition 2 reduces to the evident observation that the connected components of LU,
are classified by the sum of partial indices which is known to coincide with the increment
of the determinant argument of a matrix function along the unit circle [30].

In these terms it appears possible to give a simple solvability criterion and find the
dimension of solution space for an linear conjugation problem with coefficients in a loop
group [21].

THEOREM 1. Let G be a compact Lie group. A linear conjugation problem with coefficient
f € LG is solvable if and only if there exist nonnegative G-exponents of f. The dimension
of kernel is equal to the sum of all positive exponents of f.

The index formula is also analogous to the classical case. These results enable one to
develop a sufficiently complete Fredholm theory and investigate the stability properties
of G-exponents. This theory has several applications discussed in [22], [23]. One of the
most spectacular applications was the construction of pairwise non-isomorphic Fredholm
structures on loop group LG indexed by irreducible representations of G [23]. In section 4
we show that Fredholm structures on loop groups can also be constructed in an essentially
different and seemingly more direct way.

3. Explicit solution to a loopy Riemann-Hilbert problem in S%. As was men-
tioned in section 1, an interesting instance of our general Riemann-Hilbert problem (2)
arises if one takes target manifold N to be the immersed loop space of a 3-fold. Such
loop spaces were introduced by J.-L. Brylinski [12] and have important applications in
modern mathematical physics. Actually, in this case one may visualize solutions to such
problems and we now wish to give an explicit example of such kind based on the famous
Hopf fibration S — S2.

For our purposes it is appropriate to define the Hopf fibration in complex setting.
Consider the unit sphere S® € C? = R* and the Riemann sphere P = C = S2. Then the
Hopf fibration H : S2 — S2 is defined by sending each point (21, z2) € S? into the ratio of
its coordinates interpreted as a point of P, i.e. H(z1, 22) = 21/22. It is evident that fibres
of H are the the complex big circles, i.e. intersections of complex lines in C? with S3, so
one can consider its “inverse” as a map from S? into the space of smooth loops on S3.
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Let us endow S® with the standard riemannian metric inherited from the ambient
Euclidean space. The sphere S® endowed with this metric will be called the round 3-
sphere and denoted S3. We can now consider the corresponding Brylinski loop space
BS? [12] and get a map H~! : P — BS?. Thus it becomes possible to treat the latter
map from the viewpoint developed in previous sections. A straightforward calculation
shows that its differential dH ~! intertwines the almost complex structures on P and BS3
and so it defines a holomorphic curve in BS?. Details of the argument can be found
in [24].

Correspondingly, the restriction of H~! on any disc in P defines a loopy analytic disc
in BS3. In particular, taking the unit disc and its complement we get a solution to loopy
Riemann-Hilbert problem (2) with the constant coefficient whose value at each point
p € S ={z € C:|z| =1} is the identity mapping of BS2. In terms of analytic discs,
one can state that S3 is the union of images of two loopy analytic discs. Despite their
simplicity, these observations lead to an instructive conclusion provided by the following
theorem from [24].

THEOREM 2. The map H! defines a holomorphic embedding of the Riemann sphere into
the space of oriented immersed loops on S3. In other words, H~1 defines a holomorphic
curve in BS2. In particular, a round 3-sphere S? can be represented as a union of two
loopy analytic discs glued along their boundaries, i.e., S? foliated by the complex great
circles is a solution to a loopy Riemann-Hilbert problem in BS3.

We can now use the above observations and stereographic projection IT : 2 — R3?
in order to obtain a similar geometric picture in R, which, in particular, enables one to
visualize certain analytic discs in R3. It is well known that the image of the unit disc
under ® = ITo H~! is a solid torus T bounded by a round torus (torus of revolution)
T = 7?2 in R? (see, e.g., Ch.10 in [2]). The same holds for any disc in C C P centered at
the origin.

It is also known (but probably not so “well-known”) that the images of complex big
circles under IT are genuine (metric) circles which have been discovered by I.Villarceau
(nowadays they are called Villarceau circles |2]). They can be defined as the intersections
of a round torus 7T? with the bitangent plane passing through the center of torus T2 [2].
Thus the preimages ®~!(w) of points w from the unit disc are exactly the Villarceau
circles.

On each round torus 772, Villarceau circles come in two families each of which consists
of nonintersecting circles. Two Villarceau circles belonging to the same family will be
called coherent. Thus each of the two families of coherent Villarceau circles defines a
foliation of a round torus. Any two circles in the same family on a given round torus are
linked with the linking number 1 which corresponds to the well-known fact that the Hopf
invariant of Hopf fibration is equal to one.

Consider now a round solid torus T, defined as the closure of interior of a round torus
T?2. Obviously, T, is a union of continual family of coaxial round tori lying inside T, and
the axial circle which is equal to the intersection of their interiors. One sees now that
the family of coherent Villarceau circles of all those round tori can be chosen in such a
way that together with axial circle they give a foliation of T, by loops (circles) which are
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mutually linked with the linking number 1. Taking into account the above remarks we
conclude that a Villarceau round torus gives a precise picture of a loopy analytic disc in
R3 which we call Villarceau toroid. Thus we have established the following final result.

PROPOSITION 3. FEach round solid torus in R3 foliated by Villarceau circles is the image
of an analytic disc in BR3.

To our mind, this beautiful geometric picture alone gives a sufficient justification for
the setting and considerations presented above. Using methods of nonlinear analysis it is
possible to show that one can deform a Villarceau toroid in such a way that all leaves of
the foliation remain closed and it still represents a loopy analytic disc. Such deformations
can be described by explicit equations using methods of deformation theory. For us the
main point is that they provide examples of loopy analytic discs different from Villarceau
toroids.

PROPOSITION 4. There exist small perturbations of the Villarceau toroid which can be
represented as the images of loopy analytic discs.

This fact may be used to construct solutions to loopy Riemann-Hilbert problems
with non-constant coefficients which are sufficiently close to the identity. It would be
very interesting to construct similar examples with coefficients not necessarily close to
identity. Clearly, similar constructions and results make sense for other 3-folds foliated
by loops, for example, for tangent circle bundles of compact orientable two-dimensional
surfaces without boundary. One can also consider similar problems for Seifert fibrations,
which suggests a number of interesting open problems (cf. [24]).

4. Fredholm structures on loop spaces. We pass now to Fredholm structures on
loop spaces and begin with necessary definitions from functional analysis. For a Banach
space E, let L(E) denote the algebra of bounded linear operators in E endowed with the
norm topology. Let F(E)(Fy(E)) denote the subset of Fredholm operators (of index k).
Let also GL(E) stand for the group of units and L(F) and denote by GC(E) the so-called
Fredholm group of E defined as the set of all invertible operators from L(F) having the
form “identity plus compact”.

Recall that a Fredholm structure on a smooth manifold M modeled on (infinite di-
mensional) Banach space E is defined as a reduction of the structural group GL(FE) of
tangent bundle TM to subgroup GC(FE) [15]. In the sequel we only deal with the case
when FF = H is a separable Hilbert space and M is taken to be the group of Sobolev
H'-loops in a compact Lie group G.

Since GL(H) is contractible Fy(H) is the classifying space for GC(H) bundles [15]. For
a Hilbert manifold M, defining a Fredholm structure on M is equivalent to constructing
an index zero Fredholm map M—H [16]. It was also shown in [16] that a Fredholm
structure on M can be constructed from a smooth map ® : M — Fy(H), i.e., from a
smooth family of index zero Fredholm operators parameterized by points of M. This is
actually the most effective way of constructing Fredholm structures which has already
been used in [17], [22].
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We are now going to describe an explicit construction of such families on appropriate
loop groups using the Riemannian exponential mapping described in the first section. In
the sequel we freely use its properties established in [28], [29]. Actually, the very idea of
constructing Fredholm structures using exponential mapping appeared in relation with
results of [28], [29] where it was proven that, for a compact Lie group G, the exponential
map exp = exp, : LA—LG is a Fredholm map of index zero. This fact is crucial for the
construction presented in the next section. Moreover, in [28], [29] one finds a more general
argument which derives the fredholmness of exponential mapping from the compactness
of curvature operators and permits further generalizations to more general classes of loop
spaces.

Fredholm structures on loop groups already gained some attention in [17], [18], [23].
We present now a very explicit construction which may have certain advantages from
the point of view of further generalizations. A closely related construction of Fredholm
structure on the so-called restricted infinite Grassmannian was given in [§].

We achieve our goal by indicating an explicitly given family of index zero Fredholms
on LG = HY(T, G). Discussions with G. Misiolek were crucial for finding an appropriate
explicit construction. Recall that by LA we denote the loop algebra consisting of H'-loops
in Lie algebra A and there is defined the exponential map exp, : LA — LG. For g € LG,
let exp, : TyLG — LG be the exponential map at point g. Let v € LA and v, be the
corresponding geodesic through e in the direction of v, i.e., v, (t) = exp,(tv). Let further
J be the Jacobi vector field along 7, with J(0) = 0,V,, J(0) = w, where w € LA. In
other words, J(t) = dexp, (tv)(tw).

Put u(t) = 75,(J(t)) € LA then u is a solution to the initial problem

(6) 02+ 78, 0 R(1Pou, 4wy = 0,u(0) = 0, 8u(0) = w.

Then we can define a linear transformation ¥(e) : LA— LA by putting ¥(e) = E, .(v),
where Ey .(v)w = u(t). Notice that this operator is of the form ¢I + Ky, where K, is a
compact operator smoothly depending on ¢. Let moreover v',w’ € Ty LG and consider
the geodesic v,/ (t) = exp,(tv'), where exp, : T,LG— LG is the exponential map at point
g. As above, let J, be a Jacobi vector field on + with J,(0) = 0, V5 _J,(0) = w’, and
let Tt% : TyLG—T, (LG be parallel translation. Put now u,(t) = Tt% o Jg4(t) and notice
that u4(t0 is a solution to

(7) 07 ug + Té),lt © R(Tvlta Otig, Y)Yy = 0,ug(0) = 0, pug(0) = wy.

Thus putting E; ,(v")(w’) = uy(t) we obtain a linear endomorphism of T, LG. Consider
now the map

(8) g— V(9)(-) = Ly-1.9 0 Ey 4(v") 0 Lgye : LA—LA.

We claim that it actually defines a smooth family of index zero Fredholms. Indeed,
let us rewrite the above formula as follows:

U(g)(-) = Lg—l*g(’T&t(Lg*expe(tv)Lg—l*g(t’l}/) o dexpe(Lgfl*g(m,)) 0 Lg-1,40 Lguce(t(-)))

= Lgl xg © Té},t o Lg*expe(tv) © dexpe(tv)(t(-)) = Lgl*g ° 7_(1)},1& © Lg*expe(tv) o TtijO(Et,e(t'))
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Notice now that dexp,(tv) is an operator of the form “invertible plus compact” while
all other operators in the last expression are bounded invertible operators. This implies
that the composition is still an operator of the form “invertible plus compact” hence it is
a Fredholm operator of index zero. It is easy to see that the above family of index zero
Fredholms is smoothly depends on point g € LG.

Collecting these observations together and taking into account the main result of
[16] we can end up with a smooth Fredholm structure on LG. It is now easy to see
that the exponential map becomes a Fredholm map of index zero with respect to the
canonical Fredholm structure on LA and the Fredholm structure on LG provided by our
construction. In this way we arrive to the following result.

THEOREM 3. The group LG of free Sobolev H'-loops in a compact Lie group G endowed
with H'-metric has a smooth Fredholm structure such that the riemannian exponential
mapping exp : T, LG — LG becomes a Fredholm map of index zero.

REMARK 3. It can be actually shown that the Fredholm structure provided by the the-
orem is uniquely defined up to the concordance by the requirement that the exponential
map is Fredholm of index zero. Thus we obtain a canonical concordance class of Fredholm
structures on LG.

REMARK 4. As was proven in [16], each Fredholm structure on manifold M induces
a zero index Fredholm map of M in its model. It is now natural to conjecture that
such a map of LG into T, LG can be obtained by constructing a sort of “pseudo-inverse”
to exponential map exp. It would be instructive to find an explicit description of such
a pseudo-embedding. It would be also interesting to define the same structure by an
explicitly given atlas on LG.

Using the general techniques of Fredholm structures theory, one can derive some
immediate consequences of the results presented above.

COROLLARY 1. The Fredholm structure induced by exponential mapping exists on a based
loop group.

COROLLARY 2. The Fredholm structures on based loop groups are compatible with the
Fredholm structures on the restricted Grassmannians constructed in [8].

Furthermore, existence of Fredholm structures on loop groups enables one to study
functorial properties of those groups in the framework of global analysis. For example, it
is easy to verify that each homomorphism of Lie groups ¢ : G—H induces an index zero
Fredholm map L¢ : LG—LH. Since an integer-valued mapping degree is well-defined
for index zero Fredholm maps, one gets an integer deg L¢ and it becomes tempting to
calculate it in terms of algebraic properties of homomorphism ¢. Analyzing the above
construction one finds out that Fredholm structures can be constructed on more general
loop spaces when the ambient manifold M need not be a Lie group.

In fact, in order to perform the key construction of index zero Fredholms one just needs
to have a canonical way of identifying an arbitrary tangent space with the tangent space
at reference point. This can be achieved, for example, for a parallelizable manifold M
and for some classes of homogeneous spaces of not necessarily compact Lie groups. The
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fact that this family consists of index zero Fredholms would follow from the fact that
the exponential map is Fredholm. Thus our construction is applicable for loop spaces
satisfying these two conditions. In such way we obtain the following generalization of
Theorem 3.

THEOREM 4. Let M be a parallelizable compact smooth riemannian manifold. Then the
space of free H'-loops LM can be endowed with a natural Fredholm structure such that
the riemannian exponential map is a Fredholm map of index zero.

In particular, immersed loop spaces of three-dimensional manifolds can be endowed
with Fredholm structures and one may wish to compare them with the structures coming
from the loopy Riemann-Hilbert problems. Summing up, we believe that the results
presented in this paper confirm that the interplay between loop spaces and Riemann-
Hilbert problems leads to interesting problems and deserves further investigation.
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