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Abstrat. The spae of the losures of leaves of a Riemannian foliation is a nie topologialspae, a strati�ed singular spae whih an be topologially embedded in R

k for k su�ientlylarge. In the ase of Orbit Like Foliations (OLF) the smooth struture indued by the embeddingand the smooth struture de�ned by basi funtions is the same. We study geometri struturesadapted to the foliation and present onditions whih assure that the given struture desendsto the leaf losure spae. In Setion 5 we introdue the notion of an Ehresmann onnetion ona strati�ed foliated spae and study the properties of the strata whih depend on the existeneof suh a onnetion. We also give onditions whih ensure that a onnetion understood as adi�erential operator de�nes an Ehresmann onnetion as above. In the last setion we presentsome urvature estimates for metri strutures on the leaf losure spae.In reent years physiists and mathematiians working on mathematial models ofphysial phenomena have realized that modelling based on geometri strutures on nowlassial smooth manifolds is insu�ient, more ompliated topologial spaes appearnaturally. One of the well-known examples is the orbit spae of a smooth ation of aompat Lie group. Suh a spae is a strati�ed pseudomanifold of Goresky-MaPherson,f. [14, 25, 9, 32℄. This fat has been used to desribe the topology and struture of theredued spae of the momentum map in the singular ase, f. [35℄.The study of the Riemannian geometry of the orbit spae of a smooth ation of aompat Lie group has been initiated in [1℄. One should also mention K. Rihardson'spaper, f. [34℄, in whih the author demonstrates that any spae of orbits of suh an ationis homeomorphi to the spae of the losures of leaves of a regular Riemannian foliation,and, obviously, f. [28℄, vie versa. Therefore this foliated Riemannian manifold an be2000 Mathematis Subjet Classi�ation: 57R30, 53C15, 53C55, 53C12, 57R17.Key words and phrases: singular Riemannian foliation, transversally Kähler foliation, strat-i�ed singular spae, leaf spae.The seond author was partially supported by the KBN grant no 2 P03A 021 25.The paper is in �nal form and no version of it will be published elsewhere.[395℄ © Instytut Matematyzny PAN, 2007



396 M. JÓZEFOWICZ AND R. WOLAKregarded as a desingularization of the orbit spae. Likewise for strati�ed pseudomanifoldswhih are homeomorphi to the leaf losure spae of an SRF, the foliated Riemannianmanifold an be seen as a desingularisation of this pseudomanifold. Therefore we thinkthat it is important to study relations between the geometry of a foliated Riemannianmanifold and the geometry of its leaf losure spae.In this paper we initiate the study of the geometry of the spae of leaf losures M/F̄ ofa Riemannian foliation, either regular or singular. The spae M/F̄ is naturally strati�ed.In Setion 2 we onstrut a natural embedding of M/F̄ into Rk for some k su�ientlylarge. Then we show that the smooth struture de�ned by this embedding is the sameas the smooth struture de�ned by basi funtions. It means that, in the regular ase,when the spae M/F̄ is algebrai, we have at our disposal the strati�ed Morse theory ofGoresky-Mapherson, f. [15℄. The singular ase is more ompliated and requires moreserious studies. In Setion 3 we study transversally hermitian and Kähler foliations. Weinvestigate the onditions under whih the transverse sympleti and omplex struturesdesend to the leaf losure spae. In the ase of singular foliations, �rst we de�ne foliatedomplex and Kähler strutures. and then study the projeted geometri strutures on theleaf losure spae. We prove a theorem asserting that under some natural onditions theleaf losure spae is a Kähler singular spae, f. [17℄. Setion 5 presents a new de�nitionof an Ehresmann onnetion on a strati�ed manifold. The last setion presents someurvature estimations and orollaries of the Lovri¢, Min-Oo, Ruh theorem for the Rii�ow of bundle-like metris.One of the reasons for the study of suh foliations is the fat that reently therehave been a renewed interest in non-integrable geometries assoiated to Riemannianstrutures�in fat these geometries orrespond to the hoie of an additional geometristruture ompatible with the Riemannian metri, f. [13℄. Almost Hermitian struturesare one of the best known examples of suh strutures. Foliated (almost) Hermitianmanifolds or foliated Kähler manifolds are of interest as they ombine three foliatedstrutures: a Riemannian, an almost omplex and a sympleti ones. These struturesappear quite naturally in geometry as Sasakian manifolds form a speial lass manifoldsfoliated by transversally Kähler 1-dimensional Riemannian foliations, f. [46℄ and K-manifolds give another example of suh foliated manifolds, f. [10℄.1. Riemannian foliations. In this setion we reall some basi fats about Riemannianfoliations. The notion of a singular Riemannian foliation was introdued by Pierre Molinoin [27℄, see also [28, 29℄.A Riemannian foliation F on a Riemannian manifold (M, g) is a foliation for whihany geodesi of (M, g) orthogonal to F at one point remains orthogonal to F at any pointof its domain. In the regular ase it is equivalent to the fat that g is bundle-like.Let F be a regular foliation on a manifold M . The foliation F is given by a oyle
U = {Ui, fi, gij} modelled on a manifold N0, i.e.i) {Ui} is an open overing of M ,ii) fi : Ui −→ N0 are submersions with onneted �bres de�ning F ,iii) gij are loal di�eomorphisms of N0 and gij ◦ fj = fi on Ui ∩ Uj .
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∐

fi(Ui) we all the transverse manifold of F assoiated to theoyle U and the pseudogroup H generated by gij the holonomy pseudogroup (repre-sentative) on the transverse manifold N .The foliated geometri strutures, i.e., those whih in loal oordinates an be ex-pressed in the transverse oordinates only, orrespond bijetively to holonomy invariantones on the transverse manifold. In partiular, the foliation is Riemannian if the trans-verse manifold is a Riemannian manifold and the holonomy pseudogroup onsists of loalisometries, likewise the transverse manifold of a transversally Kähler foliation is a Kählermanifold whose Kähler struture is H�invariant.1.1. The struture of the leaf losure spae. First let us look at the regular ase.Let F be a regular Riemannian foliation of odimension q on a ompat manifold
M of dimension n. In fat, it is su�ient to assume that there is a omplete bundle-likemetri g for F or even less that the geodesis of the bundle-like metri g orthogonal to theleaves of F are globally de�ned, i.e., the metri g is transversally omplete. The bundleof transverse orthonormal frames B(M, O(q);F) of the foliated Riemannian manifold
(M, g;F) admits a foliation F1 whose leaves are overing spaes of leaves of F and whihis transversally parallelisable and invariant for the natural ation of the group O(q). Thelosures of leaves of F1 de�ne a global submersion π onto a manifold W whose �bres arejust these losures. Sine F1 is invariant for the natural ation of the group O(q), so isthe foliation by the losures of leaves. The manifold W inherits an ation of O(q) makingthe submersion π O(q)-equivariant. As the �bre of B(M, O(q);F) is ompat the losuresof leaves of F1 projet onto the losures of leaves of F . To be preise, let L be a leaf of Fand L1 be a leaf of F1 whih overs L. Then L̄ = p(L̄1) where p is the natural projetion
p : B → M . Therefore the losures are submanifolds of M and minimal subsets of (M,F),In fat, the losure L̄ orresponds to the O(q) orbit of the point π(L̄1) ∈ W , f. [28℄. Theabove orrespondene de�nes a homeomorphism between the leaf losure spae M/F andthe orbit spae W/O(q).It is well-known that the losures of leaves of a Riemannian foliations are the orbitsof the ommuting sheaf of this foliation, f. [28℄, whih is de�ned using the bundle oftransverse orthonormal frames. The loal vetor �elds of the ommuting sheaf are loalKilling vetor �elds of the indued Riemannian metri. For transversally Hermitian orKähler foliations we an re�ne the de�nition, f. [41, 40℄. The ompatible foliated Rie-mannian and sympleti strutures de�ne a foliated U(q)-redution B(M, U(q);F) of thebundle L(M,F) of transverse frames, i.e. the frames of the normal bundle N(M,F).The group U(q) is of type 1, so the foliation F1 of the total spae of B(M, U(q);F) istransversally parallelisable (TP) and the losures of leaves form a regular foliation withompat leaves. The projetions of these leaves onto M are the losures of leaves of F .From the general theory of TP foliations, f. [28℄, we know that these losures are theorbits, in the foliated sense, of loal vetor �elds ommuting with global foliated vetor�elds, in partiular with vetor �elds of the transverse parallelism. These vetor �elds arethe lifts to B(M, U(q);F) of loal foliated vetor �elds on (M,F), whih are in�nitesimalautomorphisms of the transverse U(q)-struture, so they preserve both the transverseRiemannian metri, almost omplex struture and the assoiated 2-form.



398 M. JÓZEFOWICZ AND R. WOLAK1.2. Strati�ation. The manifold M with an SRF F is strati�ed by the dimension ofleaves of F , i.e., let for any x ∈ M denote by Lx the leaf of F passing through x. Thenfor r = 0, . . . , n = dimM, let Mr = {x ∈ M : dimLx = r}. Obviously, there exist rminand rmax suh that Mr = ∅ for r < imin or r > rmax; rmin is the smallest dimension ofleaves of the foliation F and rmax is the greatest dimension of leaves of this foliation. Theset M∗ = Mrmax is open and dense in M . The set Σ = M − M∗ is a losed subset of Mof measure 0.If the manifold M is foliated by an RRF F then F̄ is an SRF and M admits thefollowing strati�ation, f. [28℄.Let k be any number between 0 and n. De�ne
Σk = {x ∈ M : x ∈ L ∈ F , dimL = k}.The leaf losures of F de�ne a singular Riemannian foliation whih in any Σk de�nesa regular Riemannian foliation. P. Molino demonstrated that onneted omponents ofthese subsets are submanifolds of M and that Σk ⊂

⋃
i≤k Σi. For some i the sets Σi maybe empty. Let k0 be the greatest dimension of leaves of F̄ . Then the set Σk0

is open anddense in M . It is alled the prinipal stratum.The holonomy group of eah L is �nite, and there are a �nite number of types of theholonomy groups. Therefore eah set Σi deomposes into a �nite number of submanifolds
Σpα = {x ∈ L ∈ F : dimL = p, h(L, x) ∈ α}where h(L, x) is the holonomy group of L in Σp and α is the onjugay lass of �nitesubgroups of O(qp) where qp is the odimension of F in Σp. In this way, we have ob-tained a strati�ation S = {Σγ} of (M,F) into submanifolds on whih F de�ne regularRiemannian foliations and the foliation F is without holonomy. On eah stratum Sγ of

S, the foliation F de�nes a ompat RF without holonomy, so the spae of leaves Sγ/Fis a smooth manifold denoted by S̄γ and the natural projetion pγ : Sγ → S̄γ is a loallytrivial �bre bundle. The manifolds S̄γ de�ne a strati�ation of the leaf losure spae M/F̄whih we denote S.Let us return to the singular ase. We have the strati�ation S = {Σi} where
Σk = {x ∈ M : x ∈ L ∈ F , dimL = k}.From the very de�nition the foliation, F de�nes an RRF in eah stratum. Therefore thisstrati�ation an be re�ned in the following way:Let k be any number between 0 and n. De�ne
Σkl = {x ∈ Σk : x ∈ L ∈ F , dimL = l}.In eah stratum Σkl the foliations F and F̄ are regular. Therefore the holonomy groupof eah L in the orresponding stratum Σkl is �nite, and there is a �nite number of typesof the holonomy groups. Hene eah set Σkl deomposes itself into a �nite number ofsubmanifolds

Σklα = {x ∈ L ∈ F : dimL = k, L = l, h(L, x) ∈ α}where h(L, x) is the holonomy group of L in Σp, α is the onjugay lass of �nite sub-groups of O(qp), and qp is the odimension of F in Σkl. In this way, we have obtained a



SPACE OF LEAF CLOSURES 399strati�ation S = {Σγ} of (M,F) onsisting of submanifolds on whih F and F de�neregular Riemannian foliations. On eah stratum Sγ of S the foliation F de�nes a ompatRF without holonomy, so the spae of leaves Sγ/F is a smooth manifold denoted by S̄γand the natural projetion pγ : Sγ → S̄γ is a loally trivial �bre bundle. The manifolds
S̄γ de�ne a strati�ation of the leaf losure spae M/F̄ whih we denote S.In the subsequent setions we will use the following natural splittings of the tangentbundle TM along eah stratum. Let us hoose a stratum Σγ ∈ S. The foliation F isregular on Σγ , so we have the following orthogonal splitting of the bundle TM |Σγ :

(∗) TM = TF ⊕ Q1 ⊕ Q2 ⊕ Q3where TF ⊕ Q1 = TF and TF ⊕ Q1 ⊕Q2 = TΣγ . Therefore the normal bundle of F onthe stratum Σγ an be identi�ed with Q1 ⊕ Q2 ⊕ Q3.2. Smooth struture on leaf losure spae. First, let us onentrate our attentionon the regular ase. The leaf losure spae M/F̄ an be diretly embedded in some
Rk. In fat, any foliated open overing of (M,F) is also foliated for (M, F̄) and admitsa subordinated partition of unity by basi funtions. Let S be a leaf losure and U afoliated tubular neighbourhood of S. Then U is an Rs bundle over S and there exists aompat Lie group G ⊂ O(s) suh that the traes of leaf losures on Rs are the orbitsof G. The basi funtions on U orrespond to G-invariant funtions on Rs. Using thelassial theory of G invariant funtions (polynomials) we an embed Rs/G = U/F̄ intosome Rr. The manifold M admits a �nite overing by suh foliated open sets, and thenusing a subordinated partition of unity we an embed the leaf losure spae M/F̄ in Rkfor some k su�iently large. One an follow the proof of the lassial ompat manifoldembedding theorem, f. [16℄, using instead of harts loal embeddings of M/F̄ and basifuntions and basi partitions of unity.The smooth struture on M/F an be de�ned by basi funtions on open foliatedsubsets of (M,F) and the smooth struture on W/O(q) by O(q)-invariant funtions.The above onsiderations assure that the homeomorphism is a di�eomorphism for thesesmooth strutures. The natural embedding of W/O(q) in Rk, f. [4℄, makes this spaean algebrai set, and the indued smooth struture from Rk oinides with the strutureintrodued via O(q)-invariant funtions, as loally the leaf losure spae is an orbit spaeTherefore the results of the singular Morse theory developed by M. Goresky and R.Mapherson in [15℄ an be translated to the foliated Morse theory of basi funtions ofregular foliated Riemannian manifolds.The ase of SRF is more ompliated. We have a desription of a tubular neighbour-hood of a leaf losure due to H. Boualem and P. Molino, f. [8℄, but it is not �ne enoughto obtain a loal embedding. Only in the ase of orbit-like foliations (OLF), f. [29℄, anyleaf losure admits an open foliated tubular neighbourhood U suh that the leaf spae
U/F̄ is identi�ed with the orbit spae Rr/G for some ompat Lie group G. Thereforefor OLF on ompat manifolds we have the leaf losure embedding, the proof being thesame as for regular Riemannian foliations. Note that regular Riemannian foliations areOLF.



400 M. JÓZEFOWICZ AND R. WOLAKTheorem 1. Let F be an OLF on a ompat manifold M. Then the leaf losure spae
M/F̄ admits a topologial embedding into Rk for some su�iently large k. The smoothstruture indued by this embedding is the same as the smooth struture de�ned by basifuntions of (M,F).More information on embeddings of strati�ed spaes and indued smooth struturesan be found in [32, 31℄.3. Foliated strutures. In this setion we will look at the way geometri struturesdesend to the leaf and leaf losure spaes with their natural strati�ations. We will paypartiular attention to sympleti and omplex strutures as transversally Hermitian andKähler foliations are of great interest in view of appliations.3.1. Sympleti struture. A foliation F is transversally sympleti if it admits a basilosed 2-form ω of maximal rank. Therefore the odimension of F is even, say 2q. Suhmanifolds are also alled presympleti and play and important role in physis, f. [36, 23℄.We have already seen that the smooth struture of the leaf losure spae is given bysmooth basi funtions. A sympleti form ω on the foliated manifold (M,F) de�nes aPoisson struture on the algebra C∞(M) of smooth funtions on M, however the basifuntions C∞(M,F) rarely form its Poisson subalgebra, f. [21, 22℄ and Proposition 9.7of [23℄. However, for transversally sympleti foliations we have the following proposition:Proposition 1. If F is transversally sympleti, then C∞(M,F) = C∞(M,F) =

C∞(M/F) admits the struture of a Poisson algebra.Proof. The form ω projets on the holonomy invariant form ω, whih is a sympleti formof N . The sympleti form ω de�nes a Poisson struture {, }N on N whih assigns to two
H-invariant funtions an H-invariant funtion. Therefore this Poisson struture lifts to aPoisson struture {, }B on the set of basi funtions C∞(M,F). The basi funtions arethe same for both foliations F and F , therefore {, }B is a Poisson struture on the set
C∞(M,F).The above proposition is the �rst step in the proof of the fat that our strati�edpseudomanifold M/F is a sympleti strati�ed spae, f. [35℄, also [32, 31℄.To proeed any further we have to ensure that the indued struture on the strata issympleti. The ondition formulated below seems to be the most natural one. Assumethat F is transversally Kähler for the Riemannian metri g, the omplex struture J andthe sympleti form ω on the normal bundle N(M,F), and that J satis�es the followingondition:

(∗∗) J(TF/TF) ⊂ TF/TFWe shall look at the transverse sympleti and holomorphi strutures and hek whethersome of their omponents projet onto the leaf spae M/F̄ and verify what struturesthey indue.First onsider the prinipal stratum Σ0. The splitting of TM redues itself to TF ⊕

Q1 ⊕Q2 as Σ0 is an open and dense subset M . The normal bundle of F an be identi�edwith Q1 ⊕ Q2 and TF/TF with Q1. So J ats on Q1 ⊕ Q2. Sine J(Q1) ⊂ Q1, then
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J(Q2) ⊂ Q2. Therefore as the splitting is g-orthogonal, it is also ω-orthogonal and thetransverse sympleti form ω an be written as ω = ω2,0 + ω0,2, where ω2,0 and ω0,2are homogeneous omponents with respet to the splitting. Loally, the subbundle Q1 isspanned by foliated Killing vetor �elds X suh that LXω = 0. Their �ows preserve thesplitting so

LX(ω2,0 + ω0,2) = LXω2,0 + LXω0,2and LXω2,0 = 0 and LXω0,2 = 0. The restritions of both forms to Q1 and Q2, respe-tively, are of maximal rank. Therefore to prove that ω0,2 is a transverse sympleti formfor the foliation F̄ on Σ0, it is su�ient to demonstrate that dω0,2 = 0.In fat, 0 = dω = dω2,0 + dω0,2 = d1ω
2,0 + d2ω

2,0 + ∂ω2,0 + d1ω
0,2 + d2ω

0,2.Thus d1ω
2,0 = 0, d2ω

2,0 = 0, ∂ω2,0 + d1ω
0,2 = 0, d2ω

0,2 = 0. Therefore it remainsto prove that d1ω
0,2 = 0. Now, for any vetor �eld X of the ommuting sheaf

LXω0,2 = 0 = iXdω0,2 + diXω0,2 = iXdω0,2 = iXd1ω
0,2 + iXd2ω

0,2 = iXd1ω
0,2.As these vetor �elds span the subbundle Q1 we obtain d1ω

0,2 = 0, and hene dω0,2 = 0.Therefore our foliation F is transversally sympleti for the 2-form ω0,2 = ω̄. Thus theprojetion π0 : Σ0 → Σ0 projets the 2-form ω̄ to a sympleti form on Σ0, whih wedenote by the same letter.Let Σα be any stratum of (M,F). F indues a regular foliation without holonomy. In[43℄ we have proved that global i.a. of F are tangent to the strata and that the module
X(M,F) of these global vetor �elds is transverse to F in eah stratum. If X is an i.a.,so is JX. Therefore eah stratum is J-invariant, i.e. J(Q1 ⊕ Q2) ⊂ Q1 ⊕ Q2, hene thesplitting (*) over any stratum is also ω-orthogonal. In this ase the standard reasoningensures that the 2-form ωα = i∗αω, where iα is the inlusion of the stratum Σα into M, is atransverse sympleti form of the foliated manifold (Σα,F). Now the same onsiderationsas for the prinipal stratum demonstrate that eah stratum of the strati�ation S is asympleti manifold.Let πα : Σα → Σα be the loal trivial �bre bundle de�ning the foliation F on Σα.Clearly, the mapping πα is a morphism of the Poisson algebras C∞(Σα,F), {, }α and
C∞(Σα), {, }α, where the Poisson brakets {, }α and {, }α are de�ned by ωα and ω̄α,respetively.To omplete the proof that M/F is a singular sympleti spae we have to show thatfor any Σα ∈ S the inlusion iα : Σα → M/F is a Poisson morphism, i.e.

∀f, g ∈ C∞(M/F) {f, g}B|Σα = {f |Σα, g|Σα}α.In fat,
{f, g}B |Σαπα = ω(Xf , Xg)|Σα = ωα(Xf |Σα, Xg|Σα) = {f |Σα, g|Σα}απαas vetor �elds Xf , Xg are tangent to strata.Therefore we have proved the following lemma:Lemma 1. Let F be transversally almost Kähler for the Riemannian metri g, the al-most omplex struture J and the sympleti form ω on the normal bundle N(M,F). If

J(TF/TF) ⊂ TF/TF , then M/F is a singular sympleti spae.



402 M. JÓZEFOWICZ AND R. WOLAK3.2. Complex struture. At the beginning of the setion we introdue the notion of analmost omplex struture adapted to a singular foliation.Definition 1. A (1,1)-tensor �eld J ∈ Hom(TM, TM) is a foliated almost omplexstruture i�i) J(TF) ⊂ TF ;ii) for any i.a X of F the vetor �eld JX is also an i.a. of F ;iii) for any i.a X of F J2X = −X modF , i.e., they di�er by a vetor �eld tangent tothe leaves of F .Properties. 1) In the regular ase any transverse almost omplex struture an be ex-tended to a foliated almost omplex struture, however suh an extension is not unique.2) If the foliation F is Riemannian and J(TF) ⊂ TF , then the strata of (M,F) are
J-invariant as global i.a. are transverse to leaf losures in the strata, f. [33, 43℄.3) On any stratum Σα the foliations F and F are regular. Then the tensor �eld
Jα = J |TΣα is well de�ned and indues transverse almost omplex strutures for F|Σα.A foliated Riemannian metri g and a foliated almost omplex struture J are said tobe ompatible if g(JX, JY ) = g(X, Y ) for any vetors X, Y ∈ TM. Then on any stratum
Σα the indued Riemannian metri gα and the indued foliated almost omplex struture
Jα are ompatible. Then the 2-form ωα(X, Y ) = gα(JαX, Y ) for X, Y ∈ TΣα is basi.Moreover, Jα indues a transverse almost omplex struture for F|Σα.The above onsiderations suggest the following de�nition.Definition 2. A singular foliation F on M is said to be transversally almost Kähler ifit admits a foliated Riemannian metri g and a foliated almost omplex struture, whihare ompatible, and suh that on any stratum Σα of the assoiated strati�ation of Mthe 2-forms ωα are losed. Suh a struture is alled transversally Kähler if the induedalmost omplex strutures are transversally integrable for Fα.Before formulating the theorem we prove the following simple property.Proposition 2. Let F be an RRF of a ompat manifold M . If J is a foliated almostomplex struture for F and the losures of leaves are J-invariant then J is also foliatedfor the leaf losure foliation F̄ .Remark. The assumption about the J-invariane of the losures of leaves is essential asindiated by the example presented in [11℄.Proof. Our assumption means that the ondition (i) of De�nition 1 is satis�ed. We haveto verify the onditions (ii) and (iii) for any i.a. X of F̄ . Let X be an i.a. of F and Σα be astratum. Then X|Σα = X⊤

α + X⊥
α , where X⊤

α is the part tangent to the leaf losures and
X⊥

α is the part orthogonal to the leaf losures. There exist global i.a.s of F Xα
1 , ..., Xα

ssuh that X⊥
α = Σs

1fjX
α
j . Therefore JX|Σα = J(X⊤

α + X⊥
α ) = J(X⊤

α ) + J(X⊥
α ) =

J(X⊤
α ) + J(Σs

1fjX
α
j ). Hene JX is an i.a. of F̄ . The above alulations also show thatthe third ondition is satis�ed.



SPACE OF LEAF CLOSURES 403Taking into aount the previous onsiderations and De�nition 2 the following theoremis true:Theorem 2. Let F be a transversally almost Kähler singular foliation on a ompatmanifold M . Then the spae of leaf losures M/F is an almost Kähler singular spae.4. Connetions. Connetions have played a very important role in the theory of regularfoliations. There are two lasses of onnetions �adapted� to a regular foliation, �Bott�onnetions and foliated or transversally projetable ones, f. [7, 19, 28, 42℄. In the singularase it is more di�ult to give a satisfatory de�nition of an adapted onnetion. Let uspropose a de�nition of a onnetion �adapted� to a singular foliation based on the lassialde�nition of a onnetion as a di�erential operator. We will study onditions whih willpermit us to projet the onnetion to the leaf spae, a singular strati�ed spae.Let F be a singular foliation on a smooth, ompat, onneted manifold M . Let
X (F) denote the sheaf of loal vetor �elds whih are tangent to leaves of F . The sheaf
X (F) is transitive on these leaves. Like-wise the Lie algebra X(F) = Γ(M,X (F)) ofglobal setions of X (F), i.e. of global vetor �elds tangent to leaves of F , is transitiveon leaves of F . Let X (M,F) denote the sheaf of loal in�nitesimal automorphisms of F ,i.e. Y ∈ X (M,F) i� for any X ∈ X (F) [Y, X] ∈ X (F). Obviously X (F) ⊂ X (M,F)and X(F) ⊂ X(M,F). X (F) and X(F) are double ideals of X (M,F) and X(M,F),respetively. On ompat manifolds, for some regular foliations and all singular ones theLie algebra X(M,F) is not transitive on M.Let ∇ be a onnetion on the manifold M. We say that ∇ is adapted to the foliation
F or ∇ is a foliated onnetion on (M,F) if1) for any X, Y ∈ X (M,F) ∇XY ∈ X (M,F);2) for any X ∈ X (F) and any Y ∈ X (M,F) ∇XY ∈ X (F) and ∇Y X ∈ X (F).Now we shall disuss these two onditions (1) and (2). Let's hek how restritive theyare in the regular ase.A) Let F be a Riemannian foliation and ∇LC be the Levi-Civita onnetion. Usingthe loal form of a bundle-like metri it is easy to hek that the Levi-Civita onnetionof suh a metri satis�es (1). Condition (2) implies that the foliation is totally geodesiand that the orthogonal omplement subbundle F⊥ is integrable.However, in the Riemannian ase, we an de�ne another onnetion. Consider thesplitting TM = TF ⊕ TF⊥ given by the bundle-like metri and let p2 : TM → TF⊥ bethe orthogonal projetion. We will de�ne a onnetion ∇ as follows: let ∇1 be any metrionnetion in TF , the onnetion∇2 in TF⊥ is de�ned as follows: for any Y, Z ∈ Γ(TF⊥)and X ∈ X (F), let ∇2

XY = p2[X, Y ] and ∇2
ZY = ∇ZY where ∇ is the transverseLevi-Civita onnetion. The onnetion ∇ in TM is de�ned as ∇1 ⊕ ∇2. It satis�esboth onditions (1) and (2), however it has torsion. It is a metri onnetion preservingthe natural splitting given by the bundle-like metri. Therefore it is a onnetion in the

O(p)×O(q) redution B(M, O(p)×O(q)) of the bundle of orthogonal frames B(M, O(n))given by the bundle-like metri. The existene of the torsion-free onnetion is linked tothe vanishing of the struture tensor of B(M, O(p) × O(q)), f. [37, 42℄.



404 M. JÓZEFOWICZ AND R. WOLAKIn [39℄, I. Vaisman proposed the following onditions for a linear onnetion ∇ on amanifold M foliated by a regular foliation F :i) F is parallel with respet to ∇ (i.e., ∇(X (F)) ⊆ X (F)),ii) the torsion T∇ takes values in TF ,iii) the urvature R∇ satis�es the ondition
R∇(Z, X)Y ∈ TF ∀Z ∈ TF , X, Y ∈ TF⊥.In the regular ase, these onditions are �almost� equivalent (1) and (2). In fat,(i) and (ii) imply easily (2), and (2) assures (i) and (ii) in the ase when one of thevetors is tangent to the foliation. The ondition (iii) implies (1), f. [39℄, vie versa:

R∇(Z, X)Y = ∇Z∇XY − ∇X∇ZY − ∇[Z,X]Y, therefore for any Z ∈ X (F), X, Y ∈

X (M,F) the onditions (1) and (2) imply (iii).In the ase of singular foliations studied in this note we an replae the ondition (2)by (2') for any Z ∈ X (F), and X, Y ∈ X (M,F)

R∇(Z, X)Y ∈ X (F).Therefore we have the following theorem:Theorem 3. Let F be a ompat SRF on a ompat manifold M . Let ∇ be a onnetionsatisfying the onditions:(a) for any X ∈ X (F) and Y ∈ X (M,F) ∇XY ∈ X (F) and ∇Y X ∈ X (F);(b) R∇(Z, X)Y ∈ TF ∀Z ∈ TF , X, Y ∈ TF⊥,then any stratum Σα of the natural strati�ation S of (M,F) is totally geodesi and therestrited onnetion ∇α to the stratum Σα is transversally projetable and indues aonnetion ∇̄α on the orresponding stratum Σ̄α of the leaf spae M/F .Let F be transversally Kähler foliation of a ompat manifold M and S = {Σα} bethe assoiated strati�ation of M . The restrition Fα to any stratum Σα is transver-sally Kähler and therefore transversally sympleti for the assoiated transverse sym-pleti form ωα, whih de�nes a presympleti struture. A torsion-free onnetion ∇is alled a presympleti onnetion if any stratum Σα is ∇-totally geodesi (parallel)and ∇ωα(X, Y ) = 0 for any X, Y ∈ TΣα, f. [39℄ for the de�nition in the regular ase.Sympleti and presympleti onnetions have been a very hot researh topi, f., e.g.,[38, 39, 2, 3℄, partiular attention being paid to their behaviour with respet to theMarsden-Weinstein redution, f. [30℄.Theorem 3 and Proposition 3.2 of [39℄ yield the following:Theorem 4. Let F be transversally Kähler foliation of a ompat manifold M and S =

{Σα} be the assoiated strati�ation of M . Then any presympleti onnetion ∇ induesa family of sympleti onnetions on the strata of the singular Kähler spae M/F , theleaf losure spae of the foliated manifold (M,F).



SPACE OF LEAF CLOSURES 4055. Ehresmann onnetions. Ehresmann onnetions for regular foliations have beenintrodued by [12℄ and studied by many authors, f., e.g., [5, 6, 44, 45℄. The prime exampleis the orthogonal omplement of a totally geodesi foliation of a ompat Riemannianmanifold. However, the singular ase is muh more ompliated.In [26℄, V. Miquel Molina and the seond author have proved that on a ompatmanifold an SRF whih is minimal for a foliated Riemannian metri must be regular,thus an SRF annot be totally geodesi for a foliated Riemannian metri. Therefore weannot model our de�nition in the singular ase on this lassial example. There areseveral possible approahes. In [47, 48℄, N. Zhukova proposes to onsider a distributionwhih is omplementary to the tangent distribution to the leaves of the foliation, nostrati�ation is needed but this distribution is not di�erentiable. In [46℄, the seondauthor proposes a slightly di�erent de�nition using an adapted strati�ation and obtainsdi�erent results.As our main interest are singular foliations whih admit an adapted strati�ation,we present a de�nition that is more suitable and aording to whih an Ehresmannonnetion is a di�erentiable distribution. The distribution is not omplementary to thefoliation on the manifold M . It is impossible in the ase of a singular foliation, but thisondition is satis�ed in eah stratum. Aording to [43℄, in the ase of an SRF withall leaves ompat on a ompat manifold, the orthogonal omplement in eah stratumde�nes a global smooth distribution, spanned by global foliated vetor �elds. It willbe our model example of an Ehresmann onnetion. But there is no hane that loaldi�eomorphisms of leaves de�ned by the orthogonal geodesis are loal isometries, f.[18℄. In the language of Ehresmann onnetions, the indued Ehresmann onnetions ineah stratum are not ∇LC -preserving, where ∇LC is the Levi-Civita onnetion of thefoliated Riemannian metri, f. [6℄. But the results obtained by the seond author andhis ollaborators suggest that a hange of a Riemannian metri in eah stratum an dothe trik.Let (M,F) be a ompat manifold M with singular foliation F and let S be theassoiated strati�ation of M . We assume that the sheaf X (M,F) is transitive on thestrata. A smooth distribution Q on M is alled a omplementary distribution on (M,F)if for any Σα ∈ S the distribution Q |Σα
is tangent to Σα and TΣα = TF |Σα

⊕Q |Σα
.A smooth urve tangent to Q is alled a Q-urve.A omplementary distribution on (M,F) is alled a singular Ehresmann onnetionof F if for any stratum Σα, γ : [a, b] → Σα leaf urve and δ : [c, d] → Σα a Q-urve (i.e.tangent to Q) suh that γ(c) = α(a), there exists a mapping σ : [a, b]× [c, d] → M, of thefollowing properties:a) σs : [a, b] → M, σ|[a,b]×{s} is a leaf urve for any s ∈ [c, d] and σc = γ;b) for any t ∈ [a, b] σt : [c, d] → M, σ|{t}×[c,d] is a Q-urve and σa = δ.Let G be a singular foliation on M whose tangent bundle Q is a omplementarydistribution of F , and let ∇ be a torsion free onnetion on M suh that the leaves of Fand the strata of S are ∇-totally geodesi. Following [6℄, we say that(i) the distribution Q is F-invariant if ∇Y X ∈ Q ∀Y ∈ TF , X ∈ Q;



406 M. JÓZEFOWICZ AND R. WOLAK(ii) Q preserves ∇ if in eah stratum the elements of holonomy along Q-urves area�ne transformations.In the singular ase we have the following proposition, f. Proposition 5.3 of [6℄.Proposition 3. If Q is F-invariant and R(X, Y )Z ∈ Q for any X ∈ Q, Y, Z ∈ TF ,then Q preserves ∇.It is a simple extension of the above mentioned proposition as eah stratum is ∇totally geodesi and Q is tangent to strata. Likewise the singular version of Proposition5.4 is true.Proposition 4. Let Q be F-invariant. Then if Q preserves ∇, then R(X, Y )Z ∈ Q forany X ∈ Q, Y, Z ∈ TF .The assumption indues the same onditions in any stratum. Therefore the propositionis true in any stratum, aording to Proposition 5.4 of [6℄. So our proposition follows.Proposition 5. If the onnetion ∇ is omplete, Q is F-invariant and R(X, Y )Z ∈ Qfor any X ∈ Q, Y, Z ∈ TF , then Q is a singular Ehresmann onnetion.We have to prove that for any stratum Σα the restrition bundle Q|Σα
is an Ehresmannonnetion for the regular foliation F|Σα

of Σα. The strata are foliated so we an applythe same method as that used in [6℄ to prove Lemma 5.7.Theorem 5. Let (M,F) be a ompat manifold M with singular foliation F and let S bethe assoiated strati�ation of M . Let G be a singular foliation on M whose tangent bundle
Q is a omplementary distribution of F . Let ∇ be a omplete torsion free onnetion on
M suh that the leaves of F and the strata of S are ∇-totally geodesi. If Q is F-invariantand R(X, Y )Z ∈ Q for any X ∈ Q, Y, Z ∈ TF , then1) the universal overing Σ̃α of any stratum Σα is topologially a produt L̃α × G̃αwhere L̃α, G̃α are the universal overs of leaves of the foliations Fα and Qα, respetively,in Σα;2) the lifts of Fα and Qα, to Σ̃α is the foliation by L̃α×{q} and {p}×G̃α, respetively,where p ∈ L̃α, q ∈ G̃α;3) the projetion Σ̃α → L̃α is an a�ne transformation if we restrit the lifted onne-tion ∇̃α to leaves of the lifted foliation F̃α.6. Curvature properties. Let (M, g,F) be a regular Riemannian foliation on a om-pat manifold, F̄ the SRF by leaf losures and let S = {Σα}α∈A be the orrespondingstrati�ation of M . The strata of S have the following nie property:any geodesi orthogonal to F and tangent to a stratum at one point remains tangentto the stratum in a neighbourhood of this point.The standard argument, f. [20℄, vol. 2, shows that if ∇ is the Levi-Civita onnetionof (M, g) ∇XY is tangent to Σα for any vetor �elds X, Y orthogonal to F and tangentto Σα. Therefore on Σα, if pα : TΣα → TF⊥

α denotes the orthogonal projetion, ∇̄ theLevi-Civita onnetion of the indued Riemannian metri gα on Σα we have the following:
pα(∇XY ) = pα(∇̄XY )



SPACE OF LEAF CLOSURES 407for any vetor �elds X, Y tangent to Σα and orthogonal to F̄ . This equality permits usto establish some relations between the urvatures of the manifolds (M, g), (Σα, gα) andthe transverse urvature of the foliation F .Let SecF denote the transverse setional urvature of (M, g,F), Sec the setionalurvature of (M, g) and Secα
F the transverse setional urvature of (Σα, gα,Fα). For any2-subspae σ orthogonal to the foliation F

Sec(σ) ≤ SecF (σ).Moreover, for any σ ⊂ TΣα ∩ TF⊥
α

SecF (σ) = Secα
F(σ).On eah stratum Σα, the foliation F̄ by leaf losures is given by a global Riemanniansubmersion πα : Σα → Σ̄α. Let denote by Secα the setional urvature of (Σ̄α, ḡα), where

ḡα is the Riemannian metri indued by the bundle-like metri g. Loally, the submersion
πα fatorizes as follows:

U ։ V ։ V̄where the �rst arrow is the projetion of an open neighbourhood in Σα onto a transversemanifold of Fα, whih is a Riemannian submersion. Moreover, the transverse setionalurvature on U is equal to the setional urvature of the indued Riemannian metri.As the traes of the losures of leaves on V are orbits of the ommuting sheaf, f. [28℄,whih onsists of Killing vetor �elds, the seond arrow is also a Riemannian submersion.Therefore
Secα(σ̄) ≥ Secα

F (σ)where σ is the horizontal lift of σ̄ ⊂ T Σ̄α.The above onsiderations lead us to the formulation of the following theorems:Theorem 6. If a Riemannian foliation of a ompat manifold admits a transverse metriof positive setional urvature, then any stratum of the leaf losure spae is a Riemannianmanifold of positive setional urvature.Theorem 7. Let F be a Riemannian foliation of a ompat Riemannian manifold ofpositive setional urvature. Then any stratum of the leaf losure spae is a Riemannianmanifold of positive setional urvature.Remark. Similar results are true for transversally Kähler foliations and ϕ-setional ur-vature.The results of [24℄ yield the following orollaries.Theorem 8. Let F be a Riemannian foliation of odimension three of a ompat Rie-mannian manifold. If the transverse Rii urvature is positive de�nite, then on the strataof the leaf losure spae there exist Riemannian metris of positive setional urvature.Theorem 9. Let F be a Riemannian foliation of odimension four of a ompat Rieman-nian manifold. If the transverse urvature operator is positive de�nite, then on the strataof the leaf losure spae there exist Riemannian metris of positive setional urvature.
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