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Abstract. Results on derivations and automorphisms of some quantum and classical Poisson

algebras, as well as characterizations of manifolds by the Lie structure of such algebras, are

revisited and extended. We prove in particular a somewhat unexpected fact that the algebras of

linear differential operators acting on smooth sections of two real vector bundles of rank 1 are

isomorphic as Lie algebras if and only if the base manifolds are diffeomorphic, whether or not

the line bundles themselves are isomorphic.

1. Introduction. Let us start with an overview of relevant literature on isomorphisms

and derivations of infinite-dimensional Lie algebras.

In [28], Pursell and Shanks proved the well-known result stating that the Lie algebra

of all smooth compactly supported vector fields of a smooth manifold characterizes the

differentiable structure of the variety. Similar upshots were obtained in numerous subse-

quent papers dealing with different Lie algebras of vector fields and related algebras (see

e.g. [1, 2, 3, 10, 14, 19, 27, 29]).
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Derivations of certain infinite-dimensional Lie algebras arising in Geometry were also

studied in different situations (note that in infinite dimensions there is no such clear

correspondence between derivations and one-parameter groups of automorphisms as in

the finite-dimensional case). Let us mention a result of L. S. Wollenberg [31] who described

all derivations of the Lie algebra of polynomial functions on the canonical symplectic space

R
2 with respect to the Poisson bracket. It turned out that there are outer derivations

of this algebra in contrast to the corresponding Weyl algebra. This can be viewed as

a variant of a ”no-go” theorem (see [20]) stating that the Dirac quantization problem

[7] cannot be solved satisfactorily because the classical and the corresponding quantum

algebras are not isomorphic as Lie algebras. An algebraic generalization of the latter fact,

known as the algebraic ”no-go” theorem, has been proved in [9] by different methods.

Derivations of the Poisson bracket of all smooth functions on a symplectic manifold have

been determined in [4] (for the real-analytic case, see [12]). Another important result is

the one by F. Takens [30] stating that all derivations of the Lie algebra X (M) of smooth

vector fields on a manifold M are inner. The same turned out to be valid for analytic cases

[11]. Some cases of the Lie algebras of vector fields associated with different geometric

structures were studied in a series of papers by Y. Kanie [21]–[24].

Our work [15] contains Shanks-Pursell type results for the Lie algebra D(M) of all lin-

ear differential operators of a smooth manifold M , for its Lie subalgebra D1(M) of all lin-

ear first-order differential operators of M , and for the Poisson algebra S(M) = Pol(T ∗M)

of all polynomial functions on T ∗M, the symbols of the operators in D(M). Furthermore,

we computed all the automorphisms of these algebras and showed that the Lie algebras

D(M) and S(M) are not integrable. The paper [17] provides their derivations, so it is

a natural continuation of that previous work and can be considered as a generalization

of the results of Wollenberg and Takens. It is also shown which derivations generate

one-parameter groups of automorphisms and the explicit form of such one-parameter

groups is given.

The first part of the present text is of expository nature and contains an intuitive de-

scription of the major facts explained in [17]. Moreover, experience of different approaches

to the quantization problem and the geometric study of differential equations incite to

substitute differential operators acting on tensor densities for differential operators on

functions. In the frame of our previous works, this substitution requires investigations on

a possible characterization of a manifold M by the Lie algebra of differential operators

acting on densities on M of arbitrary fixed weight, or more generally, on the potential

characterization, by the canonical Lie algebra structure of the space of linear differential

operators on smooth sections of an arbitrary R-line bundle L, of the base manifold M or

even of the bundle L itself. These problems are solved in the second part of this paper

where some new results are proven. Note finally that throughout this paper all manifolds

are assumed to be Hausdorff and second countable.

2. Derivations of some quantum and classical Poisson algebras

2.1. Locality and weight. In this section we depict the derivations of the algebras D1(M),

S(M), and D(M). Let (D, [., .]) be one of these three filtered Lie algebras and let C be a
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derivation of (D, [., .]). We speak of operators when referring to elements of D and denote

the algebra C∞(M) of smooth functions of M by A. The adjoint action of a smooth

function f of M , regarded as a differential operator of order 0, on an operator D ∈ Di

lowers the filtration degree by 1. This provides a tool for proofs by induction. The idea

is really fruitful if derivations have weight 0. Indeed, a bracket such as [CD, f ], which

involves the chosen derivation, is then also a member of Di−1.

We first prove that any derivation C has a bounded weight, i.e. that there is a positive

integer d, such that CDi ⊂ Di+d, ∀i ∈ N. The proof uses the derivation property on

functions, the characterization of filters “à la Vinogradov”, and the result that the A-

module Ω1(M) of differential 1-forms is spanned by the differentials of a finite number of

functions. This last upshot is a consequence of Whitney’s embedding theorem.

In order to verify that investigation by local computations is possible, we have to

check if any derivation can be restricted to a domain of local coordinates. This means

that we must prove that a derivation is always a local operator. We obtain locality using

a general technique worked out by De Wilde and Lecomte, see [5]: if an operator D ∈ D

vanishes in a neighborhood U of a point x ∈ M , it reads D =
∑

k[Xk, Dk], where the

sum is finite and the vector fields Xk and operators Dk vanish in some neighborhood

V ⊂ U of x. The derivation property CD =
∑

k ([CXk, Dk] + [Xk, CDk]) then allows

one to conclude.

Let us emphasize that significant information on automorphisms and derivations is

encoded in the automorphism and derivation properties written for two functions. If

(x1, . . . , xn) are local coordinates in an open subset U ⊂M , we get

0 = C[xi, xj ] = [Cxi, xj ] + [xi, Cxj ].

The values Cxi are differential operators over U or polynomials of T ∗U . In the first

case, we symbolically write the derivatives in these operators Cxi as monomials in the

corresponding components (ξ1, . . . , ξn) of some linear form ξ ∈ (Rn)∗. Hence Cxi ≃ P i,

where the P i are polynomials of T ∗U. In this polynomial language, the above result reads

∂ξj
P i = ∂ξi

P j .

Integration furnishes us with a polynomial P such that ∂ξi
P = P i, i.e. [P, xi] = Cxi.

So derivation C coincides on coordinate functions with an interior derivation. It is easily

seen that for an arbitrary function f , the derivations C and adP differ by a function,

Cf − [P, f ] ∈ A, i.e. locally C−adP respects the lowest filter. After a gluing process and

a generalization to higher order filters, we conclude that any derivation can be corrected

by an interior derivation in such a way that the filtration is respected. We will refer to

this property as “property P1”. Let us stress that P ∈ Dd+1 since the weight of C is d.

The operator P is not unique, the set of all convenient P is P + D1.

2.2. Restriction to functions. We prove that for any derivation C that respects the fil-

tration there is a unique vector field Y such that the derivation C − adY respects the

filtration and reduces on functions to a multiple of identity, i.e. (C − adY ) |A = κ id,

where κ ∈ R is uniquely determined by C.
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In the following we refer to this result as “property P2”. Unless differently stated,

we assume that all derivations examined below have been corrected and have acquired

properties P1 and P2.

The proof of the preceding upshot is based upon a technique similar to that used in

[16, Sect. 2.3.2] and will not be described here.

2.3. Derivations of first order linear differential operators. The Lie algebra of first order

differential operators has a canonical splitting, D1(M) = A ⊕ X (M), where X (M) is

the Lie algebra of vector fields of M . In the following we simply write D1 and X , if no

misunderstanding is possible. In view of property P2, we have Cf = κf (f ∈ A, κ ∈ R).

The derivation property shows that C|X is a 1-cocycle of the canonical representation of

the Lie algebra X on the space A. These cocycles are well-known (see [8], [6]): CX =

λ divX + ω(X) (X ∈ X , λ ∈ R, ω ∈ Ω1(M) ∩ ker d). So we know C on any first-order

operator. If we wish to recover the initial, not yet corrected (see 2.2) derivation (we denote

it also by C), we have to add again the corrections. Finally,

C(f +X) = [Y, f +X] + κf + λ divX + ω(X), ∀f ∈ A, ∀X ∈ X ,

where Y ∈ X , κ, λ ∈ R, ω ∈ Ω1(M) ∩ kerd are uniquely defined by C. The cohomological

translation of this result is

H1(D1,D1) = R
2 ⊕H1

DR(M).

Here H1(D1,D1) is the first cohomology space of the Lie algebra D1 and H1
DR(M) is the

first de Rham cohomology group of the underlying manifold M .

Some explanations regarding divergences can be found for instance in [26]. Let us

recall that any nowhere vanishing 1-density ρ0 defines a vector space isomorphism τ0
between the space of 1-densities and the space of functions. Nevertheless these spaces are

not isomorphic as modules over the Lie algebra of vector fields. Indeed, if LX and LX
denote the Lie derivatives with respect to a vector field X, of 1-densities and functions

respectively, the difference τ0 ◦ LX ◦ τ−1
0 −LX is the value at X of a 1-cocycle of X with

coefficients in A. This cocycle is the divergence implemented by ρ0. There is no canonical

divergence. Nevertheless all divergences induced by nowhere vanishing 1-densities are

cohomologous. So these divergences define a privileged cohomology class. The divergence

above and below is a fixed divergence of this class. An approach to divergences for general

Lie algebroids can be found in [18].

2.4. Derivations of polynomials on the cotangent bundle. Any (corrected) derivation C

of S(M) = Pol(T ∗M) (in the following we simply write S) restricts to a derivation (still

denoted by C) of the Lie algebra S1 of polynomials of degree 1 at most. Since this algebra

is isomorphic to D1, the derivation C reads

C(f +X) = κf + λ divX + ω(X), ∀f ∈ A, ∀X ∈ X . (1)

If we impose the derivation condition, not only for elements of S1 but for all polynomials

in S, the terms of the r.h.s. of Equation (1) either cancel or turn out to be the traces on

the S1-level of derivations of the whole algebra S. In this intuitive approach we confine

ourselves to trying to extend these terms as derivations of S.
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Since S is a graded algebra, one of its derivations is the so-called degree derivation,

Deg : Si ∋ P → (i− 1)P ∈ Si,

which just multiplies by the (shifted) degree of the argument. Of course Si is the space

Poli(T ∗M) of homogeneous polynomials of degree i. Visibly −κDeg is a derivation of S

that extends the first term of the r.h.s. of Equation (1).

It should be clear that such an extension does not exist for the second term λ div.

Since ω is locally exact, its value at X locally reads

ω(X) = (df)(X) = {X, f},

where f is a local function and where {., .} is the standard Poisson bracket of T ∗M. So,

if, for any polynomial P ∈ S, we locally define

ω(P ) := {P, f} = Λ(dP, df),

where Λ is the corresponding Poisson tensor, we see that ω is a well and globally defined

derivation of S that extends our third term. It is obvious from the preceding equation

that ω is the (vertical) vector field ωv of T ∗M induced by ω.

Finally we understand that any derivation C of S is of the type

C(P ) = {Q,P} − κDegP + ωv(P ), ∀P ∈ S,

where Q ∈ S, κ ∈ R, ω ∈ Ω1(M) ∩ ker d. Let us still mention that κ is unique, whereas

the set of appropriate (Q,ω) is {(Q + h, ω + dh), h ∈ A}. The cohomological version of

this second result is

H1(S,S) = R ⊕H1
DR(M),

with self-explaining notations.

2.5. Derivations of linear differential operators. The intuitive approach is as in Section

2.4, conclusions are similar. Note nevertheless that the degree derivation, which extends

the first term of Equation (1), is tightly connected with the grading of the classical Poisson

algebra S. Since the quantum algebra D(M) (D for short) is only filtered, we guess that

such an extension is no longer possible on the quantum level.

We now understand that any derivation C of D has the form

C(D) = [∆, D] + ω(D), ∀D ∈ D,

where ∆ ∈ D, ω ∈ Ω1(M) ∩ ker d. The lowering (its weight with respect to the filtration

degree is −1) derivation ω is defined as in Section 2.4. The convenient (∆, ω) are again

{(∆ + h, ω + dh), h ∈ A}. Moreover,

H1(D,D) = H1
DR(M).

3. Integrability of derivations. Let us come back to the derivations of the algebras

D1(M), S(M), and D(M). For these non-integrable infinite-dimensional Lie algebras,

there is no such clear correspondence between derivations and 1-parameter groups of au-

tomorphisms as in the finite-dimensional setting. Our goal is to find in each of these cases

the most general form of a 1-parameter group of automorphisms. Moreover, computations

should unmask a derivation that can be viewed as the generator of the chosen group of
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automorphisms. Finally, we wonder if it is possible to characterize those derivations that

induce 1-parameter groups of automorphisms.

First remark that any diffeomorphism φ of M canonically induces an automorphism

φ∗ of the considered algebra D. If D = D1(M) or D = D(M), this automorphism is

defined by

(φ∗D)f = D(f ◦ φ) ◦ φ−1, ∀D ∈ D, ∀f ∈ A.

If D = S(M) = Pol(T ∗M), we set

φ∗P = P ◦ (φ♯)−1, ∀P ∈ D,

where φ♯ is the phase lift of φ. So 1-parameter groups of diffeomorphisms are special 1-

parameter groups of automorphisms, known a priori, since they are just flows of complete

vector fields. Note that there are diffeomorphisms, arbitrarily close to identity, which

cannot be embedded in flows [13, 25].

We have shown in [15] that any automorphism Φ of D1(M) has the form

Φ(f +X) = φ∗(X) + (K f + Λ divX + Ω(X)) ◦ φ−1, ∀f ∈ A, ∀X ∈ X , (2)

where φ ∈ Diff(M), K ∈ R\{0}, Λ ∈ R, and Ω ∈ Ω1(M) ∩ ker d are uniquely determined

by the chosen automorphism. Let Φt = Φφt,Kt,Λt,Ωt
be an arbitrary 1-parameter group of

automorphisms. Smoothness with respect to the differential structure of M is assumed.

In other words, we suppose that the map

R ×M ∋ (t, x) → (ΦtD)(f)(x) ∈ R

is smooth for any D ∈ D1(M) and any f ∈ A. When computing the l.h.s. of the group

condition

Φφt,Kt,Λt,Ωt
◦ Φφs,Ks,Λs,Ωs

= Φφt+s,Kt+s,Λt+s,Ωt+s
, (3)

we get terms that can easily be compared with the corresponding terms of the r.h.s.,

except for one term,

Λt (div φs∗X) ◦ φ−1
t , (4)

which is not of one of the four types in the r.h.s. of Equation (2). So this term has to be

transformed.

Let us recall that the divergence is implemented by a fixed nowhere vanishing 1-density

ρ0. It is quite obvious that the divergence of the push-forward of a vector field X coincides

with the divergence with respect to the pull-back of ρ0. More precisely,

divρ0 φ∗X = (divφ∗ρ0 X) ◦ φ−1, (5)

where the subscript s has been omitted. It is clear that for any diffeomorphism φ there

is a unique positive smooth function J(φ), such that

φ∗ρ0 = (J(φ)) ρ0. (6)

Furthermore, the reader might have guessed that the essential local building block of

J(φ)(x) is |det ∂xϕ|, where ϕ is the local form of φ. Hence, the following property of J :

J(φ ◦ ψ) = ψ∗ (J(φ)) . J(ψ), ∀φ, ψ ∈ Diff(M). (7)
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Recall now that if G is a group and A is a left G-module, a group 1-cocycle is a map

C : G→ A such that

C(g1 · g2) = g1. (C(g2)) + C(g1), ∀g1, g2 ∈ G, (8)

where “.” is the action of G and “·” the group multiplication. Note that this cocycle-

condition is similar to that of the Hochschild cohomology of an associative algebra. The

unique difference between Equation (7) and Equation (8) is the operation in the r.h.s.

When applying the logarithm to both sides of Equation (7), we finally get

(ln ◦J)(φ ◦ ψ) = ψ∗ ((ln ◦J)(φ)) + (ln ◦J)(ψ).

So

ln ◦J ∈ Z1(Diff(M), C∞(M)) (9)

is a 1-cocycle of the group of diffeomorphisms valued in the module of smooth functions.

Moreover, it can be proven that

(ln ◦J)(Exp(tX)) =

∫ t

0

divX ◦ Exp(sX) ds, (10)

for any complete vector field X. Equations (6), (9), and (10) show that

Div = ln ◦J

is the group analogue of divergence.

This group divergence allows us to rewrite term (4) in an appropriate form. Starting

from Equation (5), we obtain

(divφ∗ρ0 X) ◦ φ−1 =
(

div(J(φ))ρ0 X
)

◦ φ−1

= (divρ0 X +X ((ln ◦J) (φ))) ◦ φ−1

= (div X + d (Divφ) (X)) ◦ φ−1.

The terms of group condition (3) can now easily be compared. This comparison leads to

the equations

φt ◦ φs = φt+s, φ0 = id,

KtKs = Kt+s, K0 = 1,

Λt +KtΛs, Λ0 = 0,

KtΩs + φ∗sΩt + Λtd(Divφs) = Ωt+s, Ω0 = 0,

where id is the identity map. The first of these results for instance means that the 1-

parameter family of diffeomorphisms is actually a 1-parameter group of diffeomorphisms,

i.e. the flow of a complete vector field Y : φt = Exp(tY ). Other equations are a little

more complicated, but can be solved, so that the explicit form of Kt, Λt, and Ωt, i.e. of

Φφt,Kt,Λt,Ωt
is known. Furthermore, the solutions of the preceding equations involve, in

addition to the vector field Y , two real numbers κ, λ and a closed 1-form ω. All these

objects are uniquely determined by the chosen 1-parameter group of automorphisms and

characterize, as explained in Subsection 2.3, a derivation of D1(M). We say that this

derivation, which is special in the sense that it is associated with a complete vector field,

induces the 1-parameter group of automorphisms.

We are now ready to understand the following
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Theorem 1. A derivation

CY,κ,λ,ω(X + f) = [Y,X + f ] + κ f + λ divX + ω(X)

of D1(M) induces a one-parameter group Φt of automorphisms of D1(M) if and only if

the vector field Y is complete. In this case the group is of the form

Φt(X + f) = (Exp(tY ))∗(X) +

(

eκt f + λ
eκt − 1

κ
divX

)

◦ Exp(−tY )

+

(
∫ t

0

eκ(t−s)

(

λ

∫ s

0

X(div Y ◦ Exp(uY ))du+ ((Exp(sY ))∗ω) (X)

)

ds

)

◦ Exp(−tY ).

Similar upshots have been obtained for the algebras S(M) and D(M). They will not

be described here.

4. Differential operators on real line bundles. In [15] we have taken an interest in

characterizations of manifold structures, especially by the Lie algebra of linear differential

operators acting on the functions of the chosen manifold M . We now extend these results

to the Lie algebra of differential operators acting on tensor densities over M of arbitrary

weight and even to differential operators acting on the smooth sections of an arbitrary

R-line bundle L. Our objectives are to examine if this Lie algebra structure recognizes

the base manifold M and maybe even the bundle L itself.

Let π : L → M be a real vector bundle of rank 1 over a smooth, Hausdorff, second

countable, and connected manifold. We define the algebra D(L) = ∪k∈ND
k(L) of differ-

ential operators on L in the standard way. Note first that the space Sec(L) of smooth

sections of L is an A-module, so that any function f ∈ A induces an endomorphism

mf : Sec(L) ∋ s→ fs ∈ Sec(L) of the space Sec(L). Then set

D0(L) = {D ∈ End(Sec(L)) : [D,mf ] = 0, ∀f ∈ A},

Dk+1(L) = {D ∈ End(Sec(L)) : [D,mf ] ∈ Dk(L), ∀f ∈ A} (k ∈ N),

where End(Sec(L)) denotes the algebra of endomorphisms of Sec(L) and [., .]– the com-

mutator bracket associated with the composition multiplication.

Proposition 1. Any differential operator on L is a local operator.

Proof. Indeed, if we denote D−1(L) = {0}, then we can proceed now by induction and

consider a kth-order (k ≥ 0) differential operator D on L, a section s ∈ Sec(L) that

vanishes in an open subset U ⊂ M , an arbitrary point x ∈ U , and a function α ∈ A,

which vanishes outside U and has constant value 1 in some neighborhood of x in U . Since

[D,mα] ∈ Dk−1(L) is a local operator, D(αs) = αD(s) in U , so (D(s))(x) = D(0) = 0.

Remark 1. In the following we write D(L) in the form D(L → M), if we wish to put

emphasis on the base manifold M , and in the form D(M), if L is the trivial bundle M×R.

This algebra D(M) is nothing but the usual algebra of linear differential operators acting

on the space of smooth functions of M .

Proposition 2. The space D(L) = ∪k∈ND
k(L) is a quantum Poisson algebra in the

sense of [15].
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Proof. In view of the above proposition it is sufficient to check it locally. Let U be an

open subset of M such that L is trivial over U . Any local trivialization of L in U , i.e.

any nowhere vanishing section ς ∈ Sec(LU ) of L over U , induces a canonical vector space

isomorphism

ις : Sec(LU ) ∋ ϕς → ϕ ∈ C∞(U).

This isomorphism induces itself an isomorphism of quantum Poisson algebras,

Iς : D(LU ) ∋ ∆ → ις ◦ ∆ ◦ ι−1
ς ∈ D(U). (11)

A straightforward induction on the degree of differentiation allows one to see that Iς
respects the filtration.

A gauge change entails a change in the identification of D(LU ) with D(U). Indeed,

if ς ′ is another nowhere vanishing section of LU , we have ς ′ = ψς, ψ ∈ C∞(U), and, as

easily verified,

Iς(∆) = mψ ◦ Iς′(∆) ◦mψ−1 , ∀∆ ∈ D(LU ), (12)

so that I−1
ς′ ◦ Iς is a Lie algebra automorphism of D(LU ). Hence the local isomorphisms

Iς cannot be glued canonically. Note nevertheless that if ψ is a (non-zero) constant, the

identifications Iς and Iς′ coincide.

Let us recall that quantum Poisson algebras (qPa) canonically induce classical Poisson

algebras (cPa) in the sense of [15]. We denote by S(D) the cPa implemented by a qPa

D. We also know that S(D(M)) coincides with the algebra Sec(STM) of symmetric

contravariant tensor fields over M and with the algebra Pol(T ∗M) of smooth functions

on the cotangent bundle of M that are polynomial along the fibers.

Theorem 2. The classical Poisson algebras S(D(L)) and S(D(M)) induced by D(L) and

D(M) are canonically isomorphic cPa.

Proof. In any qPa D we can define the kth-order symbol σk(D) of any differential operator

D ∈ D, the degree of which is ≤ k (see [15]). In the fundamental case D = D(M), this

algebraically defined symbol coincides with the usual geometric kth-order symbol. It is

then clear (see (12)) that

σk(Iς(∆)) = σk(Iς′(∆)), ∀∆ ∈ Dk(LU ). (13)

It is obvious that σk(Iς(∆)) ∈ Sk(D(U)), ∆ ∈ Dk(LU ) only depends on the kth-order

symbol of ∆, i.e. is actually defined on Sk(D(LU )). Indeed, for any P ∈ Sk(D(LU )), if

P = σk(∆) = σk(∆
′), we have σk(Iς(∆)) − σk(Iς(∆

′)) = 0, since σk(∆ − ∆′) = 0. So

ΦUς : Sk(D(LU )) ∋ P → σk(Iς(σ
−1
k (P ))) ∈ Sk(D(U))

is a cPa isomorphism. The morphism properties with respect to the associative commu-

tative and the Poisson-Lie multiplications are direct consequences of the definitions of

these operations . and {., .}:

σ(∆).σ(∆′) = σdeg ∆+deg ∆′(∆ ◦ ∆′),

{σ(∆), σ(∆′)} = σdeg ∆+deg ∆′−1([∆,∆
′]),
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where σ(∆) and deg ∆ are the principal symbol and the degree of ∆ respectively (see

[15]). In view of (13) the isomorphisms ΦUς define a global cPa isomorphism

Φ : S(D(L)) → S(D(M)),

such that

(ΦP )|U = ΦUς (P |U ),

for any P ∈ Sk(D(L)) and a trivialization ς of L over a member U of some appropriate

open covering of M . Let us mention that if P = σk(D), D ∈ Dk(L), the restriction

P |U = (σk(D))|U is nothing but the well-defined class σk(D|U ) of the restriction to U of

the local operator D.

Theorem 3. The quantum Poisson algebras D(L) and D(M) are isomorphic.

Proof. Let L0 = L\{0} be the bundle L with removed 0-section and let |L0| = L0/Z2

be the quotient of L0 with respect to the obvious action of the multiplicative group

Z2 = {−1, 1}. This quotient |L0| is an affine bundle of dimension 1 (i.e. a smooth bundle

of 1-dimensional affine spaces, such that the passage from one trivialization to another

is given by an affine map) canonically modelled on the vector bundle M × R. Indeed,

on the fibers of |L0| there is a canonical free and transitive action of R induced by the

Liouville vector field of L which projects onto a nowhere-vanishing vector field on |L0|.

This action turns |L0| into an R-principal bundle. Since the fibers are contractible, |L0|

has a global section |η|. If (Uα)α∈Λ is a covering of M by open connected subsets over

which L is trivializable, the section |η| can be viewed as a family ({ηα,−ηα})α∈Λ of pairs

of non-vanishing local sections of L such that {ηα,−ηα} = {ηβ ,−ηβ} on Uα ∩ Uβ . This

follows immediately from the above depicted trivializations. When choosing for each α

a representative η̃α ∈ {ηα,−ηα}, we get a family of nowhere vanishing local sections of

L, such that on Uα ∩ Uβ , we have η̃α = ±η̃β that reflects the fact that line bundles over

M are classified by H1(M ; Z2). In view of (11) and (12) we then get a global quantum

Poisson algebra isomorphism between D(L) and D(M).

The preceding result shows that the Lie algebra D(L→M) characterizes the smooth

structure of the base manifold M , but does not recognize the topological complications

in L.

Corollary 1. Let π : L→M and π′ : L′ →M ′ be two real vector bundles of rank 1 over

two smooth manifolds M and M ′ respectively. The Lie algebras D(L→M) and D(L′ →

M ′) are isomorphic if and only if the base manifolds M and M ′ are diffeomorphic.

Proof. Immediate consequence of Theorem 3 and of [15, Theo. 6].

Note that the essential fact is that D(L→M) and D(L′ →M) are always isomorphic

(even as qPa), whether or not L and L′ are isomorphic as vector bundles. However these

isomorphisms are not canonical, depending on the choice of the section |η| of |L0|. This

observation, together with the description of automorphisms and derivations of D(M)

and D1(M) [15, 17], gives automatically the obvious description of automorphisms and

derivations of D(L → M) and D1(L → M). The only difference is that diffeomorphims

φ of M (resp. vector fields on M) do not define automorphisms (resp. derivations) of
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D(L→ M) and D1(L→ M) canonically, but in the way depending on the choice of the

section |η| of |L0|. For example, the derivation C
|η|
X associated with a vector field X on

M and a choice of |η| is defined locally by

C
|η|
X (D)(fηα) = [X(Dα(f)) −Dα(X(f))]ηα,

where Dα(f)ηα = D(fηα). This definition is correct, since nothing changes when we

choose −ηα instead of ηα.
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finitésimaux d’une variété symplectique, J. Diff. Geom. 9 (1974), 1–40.

[5] M. De Wilde and P. Lecomte, Some characterizations of differential operators on vector

bundles, in: E. B. Christoffel et al. (eds.), Birkhäuser Verlag, Basel 1981, 543–549.
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