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Abstrat.We introdue di�eologial real or omplex vetor spaes. We de�ne the �ne di�eologyon any vetor spae. We equip the vetor spae H of square summable sequenes with the �nedi�eology. We show that the unit sphere S of H, equipped with the subset di�eology, is an em-bedded di�eologial submanifold modeled on H. We show that the projetive spae P, equippedwith the quotient di�eology of S by S1, is also a di�eologial manifold modeled on H. We de�nethe Fubini-Study sympleti form on P. We ompute the momentum map of the unitary group
U(H) on the sphere S and on P. And we show that this momentum map identi�es the projetivespae P with a di�eologial oadjoint orbit of the group U(H), where U(H) is equipped withthe funtional di�eology. We disuss some other properties of the sympleti struture of P. Inpartiular, we show that the image of P under the momentum map of the maximal torus T(H)of U(H) is a onvex subset of the spae of moments of T(H), in�nitely generated.INTRODUCTIONDi�eology is a theory that enlarges the sope of di�erential geometry. It was introduedby J.-M. Souriau [Sou81℄, and in a slightly di�erent way by K.-T. Chen [Che77℄ few yearsbefore. Di�eology has been suessfully tested on « singular » objets like irrational tori[DI85℄ [Igl85, Igl86℄ [IL90℄ or more reently on orbifolds [IKZ05℄. This paper shows, in thease of the in�nite Hopf �bration, how it an be used in a partiular in�nite dimensionalontext. Writing down this example I want to show how everything follows simply froma minimal set of onventions: the unique hoie of a di�eology on the standard Hilbertspae. No extra struture is needed, and the di�eologial framework just works. Whatneeds to be emphasized, in ontrast with topologial methods, is the very simple formaland oherent use of di�erential alulus o�ered by the general di�eologial framework. Forexample, di�eologial notions of forms, exterior derivative et. lead, among other things,to an elegant de�nition of the momentum map. This seems advantageous to me in this2000 Mathematis Subjet Classi�ation: Primary 58B99.The paper is in �nal form and no version of it will be published elsewhere.[349℄ © Instytut Matematyzny PAN, 2007



350 P. IGLESIAS-ZEMMOURfuzzy world of in�nite dimensional spaes, where it is not always lear how di�erentiabilityoexists with topology.Muh of the di�eologial material presented here is well known by speialists, butsome parts are new, required by the subjet. In partiular, the introdution of di�eologialvetor spaes, their �ne di�eology, and the de�nition of di�eologial manifolds.The set-theoreti onstrution of the in�nite Hopf �bration is well known, but let usreall it. We onsider the Hilbert spae H of square summable omplex sequenes withthe standard hermitian produt. The quotient of H− {0} by the multipliative ation of
C − {0} is the projetive spae P of omplex lines of H. This spae is equivalent to thequotient of the unit sphere S ⊂ H by the subgroup S1 ⊂ C− {0} of omplex numbers ofmodulus 1. The projetion S −→ P is the in�nite Hopf �bration. As a topologial spae,the sphere S is ontratible [Kak43℄, from whih it follows that S is the S1 topologiallassifying total spae E(S1) and P its base B(S1).Now, we onsider this onstrution from the di�eologial point of view. After a reviewof the main di�eologial de�nitions and onstrutions, we introdue the notion of di�eo-logial vetor spaes and some related onstrutions. The Hilbert spae H is then equippedwith the standard hermitian produt and with the �ne di�eology of vetor spae. Theunit sphere S of H inherits the subset di�eology, and the projetive spae P is equippedwith the quotient di�eology of S by S1. We shall see that:a) The sphere S, as well as the projetive spae P, are di�eologial manifolds, bothmodeled on H.b) The sphere S is ontratible as a di�eologial spae.) The projetion S −→ P is a di�eologial bundle, loally trivial. And, the (di�eologi-al) homotopy groups of P are π2(P) = Z, πk(P) = 0 if k 6= 2.Then we de�ne a ertain di�erential 1-form on S � an S1-onnetion form � alled Liou-ville's form, whose urvature generalizes to P the so-alled Fubini-Study sympleti form.On the other hand, the group U(H) of unitary transformations of H ats naturally on
S and P, preserving both the onnetion form and its urvature. We give a haraterizationof the funtional di�eology of the group U(H), for H equipped with the �ne di�eology.Further, we de�ne the spae G∗ of moments of a di�eologial group G as the set ofall left-invariant 1-forms of G. And, beause we don't need more generality here, we givethe expression of the momentum map, relative to a losed 2-form, in the very partiularase where this form is exat and has an invariant primitive. The general de�nition of themomentum map, for the di�eologial ontext, is given and studied in [PIZ05℄ (see also[Igl95℄). This di�eologial momentum map extends Souriau's original de�nition [Sou70℄given in the ontext of ordinary di�erential geometry. Then, we apply these onstrutionsto our ase, and we see that the harateristi urves of the momentum map µ of U(H)on S are the �bers of the projetion S −→ P. Hene, the momentum map µ fatorizesthrough P in the momentum map m of U(H) on P, more preisely:d) The momentum map m of U(H) on P is injetive and identi�es the projetive spae

P with a oadjoint orbit of U(H), where U(H) is equipped with the funtionaldi�eology assoiated to the �ne di�eology of H.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 351Finally, we introdue themaximal torus T(H) of the groupU(H) and, after restritionof the previous onstrution to T(H), we show that:e) The image of the momentum map of T(H) is an in�nitely generated onvex domainof the vetor spae T∗ of moments of T(H).Note that the topologial properties of in�nite dimensional topologial manifolds havebeen studied more generally than the partiular ase of the in�nite sphere, see for example[Kui65℄ [Pal65, Pal66℄. It would be interesting to have a di�eologial parallel for theseases too. It would also be very interesting to lassify the oadjoint orbits of U(H) in thisdi�eologial framework. We shall ertainly get all the �ag spaes of �nite rank, whih arediret extensions of the rank one �ag ase studied here. But it is unlear if they exhaustthe whole set of oadjoint orbits.Thanks. I am pleased to thank, warmly, François Ziegler for all his omments andsuggestions whih helped me to improve this text. It is a pleasure also to thank theorganizers of the onferene of B�dlewo, Jan Kubarski, Robert Wolak and Jean Pradineswho invited me to take part in it. I would not forget to thank also the Hebrew Universityof Jerusalem for its great hospitality and its warm atmosphere.REVIEW ON DIFFEOLOGYThis hapter is a review of the main di�eologial onstrutions used in this artile. Noproofs are given. The reader an �nd them in a web doument maintained at [PIZ05℄ orin [Igl85℄.1. De�nitions1.1. Domains and parametrizations. An n-numerial domain is any open subset of thevetor spae Rn, n ≥ 0. A numerial domain is any domain for any n ∈ N.A parametrization of a set X is any map P : U −→ X suh that U is a numerialdomain. If U is an n-numerial domain we say that P is an n-parametrization.1. The set of all the parametrizations of X de�ned on U is denoted by Param(U,X).2. The set of all n-parametrizations of X is denoted by Paramn(X).3. The set of all parametrizations of X is denoted by Param(X).4. If P is an n-parametrization, we say that the dimension of P is n, we denote it by:For all P ∈ Param(X), dim(P) = n ⇔ P ∈ Paramn(X).Let X be a set, and x be any point of X. A superset of x is any part V of X ontaining
x. If X is a topologial spae, an open superset of x is just a superset of x whih is openfor the given topology.1.2. Di�eology and di�eologial spaes. A di�eology of a set X is a subset D of parame-trizations of X, whose elements are alled plots, suh that the following axioms hold:



352 P. IGLESIAS-ZEMMOURD1. Covering. Any onstant parametrization is a plot: for any point x of X and forany integer n, the onstant map x : Rn −→ X, de�ned by x(r) = x for all r in Rn,is a plot.D2. Loality. For any parametrization P : U −→ X, if P is loally a plot at eah pointof U then P is a plot. This means that, if for every r in U there exists a superset Vof r suh that the restrition P ↾ V is a plot, then P is a plot.D3. Smooth ompatibility. The omposition of a plot with any smooth parametrizationof its soure is a plot: let P : U −→ X be a plot and let F belong to C∞(V,U), where
V is any numerial domain, then P ◦ F is a plot.A set equipped with a di�eology is alled a di�eologial spae.The �rst axiom implies that eah point of X is overed by a plot. The seond axiomlearly means that to be a plot is a loal ondition. And, the third axiom ensures someoherene of the use of the word di�erentiable in this ontext. The set of all plots ofthe di�eology D de�ned on a numerial domain U will be denoted D(U,X). Formally,a di�eologial spae is a pair (X,D) where X is an arbitrary set and D a di�eology of

X. But most of the time the di�eologial spae will be denoted by the single letter Xdenoting its underlying spae, the di�eology is understood.Let us note however that the distintion between di�eology as a struture and di�e-ologial spae as a set together with a di�eology is psyhologial: the di�eology ontainsthe underlying set as the set of 0-plots. As well, a topology ontains the underlying spaeas the union of all open sets.1.3. Standard di�eology of domains. The set of all smooth parametrizations of a nu-merial domain U ⊂ Rn is learly a di�eology. We shall all it the standard di�eologyof U.2. Di�erentiable maps. Di�eologial spaes are the objets of a ategory whose mor-phisms are di�erentiable maps, and isomorphisms are the di�eomorphisms.2.1. Di�erentiable maps and di�eomorphisms. Let X and Y be two di�eologial spaesand F : X −→ Y be a map. The map F is said to be di�erentiable if for eah plot P of
X, F ◦P is a plot of Y. The set of di�erentiable maps from X to Y is denoted C∞(X,Y).A bijetive map F : X −→ Y is said to be a di�eomorphism if both F and F−1 aredi�erentiable. The set of all di�eomorphisms of X is a group denoted Diff(X).2.2. The Di�eology ategory. The omposition of di�erentiable maps is di�erentiable.Di�eologial spaes, together with di�erentiable maps, de�ne a ategory, denoted {Di�eo-logy}. The isomorphisms of the ategory are di�eomorphisms.2.3. Plots are smooth. The set of di�erentiable maps from a numerial domain U intoa di�eologial spae X is exatly the set of plots of X de�ned on U. This is a diretonsequene of axiom D3. Hene, C∞(U,X) = D(U,X) and we may equally use these twonotations. This justi�es, a posteriori, the use of the symbol C∞ to denote the di�erentiablemaps between di�eologial spaes. And for this reason we may equally use the wordsmooth or the word di�erentiable.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 3532.4. Comparing di�eologies. A large number of onstrutions in di�eology use the fol-lowing relation on di�eologies: a di�eology D on a set X is said to be �ner than another
D′, if

D ⊂ D′.The relation ⊂ is a partial order on the di�eologies of any given set X. We say indi�erentlythat D is �ner than D′ or D′ oarser than D. Note that oarser means more plots and�ner means fewer plots.2.5. Disrete and oarse di�eologies. Any set X arries a �nest di�eology, �ner than anyother di�eology, alled the disrete di�eology. The plots of the disrete di�eology are theloally onstant parametrizations.Any set X arries a oarsest di�eology, ontaining any other di�eology, it is alled theoarse di�eology. The plots of the oarse di�eology are all parametrizations of X, that isthe whole set Param(X).In these two ases, the three axioms of di�eology, overing, loality and smooth om-patibility, are obviously satis�ed. Any di�eology is somewhere between the disrete andthe oarse di�eologies.2.6. Interseting di�eologies. As an illustration of the partial order on di�eologies, letus ite the following proposition. Let X be a set and D be any family of di�eologies of
X. The intersetion ⋂

D∈D

Dis a di�eology. It is the oarsest di�eology ontained in every element of D, the �nest beingthe disrete di�eology. This proposition is used to prove that every family of di�eologieshas a supremum and an in�mum. In other words, di�eologies form a lattie.3. Generating families and dimension. Generating families are a onvenient anduseful tool in order to de�ne a di�eology. They are de�ned by the following proposition.3.1. Generating families. Let X be a set, let F be some subset of parametrizations of X.There exists a �nest di�eology ontaining F. This di�eology will be alled the di�eologygenerated by F and denoted 〈F 〉. This di�eology is the in�mum (art. 2.6) of all di�eologiesontaining F. Given a di�eologial spae X, a family F generating the di�eology of X isalled a generating family of X. The plots of the di�eology generated by F are given by:GF A parametrization P : U −→ X is a plot of the di�eology generated by F if and onlyif for every point r of U there exists a superset V ⊂ U of r suh that either P ↾ Vis a onstant parametrization, or there exists an element Q : W −→ X of F and asmooth parametrization F : V −→ W suh that P ↾ V = Q ◦ F.In the seond ase, we say that the plot P lifts loally along F, or that Q is a loal liftingof P along F (see �g. 1). Note that generating di�eologies is a projetor, that is for anydi�eology D we have 〈D〉 = D.3.2. Generated by the empty set. Note that, for any set X, the empty family F = ∅generates the disrete di�eology.
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Fig. 1. Loal lifting of P along F

3.3. Dimension. Let X be a di�eologial spae and let D be its di�eology. Let us alldimension of a generating family F of D the supremum of the dimensions of the plots ofthe family:
dim(F) = sup{dim(P) | P ∈ F},where dim(P) is de�ned in (art. 1.1). We de�ne the dimension of the spae X as thein�mum of the dimensions of the generating families of the spae:

dim(X) = inf{dim(F) | 〈F 〉 = D}.Note that dim(F) as well as dim(X) an be either �nite or in�nite. For more details aboutdimension in di�eology see [PIZ06℄.3.4. Dimensions of numerial domains. As we should expet, the dimension of a numer-ial domain U ⊂ Rn, equipped with the standard di�eology, is just n.3.5. Di�erentiable maps via generating families. Let X be a di�eologial spae generatedby a family F and X′ a di�eologial spae generated by a family F′. Let f : X −→ X′ bea map. The map f is di�erentiable if and only if for eah element P : U −→ X of F, foreah point r of U there exists a superset V of r, an element P′ : U′ −→ X′ of F′ and asmooth parametrization F : V −→ U′ suh that f ◦ P ↾ V = P′ ◦ F. This is illustrated bythe following diagram:
X X′-

f

U ⊃ V U′-F

?

P
?

P′

4. Pullbaks of di�eologies and indutions. The ategory {Di�eology} is stableunder the subset operation. This stability is expressed by the following onstrution.4.1. Pull-baks of di�eologies. Let X be a set, and Y be a di�eologial spae. Let f : X −→
Y be a map. There exists a oarsest di�eology on X suh that the map f is di�erentiable.This di�eology is alled the pull-bak di�eology. A parametrization P of X is a plot of



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 355the pull-bak di�eology if and only if f ◦ P is a plot of Y. Let D be the di�eology on Y,
f∗(D) will denote the pull-bak di�eology of D by f .

f∗(D) = {P ∈ Param(X) | f ◦ P ∈ D}.4.2. Compositions of pull-baks. Let X, Y be two sets and Z be a di�eologial spae. Let
f : X −→ Y and g : Y −→ Z be two maps. Let D be a di�eology on Z, then f∗(g∗(D)) =

(g ◦ f)∗(D).4.3. Indutions. Let X and Y be two di�eologial spaes. A map f : X −→ Y is alledan indution if f is injetive and if the pull-bak di�eology of Y by f oinides with thedi�eology of X. That is, the plots of X are the parametrizations P of X suh that f ◦ Pare plots of Y.4.4. Surjetive indutions. Let f : X −→ Y be an injetion, where X and Y are dif-feologial spaes. The map f is an indution if and only if for any plot P of Y, withvalues in f(X), the map f−1 ◦ P is a plot of X. In partiular, surjetive indutions aredi�eomorphisms.4.5. Compositions of indutions. The omposition of two indutions is again an indu-tion. Indutions make up a subategory of the ategory {Di�eology}.4.6. Subset di�eology and di�eologial subspaes. Let X be a di�eologial spae. Anysubset A ⊂ X arries a natural di�eology indued by the inlusion. Namely the pull-bakdi�eology by the inlusion jA : A →֒ X (art. 4.3). Equipped with this indued di�eologythe subset A is alled a subspae of X. This di�eology is also alled the subset di�eology.The plots of the subset di�eology of A are the plots of X taking their values in A.4.7. Sums of di�eologial spaes. Let X be a family of di�eologial spaes, there existson the disjoint union ∐
X of the elements of X:

∐
X =

∐

X∈X

Xa �nest di�eology suh that eah injetion jX : X →֒
∐

X is di�erentiable. This di�eologyis alled the sum di�eology of the family X. The plots of the sum di�eology are theparametrizations P of X whih are loally plots of elements of the family X. In otherwords, a parametrization P : U −→ ∐
X is a plot of the sum di�eology if and only if thereexists an open overing {Ui}i∈I of U and for eah i ∈ I an element Xi of the family X,suh that P ↾ Ui is a plot of Xi. For this di�eology, the injetions jX are indutions.5. Push-forwards of di�eologies and subdutions. The ategory {Di�eology} isstable by quotient, this stability is a onsequene of the following onstrution.5.1. Push-forward of di�eologies. Let X be a di�eologial spae. Let Y be a set and

f : X −→ Y be a map. There exists a �nest di�eology on Y suh that f is di�erentiable.This di�eology is alled the push-forward (or image) of the di�eology of X. Let D be thedi�eology of X, the image of D by f is denoted f∗(D). A parametrization P : U −→ X isan element of f∗(D) if and only if for any r ∈ U there exists a superset V of r suh thateither P ↾ V is a onstant parametrization or there exists a plot Q : V −→ X suh that
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P ↾ V = f ◦Q. In other words, the di�eology f∗(D) is generated (art. 3.1) by the plots ofthe form f ◦ Q where Q is a plot of X.5.2. Subdutions. Let X and Y be two di�eologial spaes. A map f : X −→ Y is alled asubdution if it is a surjetion and if the image of the di�eology of X (art. 5.1) oinideswith the di�eology of Y. In this ase, a parametrization P : U −→ Y is a plot if andonly if for any r ∈ U there exists a superset V of r and a plot Q : V −→ X suh that
P ↾ V = f ◦ Q.5.3. Quotients of di�eologial spaes. Let X be a di�eologial spae and let ∼ be anyequivalene relation on X. The quotient spae Q = X/∼ arries a quotient di�eology,image of the di�eology of X by the projetion π : X −→ Q. A parametrization P : U −→ Qis a plot of the quotient di�eology if and only if for any r of U there exists a superset Vof r and a plot P′ : V −→ X suh that P ↾ V = π ◦ P′.5.4. Injetive subdutions. Injetive subdutions are di�eomorphisms.5.5. Compositions of subdutions. The omposition of two subdutions is again a sub-dution. Subdutions make up a subategory of the ategory {Di�eology}.5.6. Subquotients. Let X be a di�eologial spae, and let ∼ be an equivalene relationde�ned on X. Let A ⊂ X and let ∼A be the restrition of ∼ to A. Let J be the indutionfrom A into X, and let j be the quotient map, de�ned from A/∼A to X/∼. Let πA : A

−→ A/∼A and π : X −→ X/∼ be the projetions onto the quotients.
A/∼A X/∼-

j

A X-
J

?

πA

?

π

The subset A is equipped with the subset di�eology (art. 4.6), and the spaes A/∼A and
X/∼ are equipped with the quotient di�eology (art. 5.3). The map j is a di�erentiableinjetion. It is an indution if and only if for any plot P : U −→ X, for any r ∈ U, thereexists a superset V of r and a plot Q : V −→ A suh that π ◦P ↾ V = π ◦Q. This happens,in partiular, if there exists a di�erentiable map ρ : X −→ A suh that π◦ρ = π. Moreover,in this ase, if π ↾ A is surjetive then j is a di�eomorphism.This proposition will be used later to identify the in�nite projetive spae, with thequotient of the in�nite sphere by the ation of S1 (art. 18.1).5.7. Produts of di�eologial spaes. Let X be a family of di�eologial spaes, there existson the produt ∏

X =
∏

X∈X

Xa oarsest di�eology suh that, for eah X belonging to X the projetion πX :
∏

X −→ X isdi�erentiable. This di�eology is alled the produt di�eology. The plots of this di�eologyare the parametrizations P : U −→
∏

X suh that for eah X ∈ X, πX ◦ P is a plot of X.For this di�eology the projetions πX are subdutions.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 3576. D-topology, loality, embeddings. . . Di�eologies are de�ned on arbitrary setsand are not subordinate to any extra struture. In partiular they do not assume theexistene of any underlying topology. But a set, when it is equipped with a di�eology,arries a natural topology, de�ned by ompatibility with the di�eology. This topologyis used to introdue loality into the di�eologial framework. And it is through thisonstrution that di�erential geometry of manifolds takes its plae in the di�eology theory.6.1. D-Topology. Let X be a di�eologial spae. There exists on X a �nest topology suhthat the plots are ontinuous. This topology is alled D-topology [Don84℄. The open setsof the D-topology are the subsets A ⊂ X suh that for eah plot P of X, the pull-bak
P−1(A) is open. The open sets for the D-topology are alled D-open.6.2. Di�erentiable maps and ontinuity. Let X and Y be two di�eologial spaes. Anydi�erentiable map f : X −→ Y is ontinuous for the D-topology, one says that f isD-ontinuous. In other words, onsidering the D-topology, C∞(X,Y) ⊂ C0(X,Y).6.3. D-topology on numerial domains. The D-topology of numerial domains, equippedwith the standard di�eology (art. 1.3), oinides with the standard topology.6.4. D-topology of disrete spae. The D-topology of the disrete di�eology is the disretetopology. The D-topology of the oarse di�eology is the oarse topology. But, a non oarsedi�eologial spae an inherit the oarse D-topology.6.5. Quotients and D-topology. Let X be a di�eologial spae and ∼ be an equivalenerelation de�ned on X. The D-topology of the quotient X/∼ is the quotient topology ofthe D-topology of X.6.6. Embeddings. Let A be a subset of a di�eologial spae X. The set A arries twonatural topologies: its D-topology given by the subset di�eology, and the subset topologyindued by the D-topology of the ambient spae X. If these two topologies oinide weshall say that A is embedded in X.Note that, to be embedded depends only on the di�eology of the ambient spae X,and not on any extra-struture, nor other di�eology. A subset of a di�eologial spae isembedded or not. For example, the set of rational numbers Q ⊂ R is disrete (that is itssubset di�eology is disrete), but not embedded in R.6.7. Loal di�erentiability and di�erentiability. Let X and Y be two di�eologial spaes.A map f : A −→ Y de�ned on a part A ⊂ X is said to be loally di�erentiable if, for eahplot P of X, f ◦P is a plot of Y. Note that f ◦P is de�ned on P−1(A) whih is neessarilyopen if f ◦ P is a plot. So, if f : A −→ X is loally di�erentiable, A is neessarily D-open,sine for eah plot P of X, P−1(A) is a domain.Let f : X −→ Y be a map between di�eologial spaes. We shall say that f is loallydi�erentiable at the point x ∈ X if there exists a superset V of x suh that f ↾ V is loallydi�erentiable (whih implies that V is D-open). The map f is di�erentiable if and onlyif it is loally di�erentiable at eah point x of X.6.8. Loal di�eomorphisms. Let X and Y be two di�eologial spaes. Let f : A −→ Y bea map de�ned on a part A ⊂ X. The map f is said to be a loal di�eomorphism if



358 P. IGLESIAS-ZEMMOUR1. f is injetive,2. f is loally di�erentiable as well as f−1, de�ned on f(A).In this ase, A and f(A) are both D-open and f : A −→ f(A) is a di�eomorphism where
A and f(A) are equipped with their subset di�eology. This is a neessary and su�ientondition for being a loal di�eomorphism.6.9. Di�eology is a loal struture. There is another way to express the loality of di�e-ologies ontained in the axiom of loality (art. 1.2). Let us onsider a same set X equippedwith two di�eologies D and D′. If there exists a D-open overing U of X suh that the re-strited di�eologies of D and D′ oinide on eah element U of U, then the two di�eologies
D and D′ oinide.7. Funtional di�eology. In the ategory {Di�eology} the spaes of di�erentiablemaps between di�eologial spaes are naturally di�eologial spaes. This property isvery onvenient for many di�eologial onstrutions, in partiular � but not only �for homotopy.7.1. Funtional di�eology. Let X and Y be two di�eologial spaes. A funtional di�e-ology on C∞(X,Y) is a di�eology suh that the map

ev : C∞(X,Y) × X −→ Y with ev(f, x) = f(x)is di�erentiable. For example, the disrete di�eology is a funtional di�eology. However,there exists on C∞(X,Y) a oarsest funtional di�eology, alled the standard funtionaldi�eology, or simply the funtional di�eology. A plot of the standard funtional di�eologyis any parametrization P : U −→ C∞(X,Y) suh that for any plot Q : V −→ X theparametrization P · Q : (r, s) 7→ P(r)(Q(s)) is a plot of Y. In partiular, there exists anatural di�eomorphism between C∞(X,C∞(Y,Z)) and C∞(X×Y,Z), where X, Y, Z areany di�eologial spaes.7.2. Funtional di�eology of groups of di�eomorphisms. Let X be a di�eologial spaeand Diff(X) its group of di�eomorphisms. The standard funtional di�eology has a spe-ialization in the ase of Diff(X) ⊂ C∞(X,X). A group di�eology (art. 11.1) is a di�eol-ogy suh that the multipliation and the inversion are di�erentiable. Now, there existsa oarsest group di�eology on Diff(X) suh that the funtion ev (art. 7.1) is di�eren-tiable, it is alled the standard funtional di�eology of Diff(X). A parametrization P : U

−→ Diff(X) is a plot of this di�eology if and only if for any plot Q : V −→ X the two maps
(r, s) 7→ P(r)(Q(s)) and (r, s) 7→ P(r)−1(Q(s)) are plots of X.8. Homotopy. The traditional theory of homotopy extends naturally to di�eologialspaes. This paragraph presents just the onstrutions of the homotopy groups of di�eo-logial spaes. For more details on homotopy in di�eology see [Igl85℄.8.1. Conneted omponents of di�eologial spaes. Let X be a di�eologial spae, wedenote by Paths(X) the set of global 1-plots of X

Paths(X) = C∞(R,X),



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 359equipped with the funtional di�eology. The relation of homotopy or onnetedness isde�ned on X by:
x ∼ x′ ⇔ there exists γ ∈ Paths(X) suh that γ(0) = x and γ(1) = x′.If x ∼ x′ we say that x is homotopi to x′ or onneted to x′. To be homotopi is anequivalene relation. A lass of this relation is alled a onneted omponent of X. Thelass, or the onneted omponent, of x ∈ X is denoted [x]. The spae of onnetedomponents of X, denoted π0(X), is the quotient of X by the relation of homotopy:

π0(X) = X/∼ .Equipped with the quotient di�eology, the spae π0(X) is disrete. More preisely, thepartition into onneted omponents is the �nest partition of X suh that X is the sum(art. 4.7) of its parts. The pointed spae π0(X, x0), where x0 ∈ X, is de�ned as
π0(X, x0) = (π0(X), [x0]).If π0(X) = {[x0]} for some x0 ∈ X, the spae X is said to be onneted.8.2. Iterated loop spaes and higher homotopy. Let X be any di�eologial spae and

x0 ∈ X. The spae of loops based at x0 is de�ned as:
Loops(X, x0) = {γ ∈ Paths(X) | γ(0) = γ(1) = x0}.The spae Loops(X, x0) is equipped with the funtional di�eology. The higher homotopyspaes are de�ned by reursion:

πk(X, x0) = πk−1(Loops(X, x0), x̂0), x0 ∈ X, x̂0 = [t 7→ x0].In partiular, the spae
π1(X, x0) = π0(Loops(X, x0), x̂0)is alled the fundamental group of X, based at x0. Juxtaposition of loops, desribed below(art. 8.3), gives π1(X, x0) a struture of group. If X is onneted and π1(X, x0) = {[x̂0]}the spae X is said to be 1-onneted, or onneted and simply onneted.8.3. Homotopy group multipliation. Let X be a di�eologial spae and let x0 ∈ X. Let

γ and γ′ be two loops, based at x0. The juxtaposition of γ with γ′ is de�ned traditionallyby:
γ ∨ γ′ =

{
γ(2t) if t < 1/2,

γ′(2t− 1) if 1/2 < t.Then, the group operation on the homotopy groups is de�ned on the lass of loops by:
[γ] · [γ′] = [γ ∨ γ′].But γ∨γ′ is, not neessarily a path, that is, not neessarily di�erentiable. So, we « smash »

γ and γ′ at their ends, omposing them with a « smashing funtion » ε, desribed by�gure 2.The smashing funtion ε is a smooth real funtion, homotopi to the identity of R,sending an open superset of ]−∞, 0] to 0 and an open superset of [1,∞[ to 1. Hene, thejuxtaposition of the paths γ̃ = γ ◦ ε and γ̃′ = γ′ ◦ ε is now a (di�erentiable) path with
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ε
1

0 1Fig. 2. The smashing funtion ε

the same ends as γ ∨ γ′. Now, sine for any path γ or γ′, the smashed path is homotopito the path itself, the operation de�ned on the lasses of loops [γ] and [γ′] by
[γ] · [γ′] = [γ̃ ∨ γ̃′]is well de�ned. As usual, we an hek that this omposition is a group operation: itsidentity is the lass of the onstant path x̂0 : t 7→ x0, and the inverse of the lass [γ] isthe lass [γ]−1 = [t 7→ γ(1 − t)]. The spae π1(X, x0) is always onsidered equipped withthis group struture.Now let us introdue the following iterated spaes: For all k > 1,

Loopsk(X, x0) = Loopsk−1(Loops(X, x0), x̂
k−1
0 ) and x̂k

0 : t 7→ x̂k−1
0 ,initialized by:

Loops1(X, x0) = Loops(X, x0) and x̂1
0 : t 7→ x̂0.So, the reursion de�ned in (art. 8.2), gives in partiular for k ≥ 1:

πk(X, x0) = π0(Loopsk(X, x0), x̂
k
0) and πk(X, x0) = π1(Loopsk−1(X, x0), x̂

k−1
0 ).Now, any higher homotopy spae πk(X, x0), k ≥ 1, is a group sine it is the fundamentalgroup of some intermediate loop spae. Moreover, as in the usual theory of homotopy, for

k ≥ 2 we hek that πk(X, x0) is abelian [Igl85℄.8.4. Contratibility. A di�eologial spae is said to be ontratible if the identity map
1X = [x 7→ x] is homotopi (art. 8.1) to some onstant map x0 = [x 7→ x0], with
x0 ∈ X, and C∞(X,X) equipped with the standard funtional di�eology. Note that if Xis ontratible any homotopy group is trivial: πk(X) = {⋆}.9. Di�eologial �brations. Fiber bundles in the ategory {Di�eology} and their prop-erties are detailed in [Igl85℄. Di�eologial �brations are de�ned below, they are projetionssatisfying a property of loal triviality along plots. Note that this de�nition, even if it o-inides with the standard de�nition for �nite dimensional manifolds, is more �exible thanits topologial analogue whih requires loal triviality. For example, any quotient G/H ofa di�eologial group G (art. 11.1) by a subgroup H is a di�eologial �bration with �ber
H. But these �brations G −→ G/H are not always loally trivial, for the D-topology, as



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 361many examples show. The following is a limited and pedestrian reminder of the mainonstrutions.9.1. Di�eologial �ber bundles. Let π : T −→ B be a map between di�eologial spaes.We shall say that π is a di�eologial �bration if there exists a di�eologial spae F suhthat for any plot P : U −→ B the pull-bak P∗(T) de�ned by
P∗(T) = {(r, t) ∈ U × T | P(r) = π(t)}is loally trivial over U, with �ber F. More preisely, for any r ∈ U there exists anopen superset V ⊂ U of r, a di�eomorphism Φ : V × F −→ (P ↾ V)∗(T) suh that

pr1(Φ(r, f)) = r, where pr1 is the �rst projetion from (P ↾ V)∗(T) onto V. The spae Fis alled the �ber. We say that π is loally trivial along the plots.Note that this de�nition involves, indiretly, the funtional di�eology of the group ofdi�eomorphisms (art. 7.2) of F, but we shall not develop this aspet here, for a ompre-hensive report see [Igl85℄. Note also that a di�eologial �bration is a fortiori a subdution(art. 5.2).9.2. Bundles and homotopy. Fiber bundles are not neessarily loally trivial for theD-topology, for example this fails for irrational �brations of tori [Igl85℄. However, itan happen that di�eologial �ber bundles are also loally trivial. This is the ase for thein�nite Hopf �bration (art. 18.1). But, despite this lak of loal triviality, any di�eologial�ber bundle satis�es the homotopy exat sequene [Igl85℄ :
· · · −→ πk+1(B, b0) −→ πk(F, t0) −→ πk(T, t0) −→ πk(B, b0) −→ · · · −→ {0}where π : T −→ B is a di�eologial �bration, b0 ∈ B, π(t0) = b0 and F = π−1(b0).10. Di�erential alulus in di�eology. As a �nal struture, di�eologies support a wellde�ned, and easy to use, notion of di�erential forms. They are de�ned by funtorialitywith di�erential forms of numerial domains.10.1. Di�erential forms. Let X be a di�eologial spae, a k-form on X is any map αwhih assoiates to any plot P : U −→ X a k-form de�ned on U, denoted by α(P), suhthat for any numerial domain V and any smooth parametrization F : V −→ U,

α(P ◦ F) = F∗(α(P)).The k-form α(P) and the pull-bak F∗(α(P)) are understood as usual. We denote by
Ωk(X) the vetor spae of k-forms on X. In the same spirit as for di�erentiable maps,there exists on any spae Ωk(X) a funtional di�eology [PIZ05℄ suh that addition andmultipliation by a salar are di�erentiable.10.2. Exterior di�erential of a form. Many usual onstrutions on di�erential forms havea natural generalization to di�eologial spaes. The exterior di�erential is an exampleamong many. Let α be a k-form on X. The exterior di�erential dα is de�ned by:

(dα)(P) = d(α(P)),for any plot P of X. This de�nition gives rise to the de Rham ohomology, de�ned asusual by
H∗

dR(X) = Z∗
dR(X)/B∗

dR(X),



362 P. IGLESIAS-ZEMMOURwhere Z∗
dR(X) and B∗

dR(X) denote respetively the subspae of losed and exat di�erentialforms of X.For example [DI85℄ the de Rham ohomology of the irrational torus Tα = R/(Z+αZ)is
Hk

dR(Tα) = {0} if k 6= 1 and H1
dR(Tα) = R.10.3. Pullbaks of di�erential forms. Let X and Y be two di�eologial spaes. Let f : X

−→ Y be a di�erentiable map, let α be a k-form on Y, then the pull-bak of α by f isde�ned by:
[f∗(α)](P) = α(f ◦ P),for all plots P of X. We hek easily that f∗(α) is a well de�ned k-form on X. This lastde�nition justi�es the following notation, or interpretation:

P∗(α) = α(P).And the form α(P) ∈ Ωk(U), where P : U −→ X is a plot, an be interpreted as the
« oordinates » of the form α in the plot P.10.4. Loality of forms. Let X be a di�eologial spae. Let (Xi)i∈I be a D-open over of
X, that is an open over for the D-topology (art. 6.1). Let (αi)i∈I be a family of k-formssuh that:1. For every index i, αi is a k-form on Xi, equipped with the subset di�eology (art. 4.6).2. For every pair i and j of indies, αi ↾ Xi ∩ Xj = αj ↾ Xi ∩ Xj .Then, there exists a unique k-form α on X suh that αi = α ↾ Xi.10.5. Equality of forms. Let α and β be two p-forms de�ned on a di�eologial spae X,
α = β if and only if, for every p-plot P of X: α(P) = β(P). In partiular, a p-form vanishesidentially if and only if it vanishes on every p-plot. Although, if p-forms are haraterizedby their values on p-plots, their di�erentiability is ensured by the di�erentiability of theirvalues on every plot and not only on the p-plots.10.6. Invariant forms and automorphisms of a form. Let X be a di�eologial spae and
α a k-form on X, let f be a di�eomorphism of X; we say that α is invariant by f if
f∗(α) = α. In other words, the form α is invariant by f if and only if, for any plot P of
X, α(P) = α(f ◦ P). The set of all automorphisms of a form α, denoted by

Aut(α) = {f ∈ Diff(X) | f∗(α) = α},is a group. This group is also alled the group of symmetries of the form α. Equippedwith the funtional di�eology, Aut(α) is a di�eologial group in the natural sense givenbelow (art. 11.1).11. Di�eologial groups and moments. Di�eologial groups were �rst introdued as
« groupes di�érentiels » in the early '80s [Sou81, Sou84℄. They are to di�eologial spaeswhat Lie groups are to manifolds. We reall here their de�nition. Then, we propose[PIZ05℄ as an equivalent to the �dual of the Lie algebra�, the spae of invariant 1-forms ofthe group. We don't onsider any duality with a putative di�eologial Lie algebra. Thisis the orret way to talk about oadjoint ation or oadjoint orbits in di�eology.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 36311.1. Di�eologial groups. Let G be a group equipped with a di�eology. We say that Gis a di�eologial group if multipliation as well as inversion are di�erentiable:
[(g, g′) 7→ gg′] ∈ C∞(G × G,G) and [g 7→ g−1] ∈ C∞(G).Note that if G is a �nite dimensional manifold this de�nition is nothing but the de�nitionof Lie groups. We denote by L(g) and R(g) the left and right ations of G on itself.For all g ∈ G,

{
L(g) : g′ 7→ gg′

R(g) : g′ 7→ g′gNote that the « right ation » is in fat an anti-ation. The adjoint ation of G onto itselfis denoted Ad and de�ned by:For all g ∈ G, Ad(g) : k 7→ gkg−1 = L(g) ◦ R(g−1)(k).11.2. Moments of a di�eologial group. We allmoment (ormomentum) of a di�eologialgroup G any 1-form on G, invariant by the left ation. We denote by G∗ the spae ofmoments of G. The spae of moments of a di�eologial group is naturally a vetor spae.
G∗ = {α ∈ Ω1(G) | For all g ∈ G, L(g)∗(α) = α}.There exists a natural isomorphism between the spae of left-invariant 1-forms and right-invariant 1-forms [PIZ05℄.Note that in spite of what the notation G∗ suggests, the spae of moments of a di�eo-logial group is not de�ned by some duality. This notation is hosen here just to remindus the onnetion with the dual of the Lie algebra in the ase of Lie groups.11.3. Coadjoint ation of G on G∗ and oadjoint orbits. The pull-bak of a moment

α ∈ G∗ by the adjoint ation of G is still a moment of G, that is still a left-invariant1-form. This de�nes a linear ation of G on G∗ alled the linear oadjoint ation. We shalldenote: For all g ∈ G, for all α ∈ G∗, Ad∗(g)(α) = Ad(g−1)∗(α).And one heks that it is indeed an ation of G:For all g, g′ ∈ G, Ad∗(gg′) = Ad∗(g) ◦ Ad∗(g′).Note that, sine α is left-invariant, Ad∗(g)(α) = R(g)∗(α). Let α be a moment of G, theorbit of α by G is, by de�nition, a linear oadjoint orbit of G. And it will be denoted:
Oα or Ad∗(G)(α) = {Ad∗(g)(α) | g ∈ G}.The orbit Oα an be viewed also as the quotient of the group G by the stabilizer of themoment α,

Oα ≃ G/StG(α), with StG(α) = {g ∈ G | R(g)∗(α) = α}.The orbit Oα will be equipped in the following with this quotient di�eology.Note that the vetor spae G∗ arries a funtional di�eology [PIZ05℄ whih indues on
Oα a subset funtional di�eology. There is no reason a priori that these two di�eologiesoinide. But it ould be interesting however to understand in whih onditions they do.



364 P. IGLESIAS-ZEMMOURDIFFEOLOGICAL VECTOR SPACES AND MANIFOLDSWe onsider the �elds of real numbers R and omplex numbers C, equipped with theirstandard di�eologies. The �eld C is di�eologially equivalent to R2. The natural map
(x, y) 7→ z = x + iy, from R2 to C, is a di�eomorphism of di�eologial spae. In otherwords, a plot of C is just a parametrization r 7→ P(r)+ iQ(r) where P and Q are smoothreal parametrizations. In the following, the letter K denotes R or C.12. Basi onstrutions and de�nitions12.1. Di�eologial vetor spaes. Let E be a vetor spae over K, we all vetor spaedi�eology on E, any di�eology of E suh that addition (u, v) 7→ u+ v, and multipliationby a salar (λ, u) 7→ λu, are di�erentiable, where the spaes E × E and K × E areequipped with the produt di�eology (art. 5.7). The spae E, equipped with a vetorspae di�eology, is alled a di�eologial vetor spae.12.2. Finite dimensional vetor spaes. Finite dimensional vetor spaes, over R or C,equipped with their standard di�eology are di�eologial vetor spaes. But, note that anyvetor spae equipped with the oarse di�eology is also a di�eologial vetor spae.12.3. Example: salar di�erentiable maps. Let X be a di�eologial spae, and E =

C∞(X,Kn), the spae of di�erentiable maps from X to Kn. The spae E is naturallya K-vetor spae for pointwise addition and multipliation by a salar. Equipped withthe funtional di�eology, E is a di�eologial K-vetor spae.12.4. Produts and quotients of di�eologial vetor spaes. The produt of any familyof di�eologial vetor spaes is a di�eologial vetor spae for the produt di�eology. Aswell, the quotient of any di�eologial vetor spae by any subspae is a di�eologial vetorspae for the quotient di�eology.Proof. Let us onsider the produt E =
∏

E∈E
E of a family E of di�eologial vetorspaes. The elements of E are the families x = (xE)E∈E, where the xE are elements of E.The sum and the produt are de�ned by: x + x

′ = (xE)E∈E + (x′E)E∈E = (xE + x′E)E∈E,and λx = λ(xE)E∈E = (λxE)E∈E. A parametrization P : U −→ E is a plot if, for every Ein E, the parametrization P ◦ πE is a plot of E, where πE is the projetion from E ontoits fator (art. 5.7). Sine addition and multipliation are di�erentiable on every fatorof E, it is lear that they are di�erentiable on E.12.5. Di�erentiable linear maps and ategory. Let E and F be two di�eologial vetorspaes over K. Addition of linear maps from E to F, as well as multipliation by asalar are di�erentiable. As an immediate onsequene, the spae LC∞(E,F) of K-lineardi�erentiable maps from E to F is a K-vetor subspae of L(E,F).Di�eologial vetor spaes, together with di�erentiable linear maps, form a ategory,the di�eologial linear ategory. Isomorphisms of this ategory are bi-di�erentiable linearisomorphisms.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 36513. Fine di�eology of vetor spaes. Any K-vetor spae equipped with the oarsedi�eology is obviously a di�eologial vetor spae, whih is not really interesting. Butalso, any vetor spae has a �nest vetor spae di�eology. In this setion we analyze someaspets of this �ne di�eology.13.1. Fine di�eology. There exists, on any vetor spae E over the �eld K a �nestdi�eology of vetor spae. We shall all it the �ne di�eology. This di�eology is generatedby the family of parametrizations de�ned by:
P : r 7→

∑

α∈A

λα(r)vα, (♥)where A is a �nite set of indies, λα are smooth K-funtions de�ned on the domain of Pand vα are vetors of E.More preisely, the plots of the �ne di�eology are the parametrizations P : U −→ E suhthat for any r0 ∈ U there exists a superset V of r0, a family of smooth parametrizations
λα : V −→ K and a family of vetors vα ∈ E, both indexed by the same �nite set ofindies A, suh that:

(P ↾ V) : r 7→
∑

α∈A

λα(r)vα. (♦)The family (λα, v
α)α∈A suh that λα ∈ C∞(V,K) and vα ∈ E will be alled in thefollowing a loal family of the plot P, or simply a loal family.Proof. Let us prove that the parametrizations desribed by ♦ make up a di�eology ofvetor spae.1) Di�eology. Constant parametrizations satisfy the ondition above. The loality issatis�ed by de�nition. Now, let F : U′ −→ U be a smooth parametrization, we have just tohange λα to λα ◦F, with the same vα, and P ◦F satis�es the ondition of the de�nitionabove. So, the set of parametrizations de�ned above is a di�eology.2) Di�eology of vetor spae. Let r 7→ (P(r),Q(r)) be a plot of the produt E×E. Let

(λα, u
α)α∈A and (µβ, v

β)β∈B be two loal families suh that loally:
P(r) =loc

∑

α∈A

λα(r)uα and Q(r) =loc

∑

β∈B

µβ(r)vβ.So, the addition P + Q writes loally:
P + Q|loc : r 7→

∑

α∈A

λα(r)uα +
∑

β∈B

µβ(r)vβ =
∑

σ∈C

νσ(r)wσ

where C is just the sum of the two sets of indies A and B, and the family (νσ, w
σ)σ∈Cthe sum of the loal families (λα, u

α)α∈A and (µβ, v
β)β∈B. Hene, the addition is dif-ferentiable. On the other hand, the multipliation by a salar being di�erentiable in K,the multipliation by a salar in E is also di�erentiable. Therefore, this di�eology is adi�eology of vetor spae.It is lear, by the very de�nition of generating families (art. 3.1), that the parametriza-tions ♦ are generated by the family ♥. Now, let us prove that this �ne di�eology is �nestthan any di�eology of vetor spae de�ned on E.



366 P. IGLESIAS-ZEMMOUR3) Fineness. Let us onsider E, provided with any other di�eology D of vetor spae.For any smooth parametrization λ of K and any vetor u ∈ E, the parametrization
r 7→ λ(r)u is di�erentiable, by di�erentiability of the multipliation by a salar. Now, bydi�erentiability of the addition, for any �nite loal family (λα, u

α)α∈A, the parametriza-tion r 7→ ∑
α∈A λα(r)uα is di�erentiable, that is a plot of the di�eology D. Then, thedi�eology D if oarser than the �ne di�eology de�ned above. Hene, the �ne di�eologyis the �nest di�eology of vetor spae on E.13.2. Generating the �ne di�eology. Let E be a vetor spae on K and L(Kn,E) be theset of all linear maps from Km into E. Let L⋆(Kn,E) be the set of all injetive mapsfrom Km into E,

L⋆(Km,E) = {j ∈ L(Km,E) | ker(j) = {0}}.The two families
F =

⋃

m∈N

L(Km,E) and F⋆ =
⋃

m∈N

L⋆(Km,E),generate both the �ne di�eology of E.Note that a parametrization P : U −→ E is a plot for the di�eology generated by F ifand only if, for any r0 in U, there exists a superset V of r0 in U, an integer m, a smoothparametrization φ : V −→ Km, a linear map j : Km −→ E, suh that P ↾ V = j ◦ φ. Inother words, loally, P takes its values in a onstant �nite dimensional subspae F ⊂ Esuh that the the oordinates of P for some basis of F are smooth. For the plots generatedby F⋆, j is injetive.Proof. Let us prove that F, as well as F⋆, generate the �ne di�eology.Let us P : U −→ E be a plot of the di�eology generated by F or by F⋆. Pik apoint r0 in U. By de�nition there exists a superset V of r0, an integer m, a smoothparametrization φ : V −→ Km, a linear map j : Km −→ E, suh that P ↾ V = j ◦ φ. So,for any r in V, φ(r) =
∑m

k=1 φk(r)ek, where (e1, . . . , em) is the anonial basis of Km,and φk ∈ C∞(V,K). Now, P(r) = j(
∑m

k=1 φk(r)ek) =
∑m

k=1 φk(r)j(ek) =
∑m

k=1 φk(r)fkwhere fk = j(ek). Therefore, P is a plot of the �ne di�eology of E, and (φk, fk)m
k=1 is aloal family of the plot P. Note that j an be hosen injetive.Conversely, let P : U −→ E be a plot of the �ne di�eology. Let r0 be a point of U.There exists an open superset V of r0 in U, an integer N, a loal family (λα, v

α)Nα=1, with
λα ∈ C∞(V,K), vα ∈ E, and suh that P ↾ V =

∑N
α=1 λα(r)vα. Let F be the vetorspae generated by the vα, and let f = (f1, . . . , fm) be a basis of F. Let us deomposethe vetors vα on the basis f , vα =

∑m
k=1 v

α
k fk. Now, P ↾ V =

∑N
α=1

∑m
k=1 λα(r)vα

k fk =∑m
k=1 φk(r)fk, where φk(r) =

∑N
α=1 λα(r)vα

k . The φk are smooth maps de�ned on V withvalues in K. Now, let j : Km −→ E be the linear map de�ned by j(ek) = fk and φ : V

−→ Km de�ned by φ = (φ1, . . . , φm). So, P ↾ V = j ◦ φ, where j is an injetive linearmap from Km to E and φ belongs to C∞(V,Km). Therefore, P is a plot of the di�eologygenerated by F⋆, a fortiori by F. Hene, the �ne di�eology of E is generated by the set oflinear maps, or injetive linear maps, from Km into E, when m runs over the integers.13.3. Linear maps and �ne di�eology. Let E and F be two di�eologial vetor spaesover K. Let E be equipped with the �ne di�eology. Any linear map from E to F isdi�erentiable. In other words, if E is �ne, LC∞(E,F) = L(E,F).



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 367Proof. Let (P ↾ V)(r) =
∑N

α=1 λα(r)vα be a loal expression of some plot P of E. Let
A ∈ L(E,F), then we have (A ◦ P ↾ V)(r) =

∑N
α=1 λα(r)A(vα). Sine A(vα) ∈ F for eah

α, P is a plot of the �ne di�eology of F, therefore a plot of any vetor spae di�eology.Thus, A is di�erentiable, and L(E,F) ⊂ LC∞(E,F). The onverse inlusion is lear.13.4. The �ne linear ategory. Thanks to (art. 13.3) the �ne di�eologial spaes de�nea subategory of the linear di�eologial ategory (art. 12.5), we shall all it the �nelinear ategory. Objets of this ategory are all vetor spaes. And, aording to theabove proposition, morphisms of this ategory are just linear maps. Hene, the �ne linearategory oinides with the usual linear ategory over the hosen �eld. In other words,the funtor from the linear ategory to the �ne linear ategory, whih assoiates to eahvetor spae the same spae equipped with the �ne di�eology, is a full faithful funtor[ML71℄.13.5. Subspaes of �ne di�eologial vetor spaes. Let E be a vetor spae over K,equipped with its �ne di�eology. Let F ⊂ E be any vetor subspae. The subset dif-feology of F, inherited from E, is the �ne di�eology. In other words, the injetion of Finto E where E and F are equipped with their �ne di�eology is an indution.Proof. The injetion is linear, so it is di�erentiable (art. 13.3). Let us hek now thatif a plot P : U −→ E takes its values in F, then it is a plot for the �ne di�eology of F.For all r0 ∈ U there exists a superset V of r0, an injetion j : Km −→ E and a smoothparametrization φ : V −→ Km suh that P ↾ V = j◦φ. Sine P takes its values in F so does
j ◦ φ. Let H = span(val(φ)) be the subspae of Km generated by val(φ) and j′ = j ↾ H.Thus, we have P ↾ V = j′ ◦ φ where j′ is a linear injetion from H to F. Therefore, P is aplot of the �ne di�eology of F.13.6. Produts and quotients of �ne vetor spaes. The produt of any �nite family of�ne vetor spaes is a �ne vetor spae for the produt di�eology. As well, the quotientof a �ne vetor spae by a subspae is a �ne vetor spae for the quotient di�eology.Proof. Let E and E′ be two �ne di�eologial vetor spaes. Let Q : U −→ E × E′ be aplot, that is Q = P×P′ where P : U −→ E and P′ : U −→ E′ are two plots (art. 5.7). Now,let r0 ∈ U, there exists two supersets V and V′ of r0, two loal families de�ned on V,
(λα,Xα)α∈A and (λ′α′ ,X′

α′)α′∈A′ , suh that P ↾ V : r 7→
∑

α λα(r)Xα and P′ ↾ V′ : r 7→∑
α′ λα′(r)Xα′ . Let's de�ne V′′ = V ∩ V′, we get:

(Q ↾ V′′)(r) =
( ∑

α∈A

λα(r)Xα,
∑

α′∈A′

λα′(r)X′
α′

)

=
( ∑

α∈A

λα(r)Xα, 0
)

+
(
0,

∑

α′∈A′

λα′(r)X′
α′

)

=
∑

α∈A

λα(r)(Xα, 0) +
∑

α′∈A′

λα′(r)(0,X′
α′).This exhibits the disjoint union of the two families (λα,Xα)α∈A and (λ′α′ ,X′

α′)α′∈A′ over
V′′ as a loal family of Q ↾ V′′. Therefore Q is a plot of the �ne di�eology of E×E′. Theextension to any �nite number of fators is immediate.



368 P. IGLESIAS-ZEMMOUR13.7. The funtional di�eology of L(E,E′). Let E and E′ be two �ne vetor spaes over
K. The funtional di�eology of the spae of linear maps LC∞(E,E′) = L(E,E′) is har-aterized as follows.A parametrization P : U −→ L(E,E′) is a plot of the funtional di�eology if for any
r0 ∈ U and for any vetor subspae F ⊂ E of �nite dimension, there exists an opensuperset V of r0, and a vetor subspae of �nite dimension F′ ⊂ E′ suh that:1. For any r ∈ V, the linear map P(r) ↾ V belongs to L(F,F′).2. The parametrization r 7→ P(r) ↾ F, restrited to V, is a plot of L(F,F′).Note that, for the seond ondition, r 7→ P(r) ↾ F is a parametrization of a spae of�nite dimensional linear maps, or matries. The ondition to be a plot is just that eahoe�ient of the matrix is a smooth funtion.Proof. Let P : U −→ L(E,E′) be a plot of the funtional di�eology. Let us show thatit satis�es the ondition of the proposition. Let F ⊂ E be any vetor subspae of �nitedimension. Let (u1, . . . , um) be a basis of F. Let r0 ∈ U, by de�nition of the funtionaldi�eology, for any k = 1 . . .m, the map r 7→ P(r)(uk) is a plot of E′, so there exists a su-perset Vk of r0, a �nite set of indies Ak, a family (λk,α)α∈Ak

of smooth parametrizationsof K, a family (wk,α)α∈Ak
of vetors of E, suh that, for any r ∈ Vk:

P(r)(uk) =
∑

α∈Ak

λk,α(r)wk,α.For all (c1, . . . , cm) ∈ Km, for all r ∈ V = ∩m
k=1Vk we have:

P(r)
( m∑

k=1

ckuk

)
=

m∑

k=1

ckP(r)(uk) =
m∑

k=1

∑

α∈Ak

ckλk,α(r)wk,α.Let F′ be the subspae of E′ spanned by the vetors ∪m
k=1{wk,α}α∈Ak

, for any u ∈ F,
P(r)(u) ∈ F′. The �rst ondition above is heked. Now, let (v1, . . . , vn) be a basis of F′,suh that for any k = 1 . . .m and any α ∈ Ak, wk,α =

∑n
j=1 w

j
k,αvj . Replaing wk,α bythis expression we get:

P(r)
( m∑

k=1

ckuk

)
=

m∑

k=1

∑

α∈Ak

ckλk,α(r)
n∑

j=1

wj
k,αvj =

n∑

j=1

( m∑

k=1

∑

α∈Ak

ckλk,α(r)wj
k,α

)
vj .Hene, de�ning

φj(r) =
m∑

k=1

∑

α∈Ak

ckλk,α(r)wj
k,α,we get a family of smooth parametrizations (φj)

n
j=1 of K suh that, for any r ∈ V :

P(r)(u) =

n∑

j=1

φj(r)vj .The expression of P(r) above learly shows that r 7→ P(r) ↾ F is a plot of the funtionaldi�eology of L(F,F′). Indeed, by hoosing for u suessively eah vetor of a basis of F,the last expression shows that the omponents of P(r) ↾ F are smooth parametrizationsof K, whih is the ondition, in �nite dimension, to be a plot of the funtional di�eology.Hene, we proved the �rst part of the proposition above.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 369Conversely, let us assume that the parametrization P satis�es the ondition of theproposition, and let us show that P is a plot of the funtional di�eology. Let us onsidera plot Q : V −→ E. By de�nition, for any s0 ∈ V, there exists a superset W of s0, a �niteset of indies A, a family (λα)α∈A of smooth parametrizations of K, a family (vα)α∈A ofvetors of E suh that for any s ∈ V, Q(s) =
∑

α∈A λα(s)vα. Let F ⊂ E be the vetorsubspae spanned by the vetors vα. Hene, for any r0 ∈ U, there exists an open superset
U′ of r0 and a vetor subspae F′ ⊂ E′ suh that P(r)(F) ⊂ F′ for any r ∈ U′. Thus,for any (r, s) ∈ U′ ×W, P(r)(Q(s)) = P(r)(

∑
α∈A λα(s)vα) =

∑
α∈A λα(s)P(r)(vα) ∈ F′.And sine the parametrization r 7→ P(r) ↾ F is a plot of the funtional di�eology, theparametrization P · Q : (r, s) 7→ P(r)(Q(s)) is a smooth parametrization of F′ ⊂ E′, thus

P · Q is a smooth parametrization of E′, beause any �nite subspae is embedded in E′.Therefore, P is a plot of the funtional di�eology of L(E,E′). This ompletes the proofof the proposition.13.8. The �ne topology. The D-topology of a �ne di�eologial vetor spae E has a simpleharaterization. A part Ω ⊂ E is D-open if and only if its intersetion with any �nitedimensional vetor spae F ⊂ E is open in F. Indeed, the di�eology of E is generatedby the the linear injetions j : Kn −→ E (art. 13.2), where n runs over N, hene Ω isD-open if and only if its inverse image by every one of these injetions is open in Kn.Or, equivalently, if the intersetion of Ω with any vetor subspae F, of �nite dimension,is open for the smooth topology of F. We reognize here the so-alled �nite topology offuntional analysis [Ty35℄.13.9. Standard �nite dimensional vetor spaes. The standard di�eology on Kn is the�ne di�eology. Indeed, any plot P : U −→ Kn deomposes over the standard basis (ei)
n
i=1,that is P : r 7→ ∑n

i=1 Pi(r)ei, where the Pi are smooth parametrizations of the �eld K.14. Eulidean and hermitian di�eologial vetor spaes. The de�nition of eu-lidean or hermitian strutures on di�eologial vetor spaes is a natural extension of thestandard de�nitions. They will be applied in the following in the study of in�nite spheresand in�nite projetive spaes.14.1. Eulidean and hermitian di�eologial strutures. Let E be a real (respetively om-plex) di�eologial vetor spae, and (X,Y) 7→ X · Y be an eulidean (respetively hermi-tian) produt de�ned on E. If the eulidean (respetively hermitian) produt is di�eren-tiable, (E, ·) is alled a eulidean (respetively hermitian) di�eologial vetor spae.14.2. Fine eulidean or hermitian spaes. Any real (respetively omplex) di�eologi-al vetor spae E, equipped with its �ne di�eology and equipped with any eulidean(respetively hermitian) struture is an eulidean (respetively hermitian) di�eologialvetor spae.Proof. This is a onsequene of the property of linear maps to be di�erentiable on �nedi�eologial vetor spaes (art. 13.3).14.3. Uniqueness for �nite dimensional eulidean spaes. The di�eology of any �nitedimensional eulidean (or hermitian) di�eologial spae is the �ne di�eology.



370 P. IGLESIAS-ZEMMOURProof. Let (e1, . . . , en) be an orthonormal basis of E. Let P : U −→ E be a plot of E. Forany r in U, P(r) =
∑n

k=1(ek · P(r))ek. Eah map Pk(r) : r 7→ ek · P(r) is di�erentiableby hypothesis. Hene, P is a plot of the �ne di�eology.14.4. D-topology and topology of the norm. The norm topology of a hermitian di�eologi-al spae E does not neessarily oinide with the D-topology. But, any open ball B(x, ρ),entered in x ∈ E, of radius ρ, is D-open. Indeed, its preimage by any plot P : U −→ Eis the preimage of ] − ∞, ρ2[ by r 7→ ‖x − P(r)‖2, but this map is di�erentiable heneD-ontinuous. Thus, the ball B(x, ρ) is D-open. We an dedue, using the di�erentiabilityof translation and homotheties, that any open set for the norm topology is D-open. Inother words, the topology of the norm is weaker than the D-topology.15. Di�eologial manifolds. Using di�eologial vetor spaes, we extend the ordinaryde�nition of manifolds to manifolds modeled on di�eologial vetor spaes. Note that tobe a manifold is not an extra struture added to the di�eology, but it is a property of thedi�eology. One a set is equipped with a di�eology, this spae is or is not a manifold, itdepends only on the di�eology. Hene di�eologies are or are not manifold di�eologies.15.1. Manifolds. Let X be a di�eologial spae, and let E be a di�eologial vetor spae.We say that X is a di�eologial manifold modeled on E if X is loally di�eomorphi to
E at eah point. In other words, if for any x ∈ X there exists a loal di�eomorphism(art. 6.8) F : U −→ X, alled hart, suh that U ⊂ E and x ∈ F(U).15.2. Generating manifolds. Let E be some di�eologial vetor spae. A di�eologialspae X is a di�eologial manifold modeled on E if and only if there exists a family Aof loal di�eomorphisms from E to X, alled harts, generating the di�eology of X. Inother words, for a di�eologial spae, to be or not to be a manifold (modeled on somedi�eologial vetor spae) is a property not an extra struture.Any family of harts generating the di�eology of X is alled an atlas of X. Note thatthere exists an atlas made up with all the loal di�eomorphisms from E to X, this atlasis alled the saturated, or maximal, atlas of X.Proof. Let X be generated by a family A of loal di�eomorphisms from E to X. Pikany point x ∈ X, and let P : {0} −→ X be the onstant plot suh that P(0) = x. Byhypothesis, there exists a hart F ∈ A and a lifting Q : {0} −→ E suh that P = F ◦ Q.Hene, F is a loal di�eomorphism from E to X, suh that x ∈ val(F). Therefore X is adi�eologial manifold modeled on E. Conversely, let us assume that X is a di�eologialmanifold, that is loally di�eomorphi to E at eah point. Then, let us hoose for eahpoint x ∈ X, a loal di�eomorphism φ : U −→ X suh that x ∈ φ(U). Let A be the setof all these hosen loal di�eomorphisms, when x runs over X. Let P : V −→ X be a plotand r ∈ V, let x = P(r) and φ ∈ A suh that x ∈ φ(U). Now, let Q = φ−1 ◦ P ↾ W,where W = P−1(φ(U)). Sine φ is a loal di�eomorphism φ(U) is D-open. And sine
P is D-ontinuous, W is open. Hene, Q is a loal lifting of P along φ. Therefore, anyplot of X an be lifted along some element of the family A. And, this is the de�nitionof a generating family of X. Thus, the di�eology of X is generated by a family of loaldi�eomorphisms from E to X.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 37115.3. Standard manifolds. The di�eologial manifolds modeled on the numerial spae
Rn, for some integer n, are the standard manifolds of dimension n. Note that the standardmanifolds form a full faithful subategory [ML71℄ of the ategory {Di�eology}.15.4. Submanifolds. Let X be a di�eologial spae and M ⊂ X. The subset M willbe alled a submanifold of X if, equipped with the subset di�eology (art. 4.6), M is amanifold. Subsets of X are just subspaes or are submanifolds, depending on the indueddi�eology. Note that submanifolds an be embedded or not. For example, an irrationalwinding in the 2-torus is just a submanifold, di�eomorphi to R, while a rational windingis an embedded submanifold, di�eomorphi to S1. Another example, the in�nite sphere
S de�ned below is an embedded submanifold of the Hilbert spae H (art. 17.2) .THE DIFFEOLOGICAL INFINITE HOPF FIBRATIONIn this hapter we introdue the unit sphere S of the Hilbert spae H of square-summablesequenes. The sphere S is equipped with the subset di�eology of the �ne di�eology of H.We all it the in�nite sphere. We show that the in�nite sphere is a ontratible di�eologialmanifold modeled on H. We onstrut then the in�nite projetive spae P, whih is alsothe quotient of the in�nite sphere by the ation of S1. This de�nes the in�nite Hopf�bration. We show, in partiular, that P, equipped with the quotient di�eology of S, is adi�eologial manifold modeled on H.16. The spae of square-summable sequenes. Here, we desribe the main on-strution relative to the spae of omplex square-summable sequenes, equipped with the�ne di�eology.16.1. The �ne hermitian spae H. Let H be the set of square-sumable omplex sequen-es, indexed by the nonzero integers.

H =
{

Z : N⋆ −→ C

∣∣∣ Z = (Zk)∞k=1,
∞∑

k=1

Z∗
kZk = lim

N−→∞

N∑

k=1

Z∗
kZk <∞

}
,where N⋆ denotes the set of nonzero positive integers and z∗ denotes the omplex on-jugate of a omplex number z. The spae of omplex numbers C is naturally equippedwith the standard di�eology. And in the following, the spae H is equipped with the �nedi�eology (art. 13.1).Let us reall that a parametrization P : U −→ H is a plot for the �ne di�eology if andonly if, for eah r0 in U there exists an open superset V of r0 in U, and a loal family

(λα,Zα)α∈A, #A <∞, suh that:
(P ↾ V)(r) =

∑

α∈A

λα(r)Zα, with λα ∈ C∞(V,C) and Zα ∈ H.Note that the funtions λα are smooth for the real smooth struture of C, we are nottalking about holomorphi funtions here.Now let us reall the usual sesquilinear produt de�ned on H:For all Z,Z′ ∈ H, Z · Z′ =
∞∑

k=1

Z∗
kZ′

k.



372 P. IGLESIAS-ZEMMOURThe sesquilinear map (Z,Z′) 7→ Z · Z′ is a hermitian produt. So, the pair (H, ·) is a �nehermitian di�eologial vetor spae over C (art. 14.2). We will denote, as usual, by ‖ · ‖the norm assoiated to the hermitian produt:For all Z ∈ H, ‖Z‖ =
√

Z · Z.And we introdue also the notation prk for the k-th projetion from H onto CFor all Z = (Zk)∞k=1 ∈ H, prk(Z) = Zk ∈ C, k > 0.17. The in�nite sphere. The unit sphere S of the Hilbert spae H is de�ned as usualby:
S =

{
Z ∈ H

∣∣∣ Z · Z =

∞∑

k=1

|Zk|2 = 1
}
.The sphere S will be alled the in�nite sphere and will be equipped with the subsetdi�eology (art. 4.6) of the �ne di�eology of H.17.1. The plots of the unit sphere. By de�nition (art. 4.6), a plot P : U −→ S is a plot of

H taking its values in S. That is, for any point r0 of U there exists an open superset Vof r0 and a �nite loal family (λα,Zα)α∈A, suh that:for all r ∈ V, P(r) =
∑

α∈A

λα(r)Zα with ∑

α,β∈A

λ∗α(r)λβ(r)Zα · Zβ = 1,for some λα ∈ C∞(V,C) and Zα ∈ H. For example, pik two orthonormal vetors Zaand Zb of H, that is ‖Za‖ = ‖Zb‖ = 1 and Za · Zb = 0. The parametrization P : t 7→
cos(t)Za + sin(t)Zb, where t ∈ R, is a plot of S.17.2. The in�nite sphere as a di�eologial spae. The in�nite sphere S, equipped withthe subset di�eology of the �ne di�eology of H, is a manifold modeled on H (art. 15.1).Moreover, the sphere S is embedded in H (art. 6.6) and ontratible (art. 8.4).Proof. The proof will be given in several steps. First of all we shall identify the Hilbertspae of omplex summable sequenes with the spae of real summable sequenes. Thiswill identify, at the same time, the unit spheres of these two spaes. Then, we shall showthat the real in�nite sphere is a ontratible manifold modeled on the Hilbert spae ofreal summable sequenes, and then that it is embedded, whih will prove the proposition.Let us �rst introdue the Hilbert spae HR:

HR =
{

X : N⋆ −→ R

∣∣∣ X = (Xk)∞k=1,
∞∑

k=1

X2
k = lim

N−→∞

N∑

k=1

X2
k <∞

}

equipped with the �ne di�eology. This spae an be also onsidered as the subspae of
H in whih all oe�ients are real.Step 1: The spaes H and HR are di�eomorphi. Let us introdue the following twomaps, for any X = (Xk)∞k=1 belonging to HR, or for any Z = (Zk)∞k=1 belonging to H :






Fold : X 7→ Z with Zk = X2k−1 + iX2k, for all k > 0

Unfold : Z 7→ X with X2k+1 = ℜ(Zk+1) and X2k = ℑ(Zk), for all k ≥ 0,



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 373where ℜ and ℑ denote the real and imaginary parts. These two maps are bijetive andeah other's inverse: Unfold = Fold−1. Let us now hek that they are di�erentiable. Let
P : U −→ HR be a plot. Loally P(r) writes ∑

α∈A λα(r)Xα, where (λα,Xα)α∈A is a loalfamily. Now,
Fold(P(r)) = Fold

( ∑

α∈A

λα(r)Xα

)
=

∑

α∈A

λα(r)Fold(Xα),sine Fold is R-linear and the λα are real valued funtions. Writing Zα = Fold(Xα),we have Fold(P(r)) =
∑

α∈A λα(r)Zα, so Fold ◦ P is a plot of H. Therefore the map
Fold is di�erentiable. Conversely, let us onsider a plot P : U −→ H. Loally P(r) writes∑

α∈A λ(r)Zα, where (λα,Zα)α∈A is a loal family. But now the λα are omplex valuedfuntions and the Zα are omplex vetors. Let us deompose λα = µα+iνα, where µα and
να are real valued funtions. Now, P(r) =

∑
α∈A[µα(r) + iνα(r)]Zα =

∑
α∈A µα(r)Zα +∑

α∈A να(r)iZα. But iZα is still an element of H. Hene, the union of the two loalfamilies (µα,Zα)α∈A and (να, iZα)α∈A is still a loal family (ρβ, ζβ)β∈B, where the ρβare now real valued funtions. Thus, loally P(r) =
∑

β∈B ρβ(r)ζβ. But, the Unfoldmapping is learly R-linear, thus denoting ξβ = Unfold(ζβ) we get loally Unfold(P(r)) =∑
β∈B ρβ(r)ξβ, where the ρβ are real smooth funtions and the ξβ are elements of HR.Therefore Unfold ◦ P is a plot of HR and Unfold is di�erentiable. In onlusion H and

HR are di�eomorphi.Step 2: The in�nite sphere is di�eomorphi to the real in�nite sphere. Let us onsider
X ∈ HR, and Z = Fold(X). Now, Zk = X2k−1 + iX2k, hene |Zk|2 = X2

2k−1 + X2
2k. And,therefore ‖Z‖2 =

∑∞
k=1 ‖Zk‖2 = (X2

1 + X2
2) + (X2

3 + X2
4) + · · · =

∑∞
k=1 X2

k = ‖X‖2. Inonlusion, Fold sends the real in�nite sphere
SR =

{
X ∈ HR

∣∣∣ X · X =

∞∑

k=1

X2
k = 1

}

onto S. Now, sine Fold is a di�eomorphism from HR to H it follows that its restrition to
SR is a di�eomorphism onto S, where SR and S are equipped with the subset di�eology.Step 3: The real in�nite sphere as a di�eologial manifold. Let us onsider the followingstereographi maps:

F+ : HR −→ SR with F+ : ξ 7→ X =
1

‖ξ‖2 + 1

(
‖ξ‖2 − 1

2ξ

)

and
F− : HR −→ SR with F− : ξ 7→ X =

1

1 + ‖ξ‖2

(
1 − ‖ξ‖2

2ξ

)

where the matrix notation denotes the orresponding sequene in HR

(
a

ξ

)
∼ (a, ξ1, ξ2, . . .) where a ∈ R ξ = (ξ1, ξ2, . . .) ∈ HR.The maps F+ and F− are stereographi maps of SR, the image of F+ is SR − {e1}, andthe image of F− is SR − {−e1}, where e1 is the vetor whose �rst oordinate is 1 and



374 P. IGLESIAS-ZEMMOURthe others are zero. More generally we shall denote by ek the vetor de�ned by:
prk(ek) = 1 and prj(ek) = 0 if j 6= k.Let us denote, now, for any X ∈ HR:

X = (X1,X+) with X1 = pr1(X) and X+ = (X2,X3, . . .) ∈ HR.The inverse maps are given by:
F−1

+ : SR − {e1} −→ HR with F−1
+ : X 7→ ξ =

X+

1 − X1
,and

F−1
− : SR − {−e1} −→ HR with F−1

− : X 7→ ξ =
X+

1 + X1
.Let us show now that the stereographi maps are loal di�eomorphisms from HR to SR.We onsider only F+ sine the ase F− is ompletely analogous. We already heked that

F+ is injetive, and its domain is H whih is obviously D-open in H. We shall prove that
S− {e1}, the image of F+, is D-open in S. Then, we shall prove that F+ is di�erentiableas well as F−1

+ , de�ned on S − {e1} equipped with the subset di�eology. And �nally,applying the riterion (art. 6.8), it will follow that F+ is a loal di�eomorphism.a) The map F+ is injetive. We already exhibited F−1
+ .b) The map F+ is di�erentiable. Let us onsider a parametrization P : U −→ HR.For any r0 ∈ U there exists an open superset V of r0 in U, a �nite set of indies A, anda loal family (λα,Xα)α∈A suh that:

P ↾ V : r 7→
∑

α∈A

λα(r)XαSo,
F+ ◦ (P ↾ V) : r 7→

(
ǫ(r)∑

α∈A µα(r)Xα

)

with
ǫ(r) =

‖
∑

α∈A λα(r)Xα‖2 − 1

‖
∑

α∈A λα(r)Xα‖2 + 1
and µα(r) =

2λα(r)

‖
∑

β∈A λβ(r)Xβ‖2 + 1The denominator of ǫ and µα never vanishes, hene the funtions ǫ and µα belong to
C∞(V,R). Now F+ ◦ (P ↾ V) rewrites:

F+ ◦ (P ↾ V)(r) = ǫ(r)

(
1

0

)
+

∑

α∈A

µα(r)

(
0

Xα

)
.This exhibits the map F+ ◦ (P ↾ V) as a �nite linear ombination of vetors of HR withsmooth parametrizations of R as oe�ients. Therefore, F+ ◦ P is a plot of HR. Sine

F+ ◦P takes its values in SR, it is a plot of the subset di�eology of SR ⊂ HR, where HRis equipped with the �ne di�eology. Hene, F+ is di�erentiable.) The map F−1
+ is di�erentiable. Let P : U −→ SR − {e1} be a plot. For any r0 ∈ Uthere exists an open superset V of r0 in U, a �nite set of indies A, a loal family

(λα,Xα)α∈A suh that:
P ↾ V : r 7→

∑

α∈A

λα(r)Xα,
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F−1

+ ◦ (P ↾ V) : r 7→
∑

α∈A

µα(r)Xα,+ with µα(r) =
λα(r)

1 − ∑
β∈A λβ(r)Xβ,1

.Sine the Xβ,1 form a �nite set of onstant numbers, the parametrization ∑
β∈A λβ(r)Xβ,1is smooth, and never equal to 1 sine P takes its values in SR−{e1}. Thus, for eah α ∈ A,

µα(r) is a smooth parametrization of R. The parametrization F−1
+ ◦ (P ↾ V) is learly a�nite linear ombination of vetors of HR with oe�ients smooth parametrizations of

R. Hene, F−1
+ ◦ (P ↾ V) is a plot of the �ne di�eology of HR. Now, F−1

+ ◦ P is loally,at eah point of U, a plot of HR, so it is a plot of HR. Therefore, F−1
+ is a di�erentiablemap from SR − {e1} to HR.d) The subset SR −{e1} is open for the D-topology. Let us reall that a set is D-openif and only if its preimage by any plot is open. Let P : U −→ SR be a plot, for any

r0 ∈ U there exists an open superset V of r0 in U, a �nite set of indies A, a loal family
(λα,Xα)α∈A suh that:

P ↾ V : r 7→
∑

α∈A

λα(r)XαHene,
(P ↾ V)−1(SR − {e1}) =

{
r ∈ V

∣∣∣
∑

α∈A

λα(r)Xα,1 6= 1
}
.But the parametrization PV : r 7→

∑
α∈A λα(r)Xα,1 is smooth, a fortiori ontinuous. So,the preimage of R − {1} is open. Thus, P−1(SR − {e1}) is an union of open sets of U,and therefore open. Hene, P−1(SR − {e1}) is open for any plot P, that is SR − {e1} isD-open.In onlusion, the di�eology of the real in�nite sphere SR is generated by F+ and F−,therefore SR is, by de�nition (art. 15.1), a di�eologial manifold, modeled on HR. Now,sine HR and H are di�eomorphi, S is a di�eologial manifold modeled on H. The �rstsentene of the proposition is proved.Step 4: The in�nite sphere is ontratible. Let us prove now that the in�nite sphere SR,equipped with the subset �ne di�eology of HR, is ontratible. That is, there exists adi�erentiable path γ of C∞(SR) onneting the identity 1S : X 7→ X with the onstantmap ê1 : X 7→ e1.The proof of this proposition, uses the following linear map, alled the shift operator :

Shift : HR −→ HR, with Shift(X)1 = 0 and Shift(X)k = Xk−1, k > 1.In other words Shift(X) = (0,X) = (0,X1,X2, . . .). The shift operator is learly a linearoperator, hene is di�erentiable for the �ne di�eology. It is injetive and preserves thesalar produt. It injets stritly the in�nite sphere into an equator.We prove the ontratibility of the in�nite sphere in two steps, �rst we shall show thatthe onstant map ê1 is homotopi to the shift operator, and then, that the shift operatoris homotopi to the identity 1S. Then, applying the smashing funtion (art. 8.3) to thepair of homotopies we get a path onneting the onstant map to the identity.



376 P. IGLESIAS-ZEMMOURa) Homotopy between ê1 and Shift. Let us onsider the following 1-parameter familyof deformations:for all t ∈ R, for all X ∈ SR, ρt(X) = cos

(
πt

2

)
e1 + sin

(
πt

2

)
Shift(X).For any t ∈ R, ρt(X) ∈ SR. Sine addition and multipliation by a smooth funtion aredi�erentiable, the map (t,X) 7→ ρt(X) is di�erentiable. Thus, the map t 7→ ρt is a pathof C∞(SR) onneting ê1 and Shift, preisely:

ρ0 = ê1 and ρ1 = Shift.b) Homotopy between Shift and 1S. Let us onsider the following 1-parameter familyof deformations:for all t ∈ R, for all X ∈ HR, σt(X) = tX + (1 − t)Shift(X).Note that ker(σt) = 0, this is lear for t = 0, and for nonzero t it follows indutivelyby observing that the ondition σt(X) = 0 writes (X1,X2,X3, . . .) = t−1
t

(0,X1,X2, . . .).In partiular σt is nowhere zero on the sphere, so we an de�ne ρt : SR −→ SR by:
ρt(X) =

1

‖σt(X)‖σt(X).Let us hek that (t,X) 7→ ρt(X) is di�erentiable. First of all, (t,X) 7→ σt(X) is learlydi�erentiable. Sine the salar produt is di�erentiable, it follows that (t,X) 7→ ‖σt(X)‖2is di�erentiable; and beause this map takes its values in ]0,∞[, its square root is di�er-entiable. In onlusion, t 7→ ρt is a path in C∞(SR), and
ρ0 = Shift and ρ1 = 1S.We proved, with a) and b) that SR is ontratible. The whole proposition is thus proved.17.3. Vanishing homotopy groups. Note that sine SR is ontratible, all its homotopygroups vanish: for all k ∈ N⋆, πk(SR) = {0}.This fat is known in the topologial framework, we proved that it is also true in di�eology.18. The in�nite projetive spae. Let us reall some set theoreti onstrutions,today lassi. Let us introdue:

C⋆ = C − {0} and H⋆ = H − {0}.Now, let us onsider the group C⋆ ating on H⋆ by multipliationFor all (z,Z) ∈ C⋆ × H⋆, (z,Z) 7→ zZ ∈ H⋆.The quotient of H⋆ by this ation of C⋆ is alled the in�nite omplex projetive spae, orsimply the in�nite projetive spae, and it is denoted P. The restrition of the ation of
S1 to S ⊂ H⋆ gives the following set theoreti equivalenes

P = H⋆/C⋆ ≃ S/S1 ≃ SR/SO(2,R).Indeed, the sphere S intersets every C⋆-orbit in H⋆. The trae on S of the ation of
C⋆ is the ation of S1 identi�ed to the set of omplex numbers of modulus 1. Hene,
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H⋆/C⋆ ≃ S/S1. The last equivalene is obtained by identifying H to HR + iHR or
HR × HR, thanks to the unique deomposition Z = X + iY, where Z belongs to H and
X and Y belong to HR. The ation of S1 ∼ SO(2,R) on the pair (X,Y) is given by:

(
cos(t) − sin(t)

sin(t) cos(t)

) (
X

Y

)
=

(
cos(t)X − sin(t)Y

sin(t)X + cos(t)Y

)
.Now, let us equip the in�nite projetive spae P with the quotient di�eology of thesubset di�eology of H⋆ ⊂ H. We shall see that these identi�ations are also valid fromthe di�eologial point of view. That is, H⋆/C⋆, S/S1 and SR/SO(2,R) are di�eomorphi.18.1. The in�nite projetive spae as a di�eologial spae. The in�nite projetive spae

P is a di�eologial manifold modeled on H. The projetion π : H⋆ −→ P is a C⋆ prinipaldi�eologial �bration, loally trivial. The projetive spae P is naturally di�eomorphito the quotient S/S1, moreover the restrition πS of π : H⋆ −→ P to the sphere S is aprinipal S1 di�eologial �bration, loally trivial. The homotopy of P is given by:
π2(P) = Z and πk(P) = {0}, if k 6= 2.The prinipal �brations π or πS are not trivial.Proof. P is a di�eologial manifold, modeled on H. Let us denote by [Z] = [Z1,Z2, . . .]the lass in P of an element Z = (Z1,Z2, . . .) of H. Let us onsider the various a�nesubspaes Hk ⊂ H de�ned by:

Hk = {Z ∈ H | Zk = 1}, k ∈ N⋆.These spaes interset the orbits of the group C⋆ in one and only one point. The orbitswhih do not meet Hk are those suh that Zk = 0. However, the orbit of any point Z ∈ H⋆intersets some Hk, in other words ∪k∈N⋆C⋆Hk = H⋆, or π(∪k∈N⋆Hk) = P. For eah
k ∈ N⋆ let us de�ne the injetion jk : H −→ H⋆ by

j1(Z) = (1,Z) and jk(Z) = (Z1, . . . ,Zk−1, 1,Zk, . . .), if k > 1.And let us de�ne also the map
Fk = π ◦ jk, Fk : H −→ P.We shall prove now that the Fk are indutions onto D-open sets of P, and therefore areloal di�eomorphisms (art. 6.8):a) The map jk is an indution. Let us onsider a plot P of H with values in Hk,loally:

P(r) =
∑

α∈A

λα(r)Zα and Pk(r) =
∑

α∈A

λα(r)Zα,k = 1, Pk = prk ◦ P.Let us de�ne ζα by:
ζα = (Zα,1 , . . . ,Zα,k−1, 1,Zα,k+1, . . .).For eah α in A, ζα belongs to Hk. Let ek be the sequene with only one nonzero term,equal to 1, at the plae k. From the ondition above, we have loally:
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P(r) =
∑

α∈A

λα(r)ζα −
∑

α∈A

λα(r)ek +
∑

α∈A

λα(r)Zα,kek

=
∑

α∈A

λα(r)ζα +
(
1 −

∑

α∈A

λα(r)
)
ek.Now, sine the vetors ζα and ek belong to Hk, the plot j−1

k ◦ P writes loally
j−1
k ◦ P(r) =

∑

α∈A

λα(r)j−1(ζα) +
(
1 −

∑

α∈A

λα(r)
)
j−1(ek)but jk(0) = ek implies j−1

k (ek) = 0, hene:
j−1
k ◦ P(r) =

∑

α∈A

λα(r)j−1(ζα).This exhibits the parametrization j−1
k ◦ P as a plot of H, hene jk is an indution.b) The map Fk is learly di�erentiable and injetive.) Let Q : U −→ P be a plot with values in Fk(H), and let r0 ∈ U. By de�nition of thequotient di�eology, there exists a superset V of r0 and a plot P : V −→ H⋆ suh that Q ↾

V = π ◦P. By hypothesis, for eah r ∈ V, Pk(r) 6= 0, where Pk = prk ◦P, therefore P′ : V

−→ H⋆ de�ned by P′(r) = P(r)/Pk(r) takes its values in Hk. Sine Pk is di�erentiable, P′is di�erentiable and Q ↾ V = π◦P′. The plot P′ takes its values in Hk, and jk is an indu-tion, so the omposition j−1
k ◦P′ is a plot of H. But, by onstrution, j−1

k ◦P′ = F−1
k ◦Q,thus F−1

k ◦ Q is a plot of H and F−1
k is di�erentiable. Therefore, Fk is an indution.d) Now let us prove that the image of Fk is D-open. Sine the D-topology of thequotient di�eology is the quotient topology of the D-topology (art. 6.5), it is enough toprove that the preimage by π of the Fk(H) is D-open in H⋆. We saw that π−1(Fk(H))is the set of all Z ∈ H suh that Zk 6= 0, i.e. pr−1

k (C⋆). But prk is linear, hene smooth,hene ontinuous. Sine C⋆ is open it follows that π−1(Fk(H)) is open.So, we just proved that the Fk are loal di�eomorphisms. Sine their images over P,the spae P is a di�eologial manifold modeled on H.Let us prove now, that π is a C⋆ prinipal �bration. Let us onsider the map
Φk : H × C⋆ −→ H⋆ suh that Φk(Z, z) = zjk(Z).The previous part of the proof proved that Φk is a di�eomorphism overing Fk. It om-mutes with the ation of C⋆. Thus, the projetion π is a di�eologialC⋆ prinipal bundles,loally trivial.The restrition πS : S −→ P is a di�eologial �bration. The restrition to the in�nitesphere has been desribed above. Just the ation of S1 remains from the ation of C⋆.Now, thanks to the projetion Z 7→ Z/‖Z‖, the natural bijetion S/S1 −→ P = H⋆/C⋆is a di�eomorphism (art. 5.6). The projetion π to S is a redution of the �bration H⋆

−→ P to the subgroup S1 ⊂ C⋆, therefore it is a �bration [Igl85℄.The homotopy of P. We apply the exat sequene of homotopy for di�eologial bundle(art. 9.2), sine the total spae S is ontratible we get πk(P) = πk−1(S
1), whih givesthe homotopy groups of P, in partiular the only nontrivial one: π2(P) = π1(S

1) = Z.The �bration is not trivial. Indeed, otherwise the �rst homotopy group π1(S) wouldbe equal to π1(P × S1) = π1(P) × π1(S
1) = {0} × Z = Z whih is not the ase.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 379THE SYMPLECTIC PICTUREIn this hapter we introdue a homogeneous sympleti form Ω on the square H2
R

=

HR ×HR, whih we all the standard sympleti form. This di�erential form is invariantby translation. The form Ω is the exterior derivative of a 1-form Λ, alled the Liouvilleform, beause it is the restrition to H2
R

of the general Liouville's form de�ned on the1-form bundle of any di�eologial spae [PIZ05℄. The restrition ̟ of Λ to the in�nitesphere SR is a onnetion 1-form, for the natural ation of the group SO(2,R) de�ningthe Hopf �bration. The urvature of ̟ is a losed 2-form ω de�ned on P ∼ SR/SO(2,R),whih generalizes the standard Fubini-Study form of the �nite dimensional onstrution.19. The Liouville form on the Hilbert square. The following proposition gives thede�nition of the Liouville form on the square H2
R
, a natural extension of the Liouvilleform of the �nite dimensional ase R2n.19.1. The Liouville form. Let P : U −→ HR × HR be a plot, V ⊂ U an open subsetsuh that there exists a �nite loal family (λα, (Xα,Yα)), where the λα are smooth realfuntions de�ned on V, and the (Xα,Yα) are vetors of HR × HR, suh that:

P ↾ V : r 7→
∑

α∈A

λα(r)(Xα,Yα).Let Λ(P ↾ V) be the following 1-form, de�ned on V:
Λ(P ↾ V) =

1

2

∑

α,β∈A

(Xα · Yβ − Yα · Xβ)(λαdλβ − λβdλα).1. If P′ is any plot of HR ×HR suh that P ↾ V = P′ ↾ V, then Λ(P ↾ V) = Λ(P′ ↾ V).2. There exists a 1-form Λ(P) on U suh that for any open subset V ⊂ U, Λ(P ↾ V) =

Λ(P) ↾ V.3. The map Λ : P 7→ Λ(P) is a 1-form of HR × HR.Proof. Let us prove suessively:1. Let us develop the restrition of P′ to V,
P′ ↾ V : r 7→

∑

α′∈A′

λ′α′(r)(X′
α′ ,Y′

α′).Then, P ↾ V = P′ ↾ V implies
∑

α∈A

λαXα =
∑

α′∈A′

λ′α′X′
α′ and ∑

α∈A

λαYα =
∑

α′∈A′

λ′α′Y′
α′ .Let us note that:

Λ(P ↾ V) =
( ∑

α∈A

λαXα

)
·
( ∑

β∈A

dλβYβ

)
−

( ∑

α∈A

λαYα

)
·
( ∑

β∈A

dλβXβ

)
.Thus, we have:

Λ(P ↾ V) − Λ(P′ ↾ V) =
( ∑

α∈A

λαXα

)
·
( ∑

α′′∈A′′

dλ′′α′′Y′′
α′′

)

−
( ∑

α∈A

λαYα

)
·
( ∑

α′′∈A′′

dλ′′α′′X′′
α′′

)



380 P. IGLESIAS-ZEMMOURwhere A′′ is the following reordering of the two sets of indies A and A′, λ′′α′′ , X′′
α′′and Y′′

α′′ following this reordering: let A = {1, . . . , a} and A′ = {1, . . . , a′} we denote
A′′ = {1, . . . , a′′} suh that a′′ = a+ a′ and:

λ′′α′′ = λα if 1 ≤ α′′ ≤ a and λ′′α′′ = λ′α′ if a+ 1 ≤ α′′ ≤ a+ a′,

Y′′
α′′ = Yα if 1 ≤ α′′ ≤ a and Y′′

α′′ = −Y′
α′ if a+ 1 ≤ α′′ ≤ a+ a′,

X′′
α′′ = Xα if 1 ≤ α′′ ≤ a and X′′

α′′ = −X′
α′ if a+ 1 ≤ α′′ ≤ a+ a′.With this reordering we get:

∑

α∈A

λαYα =
∑

α′∈A′

λ′α′Y′
α′ ⇒

∑

α′′∈A′′

λ′′α′′Y′′
α′′ = 0,

∑

α∈A

λαXα =
∑

α′∈A′

λ′α′X′
α′ ⇒

∑

α′′∈A′′

λ′′α′′X′′
α′′ = 0.Let us projet this vetor on eah fator R by the projetion prk:

∑

α′′∈A′′

λ′′α′′Y′′
α′′ = 0 ⇒ for all k ∈ N,

∑

α′′∈A′′

λ′′α′′Y′′
α′′,k = 0,

∑

α′′∈A′′

λ′′α′′X′′
α′′ = 0 ⇒ for all k ∈ N,

∑

α′′∈A′′

λ′′α′′X′′
α′′,k = 0.But X′′

α′′,k and Y′′
α′′,k are just numbers, ∑

α′′∈A′′ λ′′α′′X′′
α′′,k and ∑

α′′∈A′′ λ′′α′′Y′′
α′′,k aresmooth funtions of r ∈ V. Sine these funtions vanish identially, so do their derivatives,with respet to r. And we get:for all k ∈ N,

∑

α′′∈A′′

dλ′′α′′Y′′
α′′,k = 0 ⇒

∑

α′′∈A′′

dλ′′α′′Y′′
α′′ = 0,

for all k ∈ N,
∑

α′′∈A′′

dλ′′α′′X′′
α′′,k = 0 ⇒

∑

α′′∈A′′

dλ′′α′′X′′
α′′ = 0.And �nally Λ(P ↾ V) = Λ(P′ ↾ V).2. Let us onsider a overing Ui of U suh that the plot P, restrited to eah Ui, is thesum of a �nite linear ombination of vetors with smooth parametrizations as oe�ients.Let i and j be two indies of the overing, let us denote Pi = P ↾ Ui. By the previousstatement we have

Λ(Pi) ↾ Ui ∩ Uj = Λ(Pj) ↾ Ui ∩ Uj .Beause a di�erential form is loal (art. 10.4), there exists a 1-form Λ(P) = supi Λ(Pi),de�ned on U suh that Λ(P) ↾ Ui = Λ(Pi)3. It remains to show that the map Λ is a 1-form on HR × HR. That is, to hekthat for any plot P : U −→ HR × HR, and for any smooth parametrization F : U′ −→ U,
Λ(P ◦ F) = F∗(Λ(P)). Let r′0 ∈ U′ and r0 = F(r′0), let

P ↾ V : r 7→
∑

α∈A

λα(r)(Xα,Yα)



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 381as usual. Let us de�ne now V′ = F−1(V) and λ′α = λα ◦ F, we have
Λ(P ◦ F ↾ V′)r′(δr′) =

∑

α,β∈A

Xα · Yβ λ′α(r′)dλ′β(r′)(δr′)

=
∑

α,β∈A

Xα · Yβ λα(F(r′))dλβ(F(r′))(D(Fr′)(δr′))

=
∑

α,β∈A

Xα · Yβ λα(r)dλβ(r)(δr),

with r = F(r′) and δr = D(F)r′(δr′), this is the de�nition of the pull-bak. Therefore,
Λ(P ◦ F ↾ V′) = F∗(Λ(P ↾ V)). Sine this is true loally, and sine it's a loal property,it's true globally and Λ(P ◦ F) = F∗(Λ(P)).19.2. The omplex piture of the Liouville form. Let us onsider the identi�ation of Hwith HR×HR de�ned by the unique deomposition Z = X+iY, with (X,Y) ∈ HR×HR.Let P : r 7→ ∑

α∈A λα(r)Zα be a plot of H, where (λα,Zα)α∈A is a loal family. The λαare omplex valued funtions and the Zα are vetors of H. Let us de�ne the symbol dZby :
dZ(P) : r 7→

∑

α∈A

dλα(r)Zα where P : r 7→
∑

α∈A

λα(r)Zα.Here dλα needs to be understood as
dλα = daα + idbα, where λα = aα + ibα.Then, the Liouville form ̟, pulled bak on H by the isomorphism Φ : Z 7→ (X,Y), writes:

Φ∗(̟) =
1

2i
[Z · dZ − dZ · Z].Proof. This identity is obtained just by developing the omputation as follows:

(Z · dZ − dZ · Z)(P) =
∑

α∈A

λ∗α(Xα − iYα)
∑

β∈A

dλβ(Xβ + iYβ)

−
∑

α∈A

dλ∗α(Xα − iYα)
∑

β∈A

λβ(Xβ + iYβ)

=
∑

α,β∈A

λ∗αdλβ [XαXβ + YαYβ + i(XαYβ − YαXβ)]

−
∑

α,β∈A

dλ∗αλβ [XαXβ + YαYβ + i(XαYβ − YαXβ)]

=
∑

α,β∈A

(XαXβ + YαYβ)(λ∗αdλβ − dλ∗αλβ)

+ i
∑

α,β∈A

(XαYβ − YαXβ)(λ∗αdλβ − dλ∗αλβ).

But, ∑
α,β∈A(XαXβ + YαYβ)(λ∗αdλβ − dλ∗αλβ) = 0 for symmetry reasons. Hene, devel-oping, for eah index, λα = aα + ibα, we get:
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(Z · dZ − dZ · Z)(P) = i
∑

α,β∈A

(XαYβ − YαXβ)(λ∗αdλβ − dλ∗αλβ)

= i
∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα + bαdbβ − bβdbα)

−
∑

α,β∈A

(XαYβ − YαXβ)(aαdbβ + aβdbα − bαdaβ − bβdaα).But, the seond term of the right hand side vanishes for symmetry reasons. So, thereremains:
(Z · dZ − dZ · Z)(P) = i

∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα)

+ i
∑

α,β∈A

(XαYβ − YαXβ)(bαdbβ − bβdbα).Let us now ome bak to the map Φ : Z 7→ (X,Y), identifying H and HR×HR. The plot
Φ◦P writes neessarily Φ◦P(r) =

∑
j∈J

µj(r)(Xj,Yj). Then, by developing ∑
α∈A λαZαwe obtain the family (µj , (Xj,Yj))j∈J as the union of two families:

(µj , (Xj ,Yj))j∈J = (aα, (Xα,Yα)α∈A ∪ bα, (−Yα,Xα)α∈A).Applying the form ̟ to Φ ◦ P, with this family, we get:
̟(Φ ◦ P) =

∑

α,β∈A

(XαYβ − YαXβ)(aαdaβ − aβdaα)

+
∑

α,β∈A

(−YαXβ + XαYβ)(bαdbβ − bβdbα).Comparing the last two expressions we get ̟(Φ ◦P) = (1/2i)(Z · dZ− dZ ·Z)(P). Thanksto loality (art. 10.4), this equality is still satis�ed for any plot of H2
R
. Hene, we anonlude that:

Φ∗(̟) =
1

2i
[Z · dZ − dZ · Z].The proof is omplete.20. The sympleti form on the Hilbert square. The standard sympleti form of

HR ×HR is just the exterior derivative of the Liouville form. It generalizes the standardsympleti form of even dimensional real vetor spaes, and its loal expression is givenby the following proposition.20.1. The sympleti form of HR × HR. Let Ω be the exterior derivative of Λ,
Ω = dΛ, i.e. Ω(P) = d[Λ(P)]for any plot P : U −→ HR × HR. Let V ⊂ U be a domain suh that there exists a loalfamily (λα, (Xα,Yα))α∈A suh that:
P ↾ V : r 7→

∑

α∈A

λα(r)(Xα,Yα).



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 383Then, a diret omputation give the loal expresion of the 2-form Ω in the plot P:
Ω(P ↾ V) =

∑

α,β∈A

(Xα · Yβ − Yα · Xβ)dλα ∧ dλβ .Moreover the sympleti form Ω is invariant under the translations of HR ×HR. We all
Ω the standard sympleti form of the square HR × HR.20.2. Why is Ω sympleti? The word sympleti in the last proposition (art. 20.1) needshowever to be disussed. I use it beause the momentum map of HR × HR, ating onitself by translation and preserving ω, satis�es the ondition I suggest for ω to be alleda sympleti form. Here is an abridged desription of the general onstrution, a fulldisussion on sympleti di�eology an be found in [PIZ05℄.Let X be a onneted di�eologial spae. Let ω be a losed 2-form on X. Its whole sym-metry group Diff(X, ω) onsists of all di�eomorphisms of X whih preserve ω, equippedwith the funtional di�eology (art. 7.1). Let G be any group of symmetries, that is anysubgroup of Diff(X, ω), and let G∗ be the spae of moments of G (art. 11.2) equippedwith the funtional di�eology of spae of di�erentiable forms [PIZ05℄.The 2-point momentum map. The 2-point momentum map of G is a di�erentiable map
ψ de�ned on X×X with values in a quotient G∗/Γ, where Γ is the holonomy group of the
G-ation. The holonomy group Γ is a homomorphi image of the �rst homotopy group
π1(X), and is G-invariant in G∗. It is the obstrution to the G-ation being hamiltonian.The 2-point momentum map satis�es the Chasles oyle relation

ψ(x, x′) + ψ(x′, x′′) + ψ(x′′, x) = 0and is G-equivariant:
ψ(g(x), g(x′)) = Ad∗(g)(ψ(x, x′)), for all g ∈ G.The 1-point momentum maps. Sine X is onneted, there always exists a di�erentiablemap µ from X to G∗/Γ suh that

ψ(x, x′) = µ(x′) − µ(x).We an hoose µ(x) = ψ(x0, x) where x0 is any point of X. I all the maps µ, the 1-pointmomentum maps. We may also simply all them momentum maps, sine they extend theusual de�nition of the momentum maps. Sine the spae X is onneted, two momentummaps di�er only by a onstant. If µ an be hosen equivariant the 2-point momentummap ψ is said to be exat, and µ is alled a primitive of ψ.The assoiated ohomology lass θ. If the 2-point momentum map ψ is not exat, thevariane of any 1-momentum map µ de�nes a non trivial 1-oyle θ by:
µ(g(x)) = Ad∗(g)(µ(x)) + θ(g), where θ ∈ Z1(G,G∗/Γ).Two di�erent 1-point momentum maps de�ne two ohomologous oyles. The ohomol-ogy lass [θ] ∈ H1(G,G∗/Γ) extends the so-alled Souriau ohomology lass. Note that ifthe 2-point momentum map ψ is exat, a primitive µ of ψ (that is a 1-point momentummap) is still de�ned modulo a onstant. But, this time this onstant is invariant underthe oadjoint ation of G.



384 P. IGLESIAS-ZEMMOURHomogeneous ases. Whether µ is equivariant or not, we an show [PIZ05℄ that when
G ats transitively on X, µ is automatially a �bration onto its image whih is always ana�ne oadjoint orbit, that is an orbit of the a�ne oadjoint ation:

gθ : µ 7→ Ad∗(g)(µ) + θ(g), for any g ∈ G and any µ ∈ G∗/Γ.What has been said until now applies the same way to the whole symmetry group
Diff(X, ω). In this ase the momentum map is the universal momentum map of (X, ω),sine any other momentum map, relative to any subgroup G ⊂ Diff(X, ω) fatorizesthrough it. Now, it seems to me natural to de�ne sympleti forms as follow:Sympleti di�eologial spaes. LetX be a di�eologial spae. A losed 2-form ω de�nedon X is said to be sympleti if X is homogeneous under the symmetry group Diff(X, ω)and if any 1-point momentum map µ of Diff(X, ω) is a overing onto its image. In thisase, the pair (X, ω) is alled a sympleti di�eologial spae.This de�nition needs however some omments. First of all, if this property is satis�edfor some group of symmetries G ⊂ Diff(X, ω), it is a fortiori satis�ed for the whole groupof symmetries Diff(X, ω). Hene, it is su�ient to �nd the good symmetry group forheking that a losed 2-form is sympleti. Seondly, if a 1-point momentum map is aovering onto its image then all the 1-points momentum maps are overings, sine theydi�er just by a onstant.Now, let us ome to the very reason of this de�nition. In the usual ase of a �-nite dimensional real manifold, the Darboux theorem asserts that a sympleti man-ifold (X, ω) is loally homogeneous under Diff(X, ω). Hene, a good generalization ofsympleti manifolds needs to inlude this property, whih exludes the non homoge-neous situations, altought this ondition ould weakened by onsidering the pseudo-group of loal automorphisms, but that is still not done. Then, if X is homogeneousunder Diff(X, ω) or one of its subgroups, any 1-point momentum map µ is a �brationonto an a�ne oadjoint orbit. The spae X an be regarded as pre-sympleti. But, theharateristis of µ are exatly the harateristis of ω. Hene to be non degenerate isequivalent for µ to have its harateristis disrete, that is to be a overing onto itsimage.I know that many authors onsider som kinds of �sympleti strutures� on non ho-mogeneous spaes, as for example on orbifolds where singularities an be exhanged bydi�eomorphisms only with other singularities of same type. Personally, for the reason justexpressed above, I would prefer to talk about �sympleti strati�ed di�eologial spaes�,althout sympleti strati�ed di�eologial spaes an be more general than orbifolds. Butwe still miss a name for the general ase of a di�eologial spae equipped just with alosed 2-form, whih is the basis of all this analysis.21. The sympleti struture on the in�nite projetive spae. We onsider nowthe restrition ̟ of the Liouville form Λ to the sphere SR, it is obviously invariant bythe ation of SO(2,R). In the omplex piture, the ation of S1 ∼ SO(2,R) is given bymultipliation. For any point Z ∈ S, the orbit map Ẑ, from S1 to S, is de�ned by:

Ẑ : S1 −→ S with Ẑ(τ ) = τZ.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 38521.1. The Liouville form ̟ is a onnetion form. Let̟ be the restrition of the Liouvilleform of H2
R
to the in�nite sphere SR. For any Z in S, the pull-bak of the Liouville form

̟ by the orbit map Ẑ oinides with the standard length 1-form of the irle S1:
Ẑ∗(̟) =

dz

iz
.In other words, ̟ is an S1-onnetion form of the Hopf �bration π : S −→ P.Proof. It is enough to test the 1-form Z∗(̟) on the 1-plots of S1 (art. 10.5). And sinethe di�eology of S1 is generated by the homomorphism F : R −→ S1, with F(t) = eit, itis enough to test Z∗(̟) on F. Now,

F∗(Ẑ∗(̟)) = (Ẑ ◦ F)∗̟ = ̟(Ẑ ◦ F) = ̟([t 7→ F(t)Z]).Let us develop F(t)Z in terms of (X,Y):
Z =

(
X

Y

)
, F(t) =

(
cos(t) − sin(t)

sin(t) cos(t)

)
, F(t)(Z) =

(
cos(t)X − sin(t)Y

sin(t)X + cos(t)Y

)
.In other words, our plot t 7→ F(t)(Z) an be desribed in terms of (art. 13.1) the loalfamily (λ1,X1,Y1) = (cos,X,Y), (λ2,X2,Y2) = (sin,−Y,X).Now, let us apply the de�nition,

̟([t 7→ F(t)Z]) =
∑

α,β∈{1,2}

XαYβ(λαdλβ − λβdλα)

= X1Y2(λ1dλ2 − λ2dλ1) + X2Y1(λ2dλ1 − λ1dλ2)

= X · X[cos(t)d(sin(t)) − sin(t)d(cos(t))]

+ (−Y) · Y[sin(t)d(cos(t)) − cos(t)d(sin(t))]

= X · Xdt+ Y · Ydt
= [X · X + Y · Y]dt

= dt

= F∗(dz/iz).The proof is omplete.21.2. Fubini-Study form on the in�nite projetive spae There exists a unique losed2-form ω de�ned on P suh that
π∗ω = d̟, π : S −→ P.It is, by de�nition, the urvature of ̟, viewed as a S1-onnetion form on S. This form

ω will be alled the in�nite Fubini-Study sympleti form.Proof. In general, when we have a subdution π : A −→ B and a form α on A, for provingthat there exists a form β on B suh that π∗(β) = α, we have to hek that: for any pairof plots P and P′ of A suh that π ◦P = π ◦P′, α(P) = α(P′) [PIZ05℄. But in the ase ofprinipal di�eologial �bration this ondition splits into two onditions:a) the form α must be invariant under the struture group, andb) it must vanish on the �vertial� plots, that is the plots whose images are ontainedin the �bers.



386 P. IGLESIAS-ZEMMOURThe details of these propositions an be found in [PIZ05℄. In our ase, the �ber hasdimension 1. So, d̟ neessarily vanishes on the vertial plots, and we noted already that
̟ (therefore d̟) is S1-invariant (art. 21.1). Hene, there exists a 2-form ω of P, suhthat d̟ = π∗ω.21.3. The in�nite Fubini-Study form is not exat. The Fubini-Study form ω on P is theurvature of the onnetion ̟. It is losed but not exat, and its value on any 2-yle isa multiple of 2π. In other words, its group of periods is

Per(ω) =

{∫

σ

ω

∣∣∣∣ σ ∈ H2(P,Z)

}
= 2πZ.Proof. ω is not exat. Suppose we had ω = dǫ. Then, ̟ − π∗(ǫ) would be losed: d[̟ −

π∗(ǫ)] = π∗(ω − dǫ) = 0. Sine S is ontratible (art. 17.2), it would follow [PIZ05℄ that
̟ − π∗(ǫ) is exat, say ̟ − π∗(ǫ) = df . But then the integral over a �ber S = π−1(p)would vanish: ∫

S
̟ =

∫
S
π∗(ǫ) +

∫
S
df = 0 +

∫
∂S
f = 0 + 0, whereas we know that∫

S
̟ =

∫ 2π

0
dt = 2π.The periods of ω. Let us onsider now a 2-simplex σ in P, suh that ∂σ = 0, i.e.its boundary goes on one point p. Let us ompute the integral ∫

σ
ω =

∫
σ
π∗(d̟) =∫

π∗σ
d̟. Here, π∗σ is a lifting σ∗ of σ, that is a simplex of S suh that π ◦ σ∗ = σ. So,∫

σ
ω =

∫
∂σ∗

̟, but ∂σ∗ is a map sending a « irle » � the boundary of the standard2-simplex � to the irle π−1(p). Sine ̟ ↾ π−1(p) ∼ dt, by de�nition of the degree:∫
∂σ∗

̟ = deg(∂σ∗)
∫ 2π

0
dt ∈ 2πZ.22. The anonial line bundle over the in�nite projetive spae. It is di�ultto talk about the Hopf �bration without talking about its C-assoiated line bundle.22.1. The Hopf line bundle. Let us onsider the diagonal ation of C⋆ on the produt

H⋆ × C, endowed with the produt di�eology. It is easy to hek that this ation isdi�erentiable. Now, the quotient spae:
L = H⋆ ×C⋆ C = {[Z, z] | (Z, z) ∼ (τZ, τz), τ ∈ C⋆}equipped with its quotient topology, is a di�eologial bundle, on P, loally trivial. Theprojetion is de�ned by π : [Z, z] 7→ [Z]. Moreover, L is a di�eologial manifold modeledon H.Proof. Let us onsider the following maps Φk:

Φk : H × C −→ L suh that Φk(Z, z) = [Fk(Z), z] ∈ L,where Fk are the harts de�ned in proposition 18.1. The Φk are di�eomorphisms whihommute with the ation of C⋆, therefore L is loally di�eomorphi to H × C ∼ H ateah point. The set of (Φk)k∈N⋆ is an equivariant atlas of L.22.2. Setions of the line bundle. Note that, by restrition to S ⊂ H⋆ and S1 ⊂ C⋆, weget:
L = S ×S1 C = {[Z, z] | (Z, z) ∼ (τZ, τz), τ ∈ S1}.Outside the null-setion, the line bundle L is di�eomorphi to H⋆, the point 0 ∈ H isreplaed by P. The spae L is the blow-up of H at the point 0.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 387Now, let ψ : S −→ C be a di�erentiable funtion suh that ψ(τZ) = τψ(Z), for all
τ ∈ S1 and Z ∈ S. The map [ψ] de�ned by:

[ψ] : P −→ L suh that [ψ]([Z]) = [Z, ψ(Z)]is a di�erentiable setion of the bundle π : L −→ P.Proof. The proof is an appliation of general onstrutions about assoiated di�eologial�ber bundles, developed in [Igl85℄.THE SYMMETRIES OF THE INFINITE HOPF CONSTRUCTIONWe used the word sympleti to desribe the 2-form ω de�ned on the in�nite projetivespae P (art. 21.2). But we have to justify this terminology. Aording to the suggestionabove (art. 20.2) we shall show that the projetive spae is equivalent to a oadjoint orbitof the unitary group U(H), that is the subgroup of GL(H) preserving the hermitianform. First of all we shall show that P is homogeneous under U(H), for the di�eologiesinvolved. Then, we ompute expliitly the momentum map of the ation of U(H) on Pand show that it is bijetive. This will identify P with the image of the momentum map,that is with a oadjoint orbit of U(H).23. The in�nite sphere as a homogeneous spae. On one hand, the vetor spae
H is equipped with its �ne di�eology, the sphere S ⊂ H inherits its di�eology by indu-tion. On the other hand, the spae of linear maps L(H) is equipped with the funtionaldi�eology, as group of di�erentiable maps of H, the subgroup U(H) ⊂ L(H) inherits,by indution, this funtional di�eology desribed in (art. 13.7). The group U(H) atstransitively on the sphere S [Bou72℄. We shall show that S is a homogeneous spae of
U(H). That is, preisely: the di�eology of the sphere S is the quotient of the funtionaldi�eology of U(H).23.1. The in�nite sphere as homogeneous spae. Let π : U(H) −→ S be the map π(A) =

Ae1. The map π is a subdution, where U(H) is equipped with the funtional di�eologyand the sphere S with the subset di�eology of the �ne di�eology of H. In other words,the sphere S is a di�eologial homogeneous spae of U(H).
S ≃ U(H)/StU(H)(e1) and StU(H)(e1) ≃ U(H).Proof. The proof will be given in two steps:1. The map π is surjetive. Let Z and Z′ be two elements of S. If Z and Z′ are ollinearthen there exists τ ∈ S1 ≃ U(C) suh that Z′ = τZ. But, the map Z 7→ τZ belongs to

U(H). Now, if Z and Z′ are independent over C, let E be the plane spanned by thesetwo vetors and let F be its orthogonal for the hermitian produt. Aording to Bourbaki[Bou72℄ E and F are supplementary H = E ⊕ F. The vetors Z and Z′ are vetors ofthe unit sphere S3 ⊂ E ≃ C2, now the group U(C2) ats transitively on S3, there exists
A ∈ U(C3) suh that Z′ = AZ. This map, extended to H by the identity on F, belongsto U(H) and maps Z to Z′. Therefore, the ation of U(H) is transitive on S, whih isequivalent to the assertion that π is surjetive.



388 P. IGLESIAS-ZEMMOUR2. The map π is a subdution. Let Q : U −→ S be a plot. We want to lift loally Qalong the projetion π, that is for any r0 ∈ U, �nd a plot P : V −→ U(H), de�ned onsome superset V of r0, suh that P(r)(e1) = Q(r), for any r ∈ V. So, let r0 ∈ U, let Vbe a superset of r0, let j : Cm −→ H be an injetion, and let φ : V −→ Cm be a smoothparametrization suh that Q ↾ V = j ◦ φ. Let us denote E = j(Cm). The plot Q of Stakes its values in E, and hene in the unit sphere of E: S(E) = E ∩ S. The di�eologyindued on S(E) is the standard di�eology: S(E) ≃ S2m−1. Thus Q ↾ V is an ordinarydi�erentiable map from V into S(E). But, we know that the projetion from U(m) onto
S(Cm) is a submersion, a fortiori a subdution. So, for any r0 ∈ V there exists a domain
W ⊂ V and a smooth lifting ϕ : W −→ U(m) suh that Q(r) = ϕ(r)(em

1 ), for any r ∈ W,where em
1 is the vetor (1, 0, . . . , 0) ∈ Cm. Let us assume that e1 = j(em

1 ), if it is notthe ase we onjugate everything with some well hosen linear map. Now, let F be theorthogonal of E. The spae H is the diret sum of E and F, i.e. H = E⊕F [Bou72℄. Anyvetor Z ∈ H has a unique deomposition Z = ZE + ZF suh that ZE ∈ E and ZF ∈ F.Let us de�ne the following map:for all r ∈ W, for all Z ∈ H : P(r)(Z) = ϕ(r)(ZE) + ZF.For any r ∈ W the map P(r) is di�erentiable beause the deomposition Z 7→ (ZE,ZF) islinear, di�erentiable for the �ne di�eology. Moreover P(r) learly preserves the Hermitianprodut, and it's learly invertible. The map P lifts Q loally:for all r ∈ W, P(r)(e1) = ϕ(r)(em
1 ) + 0 = Q(r).It remains to hek that P is a plot of the funtional di�eology of U(H). But this isquite lear, a �nite family of vetors splits into omponents in E and in F, beause thefamily is �nite one has a �nite intersetion of open sets whih is open and we get thedesired property. The inverse of P(r) does not give any more problem. Thus, the proof isomplete.24. The projetive spae as a oadjoint orbit. In this setion we give �rst a def-inition of the momentum map of the ation of a di�eologial group preserving a losed2-form, in the speial ase where the form is exat and the group preserves a primitive.The general de�nition of the momentum map in di�eology an be found in [PIZ05℄. Weapply this de�nition to the ation of U(H) ating on the in�nite sphere equipped withthe form d̟. Then, we show that the momentum map fatorizes through P in a bijetiononto a oadjoint orbit of U(H). Thanks to the equivariane of the momentum map, thisidenti�es P to a oadjoint orbit.24.1. The momentum map of the unitary group. Let us onsider the ation of U(H)on S, let us denote AS : Z 7→ AZ, where (A,Z) ∈ U(H) × S. This ation preserves theLiouville form ̟, that is for all A ∈ U(H), A∗

S(̟) = ̟. The momentum map assoiatedto the ation of U(H) on S, regarding d̟ is, by de�nition the map
µ : Z 7→ Ẑ∗(̟), Ẑ : U(H) −→ S, Ẑ(A) = AZ.In fat the momentum map is de�ned modulo a onstant (art. 20.2). We make impliitlyfor µ and m a hoie of onstant.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 3891. The momentum map µ takes its values in the spae U∗ of moments of U(H)(art. 11.2).2. The momentum map µ is equivariant under the ation of U(H):For all A ∈ U(H), for all Z ∈ H, µ(AZ) = Ad∗(A)(µ(Z)).3. The value of the momentum map µ, on any 1-plot P of U(H), is given by
µ(Z)(P) =

1

2i

[
P (t)(Z) · dP(t)(Z)

dt
− dP(t)(Z)

dt
· P (t)(Z)

]
dt, (♣)where, loally:

P(t)(Z) =
∑

α∈A

λα(t)Zα, and dP(t)(Z) =
∑

α∈A

dλα(t)

dt
Zα.4. The momentum map µ is homogeneous of degree two:For all Z ∈ U(H), for all z ∈ C, µ(zZ) = |z|2µ(Z).5. The momentum map µ fatorizes through P: there exists m ∈ C∞(P,U∗) suh that

µ = m ◦ π, where π is the projetion from S onto its quotient P.6. The map m : P −→ U∗ is the momentum map of U(H) ating on S, relative to theFubini-Study form ω.7. The momentum map m : P −→ U∗ is injetive.Therefore, the image of P under the momentum map m is a oadjoint orbit of U(H), themomentum map m identi�es, as di�eologial spaes, P and this oadjoint orbit.Proof. Let us prove suessively:1. µ(Z) is a moment of U(H). The 1-form ̟, de�ned on S is invariant by the ationof the unitary group U(H), hene for any A ∈ U(H), L(A)∗(µ(Z)) = L(A)∗ ◦ Ẑ∗(̟) =

(Ẑ◦L(A))∗(̟), but Ẑ◦L(A) = AS◦Ẑ, hene L(A)∗(µ(Z)) = (Ẑ◦L(A))∗(̟) = Ẑ∗(A∗
S(̟)) =

Ẑ∗(̟) = µ(Z). Therefore µ(Z) ∈ U∗ for any Z ∈ S.2. The momentum map µ is equivariant. Let A ∈ U(H), and Z ∈ H. We have µ(AZ) =

ÂZ
∗
̟, but ÂZ = Z◦R(A), so µ(AZ) = (Z◦R(A))∗(̟) = R(A)∗(Ẑ∗(̟)) = R(A)∗(µ(Z)) =

Ad∗(A) ◦ µ(Z). That is µ ◦ AS = Ad∗(A) ◦ µ.3. Expression of µ. This expression is a diret appliation of the omplex formulationof the momentum map (art. 19.2).4. The momentum map is quadrati. It's just an appliation of the formula ♣. Butwe an get this property diretly. Let z ∈ C and Z ∈ H, we have µ(zZ) = ẑZ
∗
(̟) =

(zẐ)∗(̟) = Ẑ∗(z∗(̟)). Now, let us use the omplex expression of the Liouville form(art. 19.2),
̟ =

1

2i
[Z · dZ − dZ · Z].By de�nition of the symbol dZ, we get obviously d(zZ) = zdZ. And, thus z∗(̟) = z∗z̟ =

|z|2̟, that is µ(zZ) = |z|2µ(Z).5. The momentum map fatorizes through P. This is a diret onsequene of P ≃ S/S1and part of the proposition 4) with |z| = 1.6. The map m is the momentum map of U(H) on P. This proposition makes refereneto the general de�nition of the momentum map for di�eologial spaes [PIZ05℄. The



390 P. IGLESIAS-ZEMMOURfuntoriality of the momentum map expresses that: if a group G has an hamiltonianation on two spaes (X, ω) and (X′, ω′) suh that π : X −→ X′ is a subdution ommutingwith the two ations of G, so the respetive momentum maps µ and µ′ an be hosensuh that µ′ = π ◦ µ.7. The momentum map m is injetive. Let us onsider Z and Z′ two elements of Ssuh that µ(Z) = µ(Z′). If Z and Z′ are ollinear, then Z′ = τZ and [Z] = [Z′], where [Z]is the lass of Z in P. Then, let us assume that Z and Z′ are not ollinear. Let E be theomplex 2-plane generated by Z and Z′. Let us onsider an orthonormal basis of E madewith Z as �rst vetor and v as seond, and let Z′ = aZ + bv. We have a∗a+ b∗b = 1 and
b 6= 0. Let us now onsider the plot P : R −→ U(H) de�ned as follows:

P(t)(Z) = Z, P(t)(v) = eitv and P(t) ↾ E⊥ = 1.The plot t 7→ P(t)(Z) deomposes aording to the family {(1,Z)}, applying the formula
♣ we get µ(Z)(P) = 0. But, the plot t 7→ P(t)(Z′) deomposes aording to the family
{(a,Z), (b exp(it), v)}, and

dP(t)(Z′)

dt
= ibeitv.Applying ♣ we get now µ(Z′)(P) = b∗b. But then, µ(Z′)(P) = µ(Z)(P) = 0 implies b = 0,whih is in ontradition with the hypothesis b 6= 0. Therefore, µ(Z) = µ(Z′) if and onlyif Z′ = τZ, with τ ∈ S1.8. The in�nite projetive spae P is equivalent to a oadjoint orbit of U(H). Sine theprojetion from U(H) onto S is a subdution, and P is the quotient of S, the projetionfrom U(H) onto P is a subdution (art. 5.5). Now, by de�nition, the di�eology of theoadjoint orbit O = m(P) is the quotient di�eology of U(H) by the stabilizer of somepoint (art. 11.3). Hene, the momentum map m is di�erentiable, as well as its inverse,that is m is a di�eomorphism from P onto O.25. The ation of the maximal torus. We denote by T(H) the subgroup of U(H)de�ned by:

τ : (Zk)∞k=1 7→ (τkZk)∞k=1 with τ = (τk)∞k=1, and τk ∈ S1 for all k.We all T(H) the standard maximal torus(1) of U(H). As a group, T(H) is isomorphito the in�nite produt of irles ∏∞
k=1 S1, indexed by the integers, with pointwise multi-pliation. But its di�eology inherits the di�eology desribed in (art. 13.7). We shall seenow that, here again, di�eology an give a formal status to what is expeted about themomentum map of this group.25.1. The momentum map of the maximal torus. The momentum map of the maximaltorus T(H) is the restrition to T(H) of the momentum map of the group U(H). Morepreisely, let us onsider the orbit map of a point Z ∈ S relative to T(H):

Ẑ : T(H) −→ S, ∀τ ∈ T(H) Ẑ(τ ) = τ (Z).

1Here, it is just a name.



DIFFEOLOGY OF THE INFINITE HOPF FIBRATION 391The pull-bak by Ẑ of the 1-form ̟, de�ned on S, is a T(H) invariant 1-form on T(H),that is an element of the spae of moments T∗. The map
µ : S −→ T∗ suh that µ(Z) = Ẑ∗(̟),is the momentum map of T(H) on S. The fatorization of µ on P is the momentum mapof T(H) on P for the Fubini-Study form ω:

m : P −→ T∗, m([Z]) = µ(Z).The momentum map m is given by the following formula:
m([Z]) =

∞∑

k=1

|Zk|2 pr∗k(ε),where ε is the standard length form on S1. More preisely, for any plot P : U −→ T(H),
U ∈ Rm, m(Z) writes:

m([Z])(P) =
∞∑

k=1

|Zk|2 P∗
k(ε) with Pk = prk ◦ P.

Note that for any r ∈ U, any vetor δr ∈ Rm, the sequene N 7→
∑N

k=1 |Zk|2 P∗
k(ε)r(δr)onverges, whih gives a meaning to this formula.Proof. Let us reall the expression of ̟ given in (art. 19.2),

̟ =
1

2i
[Z · dZ − dZ · Z] with dZ(P)(r) =

∑

α∈A

dλα(r)Zα.Hene,
Ẑ∗̟ =

1

2i
[(τZ · d(τZ) − d(τZ) · τZ]

=
1

2i
[Z · (τ∗dτZ) − Z · (τdτ∗Z)]

=
1

2i
[Z · (τ∗dτ − τdτ∗)(Z)]

=
1

2i

∞∑

k=1

|Zk|2(τ∗kdτk − τkdτ
∗
k ).But, τk ∈ S1, so τ∗kdτk = −τkdτ∗k . Hene:

1

2i
[τ∗kdτk − τkdτ

∗
k ] =

1

i
τ∗kdτk = τ∗k (ε)and therefore

µ(Z) = Ẑ∗̟ =

∞∑

k=1

|Zk|2τ∗k (ε).To avoid a misinterpretation of the last equality, due to the in�nite sum, let us speify itsmeaning. Let P : U −→ T(H) be a plot. Let P(r) =
∑

α∈A λα(r)Zα be a loal expressionof P, on V ⊂ U. The λα an be real by a good hoie of the Zα. Let Zα = Xα + iYβ and
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Z = X + iY, developing the expression on µ(Z), we get:
µ(Z)(P ↾ V) =

∞∑

k=1

(X2
k + Y2

k)
∑

α,β∈A

(Xα,kYβ,k − Yα,kXβ,k)(λαdλβ − λβdλα)or
µ(Z)(P ↾ V) =

∑

α,β∈A

(λαdλβ − λβdλα)

∞∑

k=1

(X2
k + Y2

k)(Xα,kYβ,k − Yα,kXβ,k),whih is a �nite sum of summable series.Now, let us ome bak to the expression µ(Z) =
∑∞

k=1 |Zk|2τ∗k (ε), it is lear that µ(Z)is invariant by the diagonal ation of S1. And therefore m([Z]) = µ(Z) is well de�ned.25.2. The image under the momentum map of T(H). The image of the in�nite projetivespae by the momentum map m is the onvex hull, in the vetor spae T∗, of the relativemomenta
mk = pr∗k(ε) ∈ T∗, k = 1 · · ·∞.The momentum mk is indeed the momentum map of the subgroup S1

k of elements of
T(H) for whih only the k-th omponent is not the identity.

m(P) =
{ ∞∑

k=1

tkmk

∣∣∣ for all k ∈ N⋆ : tk ≥ 0, and ∞∑

k=1

tk = 1
}
.For any sequene (tk)∞k=1 suh that ∑∞

k=1 tk = 1, and eah tk is not negative there existssome Z ∈ H suh that |Zk|2 = tk, we an hoose Zk =
√
tk.
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