
GEOMETRY AND TOPOLOGY OF MANIFOLDS

BANACH CENTER PUBLICATIONS, VOLUME 76

INSTITUTE OF MATHEMATICS

POLISH ACADEMY OF SCIENCES

WARSZAWA 2007

HOLONOMY ORBITS OF THE

SNAKE CHARMER ALGORITHM

JEAN-CLAUDE HAUSMANN and EUGENIO RODRIGUEZ
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A snake (of length L) is a (continuous) piecewise C1-curve S : [0, L] → R
d, param-

eterized by arc-length and whose “tail” is at the origin (S(0) = 0). Charming a snake

consists in having it move in such a way that its “snout” S(L) follows a chosen C1-curve

γ(t). The snake charmer algorithm, initiated in [Ha2] for polygonal snakes and developed

in [Ro] in the general case, works as follows. The input is a pair (S, γ), where:

(i) S : [0, L] → R
d is a snake of length L,

(ii) γ : [0, 1] → Rd is C1-curve with γ(0) = S(L).

The output will then be a continuous 1-parameter family St of snakes of length L satis-

fying S0 = S and St(L) = γ(t). This algorithm, described in Section 2 below, is Ehres-

mannian in nature: the output is a horizontal lifting for some connection. A holonomy

phenomenon for closed curves γ then occurs: having γ(1) = γ(0) does not imply that

S1 = S0. Given a snake S, one can input in the snake charmer algorithm the pairs (S, γ)

for all possible C1-loops γ at S(L). The snakes S1 obtained this way form the holonomy

orbit of S. The purpose of this note is to study these holonomy orbits, proving that, in

good cases, they are compact smooth manifolds diffeomorphic to real Stiefel manifolds.

The paper is organized as follows. After some preliminaries in Section 1, we give in

Section 2 a survey of the snake charmer algorithm and of its main properties (more details

are to be found in [Ro]). Section 3 presents our new results about holonomy orbits with

their proofs. Section 4 contains examples.
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1. Preliminaries

1.1. Let L be a positive real number and let P = {0 = s0 < s1 < · · · < sN−1 < sN = L}
be a finite partition of [0, L]. If (X, d) is a metric space, a map z : [0, L] → X is said

piecewise continuous for P if, for every i = 0, . . . , N − 1, the restriction of z to the semi-

open interval [si, si+1) extends to a (unique) continuous map zi defined on the closed

interval [si, si+1]. In particular, z is continuous on the right and the discontinuities, only

possible at points of P, are just jumps. We denote by C0
P([0, L], X) the space of maps

from [0, L] to X which are piecewise continuous for P; this space is endowed with the

uniform convergence distance

d(z1, z2) = sup
s∈[0,L]

{z1(s), z2(s)}.

When P is empty, the map z is just continuous and C0
∅([0, L], X) = C0([0, L], X). The

map z 7→ (z1, . . . , zN ) provides a homeomorphism

C0
P([0, L], X) ≈

N−1∏

i=0

C0([si, si+1], X). (1)

If X is a Riemannian manifold, the space C0([si, si+1], X) naturally inherits a Banach

manifold structure (see [Ee]), so C0
P([0, L], X) is a Banach manifold using (1). The tan-

gent space TzC0
P([0, L], X) to C0

P([0, L], X) at z is the space of those v ∈ C0
P([0, L], TX)

satisfying p◦v = z, where p : TX → X is the natural projection.

1.2. The unit sphere in Rd centered at the origin is denoted by Sd−1. Let Möb(d− 1) be

the group of Möbius transformations of Sd−1. It is a Lie group of dimension d(d + 1)/2,

with SO(d) as a compact maximal subgroup. Its Lie algebra is denoted by möb(d − 1).

For 0 6= v ∈ Rd, we define a 1-parameter subgroup Γv
t of Möb(d − 1) by

Γv
t = ϕ−1

v ◦ρv
t ◦ϕv

where

• ϕv : Sd−1 → R̂d is the stereographic projection sending v/|v| to ∞ and −v/|v| to 0;

• ρv
t : R̂d → R̂d is the homothety ρv

t (x) = et|v|x.

Thus, Γv
t is a purely hyperbolic flow with stable fixed point v/|v| and unstable fixed

point −v/|v|. We agree that Γ0
t = id. Let Cv ∈ möb(d−1) such that Γv

t = exp(tCv) (with

C0 = 0). The correspondence v 7→ Cv gives an injective linear map χ : Rd → möb(d− 1);

its image is a d-dimensional vector subspace H of möb(d − 1), complementary to so(d),

and H generates möb(d− 1) as a Lie algebra. Let ∆H be the right invariant distribution

on Möb(d − 1) which is equal to H at the unit element.

The 1-parameter subgroups Γv
t may be used to build up a diffeomorphism Ψ : Rd ×

SO(d − 1)
≈−→ Möb(d − 1) defined by Ψ(v, ρ) = Γv

1 · ρ.

2. The algorithm. In this section, we give a survey of the snake charmer algorithm

and some of its properties. For details, see [Ro].

2.1. Fix a positive real number L and a finite set P ⊂ [0, L] as in 1.1. Let Conf =

C0
P([0, L], Sd−1), with its Banach manifold structure coming from the standard Rieman-
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nian structure on S
d−1. The inclusion of S

d−1 into R
d makes Conf a submanifold of the

Banach space
∏N−1

i=0 C0([si, si+1], R
d).

The space Conf is the space of configurations for the snakes of length L which are

continuous and “piecewise C1 for P”. The snake Sz associated to z ∈ Conf is the map

Sz(s) =
∫ s

0
z(τ )dτ . Taking its “snout” Sz(L) provides a map f : Conf → Rd, defined by

f(z) =

∫ L

0

z(s)ds

which is proven to be smooth. The image of f is the closed ball of radius L centered at

the origin.

The snakes corresponding to piecewise constant configurations, z(s) = zi for s ∈
[si−1, si), are called polygonal snakes. In this case, we see f as a map from (Sd−1)N to R

d

sending z = (z1, . . . , zN ) to
∑N

i=1(si − si−1)zi. For more details on this particular case

see [Ha2]. If all the (si − si−1) are equal, the snake is called an isosceles polygonal snake.

The critical points of f are the lined configurations, where {z(s) | s ∈ [0, L]} ⊂
{±p} for a point p ∈ Sd−1 (for polygonal snakes, this is [Ha1, Theorem 3.1]). The snake

associated to such a configuration is then contained in the line through p. The set of

critical values is thus a finite collection of (d − 1)-spheres centered at the origin, which

depends on P.

Charming snakes will now be a path-lifting ability for the map f : given an initial

configuration z ∈ Conf and a C1-curve γ : [0, 1] → R
d such that γ(0) = f(z), we are

looking for a curve t 7→ zt ∈ Conf such that z0 = z and f(zt) = γ(t). In Ehresmann’s

spirit, we are looking for a connection for the map f . The tangent space Tz Conf to Conf

at z is the vector space of those maps v ∈ C0
P([0, L], Rd) such that 〈v(s), z(s)〉 = 0 for all

s ∈ [0, L], where 〈, 〉 denotes the usual scalar product in Rd. We endow Tz Conf with the

scalar product 〈v, w〉 =
∫ L

0
〈v(s), w(s)〉ds. For each smooth map ϕ : Rd → R, one gets a

vector field Grad (ϕ◦f) on Conf defined by

Grad z(ϕ◦f)(s) = grad f(z)ϕ − 〈z(s), grad f(z)ϕ〉z(s) .

This vector field plays the role of the gradient of ϕ◦f , that is

〈Grad z(ϕ◦f), v〉 = Tz(ϕ◦f)(v)

for each v ∈ Tz Conf (as the metric induced by our scalar product is not complete, gradi-

ents do not exist in general). For z ∈ Conf, the set of all Grad z(ϕ◦f) for ϕ ∈ C1(Rd, R)

is a vector subspace ∆z of Tz Conf, of dimension d − 1 if z is a lined configuration and

d otherwise. The correspondence z 7→ ∆z is a distribution ∆ (of non-constant dimen-

sion). For a pair (z, γ) ∈ Conf ×C1([0, 1], Rd) such that f(z) = γ(0), the snake charmer

algorithm takes for zt the horizontal lifting of γ for the connection ∆.

As the map f is not proper and the dimension of ∆z is not constant, the existence

of horizontal liftings has to be established. We use the C∞-action of the Möbius group

Möb(d−1) on Conf by post-composition: g ·z = g◦z. For z0 ∈ Conf, let A(z0) be the sub-

space of those z ∈ Conf which can be joined to z0 by a succession of ∆-horizontal curves.

One of the main results ([Ro, Theorem 2.19], proven in [Ha2] for isosceles polygonal

snakes) says that A(z0) coincides with the orbit of z0 under the action of Möb(d − 1):
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Theorem 2.2. For all z0 ∈ Conf, one has A(z0) = Möb(d − 1) · z0.

The proof of Theorem 2.2 uses the following fact about the action of the 1-parameter

subgroup Γv
t of Möb(d − 1) introduced in 1.2:

Lemma 2.3. The flow φt(z) = Γv
t ·z on Conf is the gradient flow of the map z 7→ 〈f(z), v〉.

The flow φt on Conf is therefore ∆-horizontal. If z ∈ Conf, denote by βz : Möb(d− 1) →
Conf the smooth map βz(g) = g · z. Lemma 2.3 implies that the map βz sends the

distribution ∆H onto the distribution ∆. If z is not a lined configuration, Tgβz : ∆H
g →

∆g·z is an isomorphism; if z is lined, there is a 1-dimensional kernel (for instance, if

z(s) ∈ {±p}, then Γp
t · z = z for all t).

2.4. The differential equation. As a consequence of Theorem 2.2, a ∆-horizontal curve zt

starting at z0 may be written as g(t) · z0 where g(t) ∈ Möb(d − 1) and g(0) = id. For a

given C1-curve γ(t) ∈ R
d, the ∆-horizontal lifting g(t) · z0 of γ(t) is obtained by taking

for g(t) the solution of an ordinary differential equation in the Möbius group Möb(d− 1)

that we describe below (more details can be found in [Ro, Chapter 3]).

For z ∈ Conf, we define the (d × d)-matrix M(z) by

M(z) =




L 0

. . .

0 L



 −





∫ L

0
z1(s)z1(s)ds · · ·

∫ L

0
z1(s)zd(s)ds

...
...∫ L

0
z1(s)zd(s)ds · · ·

∫ L

0
zd(s)zd(s)ds



 .

(Observe that the second term is the Gram matrix of the vectors (z1, . . . , zd) for the

scalar product). It can be proved that M(z) is invertible if and only if z is not lined. Let

F = Fz0
: Möb(d − 1) → Rd be the composition F = f ◦βz0

. Let g ∈ Möb(d − 1). Using

the linear injective map χ of 1.2, with image H, and the right translation diffeomorphism

Rg in Möb(d − 1), we get a linear map

R
d

χ

≈
// H

TeRg

≈
// ∆H

g

TgF
// TF (g)R

d ≈ Rd. (2)

It turns out that the matrix of the linear map (2) is M(g · z0). If g · z0 is not a lined

configuration, TgF is bijective and M(g · z0) is invertible. One way to insure that g · z0 is

not lined for all g ∈ Möb(d− 1) is to assume that z0 takes at least 3 distinct values. The

following result is proven in [Ro, Prop. 3.10]:

Proposition 2.5. Let z0 ∈ Conf be a configuration that takes at least 3 distinct values.

Let γ : [0, 1] → Rd be a C1-curve with γ(0) = f(z). Suppose that the C1-curve g : [0, 1] →
Möb(d − 1) satisfies the following differential equation:

ġ(t) = TeRg(t)◦χ(M−1(g(t) · z0) γ̇(t)), g(0) = id. (3)

Then, the curve g(t) · z0 is the unique ∆-horizontal lifting of γ starting at z0.

As the Möbius group is not compact and the map F is not proper, differential equa-

tion (3) may not have a solution for all t ∈ [0, 1]. The notion of “sedentariness”, described

in 2.7, is the main tool to study the global existence of ∆-horizontal liftings.
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2.6. The cases d = 2 or d = 3. For planar snakes (d = 2), one can use that Möb(1) is iso-

morphic to PSU(1, 1) = SU(1, 1)/{±id}, where SU(1, 1) = {
(

a b
b̄ ā

)
| a, b ∈ C and |a|2 −

|b|2 = 1}. The isomorphism between Möb(1) and PSU(1, 1) comes from the SU(1, 1)-

action on C by homographic transformations, which preserves the unit circle. The group

SU(1, 1) being thus a 2-fold covering of Möb(1), the curve g(t) ∈ Möb(1) of Proposi-

tion 2.5 admits a unique lifting in g̃(t) ∈ SU(1, 1) with g̃(0) = id. The output of the

snake charmer algorithm will then be of the form zt = g̃(t) · z0, using the action of

SU(1, 1) on Conf(1). Working in the matrix group SU(1, 1) is of course favorable for

numerical computations.

The Lie algebra psu(1, 1) = su(1, 1) consists of matrices of the form
(

iu b
b̄ −iu

)
with

u ∈ R and b ∈ C. Under the isomorphism su(1, 1) ≈ möb(1), the element χ(v) ∈ H ⊂
möb(1) corresponds to the matrix ( 0 v

v̄ 0 ) ∈ su(1, 1). These matrices form a 2-dimensional

vector space H̃ ⊂ su(1, 1) giving rise to a right invariant distribution ∆H̃ on SU(1, 1).

By Proposition 2.5, the curve g̃(t) · z0 ∈ Conf(1) is horizontal if g̃(t) is ∆H̃-horizontal. In

this language, Equation (3) becomes

˙̃g(t) =

(
0 v/2

v̄/2 0

)
g̃(t), g(0) =

(
1 0

0 1

)
(4)

where v = v1(g, t) + iv2(g, t) is obtained by
(

v1(g(t), t)

v2(g(t), t)

)
= M(g̃(t) · z0)

(
γ̇1(t)

γ̇2(t)

)
.

For more details, see [Ro, Chapter 5]. An analogous (and formally similar) matrix ap-

proach is available for spatial snakes (d = 3), using the isomorphism PSL(2, C) ≈ Möb(2);

see [Ro, Prop. 5.6].

2.7. Sedentariness. Denote by µ the Lebesgue measure on R. Let z ∈ Conf. The seden-

tariness sed(z) ∈ [0, L] of z is defined by sed(z) = maxp∈Sd−1 µ(z−1(p)). This maximum

exists since the set {p ∈ Sd−1 | µ(z−1(p)) > r} is finite for all r > 0. By Theorem 2.2,

sed(z) is an invariant of A(z). Observe that, if sed(z) < L/2, then z takes at least 3

distinct values. The sedentariness of z is used in [Ro, Section 3.3] to get global existence

results for horizontal liftings of a path starting at f(z). The one we need is the following

Proposition 2.8. Let z ∈ Conf and let γ : [0, 1] → Rd be a C1-path with γ(0) = f(z).

Suppose that γ([0, 1]) is contained in the open ball centered at 0 of radius L − 2 sed(z).

Then there exists a (unique) ∆-horizontal lifting γ̃ : [0, 1] → Conf for γ with γ̃(0) = z.

As the sedentariness of a configuration is preserved along horizontal curves, Proposi-

tion 2.8 is also true for continuous piecewise C1-paths. A configuration z is called nomadic

if sed(z) = 0. Proposition 2.8 guarantees that, if z is nomadic, any C1-path starting at

f(z) admits a horizontal lifting, provided its image stays in the open ball of radius L.

More general results may be found in [Ro, Section 3.3].

2.9. Continuity of the algorithm. We now describe how the snake charmer algorithm

behaves as we vary the initial configuration z0 and the C1-curve γ. Our goal is not to

present the most general statements but only those needed in Section 3.
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Let z0 ∈ Conf, b = f(z0) and let Confb = f−1(b). Set σ = sed(z0) and suppose that

|f(z0)| < L − 2σ. Denote by BL−2σ(0) the open ball in R
d of radius L − 2σ centered at

the origin. Consider a C1-curve γ : [0, 1] → BL−2σ(0) with γ(0) = b. Define Eσ,b = {z ∈
Confb | sed(z) ≤ σ}; it is a metric space with the induced metric from Conf. Consider

the map

X : Möb(d − 1) × Eσ,b × [0, 1] 7→ TMöb(d − 1),

defined by

X(g, z, t) = Rg(t)◦χ(M−1(g(t) · z0) γ̇(t)).

This is a vector field on Möb(d − 1) depending on the time t and on the parameter

z ∈ Eσ,b. Differential equation (3) becomes

ġ(t) = X(g(t), z, t) , g(0) = id. (5)

For any given z ∈ Eσ,b, the solution gz of equation (5) exists for all t ∈ [0, 1] by Proposi-

tion 2.8. Since X is continuous and its derivative in g is a continuous map in the variables

z and t, classical results on the dependence of parameters for the solution (see for exam-

ple [Sc, 4.3.11]) imply that the map (z, t) 7→ gz(t) is continuous. This yields:

Proposition 2.10 (Continuity in z). Let γ : [0, 1] → BL−2σ(0) be a C1-curve such that

γ(0) = b. For any z ∈ Eσ,b, denote by γ̃z(t) = gz(t) · z the ∆-horizontal lift of γ starting

at z. The map Eσ,b × [0, 1] → Conf that sends (z, t) to γ̃z(t) is continuous.

Let M ⊂ Eσ,b be a smooth submanifold of Conf and suppose that γ is of class C2.

The map X restricted to M is therefore C1 (in all variables) and using once again [Sc,

4.3.11] we get:

Proposition 2.11 (Differentiability in z). Let γ : [0, 1] → BL−2σ(0) be a C2-curve such

that γ(0) = b. For any z ∈ M , denote by γ̃z(t) = gz(t) · z the ∆-horizontal lift of γ

starting at z. The map M × [0, 1] → Conf that sends (z, t) to γ̃z(t) is of class C1.

We have an analogous result when we fix the configuration z0 and vary γ. Consider

the set Cσ,b = {γ ∈ C1([0, 1], Rd) | γ(0) = b, γ([0, 1]) ⊂ BL−2σ(0)} that is an open subset

of the affine space of C1-paths starting at b.

Proposition 2.12 (Continuity in γ). Let z0 ∈ Conf, b = f(z0) and σ = sed(z0). Sup-

pose that |f(z0)| < L − 2σ. For any γ ∈ Cσ,b, denote by γ̃z(t) the ∆-horizontal lift of γ

starting at z0. The map Cσ,b × [0, 1] → Conf that sends (γ, t) to γ̃z(t) is continuous.

2.13. Bivalued configurations. Let z0 be a bivalued configuration, that is z0([0, L]) =

{p0, q0}, with p0 6= q0. Let Lp and Lq be the Lebesgue measures of z−1
0 (p0) and z−1

0 (q0)

(these preimages are finite unions of intervals). By Theorem 2.2, a horizontal curve zt

starting at z0 will stay bivalued: zt([0, L]) = {p(t), q(t)}, with p(0) = p0, q(0) = q0 and

p(t) 6= q(t). Also, one has z−1
t (p(t)) = z−1

0 (p0), z−1
t (q(t)) = z−1

0 (q0) and therefore zt is

determined by the pair (p(t), q(t)). Hence, A(z0) is contained in a compact submanifold

W of Conf naturally parameterized by Sd−1 × Sd−1. The restriction of f to W gives a

C∞-map f̂ : W → R
d which takes the explicit form f̂(p, q) = Lpp + Lqq. The definition

of the distribution ∆ implies that ∆(p,q) ⊂ T(p,q)W when (p, q) ∈ W .
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Consider the open sets W 0 ⊂ W and U0 ⊂ R
d defined by

W 0 := {(p, q) ∈ W | p 6= ±q} , U0 := {x ∈ R
d | |x| < L and |x| 6= Lp − Lq}

As W 0 contains no lined configurations, the map f̂ restricts to a submersion f̂0 = f0 :

W 0 → U0 for which ∆ is an ordinary connection. As f0 extends to f̂ : W → Rd and as

W is compact, the map f0 is proper. Ehresmann’s c original onstruction of horizontal

liftings [Eh] then applies: if z0 ∈ W 0 and γ : [0, 1] → U0 is a C1-curve γ(0) = z0(L), then

γ admits a ∆-horizontal lifting γ̃ : [0, 1] → W 0 of f0 with γ̃(0) = z0.

Let us specialize to planar snakes (d = 2). Each fiber of f0 then consists of two

points; as f0 is proper, it is thus a 2-fold cover of U0. Therefore, γ̃(t) is determined by

f(γ̃(t)) = γ(t). We deduce that the unique lifting of γ into Conf is horizontal.

If, for t = t0, γ(t) crosses the sphere of radius Lp − Lq, it may happen that γ̃(t)

tends to a lined configuration when t → t0 (see Example 4.2 below). To understand when

the unique lifting γ̃(t) is horizontal at t0, we must study horizontal liftings around a

lined configuration, which, after changing notations, we call again z0, corresponding to

(p0, q0) ∈ W with p0 = −q0. The vector space ∆z0
is then of dimension 1 and it turns out

that Tz0
f(∆z0

) is the line orthogonal to p0, see [Ro, Remark 1.17]. Let γ : [0, 1] → R
d

be a C1-curve with γ(0) = z0(L) and γ̇(0) 6= 0. A necessary condition for γ to admit a

horizontal lifting is then 〈γ̇(0), p0〉 = 0. If we orient the plane with the basis (p0, γ̇(0)), the

curve γ has a signed curvature κ(0) at t = 0. In [Ro, Prop. 3.18], it is proven that, around

t = 0, the unique lifting of γ into Conf is horizontal if and only if γ̇(0) is orthogonal to

p0 and

κ(0) =
Lp0

− Lq0

L2
. (6)

Condition (6) has been detected by the numerician Ernst Hairer. Such a second-order

condition for the existence of a horizontal lifting for a non-constant rank distribution

is worth being studied. As far as we know, no such phenomenon is mentioned in the

literature.

2.14. Miscellanies. We finish this section by listing a few more properties of the snake

charmer algorithm. Let (S, γ) be an input for the algorithm, with S a snake of length

L. Let St : [0, L] → Rd be the output. The following two results follow directly from

Theorem 2.2.

Proposition 2.15 (Regularity). Suppose that, on some open subset U ⊂ [0, L], the

snake S is of class Ck, k ∈ {1, 2, . . . ,∞}. Then the same holds true for the snake St

for all t ∈ [0, 1].

Proposition 2.16 (Periodicity). Suppose that there exists T ∈ R such that z(s) = z(s+

T ) for all s such that s and s+T belong to [0, L]. Then, zt(s) = zt(s+T ) for all t ∈ [0, 1].

The following proposition follows either from Theorem 2.2 or simply from the fact

that St is a horizontal lifting.

Proposition 2.17 (Reparameterization). Let ϕ : [0, 1] → [0, 1] be an orientation pre-

serving C1-diffeomorphism. Then, the deformation of S following the curve γ(ϕ(u)) is

Sϕ(u).
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Finally, by construction, the distribution ∆ is orthogonal to fibers of f : Conf → R
d.

This can be rephrased in the following

Proposition 2.18. zt is the unique lifting of γ which, for all t, minimizes the infinites-

imal kinetic energy of the hodograph, that is 1
2

∫ L

0
| d
dtzt(s)|2 ds.

Again, the existence of such a minimizer St is only guaranteed by an analysis like

in 2.7.

3. Holonomy orbits. Let b ∈ Rd. Define Confb = f−1(b), the space of all configurations

with associated snake ending at b. Define the holonomy orbit horb(z0) ⊂ Confb of z0 ∈
Confb by horb(z0) = A(z0) ∩ Confb; it is thus the subspace of those z ∈ Conf which are

the result of the holonomy of the snake charmer algorithm for a pair (z0, γ) with γ a

piecewise C1-loop at b. Even if z0 is not lined, the point b might not be a regular value

of f , so f−1(b) might not be a submanifold of Conf. But Lemma 3.1 below tells us that

this is the case for horb(z0). For z ∈ Conf, define the spherical dimension spdim(z) of

z to be the minimal dimension of a sub-sphere of Sd−1 containing the set z([0, L]). By

Theorem 2.2, spdim(z) is an invariant of A(z). Notice that spdim(z) = 0 if and only if

the configuration z takes one or two values.

Lemma 3.1. Let z0 ∈ Conf. Let k = spdim(z0) and suppose that k > 0. Then horb(z0)

is a smooth submanifold of Conf of dimension
∑k+1

i=1 (d − i).

Generically, spdim(z0) = d−1, so horb(z0) is of dimension d(d−1)/2. The case where

spdim(z0) = 0 is not covered by Lemma 3.1. It contains the monovalued case (z being

constant) where horb(z0) = f−1(f(z0)) = {z0}. The other case, formed by the bivalued

configurations, is interesting and is treated in Example 4.2 and Proposition 4.4.

Proof of Lemma 3.1. Let β : Möb(d − 1) → Conf be the map β(g) = g · z0 and let

F : Möb(d−1) → Rd be the composition F = f ◦β. Let K = F−1(f(z0)). By Theorem 2.2,

one has horb(z0) = β(K). The map F is smooth.

Since spdim(z0) > 0, the configuration z0 takes at least three values in Sd−1 and so

does g · z0 for all g ∈ Möb(d − 1). Therefore, A(z0) contains no lined configurations and

the tangent map TgF : TgMöb(d−1) → TF (g)R
d ≈ Rd is surjective for all g ∈ Möb(d−1)

(restricted to ∆H
g , it is an isomorphism). Hence, F is a submersion. Thus, K is a smooth

submanifold of Möb(d−1) of dimension dim Möb(d−1)−d = d(d+1)/2−d = d(d−1)/2.

The manifold K contains the stabilizer A of z0 and K ·A = K. Let V k be the smallest

sub-sphere of Sd−1 containing the image of z0. The group A is then the stabilizer of the

points of V k; since k > 0, A is conjugate in Möb(d− 1) to SO(d− k − 1). Therefore, the

quotient space K/A is of dimension

d(d − 1)

2
− (d − k − 1)(d − k − 2)

2
=

d−1∑

i=1

i −
d−k−2∑

j=1

j =

k+1∑

i=1

(d − i). (7)

By [Ro, Proposition 2.33], the map β induces an embedding of Möb(d− 1)/A into Conf,

hence an embedding of K/A into Conf with image horb(z0). This proves Lemma 3.1.
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In general, horb(z) is not closed; see examples in [Ha2, pp. 112–113]1. But this is the

case if f(z) is near the origin:

Theorem 3.2. Let z0 ∈ Conf such that |f(z0)| < L − 2 sed(z0). Let k = spdim(z0) and

suppose that k > 0. Then, each connected component of horb(z0) is a closed smooth sub-

manifold of Conf which is diffeomorphic to the homogeneous space SO(d)/SO(d− k − 1).

Observe that SO(d)/SO(d−k−1) is the Stiefel manifold of orthonormal (k+1)-frames

in R
d.

Proof. Suppose first that f(z0) = 0. Let z ∈ horb(z0). For each g ∈ SO(d), one has

f(g ·z) = g ·f(z) = 0, hence SO(d)·z ⊂ horb(z0) = horb(z). As in the proof of Lemma 3.1,

let βz : Möb(d− 1) → Conf be the map βz(g) = g · z. As spdim(z) = spdim(z0) = k > 0,

the stabilizer of z is conjugate in SO(d) to SO(d − k − 1). Therefore, βz(SO(d)) is a

connected, compact submanifold of Conf diffeomorphic to SO(d)/SO(d − k − 1). By

Lemma 3.1, βz(SO(d)) must be the connected component of z in horb(z0). This proves

Theorem 3.2 when f(z0) = 0.

In the general case, let b = f(z0) and let γ : [0, 1] → Rd be the linear parameterization

γ(t) = tb of the segment joining 0 to b. If δ : [0, 1] → X is a map, one denotes by

δ− : [0, 1] → X the map δ−(t) = δ(1 − t). Let z ∈ Confb such that sed(z) ≤ sed(z0). By

Proposition 2.8, the path γ admits a ∆-horizontal lifting γ̃z in Conf, starting at z. The

∆-parallel transport τ (z) = γ̃z(1) is then defined. Of course, γ− also admits a horizontal

lifting γ̃−
τ(z) which is equal to (γz)

−. By Proposition 2.10, the parallel transport gives rise

to a homeomorphism

τ : {z ∈ Confb | sed(z) ≤ sed(z0)} ≈−→ {z ∈ Conf0 | sed(z) ≤ sed(z0)}.
One has τ (horb(z0)) = horb(τ (z0)). As horb(z0) is a smooth submanifold of Conf,

τ|horb(z0) and τ−1
|τ(horb(z0))

are smooth by Proposition 2.11. Therefore τ induces a dif-

feomorphism from horb(z0) onto horb(τ (z0)). This finishes the proof of Theorem 3.2.

In the particular case of planar snakes (d = 2), we get:

Corollary 3.3. Let z0 ∈ Conf(1) such that |f(z0)| < L − 2 sed(z0) and spdim(z0) = 1.

Then horb(z0) is a disjoint union of circles.

We do not know, under the hypotheses of Theorem 3.2 or Corollary 3.3, whether the

manifold horb(z0) is connected. This is not true if |f(z0)| > L−2 sed(z0), see Example 4.2.

It is however the case if sed(z0) = 0:

Proposition 3.4. Let z0 ∈ Conf be a nomadic configuration. Let k = spdim(z0). Then,

horb(z0) is a closed smooth submanifold of Conf which is diffeomorphic to the homoge-

neous space SO(d)/SO(d− k − 1).

To prove Proposition 3.4, we need the following lemma whose proof is postponed till

the end of this section.

1In [Ha2], one studies the set Hb(U) · z0: if b = f(z0) and U is an open neighborhood of
b, Hb(U) denotes the subgroup of diffeomorphisms of Confb obtained as the holonomy of a
piecewise C

1-loop at b that stays in U . Notice that Hb(U) · z0 ⊂ horb(z0) and that Hb(U) · z0

contains the connected component of z0 of horb(z0).
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Lemma 3.5. Let z0 ∈ Conf and let z ∈ horb(z0). Then, there exists a loop γ : [0, 1] → R
d

at f(z0) which is of class C∞ and which admits a horizontal lifting joining z0 to z.

Proof of Proposition 3.4. A nomadic configuration is not lined. Therefore, k > 0 and the

condition |f(z0)| < L− 2 sed(z0) = L is automatic. By Theorem 3.2, it is then enough to

prove that horb(z0) is connected.

Let z ∈ horb(z0). By Lemma 3.5, there exists a loop γ : [0, 1] → Rd at f(z0), of

class C∞, admitting a horizontal lifting joining z0 to z. For s ∈ [0, 1], define γs(t) =

(1 − s)γ(0) + sγ(t). The map s 7→ γs is a homotopy of C∞-loops at f(z0), from γ to the

constant loop. By Proposition 2.8, each loop γs admits a horizontal lifting γ̃s starting at

z0. By Proposition 2.12, the curve s 7→ γ̃s(1) is continuous, producing a path in horb(z0)

from z to z0. This proves that horb(z0) is connected, provided we prove Lemma 3.5.

Proof of Lemma 3.5. By Theorem 2.2, there exists g ∈ Möb(d − 1) with z = g · z0.

The Möbius group Möb(d − 1) is arcwise connected using only curves that are piecewise

trajectories of flows of the type Γv
t (see [Ha2, p. 102]). Therefore, there exists (vi, λi) ∈

Rd × R, i = 1, . . . , r, such that g = Γvr

λr
· · ·Γv1

λ1
. For i = 1, . . . , r, let φi : [0, 1] → [0, 1] be

a C∞-function such that φi([0, i−1
r ]) = {0} and φi([

i
r , 1]) = {1}. The map g(t) : [0, 1] →

Möb(d − 1) given by
g(t) = Γvr

φr(t)λr
· · ·Γv1

φ1(t)λ1

is a C∞-curve in Möb(d−1), joining the unit element to g. By Lemma 2.3, the curve g(t)

is ∆H-horizontal. Then g(t) ·z0 is the horizontal lifting of the C∞-path γ(t) = f(g(t) ·z0),

which is a loop of class C∞ at f(z0).

4. Examples. All our examples are planar snakes (d = 2). We identify R2 with the

complex plane C. Configurations z ∈ Conf(1) are in the form s 7→ eiθ(s) with θ(s) ∈ R.

Fig. A

4.1. In our first example, the snake is a semicircle with configuration z : [0, π] → S1 given

by z(s) = ie−is, thus S = Sz is given by S(s) = 1 − e−is. We have f(z) = S(π) = 2.

The curve γ is a small circle, centered at (2.1875, 0) and of radius 0.1875, followed in the

trigonometric direction. The snake charmer algorithm has been solved using the method

of 2.6. After one turn, the snake slightly leans to the left. Figure A below shows the snake
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after various numbers of turns of γ. One sees that after 326 turns, the snake seems being

back in its initial position.

The curve t 7→ g(t) ∈ Möb(1) obtained from equation (3) (such that zt = g(t) · z0),

may be visualized using the diffeomorphism R
2 × S

1 ≈−→ Möb(1) described at the end

of 1.2. The two fold covering SU(1, 1) → R
2 × S

1 thus obtained is given in formula by
(

a b

b̄ ā

)
7→ (v, eiθ)

with θ = 2 arg(a) and v = 2 arccosh(|a|)ei arg(ab). Figure B below illustrates the subset

{(v(n · 2π), θ(n · 2π)) | n = 1, . . . , 326} ⊂ R2 × S1. The picture on the left-hand side

shows the 326 points of the set {v(n · 2π)} (v = (v1, v2)) and the one on the right-hand

side is the graph of the function n 7→ θ(n · 2π) (also formed by 326 points, but hardly

distinguishable). That the points look more concentrated between 80 and 250 seems to

be related to the fact, seen in Figure A, that the snake’s shape changes less drastically in

this range. As in Figure A, we observe that θ(t) and v(t) seem to have returned to their

original position after 326 turns.

v2

1

0

−1
v1

0 1 2

v(0)

θ

2π

π

n
0 82 163 244 326

Fig. B

Figure C below shows the entire curve (θ(t), v(t)) for t ∈ [0, 326 · 2π].

v2

1

0

−1

v10 1 2

θ

2π

π

t

Fig. C

4.2. A non-connected holonomy orbit. Let z0 : [0, 2
√

2] → S1 be the 2-valued configura-

tion

z0(s) =

{
eiπ/4 if s <

√
2,

e−iπ/4 if s ≥
√

2.
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Thus, f(z) = 2. Let γ : [0, 1] → C be the piecewise C∞-loop at 2 defined by

γ(t) =

{
2 e2iπt if t ≤ 1/2,

8(t − 3/4) if t ≥ 1/2.

0

γ

Sz0

Sz1

2-2

By 2.13, the unique possible lifting zt, starting at z0 and determined by f(zt) = γ(t)

is horizontal. It follows that z1 = z̄0 (the complex conjugate of z0). Hence horb(z0) =

{z0, z̄0} is not connected.

Using an arbitrarily small bump around 0, one can perturb γ so that it avoids the

origin. But z1 would then be equal to z0. So zt does not depend continuously on γ, in

contrast to what happens in Proposition 2.12. Here, two hypotheses of Proposition 2.12

are not satisfied: spdim(z0) = 0 and, what seems more serious, the condition |f(z0)| <

L − 2 sed(z0) is impossible since sed(z0) =
√

2 = L/2.

4.3. Example 4.2 is an illustration of the following computation of horb(z0) when z0 is

bivalued.

Proposition 4.4. Let z0 be a bivalued configuration and let b = f(z0). Then

(i) horb(z0) ≈ Sd−2 if z0 is not lined;

(ii) horb(z0) is one point if z0 is lined and f(z0) 6= 0;

(iii) horb(z0) ≈ Sd−1 if z0 is lined and f(z0) = 0.

Proof. Let p0, q0, Lp, Lq, f̂ : W → Rd and W 0 as in 2.13. One has horb(z0) ⊂ f̂−1(b).

If w ∈ R
d, denote by Bw be the stabilizer of w in SO(d). We divide the proof into four

cases.

Case (i) with d = 2. Let γ be a loop at b, with |γ(t)| < L, such that γ hits the sphere of

radius |Lp −Lq| in a single point, tangentially and respecting the curvature formula (6).

By 2.13, γ has a ∆-horizontal lifting zt in W and zt intersects the submanifold W 0 of

lined configurations in one point and transversally. This implies that z1 6= z0, which

proves Case (i) when d = 2. Example 4.2 illustrates this argument with Lp = Lq.

Case (i) with d > 2. The vectors p, q and b are co-planar and p 6= b 6= 0, so Bb · z0 ≈
Bb/(Bb ∩ Bp) ≈ SO(d − 1)/SO(d − 2) ≈ Sd−2. One has Bb · z0 ⊂ horb(z0) ⊂ f̂−1(b).

Case (i) with d > 2 then follows from the fact that f̂−1(b) ≈ Sd−2. The latter is proven

in [Ha1, Prop. 4.1] but, for the convenience of the reader, we repeat the argument here

in our language. Let Wb = f̂−1(R>0 b), which is a submanifold of W of dimension d − 1

(see [Ha1, (1.3)]). Let h : Wb → R defined by h(z) = |f̂(z)|, which is a Morse function

whose critical point are the lined configurations of Wb (see [Ha1, Theorem 3.2]). If z ∈ Wb

is a critical point of h with h(z) ≥ b, then z = (b/|b|, b/|b|), a non-degenerate maximum,
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and h(z) = L > |b|. Therefore, f̂−1(b) = h−1(|b|) is diffeomorphic to S
d−2 by the Morse

Lemma.

Case (ii). This case is trivial since f̂−1(b) consists of the single point (p0,−p0).

Case (iii). The map Sd−1 → W given by p 7→ (p,−p) is an embedding with image

f̂−1(0), as well as the inclusion B0 · z0 ⊂ horb(z0) ⊂ f̂−1(0).
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