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Abstra
t. We present a survey of re
ent results 
on
erned with generalizations of the 
lassi
alRiemann-Hilbert transmission problem in the 
ontext of loop spa
es. Spe
i�
ally, we present ageneral formulation of a Riemann-Hilbert problem with values in an almost 
omplex manifoldand illustrate it by dis
ussing two parti
ular 
ases in more detail. First, using the generalizedBirkho� fa
torization theorem of A. Pressley and G. Segal we give a 
riterion of solvability forgeneralized Riemann-Hilbert problems with 
oe�
ients in the loop group of a 
ompa
t Lie group.Next, we present a visual example of solution to a Riemann-Hilbert problem with values in theimmersed loop spa
e of three-dimensional sphere. Finally, we des
ribe a geometri
 
onstru
tionof Fredholm stru
tures on loop groups and relate them to the 
anoni
al Fredholm stru
tures onKato Grassmannians.Introdu
tion. The aim of this paper is to present a survey of re
ent developmentswhi
h emerged in the framework of a geometri
 approa
h to Riemann-Hilbert problemssuggested in [3℄, [4℄ and further developed in [5℄, [6℄, [31℄, [21℄, [22℄, [23℄, [7℄, [8℄. Mostof those developments 
an be naturally formulated in terms of loop groups and, moregenerally, of 
ertain loop spa
es. It is the arising interplay between loop spa
es andRiemann-Hilbert problems that we are going to des
ribe and advo
ate.It should be noted that the settings and results presented below owe mu
h to dis
us-sions and joint investigations with B. Bojarski (
f. [7℄, [8℄). A
tually, the present paperonly 
overs a part of the results presented in a joint talk of B. Bojarski and the presentauthor at the �Geometry and topology of manifolds� 
onferen
e in B�dlewo in May 2005.The results presented here were obtained by the present author independently and an-noun
ed in [23℄, [24℄, [25℄. The other results mentioned in the foregoing talk were obtainedjointly with B. Bojarski and will be presented in a forth
oming joint publi
ation.It should be added that di�erent aspe
ts of Riemann-Hilbert problems were dis
ussedin joint papers of B. Bojarski and A. Weber [9℄, [10℄. The author uses this opportunity2000 Mathemati
s Subje
t Classi�
ation: Primary 58D15; Se
ondary 35Q15.The paper is in �nal form and no version of it will be published elsewhere.[411℄ 
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412 G. KHIMSHIASHVILIto thank Professor B. Bojarski for inspiring 
ooperation and supporting the idea of thispubli
ation. Thanks also go to G. Misiolek for several useful dis
ussions on the geometry ofloop groups and detailed 
omments on his results from [28℄, [29℄ whi
h strongly in�uen
edour dis
ussion of Fredholm stru
tures on loop groups given in Se
tion 4.To provide some general ba
kground and motivation for our 
onsiderations, noti
e�rst that loops are a
tually involved in the very formulation of the Riemann-Hilberttransmission problem. Indeed, nondegenerate matrix fun
tions on a simple 
losed 
ontour
an be naturally interpreted as loops in general 
omplex linear group GL(n, C). Thusloops in GL(n, C) 
an be thought of as 
oe�
ients of the 
lassi
al Riemann-Hilbertproblems. As was shown in [21℄, [22℄, one 
an formulate a natural analog of Riemann-Hilbert problem where 
oe�
ients are taken from the group of regular loops in a 
ompa
tLie group. A 
onsiderable part of the 
lassi
al theory 
an be extended to this setting andin the present paper we present a solvability 
riterion in terms of the so-
alled generalizedBirkho� fa
torization developed in [31℄.Another type of generalization of Riemann-Hilbert problem arises in relation to Gro-mov's theory of pseudoholomorphi
 mappings between almost 
omplex manifolds [19℄.Along these lines, a general de�nition of linear 
onjugation problem in the 
ontext ofalmost 
omplex manifolds was suggested in [24℄, [25℄ whi
h gave a wide extension ofthe 
lassi
al Riemann-Hilbert problem. If the almost 
omplex manifolds in question are�nite-dimensional, a version of Fredholm theory for su
h linear 
onjugation problems 
anbe derived from Gromov's results. When the sour
e manifold is just the Riemann sphere
CP1 one obtains Fredholm theory for analyti
 dis
s in almost 
omplex manifolds, whi
his a straightforward generalization of the 
lassi
al Fredholm theory for Riemann-Hilbertproblem.As a natural next step, it seems reasonable to 
onsider su
h problems in the 
asewhen a target manifold is in�nite dimensional. As was observed in [31℄, [7℄, loop groupsand restri
ted (Kato) Grassmannians often have natural almost 
omplex stru
tures so itseems natural to 
onsider Riemann-Hilbert problems for fun
tions with values in su
hspa
es. This is the se
ond type of generalized Riemann-Hilbert problems, 
alled loopyRiemann-Hilbert problems, whi
h we 
onsider in this paper.Re
all that, as was revealed in [3℄, [4℄, many geometri
 aspe
ts of 
lassi
al linear
onjugation problems with su�
iently regular (di�erentiable, Hölder) 
oe�
ients 
an beformulated and su

essfully studied in terms of restri
ted Grassmannians and loop groups.Thus our loopy Riemann-Hilbert problems reveal new geometri
 aspe
ts of the 
lassi
alRiemann-Hilbert problem. It should be added that some problems of modern mathemat-i
al physi
s (su
h as 
onstru
tion of instantons in Yang-Mills theory [1℄) appear 
loselyrelated to our Riemann-Hilbert problems with values in loop spa
es. For this reason webelieve that the setting suggested below may appear useful and deserves 
onsiderationby its own.Let us now say a few words about the stru
ture of the paper. We begin by re
all-ing ne
essary de�nitions and auxiliary results about loop spa
es and Riemann-Hilbertproblems. In parti
ular, we give a general formulation of Riemann-Hilbert problems inthe 
ontext of almost 
omplex manifolds. Generalized Riemann-Hilbert problems with
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oe�
ients in loop groups are dis
ussed in se
tion 2. In se
tion 3 we give some expli
itexamples of solutions to Riemann-Hilbert problems with values in loop spa
es. In 
on-
lusion we give an expli
it 
onstru
tion of Fredholm stru
tures on loop groups and relatethem to the 
anoni
al Fredholm stru
tures on the Kato Grassmannians 
onstru
ted in [8℄.1. Preliminaries on loop spa
es and Riemann-Hilbert problems. We begin withre
alling a few basi
 
on
epts and de�nitions. Let X be a topologi
al spa
e and T = S1be the unit 
ir
le. Re
all that the free loop spa
e LX of X is de�ned as the set of all
ontinuous maps T → X endowed with the 
ompa
t-open topology [14℄. If x0 ∈ X is adistinguished point then the based loop spa
e ΩX is de�ned as the set of all those loopswhi
h send the number 1 ∈ T to the distinguished point x0.We are only interested in the 
ase when X = M is a smooth (in�nitely di�erentiable)manifold of positive dimension. Then one 
an also 
onsider subspa
es 
onsisting of loops ofa �xed regularity 
lass (Ck, Hölder, Sobolev). All of them are referred to as loop spa
esof M and denoted by symbols LM or ΩM de
orated by appropriate indi
es and/orexponents.It is well known that loop spa
es of Riemannian manifold M 
arry a number ofinteresting geometri
 stru
tures. In parti
ular, they often have natural 
omplex or almost
omplex stru
tures [31℄, [26℄ and they 
an also be endowed with various natural metri
sindu
ed from the metri
 on M . Of the main interest for us is the 
ase when M = G is a
ompa
t Lie group with a left-invariant metri
 [14℄.Then loop spa
es LG and ΩG endowed with pointwise multipli
ation of loops be
omein�nite-dimensional topologi
al groups. Groups of su
h type are 
alled loop groups [31℄.One 
an obtain Bana
h Lie groups by 
onsidering only loops of appropriate regularity
lass (e.g., Sobolev).The group of based loops ΩG has a natural 
omplex stru
ture for whi
h the opera-tor J is de�ned as the Hilbert transform on the Lie algebra of ΩG [31℄. Almost 
omplexstru
tures on loop spa
es of three-dimensional manifolds were introdu
ed by J.-L. Brylin-ski [12℄ and L. Lempert [26℄. We use those stru
tures to formulate the Riemann-Hilbertproblem for loop valued fun
tions.Another aim we pursue in this paper is to show that loop groups 
an be endowedwith so-
alled Fredholm stru
tures [15℄. Su
h stru
tures were �rst 
onstru
ted using thegeneralized Riemann-Hilbert problems introdu
ed in [21℄. Now we wish to show that thesame stru
tures 
an be 
onstru
ted using the riemannian exponential mapping on loopgroups. This 
onstru
tion is presented in se
tion 4. Fredholm stru
tures on loop groupshave already been dis
ussed in the literature (see, e.g., [17℄, [21℄, [8℄, [25℄). Howeverour 
onstru
tion, whi
h relies on the properties of Riemannian exponential mappingestablished in [28℄, [29℄, essentially di�ers from the approa
hes used in pre
eding paperson the same topi
.We give now a formulation of Riemann-Hilbert problem in the 
ontext of almost
omplex manifolds appropriate for the topi
s 
onsidered below. Before doing so, noti
ethat there exist nowadays a number of 
ommonly used 
on
epts of Riemann-Hilbertproblem. We only deal with Riemann-Hilbert problems 
onsidered as boundary value



414 G. KHIMSHIASHVILIproblems for holomorphi
 fun
tions. A general formulation of Riemann-Hilbert problemof su
h type was given in [24℄. Here we elaborate upon the de�nition from [24℄ so that itbe
omes appli
able to holomorphi
 fun
tions of one 
omplex variable with values in loopspa
es of 
ertain types.Re
all that an almost 
omplex stru
ture J on a smooth manifold M is de�ned as asmooth family of linear operators Jp = J(p) in tangent spa
es TpM, p ∈ M, su
h that
J2

p = −I (here and in the sequel I always denotes the identity mapping of the 
orre-sponding spa
e). In parti
ular, ea
h 
omplex manifold (for example, C
n or CP

n) has a
anoni
al 
omplex stru
ture de�ned by the operator of multipli
ation by ı in ea
h tangentspa
e. The 
on
ept of holomorphi
 mapping between 
omplex manifolds is generalized inthe 
ontext of almost 
omplex manifolds as follows.Consider two almost 
omplex manifolds (M, J) and (N, J ′). A di�erentiable mapping
F : M → N is 
alled holomorphi
 if its di�erential dF intertwines the given almost
omplex stru
tures, namely:(1) dF (p)Jp = J ′

F (p)dF (p),for ea
h p ∈ M . Sometimes su
h mappings are 
alled pseudo-holomorphi
 (
f. [19℄) butwe prefer to omit the pre�x �pseudo� sin
e this 
annot lead to a misunderstanding inthe sequel. As is well known, the lo
al des
ription of su
h mappings is 
losely related toBers-Vekua equation and generalized analyti
 fun
tions [19℄, [5℄.It is easy to verify that, for �nite-dimensional 
omplex manifolds, the above de�nitiongives the usual 
on
ept of holomorphi
 mapping. In parti
ular, taking a domain in the
omplex plane endowed with the 
anoni
al 
omplex stru
ture we get a 
on
ept of holo-morphi
 fun
tion of one 
omplex variable with values in an almost 
omplex manifold N .If M or/and N are in�nite-dimensional 
omplex manifolds modeled on 
omplex Bana
hspa
es, proving equivalen
e of the two de�nitions of holomorphi
 map requires some 
arebut we need not dis
uss here those nuan
es.If M is a one-dimensional 
omplex manifold (Riemann surfa
e) then the image of aholomorphi
 mapping M → N is 
alled a holomorphi
 
urve in N . In parti
ular, if M is adomain in C, su
h an image is 
alled an analyti
 dis
. If M = CP is the Riemann spherethen its holomorphi
 images are 
alled holomorphi
 spheres. Obviously, a holomorphi
sphere is a union of two analyti
 dis
s glued along their boundaries. In the third se
tionwe present an example of su
h situation in the loop spa
e of a 3-sphere.In order to formulate Riemann-Hilbert problem in almost 
omplex setting, supposemoreover that M is de
omposed into two (open) parts M+, M− by a smooth divisor(hypersurfa
e) Γ. Introdu
e the fun
tion spa
es as follows. For an open subset U ⊂ M ,let A(U, N) denote the set of all mappings de�ned and 
ontinuous in U taking theirvalues in N and holomorphi
 in U . Fix �nally a 
ontinuous mapping (
urrent) Φ on Γwith values in a subgroup G of in�nite-dimensional Lie-Fre
het group Diff N 
onsistingof smooth di�eomorphisms of N .Then Riemann-Hilbert problem de�ned by quintiple (M, N, Γ, G, Φ) is formulated asthe problem of des
ribing the totality of pairs (X+, X−) ∈ A((M+, N) × A(X−, N))
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ondition on divisor Γ:(2) X+(p) = Φ(p)(X−(p)), p ∈ Γ,where Φ(p) a
ts on X−(p) as an element of DiffN . Noti
e that by taking M = C, Γ =

{|z| = 1}, N = C
n, G = GL(n, C), and some (n × n)-matrix-fun
tion on Γ in the roleof Φ, one obtains a 
lassi
al version of Riemann-Hilbert problem 
alled the problem oflinear 
onjugation (
f. [30℄, [4℄, [22℄). If we take M = C, Γ = {|z| = 1} and N equal to a
omplex representation spa
e of a 
ompa
t Lie group G, then we 
ome to the generalizedlinear 
onjugation problem 
onsidered in the next se
tion.Thus we see that ea
h pair of almost 
omplex manifolds (M, N) yields a 
olle
tionof analyti
 problems whose nature strongly depends on the geometry and topology ofthe manifolds and group G 
onsidered. The 
lassi
al theory of Riemann-Hilbert problemand singular integral equations appears as a parti
ular 
ase of this general s
heme. In ashort review like this one it makes no sense to dis
uss the general s
heme in depth so wejust des
ribe some new aspe
ts and phenomena appearing when N is taken to be a loopspa
e with an almost 
omplex stru
ture. The most natural examples are given by groupsof loops in a 
ompa
t Lie group [31℄ and immersed loop spa
es of 3-folds [12℄. Up to ourknowledge, Riemann-Hilbert problems of the above type have never been dis
ussed inthe literature even for these 
on
rete examples so in the sequel we make an attempt to�ll this gap.It appears more 
onvenient to use a little bit more geometri
 language. Namely, in
omplete analogy with the �nite-dimensional setting, while dealing with Riemann-Hilbertproblems in loop spa
es one is inevitably led to 
onsidering images of holomorphi
mappings of dis
s into a given loop spa
e. Thus it be
omes ne
essary to deal with analyti
dis
s in 
ertain loop spa
es whi
h 
ould be 
alled loop-valued analyti
 dis
s in order todistinguish them from the usual analyti
 dis
s in �nite-dimensional 
omplex manifolds.For brevity, we 
all them loopy analyti
 dis
s. Similar geometri
 obje
ts in loop spa
es of3-folds were earlier 
onsidered by J.-L. Brylinski [12℄ and L. Lempert [26℄ and appearedto be related to interesting geometri
 
onstru
tions. We use this terminology and related
onstru
tions in se
tion 3.2. Riemann-Hilbert problems with 
oe�
ients in loop groups. In this se
tionwe des
ribe a generalization of the linear 
onjugation problem introdu
ed in [21℄ andfurther investigated in [22℄, [23℄. Consider the Riemann sphere P = C de
omposed asthe union of the unit dis
 D+, unit 
ir
le T , and exterior domain D−, whi
h 
ontainsthe in�nite point ∞ denoted by N (�North Pole�). The main innovation is to permit
oe�
ients from a loop group. More pre
isely, we take fun
tions on the 
ir
le with valuesin a 
ompa
t Lie group G as 
oe�
ients and sear
h for pie
ewise holomorphi
 mappingswith values in a given representation spa
e of G. The pre
ise statement of the problem isgiven below, and the rest of the se
tion is devoted to its investigation. It appears that inthe 
ase of a 
ompa
t Lie group G one 
an develop a reasonable theory analogous to the
lassi
al one whi
h relies on the re
ent generalization by A. Pressley and G. Segal [31℄ ofthe well-known fa
torization theorem due to G. Birkho� [30℄. It is easy to indi
ate severalnatural regularity 
lasses for 
oe�
ients whi
h guarantee that the problem is des
ribed



416 G. KHIMSHIASHVILIby a Fredholm operator in 
orresponding fun
tional spa
es. A natural framework forour dis
ussion is provided by a generalized Birkho� fa
torization theorem and Birkho�strati�
ation of a loop group so we present �rst some auxiliary 
on
epts and results.Let G be a 
onne
ted 
ompa
t Lie group of the rank p with the Lie algebra A. Asis well known [31℄, ea
h of su
h groups has a 
omplexi�
ation GC with the Lie algebra
AC = A⊗C. This fa
t is very important as it provides 
omplex stru
tures on loop groupsand this is the main reason why our dis
ussion is restri
ted to 
ompa
t groups. Let LGdenote the group of 
ontinuous loops in G endowed with the point-wise multipli
ationand usual topology [31℄. We need some regularity 
onditions on loops and for the sakeof simpli
ity let us �rst assume that all loops under 
onsideration are (at least on
e)
ontinuously di�erentiable. For an open set U in P let A(U, Cn) denote the subset of
C(Ũ , Cn) formed by those ve
tor-fun
tions whi
h are holomorphi
 in U . Assume alsothat we are given a �xed linear representation r of the group G in a ve
tor spa
e V . Forour purposes it is natural to assume that V is a 
omplex ve
tor spa
e. Noti
e that for a
ompa
t group one has a 
omplete des
ription of all 
omplex linear representations [31℄.We are now in the position to formulate the problem we are interested in. Namely,having �xed a loop f ∈ LG, the (homogeneous) generalized linear 
onjugation prob-lem (GLCP) Rf with 
oe�
ient f is formulated as a question about the existen
e and
ardinality of pairs (X+, X−) ∈ A(D+, V ) × A(D−, V ) with X−(N) = 0 satisfying thetransition 
ondition on T(3) X+(z) = r(f(z)) · X−(z).For any loop h on V we obtain also an inhomogeneous problem Rf,h (with the right-hand side h) by repla
ing the transition equation (3) by the 
ondition(4) X+(z) − r(f(z)) · X−(z) = h(z).In other words, we are interested in the kernel and 
okernel of the natural linearoperator Tf expressed by the left-hand side of the formula (4) and a
ting from the spa
eof pie
ewise holomorphi
 ve
tor-fun
tions on P with values in V into the loop spa
e LV .To avoid annoying repetition, when dealing with the inhomogeneous GLCP it will alwaysbe assumed that the loop h is Hölder-
ontinuous, whi
h is a usual assumption in the
lassi
al theory [30℄.Remark 1. In the parti
ular 
ase when G = U(n) is the unitary group we get that
GC = GL(n, C) is the general linear group. If we take r to be the standard representationon Cn, then we obtain the 
lassi
al linear 
onjugation problem. Note that even in this
lassi
al 
ase one obtains a plenty of su
h problems at the expense of taking variousrepresentations of U(n), and the result below 
an be best illustrated in this situation.Needless to say, the same pi
ture is observed for all groups but as a matter of fa
tonly irredu
ible representations of simple groups are essential. Moreover, the ex
eptionalgroups of Cartan's list will also be ex
luded and the remaining groups will be termed as�
lassi
al simple groups�. It would not be appropriate to reprodu
e and dis
uss here allne
essary 
on
epts and 
onstru
tions from the theory of Lie groups. All ne
essary resultson Lie groups, in a form suitable for our purposes, are 
ontained in [31℄ and we repeatedlyrefer to this book in the sequel.



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 417Let f be a loop on G. We would like to asso
iate with f some numeri
al invariantanalogous to the 
lassi
al partial indi
es [30℄. To this end let us 
hoose a maximal torus
T p in G and a system of positive roots. Then following [31℄ one 
an de�ne the nilpotentsubgroups N±

0 of GC whose Lie algebras are spanned by the root ve
tors of AC 
orre-sponding to the positive (respe
tively negative) roots. We also introdu
e subgroups L±of LGC formed by the loops whi
h are the boundary values of holomorphi
 mappings ofthe domain B+ (respe
tively B−) into the group GC, and the subgroups N± 
onsistingof the loops from L+ (respe
tively L−) su
h that f(0) belongs to N+
0 (respe
tively f(N)belongs to N−

0 ). The following fundamental result was proved in [31℄.De
omposition Theorem. Let G be a 
lassi
al simple 
ompa
t Lie group, and H =

L2(T, AC) be the polarized Hilbert spa
e with H = H+ ⊕ H−, where H+ is the usualHardy spa
e of boundary values of holomorphi
 loops on AC. Then we have the followingde
omposition of the groups of based loops LG:(i) LG is the union of subsets BK indexed by the latti
e of holomorphisms of T intothe maximal torus T p.(ii) BK is the orbit of K · H+ under N− where the a
tion is de�ned by the usualadjoint representation of G. Every BK is a lo
ally 
losed 
ontra
tible 
omplex submanifoldof �nite 
odimension dK in LG, and it is di�eomorphi
 to the interse
tion L+
K of N−with K · L−

1 · K−1, where L−
1 
onsists of loops equal to the unit at the in�nite point N .(iii) The orbit of K · H+ under N+ is a 
omplex 
ell CK of dimension dK . It isdi�eomorphi
 to the interse
tion L+

K of N+ with K ·L−
1 ·K−1, and meets BK transversallyat the single point K · H+.(iv) The orbit of K · H+ under K · L−

1 · K−1 is an open subset UK of LG, and themultipli
ation of loops gives a di�eomorphism from BK × CK into UK .Re
all that in the 
lassi
al 
ase this result redu
es essentially to the Birkho� fa
tor-ization theorem for matrix loops [30℄.Let us introdu
e the 
orresponding 
onstru
tion in our setting. Namely, for a loop fon G the (left) Birkho� fa
torization will be 
alled its representation in the form(5) f = f+ · H · f− ,where f+ belongs to the 
orresponding group L±G and H is some homomorphism of Tinto T p. Now it is evident that the points (ii) and (iv) of the theorem imply the followingexisten
e result.Proposition 1. Every di�erentiable (and even Hölder 
lass) loop in a 
lassi
al simple
ompa
t group has a fa
torization.Note that we 
ould also introdu
e the right fa
torization with the reversed order of f+and f− and the result would also be valid. Our 
hoi
e of the fa
torization type is 
onsistentwith the problem under 
onsideration. Taking into a

ount that any homomorphism Hfrom (5) is determined by a sequen
e of p integer numbers (k1, . . . , kp), we get that thissequen
e 
an be asso
iated with any loop f . These natural numbers are 
alled (left)
G-exponents (or partial G-indi
es) of f . Their 
olle
tion will be denoted K(f).



418 G. KHIMSHIASHVILIIt is easy to prove that K(f) does not a
tually depend neither on the terms of therepresentation (5) nor on the 
hoi
e of the maximal torus. For a given maximal torus theproof of this fa
t 
an be obtained as in the 
lassi
al 
ase, while the independen
e on the
hoi
e of a maximal torus follows from the well-known fa
t that any two maximal toriare 
onjugate [31℄. The exponents provide basi
 analyti
al invariants of loops and alsopermit a topologi
al interpretation.Proposition 2. Two loops lie in the same 
onne
ted 
omponent of LG if and only ifthey have the same sum of exponents.This follows easily from the 
ontra
tibility of subgroups L± and the point (ii) of theDe
omposition Theorem.Remark 2. In the 
lassi
al 
ase when G = U(n) we obtain the usual partial indi
es, andProposition 2 redu
es to the evident observation that the 
onne
ted 
omponents of LUnare 
lassi�ed by the sum of partial indi
es whi
h is known to 
oin
ide with the in
rementof the determinant argument of a matrix fun
tion along the unit 
ir
le [30℄.In these terms it appears possible to give a simple solvability 
riterion and �nd thedimension of solution spa
e for an linear 
onjugation problem with 
oe�
ients in a loopgroup [21℄.Theorem 1. Let G be a 
ompa
t Lie group. A linear 
onjugation problem with 
oe�
ient
f ∈ LG is solvable if and only if there exist nonnegative G-exponents of f . The dimensionof kernel is equal to the sum of all positive exponents of f .The index formula is also analogous to the 
lassi
al 
ase. These results enable one todevelop a su�
iently 
omplete Fredholm theory and investigate the stability propertiesof G-exponents. This theory has several appli
ations dis
ussed in [22℄, [23℄. One of themost spe
ta
ular appli
ations was the 
onstru
tion of pairwise non-isomorphi
 Fredholmstru
tures on loop group LG indexed by irredu
ible representations of G [23℄. In se
tion 4we show that Fredholm stru
tures on loop groups 
an also be 
onstru
ted in an essentiallydi�erent and seemingly more dire
t way.3. Expli
it solution to a loopy Riemann-Hilbert problem in S3. As was men-tioned in se
tion 1, an interesting instan
e of our general Riemann-Hilbert problem (2)arises if one takes target manifold N to be the immersed loop spa
e of a 3-fold. Su
hloop spa
es were introdu
ed by J.-L. Brylinski [12℄ and have important appli
ations inmodern mathemati
al physi
s. A
tually, in this 
ase one may visualize solutions to su
hproblems and we now wish to give an expli
it example of su
h kind based on the famousHopf �bration S3 → S2.For our purposes it is appropriate to de�ne the Hopf �bration in 
omplex setting.Consider the unit sphere S3 ⊂ C2 ∼= R4 and the Riemann sphere P = C ∼= S2. Then theHopf �bration H : S3 → S2 is de�ned by sending ea
h point (z1, z2) ∈ S3 into the ratio ofits 
oordinates interpreted as a point of P, i.e. H(z1, z2) = z1/z2. It is evident that �bresof H are the the 
omplex big 
ir
les, i.e. interse
tions of 
omplex lines in C

2 with S3, soone 
an 
onsider its �inverse� as a map from S2 into the spa
e of smooth loops on S3.



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 419Let us endow S3 with the standard riemannian metri
 inherited from the ambientEu
lidean spa
e. The sphere S3 endowed with this metri
 will be 
alled the round 3-sphere and denoted S3
r . We 
an now 
onsider the 
orresponding Brylinski loop spa
e

BS3
r [12℄ and get a map H−1 : P → BS3

r . Thus it be
omes possible to treat the lattermap from the viewpoint developed in previous se
tions. A straightforward 
al
ulationshows that its di�erential dH−1 intertwines the almost 
omplex stru
tures on P and BS3
rand so it de�nes a holomorphi
 
urve in BS3

r . Details of the argument 
an be foundin [24℄.Correspondingly, the restri
tion of H−1 on any dis
 in P de�nes a loopy analyti
 dis
in BS3
r . In parti
ular, taking the unit dis
 and its 
omplement we get a solution to loopyRiemann-Hilbert problem (2) with the 
onstant 
oe�
ient whose value at ea
h point

p ∈ S1 = {z ∈ C : |z| = 1} is the identity mapping of BS3
r . In terms of analyti
 dis
s,one 
an state that S3

r is the union of images of two loopy analyti
 dis
s. Despite theirsimpli
ity, these observations lead to an instru
tive 
on
lusion provided by the followingtheorem from [24℄.Theorem 2. The map H−1 de�nes a holomorphi
 embedding of the Riemann sphere intothe spa
e of oriented immersed loops on S3
r . In other words, H−1 de�nes a holomorphi

urve in BS3

r . In parti
ular, a round 3-sphere S3
r 
an be represented as a union of twoloopy analyti
 dis
s glued along their boundaries, i.e., S3

r foliated by the 
omplex great
ir
les is a solution to a loopy Riemann-Hilbert problem in BS3.We 
an now use the above observations and stereographi
 proje
tion Π : S3 → R3in order to obtain a similar geometri
 pi
ture in R3, whi
h, in parti
ular, enables one tovisualize 
ertain analyti
 dis
s in R
3. It is well known that the image of the unit dis
under Φ = Π ◦ H−1 is a solid torus T bounded by a round torus (torus of revolution)

T ∼= T 2 in R3 (see, e.g., Ch.10 in [2℄). The same holds for any dis
 in C ⊂ P 
entered atthe origin.It is also known (but probably not so �well-known�) that the images of 
omplex big
ir
les under Π are genuine (metri
) 
ir
les whi
h have been dis
overed by I.Villar
eau(nowadays they are 
alled Villar
eau 
ir
les [2℄). They 
an be de�ned as the interse
tionsof a round torus T 2
r with the bitangent plane passing through the 
enter of torus T 2

r [2℄.Thus the preimages Φ−1(w) of points w from the unit dis
 are exa
tly the Villar
eau
ir
les.On ea
h round torus T 2
r , Villar
eau 
ir
les 
ome in two families ea
h of whi
h 
onsistsof noninterse
ting 
ir
les. Two Villar
eau 
ir
les belonging to the same family will be
alled 
oherent. Thus ea
h of the two families of 
oherent Villar
eau 
ir
les de�nes afoliation of a round torus. Any two 
ir
les in the same family on a given round torus arelinked with the linking number 1 whi
h 
orresponds to the well-known fa
t that the Hopfinvariant of Hopf �bration is equal to one.Consider now a round solid torus Tr de�ned as the 
losure of interior of a round torus

T 2
r . Obviously, Tr is a union of 
ontinual family of 
oaxial round tori lying inside Tr andthe axial 
ir
le whi
h is equal to the interse
tion of their interiors. One sees now thatthe family of 
oherent Villar
eau 
ir
les of all those round tori 
an be 
hosen in su
h away that together with axial 
ir
le they give a foliation of Tr by loops (
ir
les) whi
h are
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ount the above remarks we
on
lude that a Villar
eau round torus gives a pre
ise pi
ture of a loopy analyti
 dis
 in
R3 whi
h we 
all Villar
eau toroid. Thus we have established the following �nal result.Proposition 3. Ea
h round solid torus in R3 foliated by Villar
eau 
ir
les is the imageof an analyti
 dis
 in BR3.To our mind, this beautiful geometri
 pi
ture alone gives a su�
ient justi�
ation forthe setting and 
onsiderations presented above. Using methods of nonlinear analysis it ispossible to show that one 
an deform a Villar
eau toroid in su
h a way that all leaves ofthe foliation remain 
losed and it still represents a loopy analyti
 dis
. Su
h deformations
an be des
ribed by expli
it equations using methods of deformation theory. For us themain point is that they provide examples of loopy analyti
 dis
s di�erent from Villar
eautoroids.Proposition 4. There exist small perturbations of the Villar
eau toroid whi
h 
an berepresented as the images of loopy analyti
 dis
s.This fa
t may be used to 
onstru
t solutions to loopy Riemann-Hilbert problemswith non-
onstant 
oe�
ients whi
h are su�
iently 
lose to the identity. It would bevery interesting to 
onstru
t similar examples with 
oe�
ients not ne
essarily 
lose toidentity. Clearly, similar 
onstru
tions and results make sense for other 3-folds foliatedby loops, for example, for tangent 
ir
le bundles of 
ompa
t orientable two-dimensionalsurfa
es without boundary. One 
an also 
onsider similar problems for Seifert �brations,whi
h suggests a number of interesting open problems (
f. [24℄).4. Fredholm stru
tures on loop spa
es. We pass now to Fredholm stru
tures onloop spa
es and begin with ne
essary de�nitions from fun
tional analysis. For a Bana
hspa
e E, let L(E) denote the algebra of bounded linear operators in E endowed with thenorm topology. Let F (E)(Fk(E)) denote the subset of Fredholm operators (of index k).Let also GL(E) stand for the group of units and L(E) and denote by GC(E) the so-
alledFredholm group of E de�ned as the set of all invertible operators from L(E) having theform �identity plus 
ompa
t�.Re
all that a Fredholm stru
ture on a smooth manifold M modeled on (in�nite di-mensional) Bana
h spa
e E is de�ned as a redu
tion of the stru
tural group GL(E) oftangent bundle TM to subgroup GC(E) [15℄. In the sequel we only deal with the 
asewhen E = H is a separable Hilbert spa
e and M is taken to be the group of Sobolev
H1-loops in a 
ompa
t Lie group G.Sin
e GL(H) is 
ontra
tible F0(H) is the 
lassifying spa
e for GC(H) bundles [15℄. Fora Hilbert manifold M , de�ning a Fredholm stru
ture on M is equivalent to 
onstru
tingan index zero Fredholm map M→H [16℄. It was also shown in [16℄ that a Fredholmstru
ture on M 
an be 
onstru
ted from a smooth map Φ : M → F0(H), i.e., from asmooth family of index zero Fredholm operators parameterized by points of M . This isa
tually the most e�e
tive way of 
onstru
ting Fredholm stru
tures whi
h has alreadybeen used in [17℄, [22℄.
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ribe an expli
it 
onstru
tion of su
h families on appropriateloop groups using the Riemannian exponential mapping des
ribed in the �rst se
tion. Inthe sequel we freely use its properties established in [28℄, [29℄. A
tually, the very idea of
onstru
ting Fredholm stru
tures using exponential mapping appeared in relation withresults of [28℄, [29℄ where it was proven that, for a 
ompa
t Lie group G, the exponentialmap exp = expe : LA→LG is a Fredholm map of index zero. This fa
t is 
ru
ial for the
onstru
tion presented in the next se
tion. Moreover, in [28℄, [29℄ one �nds a more generalargument whi
h derives the fredholmness of exponential mapping from the 
ompa
tnessof 
urvature operators and permits further generalizations to more general 
lasses of loopspa
es.Fredholm stru
tures on loop groups already gained some attention in [17℄, [18℄, [23℄.We present now a very expli
it 
onstru
tion whi
h may have 
ertain advantages fromthe point of view of further generalizations. A 
losely related 
onstru
tion of Fredholmstru
ture on the so-
alled restri
ted in�nite Grassmannian was given in [8℄.We a
hieve our goal by indi
ating an expli
itly given family of index zero Fredholmson LG = H1(T, G). Dis
ussions with G. Misiolek were 
ru
ial for �nding an appropriateexpli
it 
onstru
tion. Re
all that by LA we denote the loop algebra 
onsisting of H1-loopsin Lie algebra A and there is de�ned the exponential map expe : LA → LG. For g ∈ LG,let expg : TgLG → LG be the exponential map at point g. Let v ∈ LA and γv be the
orresponding geodesi
 through e in the dire
tion of v, i.e., γv(t) = expe(tv). Let further
J be the Ja
obi ve
tor �eld along γv with J(0) = 0,∇γv

J(0) = w, where w ∈ LA. Inother words, J(t) = dexpe(tv)(tw).Put u(t) = τv
0,t(J(t)) ∈ LA then u is a solution to the initial problem(6) ∂2

t u + τv
0,t ◦ R(τv

t,0u, γ̇v)γ̇v = 0, u(0) = 0, ∂tu(0) = w.Then we 
an de�ne a linear transformation Ψ(e) : LA→LA by putting Ψ(e) = Et,e(v),where Et,e(v)w = u(t). Noti
e that this operator is of the form tI + Kt, where Kt is a
ompa
t operator smoothly depending on t. Let moreover v′, w′ ∈ TgLG and 
onsiderthe geodesi
 γv′(t) = expg(tv
′), where expg : TgLG→LG is the exponential map at point

g. As above, let Jg be a Ja
obi ve
tor �eld on γ′ with Jg(0) = 0, ∇γ̇g
Jg(0) = w′, andlet τv′

t,0 : TgLG→Tγg(t)LG be parallel translation. Put now ug(t) = τv′

t,0 ◦ Jg(t) and noti
ethat ug(t0 is a solution to(7) ∂2
t ug + τv′

0,t ◦ R(τv′

t, 0ug, γ̇g)γ̇g = 0, ug(0) = 0, ∂tug(0) = wg.Thus puttingEt,g(v
′)(w′) = ug(t) we obtain a linear endomorphism of TgLG. Considernow the map(8) g 7→ Ψ(g)(·) = Lg−1∗g ◦ Et,g(v

′) ◦ Lg∗e : LA→LA.We 
laim that it a
tually de�nes a smooth family of index zero Fredholms. Indeed,let us rewrite the above formula as follows:
Ψ(g)(·) = Lg−1∗g(τ

v′

0,t(Lg∗exp
e
(tv)Lg−1∗g(tv

′) ◦ dexpe(Lg−1∗g(tv′)) ◦ Lg−1∗g ◦ Lg∗e(t(·)))

= Lg1∗g ◦ τv′

0,t ◦ Lg∗exp
e
(tv) ◦ dexpe(tv)(t(·)) = Lg1∗g ◦ τv′

0,t ◦ Lg∗exp
e
(tv) ◦ τv

t,0(Et,e(t·)).
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e now that dexpe(tv) is an operator of the form �invertible plus 
ompa
t� whileall other operators in the last expression are bounded invertible operators. This impliesthat the 
omposition is still an operator of the form �invertible plus 
ompa
t� hen
e it isa Fredholm operator of index zero. It is easy to see that the above family of index zeroFredholms is smoothly depends on point g ∈ LG.Colle
ting these observations together and taking into a

ount the main result of[16℄ we 
an end up with a smooth Fredholm stru
ture on LG. It is now easy to seethat the exponential map be
omes a Fredholm map of index zero with respe
t to the
anoni
al Fredholm stru
ture on LA and the Fredholm stru
ture on LG provided by our
onstru
tion. In this way we arrive to the following result.Theorem 3. The group LG of free Sobolev H1-loops in a 
ompa
t Lie group G endowedwith H1-metri
 has a smooth Fredholm stru
ture su
h that the riemannian exponentialmapping exp : TeLG → LG be
omes a Fredholm map of index zero.Remark 3. It 
an be a
tually shown that the Fredholm stru
ture provided by the the-orem is uniquely de�ned up to the 
on
ordan
e by the requirement that the exponentialmap is Fredholm of index zero. Thus we obtain a 
anoni
al 
on
ordan
e 
lass of Fredholmstru
tures on LG.Remark 4. As was proven in [16℄, ea
h Fredholm stru
ture on manifold M indu
esa zero index Fredholm map of M in its model. It is now natural to 
onje
ture thatsu
h a map of LG into TeLG 
an be obtained by 
onstru
ting a sort of �pseudo-inverse�to exponential map exp. It would be instru
tive to �nd an expli
it des
ription of su
ha pseudo-embedding. It would be also interesting to de�ne the same stru
ture by anexpli
itly given atlas on LG.Using the general te
hniques of Fredholm stru
tures theory, one 
an derive someimmediate 
onsequen
es of the results presented above.Corollary 1. The Fredholm stru
ture indu
ed by exponential mapping exists on a basedloop group.Corollary 2. The Fredholm stru
tures on based loop groups are 
ompatible with theFredholm stru
tures on the restri
ted Grassmannians 
onstru
ted in [8℄.Furthermore, existen
e of Fredholm stru
tures on loop groups enables one to studyfun
torial properties of those groups in the framework of global analysis. For example, itis easy to verify that ea
h homomorphism of Lie groups φ : G→H indu
es an index zeroFredholm map Lφ : LG→LH. Sin
e an integer-valued mapping degree is well-de�nedfor index zero Fredholm maps, one gets an integer deg Lφ and it be
omes tempting to
al
ulate it in terms of algebrai
 properties of homomorphism φ. Analyzing the above
onstru
tion one �nds out that Fredholm stru
tures 
an be 
onstru
ted on more generalloop spa
es when the ambient manifold M need not be a Lie group.In fa
t, in order to perform the key 
onstru
tion of index zero Fredholms one just needsto have a 
anoni
al way of identifying an arbitrary tangent spa
e with the tangent spa
eat referen
e point. This 
an be a
hieved, for example, for a parallelizable manifold Mand for some 
lasses of homogeneous spa
es of not ne
essarily 
ompa
t Lie groups. The



LOOP SPACES AND RIEMANN-HILBERT PROBLEMS 423fa
t that this family 
onsists of index zero Fredholms would follow from the fa
t thatthe exponential map is Fredholm. Thus our 
onstru
tion is appli
able for loop spa
essatisfying these two 
onditions. In su
h way we obtain the following generalization ofTheorem 3.Theorem 4. Let M be a parallelizable 
ompa
t smooth riemannian manifold. Then thespa
e of free H1-loops LM 
an be endowed with a natural Fredholm stru
ture su
h thatthe riemannian exponential map is a Fredholm map of index zero.In parti
ular, immersed loop spa
es of three-dimensional manifolds 
an be endowedwith Fredholm stru
tures and one may wish to 
ompare them with the stru
tures 
omingfrom the loopy Riemann-Hilbert problems. Summing up, we believe that the resultspresented in this paper 
on�rm that the interplay between loop spa
es and Riemann-Hilbert problems leads to interesting problems and deserves further investigation.
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