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Abstract. The space of the closures of leaves of a Riemannian foliation is a nice topological
space, a stratified singular space which can be topologically embedded in R* for k sufficiently
large. In the case of Orbit Like Foliations (OLF) the smooth structure induced by the embedding
and the smooth structure defined by basic functions is the same. We study geometric structures
adapted to the foliation and present conditions which assure that the given structure descends
to the leaf closure space. In Section 5 we introduce the notion of an Ehresmann connection on
a stratified foliated space and study the properties of the strata which depend on the existence
of such a connection. We also give conditions which ensure that a connection understood as a
differential operator defines an Ehresmann connection as above. In the last section we present
some curvature estimates for metric structures on the leaf closure space.

In recent years physicists and mathematicians working on mathematical models of
physical phenomena have realized that modelling based on geometric structures on now
classical smooth manifolds is insufficient, more complicated topological spaces appear
naturally. One of the well-known examples is the orbit space of a smooth action of a
compact Lie group. Such a space is a stratified pseudomanifold of Goresky-MacPherson,
cf. [14, 25, 9, 32|. This fact has been used to describe the topology and structure of the
reduced space of the momentum map in the singular case, cf. [35].

The study of the Riemannian geometry of the orbit space of a smooth action of a
compact Lie group has been initiated in [1]. One should also mention K. Richardson’s
paper, cf. [34], in which the author demonstrates that any space of orbits of such an action
is homeomorphic to the space of the closures of leaves of a regular Riemannian foliation,
and, obviously, cf. [28], vice versa. Therefore this foliated Riemannian manifold can be
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regarded as a desingularization of the orbit space. Likewise for stratified pseudomanifolds
which are homeomorphic to the leaf closure space of an SRF, the foliated Riemannian
manifold can be seen as a desingularisation of this pseudomanifold. Therefore we think
that it is important to study relations between the geometry of a foliated Riemannian
manifold and the geometry of its leaf closure space.

In this paper we initiate the study of the geometry of the space of leaf closures M /F of
a Riemannian foliation, either regular or singular. The space M /F is naturally stratified.
In Section 2 we construct a natural embedding of M/F into R* for some k sufficiently
large. Then we show that the smooth structure defined by this embedding is the same
as the smooth structure defined by basic functions. It means that, in the regular case,
when the space M/F is algebraic, we have at our disposal the stratified Morse theory of
Goresky-Macpherson, cf. [15]. The singular case is more complicated and requires more
serious studies. In Section 3 we study transversally hermitian and K&hler foliations. We
investigate the conditions under which the transverse symplectic and complex structures
descend to the leaf closure space. In the case of singular foliations, first we define foliated
complex and K&hler structures. and then study the projected geometric structures on the
leaf closure space. We prove a theorem asserting that under some natural conditions the
leaf closure space is a Kéhler singular space, cf. [17]. Section 5 presents a new definition
of an Ehresmann connection on a stratified manifold. The last section presents some
curvature estimations and corollaries of the Lovrié¢, Min-Oo, Ruh theorem for the Ricci
flow of bundle-like metrics.

One of the reasons for the study of such foliations is the fact that recently there
have been a renewed interest in non-integrable geometries associated to Riemannian
structures—in fact these geometries correspond to the choice of an additional geometric
structure compatible with the Riemannian metric, cf. [13]. Almost Hermitian structures
are one of the best known examples of such structures. Foliated (almost) Hermitian
manifolds or foliated K&hler manifolds are of interest as they combine three foliated
structures: a Riemannian, an almost complex and a symplectic ones. These structures
appear quite naturally in geometry as Sasakian manifolds form a special class manifolds
foliated by transversally Kédhler 1-dimensional Riemannian foliations, cf. [46] and K-
manifolds give another example of such foliated manifolds, cf. [10].

1. Riemannian foliations. In this section we recall some basic facts about Riemannian
foliations. The notion of a singular Riemannian foliation was introduced by Pierre Molino
in [27], see also [28, 29].

A Riemannian foliation F on a Riemannian manifold (M, g) is a foliation for which
any geodesic of (M, g) orthogonal to F at one point remains orthogonal to F at any point
of its domain. In the regular case it is equivalent to the fact that g is bundle-like.

Let F be a regular foliation on a manifold M. The foliation F is given by a cocycle
U = {U;, fi, gij} modelled on a manifold Ny, i.e.

i) {U;} is an open covering of M,
ii) fi: Uy — Ny are submersions with connected fibres defining F,

iii) g;; are local diffeomorphisms of Ny and g;; o f; = fi on U; N Uj.
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The manifold N = [] f;(U;) we call the transverse manifold of F associated to the
cocycle Y and the pseudogroup H generated by g;; the holonomy pseudogroup (repre-
sentative) on the transverse manifold N.

The foliated geometric structures, i.e., those which in local coordinates can be ex-
pressed in the transverse coordinates only, correspond bijectively to holonomy invariant
ones on the transverse manifold. In particular, the foliation is Riemannian if the trans-
verse manifold is a Riemannian manifold and the holonomy pseudogroup consists of local
isometries, likewise the transverse manifold of a transversally Kahler foliation is a Kéhler
manifold whose K&hler structure is H-invariant.

1.1. The structure of the leaf closure space. First let us look at the regular case.

Let F be a regular Riemannian foliation of codimension ¢ on a compact manifold
M of dimension n. In fact, it is sufficient to assume that there is a complete bundle-like
metric g for F or even less that the geodesics of the bundle-like metric g orthogonal to the
leaves of F are globally defined, i.e., the metric g is transversally complete. The bundle
of transverse orthonormal frames B(M,O(q); F) of the foliated Riemannian manifold
(M, g; F) admits a foliation F; whose leaves are covering spaces of leaves of F and which
is transversally parallelisable and invariant for the natural action of the group O(g). The
closures of leaves of F; define a global submersion 7 onto a manifold W whose fibres are
just these closures. Since F; is invariant for the natural action of the group O(q), so is
the foliation by the closures of leaves. The manifold W inherits an action of O(g) making
the submersion m O(q)-equivariant. As the fibre of B(M, O(q); F) is compact the closures
of leaves of F; project onto the closures of leaves of F. To be precise, let L be a leaf of F
and L be a leaf of F; which covers L. Then L = p(L;) where p is the natural projection
p: B — M. Therefore the closures are submanifolds of M and minimal subsets of (M, F),
In fact, the closure L corresponds to the O(q) orbit of the point 7(L1) € W, cf. [28]. The
above correspondence defines a homeomorphism between the leaf closure space M /F and
the orbit space W/O(q).

It is well-known that the closures of leaves of a Riemannian foliations are the orbits
of the commuting sheaf of this foliation, cf. [28], which is defined using the bundle of
transverse orthonormal frames. The local vector fields of the commuting sheaf are local
Killing vector fields of the induced Riemannian metric. For transversally Hermitian or
Kahler foliations we can refine the definition, cf. [41, 40]. The compatible foliated Rie-
mannian and symplectic structures define a foliated U(q)-reduction B(M, U(q); F) of the
bundle L(M,F) of transverse frames, i.e. the frames of the normal bundle N(M,F).
The group U(q) is of type 1, so the foliation F; of the total space of B(M,U(q);F) is
transversally parallelisable (TP) and the closures of leaves form a regular foliation with
compact leaves. The projections of these leaves onto M are the closures of leaves of F.
From the general theory of TP foliations, cf. [28], we know that these closures are the
orbits, in the foliated sense, of local vector fields commuting with global foliated vector
fields, in particular with vector fields of the transverse parallelism. These vector fields are
the lifts to B(M, U(q); F) of local foliated vector fields on (M, F), which are infinitesimal
automorphisms of the transverse U(g)-structure, so they preserve both the transverse
Riemannian metric, almost complex structure and the associated 2-form.
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1.2. Stratification. The manifold M with an SRF F is stratified by the dimension of
leaves of F, i.e., let for any © € M denote by L, the leaf of F passing through x. Then
forr=0,...,n=dimM, let M, = {x € M : dim L, = r}. Obviously, there exist rmyi,
and 7pax such that M, = 0 for 7 < imin OF 7 > Tmax; Tmin is the smallest dimension of
leaves of the foliation F and rp.x is the greatest dimension of leaves of this foliation. The
set M* = M,___ is open and dense in M. The set ¥ = M — M* is a closed subset of M
of measure 0.

If the manifold M is foliated by an RRF F then F is an SRF and M admits the
following stratification, cf. [28].

Let k£ be any number between 0 and n. Define
Yp={rxeM:xecLecF,dimL=k}.

The leaf closures of F define a singular Riemannian foliation which in any >j defines
a regular Riemannian foliation. P. Molino demonstrated that connected components of
these subsets are submanifolds of M and that &5 C U<k Zi. For some i the sets ¥; may
be empty. Let ko be the greatest dimension of leaves of F. Then the set Yk, is open and
dense in M. It is called the principal stratum.

The holonomy group of each L is finite, and there are a finite number of types of the
holonomy groups. Therefore each set ¥; decomposes into a finite number of submanifolds

Ypa = {xr €L EF:dimL=p, h(L,x) € a}

where h(L,z) is the holonomy group of L in ¥, and « is the conjugacy class of finite
subgroups of O(g,) where g, is the codimension of F in %,. In this way, we have ob-
tained a stratification S = {%,} of (M, F) into submanifolds on which F define regular
Riemannian foliations and the foliation F is without holonomy. On each stratum S., of
S, the foliation F defines a compact RF without holonomy, so the space of leaves Sy JF
is a smooth manifold denoted by 577 and the natural projection p,: S, — S_’v is a locally
trivial fibre bundle. The manifolds S, define a stratification of the leaf closure space M /F
which we denote S.
Let us return to the singular case. We have the stratification S = {3;} where

Yp={reM:xzeLeF,dimL=k}

From the very definition the foliation, F defines an RRF in each stratum. Therefore this
stratification can be refined in the following way:
Let k be any number between 0 and n. Define

Zkl:{meZk:xeLE}",dimle}.

In each stratum X; the foliations F and F are regular. Therefore the holonomy group
of each L in the corresponding stratum Y;; is finite, and there is a finite number of types
of the holonomy groups. Hence each set ¥j; decomposes itself into a finite number of
submanifolds

Ska={r€LeF:dimL=k, L=I, h(L,z) € a}

where h(L, z) is the holonomy group of L in Yp, a is the conjugacy class of finite sub-
groups of O(gp), and g, is the codimension of F in ;. In this way, we have obtained a
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stratification S = {3} of (M, F) consisting of submanifolds on which F and F define
regular Riemannian foliations. On each stratum S, of & the foliation F defines a compact
RF without holonomy, so the space of leaves S /F is a smooth manifold denoted by ST.Y
and the natural projection p,: Sy, — STW is a locally trivial fibre bundle. The manifolds
S, define a stratification of the leaf closure space M/F which we denote S.

In the subsequent sections we will use the following natural splittings of the tangent
bundle TM along each stratum. Let us choose a stratum Y. € S. The foliation F is
regular on ¥, so we have the following orthogonal splitting of the bundle TM|%, :

() TM=TFoQ:1®Q29Qs

where TF ® Q1 = TF and TF & Q1 ® Q2 = TS, Therefore the normal bundle of F on
the stratum X, can be identified with Q1 @ Q2 ® Qs.

2. Smooth structure on leaf closure space. First, let us concentrate our attention
on the regular case. The leaf closure space M/F can be directly embedded in some
RE. In fact, any foliated open covering of (M, F) is also foliated for (M, F) and admits
a subordinated partition of unity by basic functions. Let S be a leaf closure and U a
foliated tubular neighbourhood of S. Then U is an R® bundle over S and there exists a
compact Lie group G C O(s) such that the traces of leaf closures on R® are the orbits
of G. The basic functions on U correspond to G-invariant functions on R°. Using the
classical theory of G invariant functions (polynomials) we can embed R*/G = U/.F into
some R". The manifold M admits a finite covering by such foliated open sets, and then
using a subordinated partition of unity we can embed the leaf closure space M/F in R*
for some k sufficiently large. One can follow the proof of the classical compact manifold
embedding theorem, cf. [16], using instead of charts local embeddings of M/F and basic
functions and basic partitions of unity.

The smooth structure on M/F can be defined by basic functions on open foliated
subsets of (M,F) and the smooth structure on W/O(q) by O(g)-invariant functions.
The above considerations assure that the homeomorphism is a diffeomorphism for these
smooth structures. The natural embedding of W/O(q) in RF, cf. [4], makes this space
an algebraic set, and the induced smooth structure from R* coincides with the structure
introduced via O(q)-invariant functions, as locally the leaf closure space is an orbit space
Therefore the results of the singular Morse theory developed by M. Goresky and R.
Macpherson in [15] can be translated to the foliated Morse theory of basic functions of
regular foliated Riemannian manifolds.

The case of SRF is more complicated. We have a description of a tubular neighbour-
hood of a leaf closure due to H. Boualem and P. Molino, cf. [8], but it is not fine enough
to obtain a local embedding. Only in the case of orbit-like foliations (OLF), cf. [29], any
leaf closure admits an open foliated tubular neighbourhood U such that the leaf space
U/F is identified with the orbit space R"/G for some compact Lie group G. Therefore
for OLF on compact manifolds we have the leaf closure embedding, the proof being the
same as for regular Riemannian foliations. Note that regular Riemannian foliations are

OLF.
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THEOREM 1. Let F be an OLF on a compact manifold M. Then the leaf closure space
M/F admits a topological embedding into R for some sufficiently large k. The smooth
structure induced by this embedding is the same as the smooth structure defined by basic

functions of (M, F).

More information on embeddings of stratified spaces and induced smooth structures
can be found in [32, 31].

3. Foliated structures. In this section we will look at the way geometric structures
descend to the leaf and leaf closure spaces with their natural stratifications. We will pay
particular attention to symplectic and complex structures as transversally Hermitian and
Kaéhler foliations are of great interest in view of applications.

3.1. Symplectic structure. A foliation F is transversally symplectic if it admits a basic
closed 2-form w of maximal rank. Therefore the codimension of F is even, say 2¢g. Such
manifolds are also called presymplectic and play and important role in physics, cf. [36, 23].
We have already seen that the smooth structure of the leaf closure space is given by
smooth basic functions. A symplectic form w on the foliated manifold (M, F) defines a
Poisson structure on the algebra C°°(M) of smooth functions on M, however the basic
functions C*° (M, F) rarely form its Poisson subalgebra, cf. [21, 22] and Proposition 9.7
of [23]. However, for transversally symplectic foliations we have the following proposition:

PROPOSITION 1. If F is transversally symplectic, then C®°(M,F) = C®(M,F) =
C>(M/F) admits the structure of a Poisson algebra.

Proof. The form w projects on the holonomy invariant form @, which is a symplectic form
of N. The symplectic form @ defines a Poisson structure {, } y on N which assigns to two
H-invariant functions an H-invariant function. Therefore this Poisson structure lifts to a
Poisson structure {, } p on the set of basic functions C*° (M, F). The basic functions are
the same for both foliations F and F, therefore {, } 5 is a Poisson structure on the set
C*®(M,F). u

The above proposition is the first step in the proof of the fact that our stratified
pseudomanifold M /F is a symplectic stratified space, cf. [35], also [32, 31].

To proceed any further we have to ensure that the induced structure on the strata is
symplectic. The condition formulated below seems to be the most natural one. Assume
that F is transversally K&hler for the Riemannian metric g, the complex structure J and
the symplectic form w on the normal bundle N(M, F), and that J satisfies the following
condition:

(xx) J(TF)TF)CTF/TF

We shall look at the transverse symplectic and holomorphic structures and check whether
some of their components project onto the leaf space M/F and verify what structures
they induce.

First consider the principal stratum . The splitting of T'M reduces itself to T'F &
Q1 ® Q2 as X is an open and dense subset M. The normal bundle of F can be identified
with Q1 @ Q2 and TF/TF with Q;. So J acts on Q; © Qs. Since J(Q1) C Q1, then
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J(Q2) C Q2. Therefore as the splitting is g-orthogonal, it is also w-orthogonal and the
transverse symplectic form w can be written as w = w?°? + w%2, where w?? and w%2
are homogeneous components with respect to the splitting. Locally, the subbundle Q1 is
spanned by foliated Killing vector fields X such that Lxw = 0. Their flows preserve the
splitting so

Lx(w2’0 + wO’Q) = Lxw?% 4+ Lxw®?

and Lxw?? = 0 and Lxw?? = 0. The restrictions of both forms to Q1 and Q», respec-
tively, are of maximal rank. Therefore to prove that w%? is a transverse symplectic form
for the foliation F on X, it is sufficient to demonstrate that dw®? = 0.

In fact, 0 = dw = dw?? + dw®? = d1w?? + daw?° 4+ OwW?9 + d; w2 + dow®2.

Thus diw?? =0, dow?® =0, Ow??+diw”? =0, dow®? = 0. Therefore it remains

to prove that d;w%2? = 0. Now, for any vector field X of the commuting sheaf
wa0’2 =0= ixdw0’2 + din0’2 = ixdw0’2 = ixd1w0’2 + ixd2w0’2 = ixd1w0’2.

As these vector fields span the subbundle (); we obtain d;w®? = 0, and hence dw®? = 0.
Therefore our foliation F is transversally symplectic for the 2-form w%? = @. Thus the
projection my: Yo — Yo projects the 2-form @ to a symplectic form on ¥y, which we
denote by the same letter.

Let 3, be any stratum of (M, F). F induces a regular foliation without holonomy. In
[43] we have proved that global i.a. of F are tangent to the strata and that the module
X (M, F) of these global vector fields is transverse to F in each stratum. If X is an i.a.,
so is JX. Therefore each stratum is J-invariant, i.e. J(Q1 ® Q2) C Q1 ® Q2, hence the
splitting (*) over any stratum is also w-orthogonal. In this case the standard reasoning
ensures that the 2-form w, = i} w, where i, is the inclusion of the stratum X, into M, is a
transverse symplectic form of the foliated manifold (X, F). Now the same considerations
as for the principal stratum demonstrate that each stratum of the stratification S is a
symplectic manifold.

Let 7o Lo — 2o be the local trivial fibre bundle defining the foliation F on 3.
Clearly, the mapping 7, is a morphism of the Poisson algebras C*(Z,,F),{, }» and
C*(%4),1{, },, where the Poisson brackets {,}, and {,}, are defined by w, and @,,
respectively.

To complete the proof that M/F is a singular symplectic space we have to show that
for any X, € S the inclusion i,: ¥, — M/F is a Poisson morphism, i.e.

In fact,
{fag}B|ia7Ta = w(X5, Xg)|[Ba = wa(Xf|Za, X4[Xa) = {f|§avg|§a}aﬂ'a

as vector fields X, X, are tangent to strata.
Therefore we have proved the following lemma:

LEMMA 1. Let F be transversally almost Kdhler for the Riemannian metric g, the al-
most complex structure J and the symplectic form w on the normal bundle N(M,F). If
J(TF)TF) C TF)TF, then M/F is a singular symplectic space.
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3.2. Complex structure. At the beginning of the section we introduce the notion of an
almost complex structure adapted to a singular foliation.

DEFINITION 1. A (1,1)-tensor field J € Hom(TM,TM) is a foliated almost complex
structure iff

i) J(TF) C TF;

ii) for any i.a X of F the vector field JX is also an i.a. of F;

iii) for any i.a X of F J2X = —X modZF, i.e., they differ by a vector field tangent to
the leaves of F.

Properties. 1) In the regular case any transverse almost complex structure can be ex-
tended to a foliated almost complex structure, however such an extension is not unique.

2) If the foliation F is Riemannian and J(TF) C TF, then the strata of (M, F) are
J-invariant as global i.a. are transverse to leaf closures in the strata, cf. [33, 43].

3) On any stratum Y, the foliations F and F are regular. Then the tensor field
Jo = J|TE, is well defined and induces transverse almost complex structures for F|%,.

A foliated Riemannian metric g and a foliated almost complex structure J are said to
be compatible if g(JX, JY) = g(X,Y) for any vectors X,Y € TM. Then on any stratum
¥ the induced Riemannian metric g, and the induced foliated almost complex structure
J,, are compatible. Then the 2-form wo(X,Y) = go(JoX,Y) for X|Y € TY,, is basic.
Moreover, .J, induces a transverse almost complex structure for ?|Za.

The above considerations suggest the following definition.

DEFINITION 2. A singular foliation F on M is said to be transversally almost K&hler if
it admits a foliated Riemannian metric g and a foliated almost complex structure, which
are compatible, and such that on any stratum X, of the associated stratification of M
the 2-forms w, are closed. Such a structure is called transversally Kahler if the induced
almost complex structures are transversally integrable for F,.

Before formulating the theorem we prove the following simple property.

PROPOSITION 2. Let F be an RRF of a compact manifold M. If J is a foliated almost
complez structure for F and the closures of leaves are J-invariant then J is also foliated
for the leaf closure foliation F.

REMARK. The assumption about the J-invariance of the closures of leaves is essential as
indicated by the example presented in [11].

Proof. Our assumption means that the condition (i) of Definition 1 is satisfied. We have
to verify the conditions (ii) and (iii) for any i.a. X of 7. Let X be an i.a. of F and X, be a
stratum. Then X|¥, = X ] + X1, where X is the part tangent to the leaf closures and
X1 is the part orthogonal to the leaf closures. There exist global i.a.s of F X, ..., X¢
such that X3 = ¥jf;X¢. Therefore JX|S, = J(X, + X1) = J(X]) + J(X7) =
J(X])+ J( $f;X¢). Hence JX is an i.a. of F. The above calculations also show that
the third condition is satisfied. m
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Taking into account the previous considerations and Definition 2 the following theorem
is true:

THEOREM 2. Let F be a transversally almost Kdhler singular foliation on a compact
manifold M. Then the space of leaf closures M/F is an almost Kdihler singular space.

4. Connections. Connections have played a very important role in the theory of regular
foliations. There are two classes of connections “adapted” to a regular foliation, “Bott”
connections and foliated or transversally projectable ones, cf. [7, 19, 28, 42]. In the singular
case it is more difficult to give a satisfactory definition of an adapted connection. Let us
propose a definition of a connection “adapted” to a singular foliation based on the classical
definition of a connection as a differential operator. We will study conditions which will
permit us to project the connection to the leaf space, a singular stratified space.

Let F be a singular foliation on a smooth, compact, connected manifold M. Let
X (F) denote the sheaf of local vector fields which are tangent to leaves of F. The sheaf
X(F) is transitive on these leaves. Like-wise the Lie algebra X (F) = I'(M, X(F)) of
global sections of X' (F), i.e. of global vector fields tangent to leaves of F, is transitive
on leaves of F. Let X'(M,F) denote the sheaf of local infinitesimal automorphisms of F,
ie. Y € X(M,F) iff for any X € X(F) [V, X] € X(F). Obviously X(F) C X(M,F)
and X(F) € X(M,F). X(F) and X(F) are double ideals of X(M,F) and X(M,F),
respectively. On compact manifolds, for some regular foliations and all singular ones the
Lie algebra X (M, F) is not transitive on M.

Let V be a connection on the manifold M. We say that V is adapted to the foliation
F or V is a foliated connection on (M, F) if

1) for any X, Y € X(M,F) VxY € X(M, F);
2) for any X € X(F) and any Y € X(M,F) VxY € X(F) and Vy X € X(F).

Now we shall discuss these two conditions (1) and (2). Let’s check how restrictive they
are in the regular case.

A) Let F be a Riemannian foliation and V*¢ be the Levi-Civita connection. Using
the local form of a bundle-like metric it is easy to check that the Levi-Civita connection
of such a metric satisfies (1). Condition (2) implies that the foliation is totally geodesic
and that the orthogonal complement subbundle F* is integrable.

However, in the Riemannian case, we can define another connection. Consider the
splitting TM = TF @ TF* given by the bundle-like metric and let po: TM — TF* be
the orthogonal projection. We will define a connection V as follows: let V! be any metric
connection in T'F, the connection V2 in TF* is defined as follows: for any Y, Z € I'(TF™)
and X € X(F), let VLY = pu[X,Y] and VY = VzY where V is the transverse
Levi-Civita connection. The connection V in TM is defined as V! @ V2. It satisfies
both conditions (1) and (2), however it has torsion. It is a metric connection preserving
the natural splitting given by the bundle-like metric. Therefore it is a connection in the
O(p) x O(q) reduction B(M,O(p) x O(q)) of the bundle of orthogonal frames B(M, O(n))
given by the bundle-like metric. The existence of the torsion-free connection is linked to
the vanishing of the structure tensor of B(M, O(p) x O(q)), cf. [37, 42].



404 M. JOZEFOWICZ AND R. WOLAK

In [39], I. Vaisman proposed the following conditions for a linear connection V on a
manifold M foliated by a regular foliation F:

i) F is parallel with respect to V (i.e., V(X (F)) C X(F)),
ii) the torsion Ty takes values in T'F,

iii) the curvature Ry satisfies the condition
Ry(Z,X)Y € TF NZeTF, X,Y € TF*.

In the regular case, these conditions are “almost” equivalent (1) and (2). In fact,
(i) and (ii) imply easily (2), and (2) assures (i) and (ii) in the case when one of the
vectors is tangent to the foliation. The condition (iii) implies (1), cf. [39], vice versa:
Ry (Z,X)Y = VzVxY — VxVzY — V3 x)Y, therefore for any Z € X(F), XY €
X (M, F) the conditions (1) and (2) imply (iii).

In the case of singular foliations studied in this note we can replace the condition (2)
by

(2’) for any Z € X(F), and X,Y € X(M,F)

Ry (Z, X)Y € X(F).
Therefore we have the following theorem:

THEOREM 3. Let F be a compact SRF on a compact manifold M. Let V be a connection
satisfying the conditions:

(a) for any X € X(F) andY € X(M,F) VxY € X(F) and Vy X € X(F);
(b) Ry(Z,X)Y e TF NZ € TF, X,Y € TF*,

then any stratum X, of the natural stratification S of (M, F) is totally geodesic and the
restricted connection V< to the stratum %, is transversally projectable and induces a
connection V on the corresponding stratum X, of the leaf space M/F.

Let F be transversally Kéhler foliation of a compact manifold M and § = {3,} be
the associated stratification of M. The restriction F, to any stratum X, is transver-
sally Kahler and therefore transversally symplectic for the associated transverse sym-
plectic form w,, which defines a presymplectic structure. A torsion-free connection V
is called a presymplectic connection if any stratum X, is V-totally geodesic (parallel)
and Vw,(X,Y) =0 for any X, Y € TY,, cf. [39] for the definition in the regular case.
Symplectic and presymplectic connections have been a very hot research topic, cf., e.g.,
[38, 39, 2, 3|, particular attention being paid to their behaviour with respect to the
Marsden-Weinstein reduction, cf. [30].

Theorem 3 and Proposition 3.2 of [39] yield the following:

THEOREM 4. Let F be transversally Kdhler foliation of a compact manifold M and S =
{Xa} be the associated stratification of M. Then any presymplectic connection V induces
a family of symplectic connections on the strata of the singular Kdhler space M/F, the
leaf closure space of the foliated manifold (M, F).
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5. Ehresmann connections. Ehresmann connections for regular foliations have been
introduced by [12] and studied by many authors, cf., e.g., [5, 6, 44, 45]. The prime example
is the orthogonal complement of a totally geodesic foliation of a compact Riemannian
manifold. However, the singular case is much more complicated.

In [26], V. Miquel Molina and the second author have proved that on a compact
manifold an SRF which is minimal for a foliated Riemannian metric must be regular,
thus an SRF cannot be totally geodesic for a foliated Riemannian metric. Therefore we
cannot model our definition in the singular case on this classical example. There are
several possible approaches. In [47, 48], N. Zhukova proposes to consider a distribution
which is complementary to the tangent distribution to the leaves of the foliation, no
stratification is needed but this distribution is not differentiable. In [46], the second
author proposes a slightly different definition using an adapted stratification and obtains
different results.

As our main interest are singular foliations which admit an adapted stratification,
we present a definition that is more suitable and according to which an Ehresmann
connection is a differentiable distribution. The distribution is not complementary to the
foliation on the manifold M. It is impossible in the case of a singular foliation, but this
condition is satisfied in each stratum. According to [43], in the case of an SRF with
all leaves compact on a compact manifold, the orthogonal complement in each stratum
defines a global smooth distribution, spanned by global foliated vector fields. It will
be our model example of an Ehresmann connection. But there is no chance that local
diffeomorphisms of leaves defined by the orthogonal geodesics are local isometries, cf.
[18]. In the language of Ehresmann connections, the induced Ehresmann connections in
each stratum are not VIC-preserving, where V€ is the Levi-Civita connection of the
foliated Riemannian metric, cf. [6]. But the results obtained by the second author and
his collaborators suggest that a change of a Riemannian metric in each stratum can do
the trick.

Let (M,F) be a compact manifold M with singular foliation F and let S be the
associated stratification of M. We assume that the sheaf X'(M,F) is transitive on the
strata. A smooth distribution @ on M is called a complementary distribution on (M, F)
if for any %, € S the distribution @Q |y, is tangent to X, and TS, = TF |z, €Q |s., -
A smooth curve tangent to @ is called a Q-curve.

A complementary distribution on (M, F) is called a singular Ehresmann connection
of F if for any stratum X, 7v: [a,b] — X, leaf curve and §: [¢,d] — £, a Q-curve (i.e.
tangent to Q) such that v(c) = a(a), there exists a mapping o: [a,b] X [¢,d] — M, of the
following properties:

a) os: [a,b] — M, 0|[qx1s} is a leaf curve for any s € [¢,d] and 0. = 7;
b) for any t € [a,b] o' [c,d] — M, 0|{1x[c,q) is a Q-curve and 0% = .
Let G be a singular foliation on M whose tangent bundle ) is a complementary

distribution of F, and let V be a torsion free connection on M such that the leaves of F
and the strata of S are V-totally geodesic. Following [6], we say that

(i) the distribution @Q is F-invariant if Vy X € Q VY e TF, X € Q;
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(ii) @ preserves V if in each stratum the elements of holonomy along @Q-curves are
affine transformations.

In the singular case we have the following proposition, cf. Proposition 5.3 of [6].

PROPOSITION 3. If Q is F-invariant and R(X,Y)Z € Q for any X € Q, Y,Z € TF,
then Q) preserves V.

It is a simple extension of the above mentioned proposition as each stratum is V
totally geodesic and @ is tangent to strata. Likewise the singular version of Proposition
5.4 is true.

PROPOSITION 4. Let Q be F-invariant. Then if Q preserves V, then R(X,Y)Z € Q for
any X €Q, Y, Z € TF.

The assumption induces the same conditions in any stratum. Therefore the proposition
is true in any stratum, according to Proposition 5.4 of [6]. So our proposition follows.

PROPOSITION 5. If the connection V is complete, @ is F-invariant and R(X,Y)Z € Q
forany X € Q, Y, Z € TF, then Q is a singular Ehresmann connection.

We have to prove that for any stratum ¥, the restriction bundle Q|x,_ is an Ehresmann
connection for the regular foliation F|g_ of ¥,. The strata are foliated so we can apply
the same method as that used in [6] to prove Lemma 5.7.

THEOREM 5. Let (M, F) be a compact manifold M with singular foliation F and let S be
the associated stratification of M. Let G be a singular foliation on M whose tangent bundle
Q is a complementary distribution of F. Let V be a complete torsion free connection on
M such that the leaves of F and the strata of S are V-totally geodesic. If Q) is F-invariant
and R(X,Y)Z € Q forany X € Q, Y,Z € TF, then

1) the universal covering Yo of any stratum X, is topologically a product Lo x G
where Ly, Gg are the universal covers of leaves of the foliations Fo and Qq, respectively,
m B

2) the lifts of Fo and Q, to Xy is the foliation by Lo x {q} and {p} x G, respectively,
where p € I:a,q € Ga:

3) the projection Yo — Lq is an affine transformation if we restrict the lifted connec-
tion Vo to leaves of the lifted foliation Fp.

6. Curvature properties. Let (M, g, F) be a regular Riemannian foliation on a com-
pact manifold, F the SRF by leaf closures and let S = {X,}aca be the corresponding
stratification of M. The strata of S have the following nice property:

any geodesic orthogonal to F and tangent to a stratum at one point remains tangent
to the stratum in a neighbourhood of this point.

The standard argument, cf. [20], vol. 2, shows that if V is the Levi-Civita connection
of (M, g) VxY is tangent to X, for any vector fields X,Y orthogonal to F and tangent
to ¥,. Therefore on X, if po: TS, — TF:- denotes the orthogonal projection, V the
Levi-Civita connection of the induced Riemannian metric g, on ¥, we have the following:

pa(vXY) = pa(vXY)
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for any vector fields X,Y tangent to ¥, and orthogonal to F. This equality permits us
to establish some relations between the curvatures of the manifolds (M, g), (X4, go) and
the transverse curvature of the foliation F.

Let Secr denote the transverse sectional curvature of (M, g, F), Sec the sectional
curvature of (M, g) and Sec} the transverse sectional curvature of (X4, go, Fo). For any
2-subspace o orthogonal to the foliation F

Sec(o) < Secy(o).
Moreover, for any o C T, N TF+
Secr(o) = Seck(0).

On each stratum X, the foliation F by leaf closures is given by a global Riemannian
submersion 7, : ¥, — 2. Let denote by Sec, the sectional curvature of (2, Jo ), Where
Go 1s the Riemannian metric induced by the bundle-like metric g. Locally, the submersion
T, factorizes as follows:

U—-»V >V

where the first arrow is the projection of an open neighbourhood in ¥, onto a transverse
manifold of F,, which is a Riemannian submersion. Moreover, the transverse sectional
curvature on U is equal to the sectional curvature of the induced Riemannian metric.
As the traces of the closures of leaves on V are orbits of the commuting sheaf, cf. [28],
which consists of Killing vector fields, the second arrow is also a Riemannian submersion.
Therefore

Secq () > Secy(o)

where ¢ is the horizontal lift of & C T'X,,.

The above considerations lead us to the formulation of the following theorems:

THEOREM 6. If a Riemannian foliation of a compact manifold admits a transverse metric
of positive sectional curvature, then any stratum of the leaf closure space is a Riemannian
manifold of positive sectional curvature.

THEOREM 7. Let F be a Riemannian foliation of a compact Riemannian manifold of
positive sectional curvature. Then any stratum of the leaf closure space is a Riemannian
manifold of positive sectional curvature.

REMARK. Similar results are true for transversally K&hler foliations and ¢-sectional cur-
vature.

The results of [24] yield the following corollaries.

THEOREM 8. Let F be a Riemannian foliation of codimension three of a compact Rie-
mannian manifold. If the transverse Ricci curvature is positive definite, then on the strata
of the leaf closure space there exist Riemannian metrics of positive sectional curvature.

THEOREM 9. Let F be a Riemannian foliation of codimension four of a compact Rieman-
nian manifold. If the transverse curvature operator is positive definite, then on the strata
of the leaf closure space there exist Riemannian metrics of positive sectional curvature.
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