GEOMETRY AND TOPOLOGY OF MANIFOLDS BANACH CENTER PUBLICATIONS, VOLUME 76 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2007

NON-EXISTENCE OF EXCHANGE TRANSFORMATIONS OF ITERATED JET FUNCTORS

MIROSLAV DOUPOVEC

Department of Mathematics, Brno University of Technology FSI VUT Brno, Technická 2, 616 69 Brno, Czech Republic E-mail: doupovec@fme.vutbr.cz

WŁODZIMIERZ M. MIKULSKI

Institute of Mathematics, Jagiellonian University Reymonta 4, 30-059 Kraków, Poland E-mail: mikulski@im.uj.edu.pl

Abstract. We study the problem of the non-existence of natural transformations $J^r J^s Y \rightarrow J^s J^r Y$ of iterated jet functors depending on some geometric object on the base of Y.

1. Introduction. It is well known that for every couple F and G of product preserving bundle functors defined on the category $\mathcal{M}f$ of smooth manifolds and all smooth maps there is an exchange natural equivalence $\kappa^{F,G} : FG \to GF$, [5]. Moreover, denoting by $p_M^F : FM \to M$ and $p_M^G : GM \to M$ the bundle projections, we have $p_{FM}^G \circ \kappa_M^{F,G} = F(p_M^G)$, i.e. $\kappa_M^{F,G}$ interchanges the projections p_{FM}^G and $F(p_M^G)$. We remark that this property generalizes the classical involution $\kappa_M^{T,T} : TTM \to TTM$ of the iterated tangent bundle to every pair F and G of product preserving functors on $\mathcal{M}f$.

In [2] we applied this point of view to natural equivalences

$$A^{F,G}: FG \to GF$$

of iterated bundle functors defined on the category \mathcal{FM}_m of fibered manifolds with m-dimensional bases and of fibered manifold morphisms covering local diffeomorphisms. In particular, we have extended the concept of the canonical involution in the following way. Given an arbitrary fibered manifold $Y \to M$, we denote by $p_Y^F : FY \to Y$ and $p_Y^G : GY \to Y$ the bundle projections. Then the natural equivalence $A^{F,G}$ is called the

Key words and phrases: natural transformation, jet prolongation, symplectic structure.

The first author was supported by a grant of the GA $\dot{C}R$ No 201/05/0523.

²⁰⁰⁰ Mathematics Subject Classification: 58A05, 58A20.

The paper is in final form and no version of it will be published elsewhere.

involution, if $p_{FY}^G \circ A_Y^{F,G} = F(p_Y^G)$ for an arbitrary fibered manifold $Y \to M$. By [2], [6] and [9], involutions can be applied in the prolongation of connections.

An important example of a bundle functor on \mathcal{FM}_m is the *r*-th jet functor J^r , which associates to an arbitrary fibered manifold $Y \to M$ its *r*-th jet prolongation $J^r Y \to M$. For such functors we have proved that for any *r* and *s* there is no involution $J^r J^s \to J^s J^r$, [2]. On the other hand, M. Modugno [9] has introduced the involution $ex_{\Lambda} : J^1 J^1 \to J^1 J^1$ depending on a classical linear connection Λ on the base manifold M.

In this paper we study the more general problem on the non-existence of natural transformations (not necessarily involutions)

$$(A_{\sigma})_Y: J^r J^s Y \to J^s J^r Y$$

depending on some geometric object σ on the base of Y. The main result will be proved in Section 1. Further, in Section 2 we prove that for $r \neq s$ there is no natural transformation $(A_{\omega})_Y : J^r J^s Y \to J^s J^r Y$ depending on a symplectic form ω on the base of Y. As a direct consequence we obtain that for $r \neq s$ there is no natural transformation $J^r J^s Y \to J^s J^r Y$. Finally, Section 3 is devoted to the problem of the non-existence of non-trivial natural transformations $(A_{\omega})_Y : J^r J^r Y \to J^r J^r Y$.

We remark that higher order jet functors play an important role in differential geometry, see e.g. [3], [4] and [7]. In what follows we use the terminology and notation from the book [5]. We denote $\mathcal{M}f_m \subset \mathcal{M}f$ the subcategory of *m*-dimensional manifolds and their local diffeomorphisms and by $\mathcal{FM}_{m,n} \subset \mathcal{FM}_m$ the subcategory of fibered manifolds with *n*-dimensional fibres and their local fibered diffeomorphisms. All manifolds and maps are assumed to be infinitely differentiable.

2. The main result. Let F be a natural bundle on $\mathcal{M}f_m$. Given a manifold M we denote by $\Gamma_{\text{loc}}(FM)$ the set of local smooth sections of FM. Further, suppose that for all $\mathcal{M}f_m$ -objects M we have $D(M) \subset \Gamma_{\text{loc}}(FM)$ such that from $\sigma \in D(M_1)$ it follows that $F\psi \circ \sigma \circ \psi^{-1} \in D(M_2)$ for any $\mathcal{M}f_m$ -map $\psi : M_1 \to M_2$.

DEFINITION 1. An $\mathcal{FM}_{m,n}$ -natural operator $A: D \rightsquigarrow (J^r J^s, J^s J^r)$ is an invariant family of functions

$$A: D(M) \to C^{\infty}_M(J^r J^s Y, J^s J^r Y)$$

into the space $C_M^{\infty}(J^r J^s Y, J^s J^r Y)$ of all base preserving maps $J^r J^s Y \to J^s J^r Y$ for any $\mathcal{FM}_{m,n}$ -object $Y \to M$. The invariance means that for any $\mathcal{FM}_{m,n}$ -objects $Y_1 \to M_1$ and $Y_2 \to M_2$ and any $\mathcal{FM}_{m,n}$ -map $\Psi: Y_1 \to Y_2$ covering $\psi: M_1 \to M_2$ and any sections $\sigma_1 \in D(M_1)$ and $\sigma_2 \in D(M_2)$ from $\sigma_2 \circ \psi = F\psi \circ \sigma_1$ it follows that $A(\sigma_2) \circ J^r J^s \Psi = J^s J^r \Psi \circ A(\sigma_1)$.

In the special case $D(M) = \Gamma_{\text{loc}}(FM)$ we write $A : F \rightsquigarrow (J^r J^s, J^s J^r)$ instead of $A : D \rightsquigarrow (J^r J^s, J^s J^r)$. The main result of the present paper is the following non-existence theorem.

THEOREM 1. Let r and s be natural numbers such that r > s. Let F and D be as above. Suppose that there exists a section $\rho \in D(\mathbf{R}^m)$ and an $\mathcal{M}f_m$ -map $\varphi = (\varphi^i) : \mathbf{R}^m \to \mathbf{R}^m$ such that (a) $F\varphi \circ \rho \circ \varphi^{-1} = \rho \text{ near } 0 \in \mathbf{R}^m$, (b) $j_0^{r+s-1}\varphi = id$, (c) φ^1 depends only on x^1 and (d) $\frac{d^{r+s}}{d(x^1)^{r+s}}\varphi^1(0) \neq 0$.

Then there is no $\mathcal{FM}_{m,n}$ -natural operator $A: D \rightsquigarrow (J^r J^s, J^s J^r)$.

Proof. Denoting by $\mathbf{R}^{m,n}$ the product fibered manifold $\mathbf{R}^m \times \mathbf{R}^n \to \mathbf{R}^m$, we identify sections of $\mathbf{R}^{m,n}$ with maps $\mathbf{R}^m \to \mathbf{R}^n$. Further, we use the notation

$$j_0^r j^s(f(x,\underline{x})) = j_0^r(x \to j_x^s(\underline{x} \to f(x,\underline{x}))) \in J_0^r J^s \mathbf{R}^{m,n}$$

Suppose that there exists an operator A in question. Consider first the restriction \tilde{A} : $J_0^r J^s \mathbf{R}^{m,n} \to J_0^s J^r \mathbf{R}^{m,n}$ of $A(\rho)$ to the fibers over $0 \in \mathbf{R}^m$. Using the invariance of \tilde{A} with respect to the fiber homotheties of $\mathbf{R}^{m,n}$ and the homogeneous function theorem from [5] we see that \tilde{A} is linear. Taking into account the invariance of \tilde{A} with respect to the $\mathcal{FM}_{m,n}$ -maps

$$(x^1,\ldots,x^m,y^1,ty^2,\ldots,ty^n)$$

for $t \neq 0$ we can write

(1)
$$\tilde{A}(j_0^r j^s(x^1, 0, ..., 0)) = j_0^s j^r \Big(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta}, 0, ..., 0 \Big)$$

for some uniquely determined $a_{\alpha\beta} \in \mathbf{R}$ for *m*-tuples α, β with $|\alpha| \leq s, |\beta| \leq r$. Further, considering the invariance of \tilde{A} with respect to the $\mathcal{FM}_{m,n}$ -map

$$(x^1, \dots, x^m, y^1 - x^1, y^2, \dots, y^n)$$

we get from (1)

$$\tilde{A}(j_0^r j^s(x^1 - \underline{x}^1, 0, \dots, 0)) = j_0^s j^r \Big(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta} - \underline{x}^1, 0, \dots, 0 \Big).$$

Then the invariance of \tilde{A} with respect to the $\mathcal{FM}_{m,n}$ -map

$$(x^1, \dots, x^m, y^1 + (y^1)^{s+1}, y^2, \dots, y^n)$$

and the linearity of \tilde{A} yield

(2)
$$\tilde{A}(j_0^r j^s((x^1 - \underline{x}^1)^{s+1}, 0, \dots, 0))$$

= $j_0^s j^r \Big(\Big(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta} - \underline{x}^1 \Big)^{s+1}, 0, \dots, 0 \Big).$

But $j_0^r j^s (\underline{x}^1 - x^1)^{s+1} = 0$ as $j_x^s (\underline{x}^1 - x^1)^{s+1} = 0$. Then from (2) we get

$$j_0^s j^r \Big(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta} - \underline{x}^1 \Big)^{s+1} = 0,$$

which reads $a_{(0)(0)} = 0$ and

(3)
$$j_0^s j^r \Big((a_{(0)e_1} - 1)^{s+1} (\underline{x}^1 - x^1)^{s+1} + \sum_{l=1}^m (a_{(0)e_l})^{s+1} (\underline{x}^l - x^l)^{s+1} + \dots \Big) = 0,$$

where the dots denote the linear combination of terms $x^{\gamma}(\underline{x}-x)^{\eta}$ for other $(\gamma, \eta), |\gamma| \leq s,$ $|\eta| \leq r$. Since $r \geq s+1$ (because of the assumption r > s), we have

(4)
$$a_{(0)e_1} = 1 \text{ and } a_{(0)e_l} = 0 \text{ for } l = 2, \dots, m,$$

where $e_j = (0, ..., 1, ..., 0)$ is the *m*-tuple with 1 in the *j*-th position. Then (by (4) and the assumptions (b) and (c)), the map $\varphi^{-1} \times id_{\mathbf{R}^n}$ sends

$$j_0^s j^r \left(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta} \right)$$

into

(5)
$$j_0^s j^r \bigg(\sum_{|\alpha| \le s} \sum_{|\beta| \le r} a_{\alpha\beta} x^{\alpha} (\underline{x} - x)^{\beta} + \frac{1}{(r+s)!} \frac{d^{r+s}}{d(x^1)^{r+s}} \varphi^1(0) (\underline{x}^1)^{r+s} + \dots \bigg),$$

where the dots denote an expansion of terms $(x^1)^{r+s}$ and $x^{\gamma} \underline{x}^{\eta}$ with $|\gamma + \eta| > r + s$. Of course,

$$j_0^s j^r (\underline{x}^1)^{r+s} \neq 0$$
 and $j_0^s j^r (x^1)^{r+s} = 0$.

By the Newton formula, $j_0^s j^r(x^{\gamma} \underline{x}^{\eta}) = j_0^s j^r(x^{\gamma} (\underline{x} - x + x)^{\eta})$ is the linear combination of terms $j_0^s j^r(x^{\underline{\gamma}}(\underline{x} - x)^{\underline{\eta}})$ with $|\underline{\gamma} + \underline{\eta}| = |\gamma + \eta|$ (which are zero if $|\gamma + \eta| > r + s$). Then the dots in (5) are zero. Therefore $\varphi^{-1} \times id_{\mathbf{R}^n}$ does not preserve the right hand side of (1) because $\frac{d^{r+s}}{d(x^1)^{r+s}}\varphi^1(0) \neq 0$ (assumption (d)). On the other hand $\varphi^{-1} \times id_{\mathbf{R}^n}$ preserves the left hand side of (1) because it preserves both the section ρ (assumption (a)) and $j_0^r j^s(x^1, 0, \ldots, 0)$ (as $j_0^r \varphi = id$ because of assumption (b)). This is a contradiction.

COROLLARY 1. Let F be a natural vector bundle. Then there is no $\mathcal{FM}_{m,n}$ -natural operator $A: F \rightsquigarrow (J^r J^s, J^s J^r)$ for r > s.

Proof. It follows from Theorem 1 with $\rho = 0$.

COROLLARY 2. For r > s there is no $\mathcal{FM}_{m,n}$ -natural transformation $B: J^r J^s \to J^s J^r$.

Proof. Any such $B: J^r J^s \to J^s J^r$ can be treated as the corresponding constant $\mathcal{FM}_{m,n}$ natural operator $B: T \rightsquigarrow (J^r J^s, J^s J^r)$.

OPEN PROBLEM. Clearly, for r = s Theorem 1 does not hold (we have the identity map $J^r J^r Y \to J^r J^r Y$). On the other hand, we do not know whether Theorem 1 is true in the case r < s.

3. Natural transformations $J^r J^s \to J^s J^r$ depending on a symplectic structure. From Theorem 1 we obtain easily

PROPOSITION 1. For r > s there is no $\mathcal{FM}_{2\underline{m},n}$ -natural operator $A : SYMP \rightsquigarrow (J^r J^s, J^s J^r)$ transforming symplectic structures ω on M into natural transformations $A(\omega) : J^r J^s Y \rightarrow J^s J^r Y$. *Proof.* In Theorem 1 we put $m = 2\underline{m}, F = \bigwedge^2 T^*$,

$$\begin{split} D(M) &= \mathrm{SYMP}(M) = \mathrm{the \ space \ of \ local \ symplectic \ structures \ on \ } M, \\ \rho &= \sum_{i=1}^{\underline{m}} dx^i \wedge dx^{\underline{m}+i} = \mathrm{the \ standard \ symplectic \ structure \ on \ } \mathbf{R}^{2\underline{m}}, \\ \varphi &= \left(x^1 + \frac{1}{r+s} (x^1)^{r+s}, x^2, \dots, x^{\underline{m}}, \frac{x^{\underline{m}+1}}{1+(x^1)^{r+s-1}}, x^{\underline{m}+2}, \dots, x^{2\underline{m}}\right) \end{split}$$

We can see that φ and ρ satisfy assumptions (a)—(d) of Theorem 1.

Now we prove

PROPOSITION 2. For s > r there is no $\mathcal{FM}_{2\underline{m},n}$ -natural operator $A : SYMP \rightsquigarrow (J^r J^s, J^s J^r)$ transforming symplectic structures ω on M into natural transformations $A(\omega) : J^r J^s Y \rightarrow J^s J^r Y$.

Proof. Suppose that there exists A in question. Let

$$\tilde{A}: J_0^r J^s \mathbf{R}^{2\underline{m},n} \to J_0^s J^r \mathbf{R}^{2\underline{m},n}$$

be the restriction of $A(\omega^o)$ to the fiber over $0 \in \mathbf{R}^{2\underline{m}}$, where $\omega^o = \sum_{i=1}^{\underline{m}} dx^i \wedge dx^{\underline{m}+i}$ is the standard symplectic structure on $\mathbf{R}^{2\underline{m}}$. Using the invariance of \tilde{A} with respect to the fiber homotheties of $\mathbf{R}^{2\underline{m},n}$ and the homogeneous function theorem we see that \tilde{A} is linear. Next, considering the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2m,n}$ -maps

$$\left(\tau_1 x^1, \dots, \tau_{\underline{m}} x^{\underline{m}}, \frac{1}{\tau_1} x^{\underline{m}+1}, \dots, \frac{1}{\tau_{\underline{m}}} x^{2\underline{m}}, y^1, \tau y^2, \dots, \tau y^n\right)$$

preserving ω^{o} one can easily show that

$$\tilde{A}(j_0^r j^s(x^1, 0, \dots, 0)) = j_0^s j^r(ax^1 + b\underline{x}^1 + \dots, 0, \dots, 0),$$

where the dots mean some combination of monomials in x, \underline{x} of degree ≥ 2 . Taking into account the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2m,n}$ -map

$$\left(x^{1} + (x^{1})^{r+1}, x^{2}, \dots, x^{\underline{m}}, \frac{x^{\underline{m}+1}}{1 + (r+1)(x^{1})^{r}}, x^{\underline{m}+2}, \dots, x^{2\underline{m}}, y^{1}, \dots, y^{n}\right)^{-1}$$

preserving ω^o and $j_0^r j^s x^1$ we deduce

(6)
$$j_0^s j^r (a(x^1)^{r+1} + b(\underline{x}^1)^{r+1} + \dots, 0, \dots, 0) = 0,$$

where the dots denote some expression of monomials of degree $\geq r+2$. Applying $(tid_{\mathbf{R}^{2\underline{m}}} \times id_{\mathbf{R}^n})$ to both sides of (6) we get

(7)
$$j_0^s j^r (a(x^1)^{r+1} + b(\underline{x}^1)^{r+1}, 0, \dots, 0) = 0$$

But

$$j_0^s j^r (\underline{x}^1)^{r+1} = j_0^s j^r (\underline{x}^1 - x^1 + x^1)^{r+1} = j_0^s j^r \Big(\sum_{k=0}^r C_k^{r+1} (\underline{x}^1 - x^1)^k (x^1)^{r+1-k} \Big).$$

From (7) and the assumption s > r we get a + b = 0 and b = 0. Then we have

(8)
$$\tilde{A}(j_0^r j^s(x^1, 0, \dots, 0)) = j_0^s j^r(*, 0, \dots, 0),$$

where * denote some linear combination of monomials in x, \underline{x} of degree ≥ 2 . Further, using the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2\underline{m},n}$ -map

$$(x^1, \dots, x^{2\underline{m}}, y^1 - x^1, y^2, \dots, y^n)$$

preserving ω^o we get from (8)

(9)
$$\tilde{A}(j_0^r j^s(x^1 - \underline{x}^1, 0, \dots, 0)) = j_0^s j^r(-\underline{x}^1 + *, 0, \dots, 0).$$

Then using the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2m,n}$ -map

$$(x^1, \dots, x^{2\underline{m}}, y^1 + (y^1)^{s+1}, y^2, \dots, y^n)$$

we obtain from (9)

(10)
$$\tilde{A}(j_0^r j^s((\underline{x}^1 - x^1)^{s+1}, 0, \dots, 0)) = j_0^s j^r((\underline{x}^1)^{s+1} + **, 0, \dots, 0),$$

where ** is some linear combination of monomials in x, \underline{x} of degree $\geq s+2$. But $j_0^r j^s((\underline{x}^1 - x^1)^{s+1}) = 0$. So from (10) we have

$$j_0^s j^r((\underline{x}^1)^{s+1}) = 0$$

This is a contradiction as $j_0^s j^r((\underline{x}^1)^{s+1}) = j_0^{r+s}((\underline{x}^1)^{s+1}) \neq 0.$ \blacksquare

From Corollary 2 and Proposition 3 we obtain

PROPOSITION 3. For $r \neq s$ there is no natural transformation $A: J^r J^s \to J^s J^r$.

Proof. It suffices to prove the case s > r. Obviously, such A can be treated as a natural operator $A : \text{SYMP} \rightsquigarrow (J^r J^s, J^s J^r)$ constant with respect to elements from SYMP. By Proposition 3 the proof is complete. \blacksquare

It is interesting to point out that the only natural transformation $J^r J^s \to J^r J^s$ is the identity, [1].

4. Non-identical natural transformations $J^r J^r Y \to J^r J^r Y$ depending on a symplectic structure Clearly, for r = s we have the trivial $\mathcal{FM}_{2\underline{m},n}$ -natural operator A^o : SYMP $\rightsquigarrow (J^r J^r, J^r J^r)$ such that $A^o(\omega) = \operatorname{id}_{J^r J^r Y}$ for any $\mathcal{FM}_{2\underline{m},n}$ -object $Y \to M$ and any symplectic form ω on M. On the other hand, in the case r = s we formulate the following hypothesis.

HYPOTHESIS. There is no non-trivial $\mathcal{FM}_{2\underline{m},n}$ -natural operator $A: SYMP \rightsquigarrow (J^r J^r, J^r J^r)$ transforming symplectic structures ω on M into natural transformations $A(\omega): J^r J^r Y \rightarrow J^r J^r J^r Y$.

It seems that the verification of this hypothesis will be technically complicated. Bellow we prove only

PROPOSITION 4. The hypothesis is true for r = s = 1.

Proof. Suppose that there exists A in question. Let

 $\tilde{A}: J_0^1 J^1 \mathbf{R}^{2\underline{m},n} \to J_0^1 J^1 \mathbf{R}^{2\underline{m},n}$

be the restriction of $A(\omega^o)$ to the fiber over $0 \in \mathbf{R}^{2\underline{m}}$, where $\omega^o = \sum_{i=1}^{\underline{m}} dx^i \wedge dx^{\underline{m}+i}$ is the standard symplectic structure on $\mathbf{R}^{2\underline{m}}$. Quite similarly to the proof of Proposition 3,

 \tilde{A} is linear and we can write

$$\tilde{A}(j_0^1 j^1(x^1, 0, \dots, 0)) = j_0^1 j^1(ax^1 + b\underline{x}^1 + *, 0, \dots, 0),$$

where * is some linear combination of $x^i \underline{x}^j$ for $i, j = 1, \ldots, 2\underline{m}$. Using the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2\underline{m},n}$ -maps $(tid_{\underline{m}} \times \frac{1}{t}id_{\underline{m}} \times id_{\mathbf{R}^n})$ preserving ω^o we deduce that * = 0. Analogously to the proof of Proposition 3 we deduce

$$j_0^1 j^1 (b(\underline{x}^1)^2) = 0$$

which reads b = 0. Further, using the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2\underline{m},n}$ -map

$$(x^1, \dots, x^{2\underline{m}}, y^1 - x^1, y^2, \dots, y^n)$$

preserving ω^o we get

$$\tilde{A}(j^1 j^1 (x^1 - \underline{x}^1, 0, \dots, 0)) = j_0^1 j^1 (ax^1 - \underline{x}^1).$$

Taking into account the $\mathcal{FM}_{2\underline{m},n}$ -map

$$(x^1, \dots, x^{2\underline{m}}, y^1 + (y^1)^2, y^2, \dots, y^n)$$

preserving ω^o we obtain

$$\tilde{A}(j_0^1 j^1((x^1 - \underline{x}^1)^2, 0, \dots, 0)) = j_0^1 j^1((ax^1 - \underline{x}^1)^2, 0, \dots, 0).$$

Then as $j_0^1 j^1 (\underline{x}^1 - x^1)^2 = 0$ and $j_0^1 j^1 (x^1)^2 = 0$, we have

$$0 = \tilde{A}(j_0^1 j^1(0, \dots, 0)) = \tilde{A}(j((x^1 - \underline{x}^1)^2, 0, \dots, 0))$$

and

$$j_0^1 j^1 (ax^1 - \underline{x}^1)^2 = -2(a-1)j_0^1 j^1 (x^1 (\underline{x}^1 - x^1)).$$

This yields a = 1, i.e.

(11)
$$\tilde{A}(j_0^1 j^1(x^1, 0, \dots, 0)) = j_0^1 j^1(x^1, 0, \dots, 0).$$

Considering the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2m,n}$ -map

$$(x^1 + x^{\underline{m}+1}, x^2, \dots, x^{2\underline{m}}, y^1, \dots, y^n)^{-1}$$

preserving ω^o and $j_0^1 j^1 x^1$ we deduce from (11)

(12)
$$\tilde{A}(j_0^1 j^1(x^{\underline{m}+1}, 0, \dots, 0)) = j_0^1 j^1(x^{\underline{m}+1}, 0, \dots, 0).$$

Next, applying the invariance of \tilde{A} with respect to permutations of first \underline{m} base coordinates and respective second \underline{m} base coordinates (preserving ω^{o}) we deduce from (11) and (12)

(13)
$$\tilde{A}(j_0^1 j^1(x^i, 0, \dots, 0)) = j_0^1 j^1(x^i, 0, \dots, 0)$$

for $i = 1, \ldots, 2\underline{m}$. Then the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2\underline{m},n}$ -map

$$(x^1,\ldots,x^{2\underline{m}},y^1+x^jy^1,y^2,\ldots,y^n)$$

preserving ω^o yields

(14)
$$\tilde{A}(j_0^1 j^1(\underline{x}^j x^i, 0, \dots, 0)) = j_0^1 j^1(\underline{x}^j x^i, 0, \dots, 0)$$

for $i, j = 1, ..., 2\underline{m}$. Taking into account the invariance of \tilde{A} with respect to the $\mathcal{FM}_{2\underline{m},n}$ maps $(x^1, ..., x^{2\underline{m}}, y^1 - x^{\beta}, y^2, ..., y^n)$ preserving ω^o , where β are 2<u>m</u>-tuples of non-negative integers, from the clear equality $\tilde{A}(j_0^1 j^1(0, \ldots, 0)) = j_0^1 j^1(0, \ldots, 0)$ we get

(15)
$$\tilde{A}(j_0^1 j^1(1, 0, \dots, 0)) = j_0^1 j^1(1, 0, \dots, 0)$$

and

(16)
$$\tilde{A}(j_0^1 j^1(\underline{x}^i, 0, \dots, 0)) = j_0^1 j(\underline{x}^i, 0, \dots, 0)$$

for $i = 1, \ldots, 2\underline{m}$. Finally, using the linearity of \tilde{A} and the invariance of \tilde{A} with respect to permutations of fiber coordinates from (14),(15) and (16) we obtain $\tilde{A} = \text{id}$ (these elements generate the vector space $J_0^1 J^1 \mathbf{R}^{2\underline{m},n}$). Then A is trivial because of the Darboux theorem, which is contradiction.

Denote by $ex_{\Lambda} : J^1 J^1 \to J^1 J^1$ the involution depending on a classical linear connection Λ on the base of Y, which was constructed by M. Modugno [9]. Clearly, ex_{Λ} is a non-identic natural equivalence. From Proposition 4 it follows directly the following result, which was also proved in [8].

PROPOSITION 5. Symplectic structures do not induce canonically classical linear connections.

REMARK 1. Let $\Gamma: Y \to J^1 Y$ be a connection on a fibered manifold $Y \to M$. Using the exchange transformation $ex_{\Lambda}: J^1 J^1 \to J^1 J^1$, one can construct a connection $\mathcal{J}^1(\Gamma, \Lambda)$ on $J^1 Y \to M$ by means of a classical linear connection Λ on M by

$$\mathcal{J}^1(\Gamma, \Lambda) := (\mathrm{ex}_\Lambda)_Y \circ J^1\Gamma,$$

see [9]. By propositions 1, 2 and 4, it is impossible to construct in a similar way a connection on $J^r Y \to M$ from a connection Γ by means of a symplectic form on M.

References

- M. Doupovec and I. Kolář, Iteration of fiber product preserving bundle functors, Monatshefte Math. 134 (2001), 39–50.
- M. Doupovec and W. M. Mikulski, On the involution of iterated bundle functors, Colloq. Math. 106 (2006), 135–145.
- [3] C. Ehresmann, Extension du calcul des jets aux jets non holonomes, CRAS Paris 239 (1954), 1762–1764.
- [4] I. Kolář, A general point of view to nonholonomic jet bundles, Cahiers Topol. Geom. Diff. 44 (2003), 149–160.
- [5] I. Kolář, P. W. Michor and J. Slovák, Natural Operations in Differential Geometry, Springer-Verlag, 1993.
- [6] I. Kolář and M. Modugno, Natural maps on the iterated jet prolongation of a fibered manifold, Annali di Mat. Pura ed Applicata 157 (1991), 151–165.
- P. Libermann, Introduction to the theory of semi-holonomic jets, Arch. Math. (Brno) 33 (1977), 173–189.
- [8] W. M. Mikulski, The natural bundles admitting natural lifting of linear connections, Demonstratio Math. 39 (2006), 223–232.
- [9] M. Modugno, Jet involution and prolongation of connections, Čas. Pěst. Mat. 114 (1989), 356–365.