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Abstract. The aim of the paper is to define a k-cosymplectic structure on the standard k-

cosymplectic manifold associated to a regular Lagrangian and to reduce it via Marsden-Weinstein

reduction.

1. Introduction. Considering a Hamiltonian action of a Lie group on a k-cosymplectic

manifold [3], one divides a level set of a momentum map by an action of a subgroup, in

order to form a new k-cosymplectic manifold.

Let M be an n-dimensional smooth differential manifold and τ∗
M : T ∗M → M the

cotangent bundle. Denote by (T 1
k )∗M = T ∗M ⊕ . . .⊕ T ∗M the Whitney sum of k copies

of T ∗M , with the canonical projection τ∗ : (T 1
k )∗M → M, τ∗(α1q, . . . , αkq) = q, that is

canonically identified with the cotangent bundle of k1-covelocities of the manifold M [2].

Let τM : TM → M be the tangent bundle. Denote by T 1
k M = TM⊕. . .⊕TM the Whitney

sum of k copies of TM , with the canonical projection τ : T 1
k M → M, τ (v1q, . . . , vkq) = q,

that is canonically identified with the tangent bundle of k1-velocities of the manifold

M [2].

Using the Legendre transformation corresponding to a regular Lagrangian [3], we want

to transfer the k-cosymplectic structure from R
k × (T 1

k )∗M on R
k × T 1

k M . Since all the

considerations will be local, without loosing generality, we’ll consider the n-dimensional

manifold M as being R
n.

2. The standard k-cosymplectic structure associated to a regular Lagrangian.

Consider T 1
k R

n = TR
n ⊕ . . .⊕ TR

n the Whitney sum of k-copies of TR
n, and denote by
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(t1, . . . , tk, q1, . . . , qn, v1
1 , . . . , v

1
k, . . . , vn

1 , . . . , vn
k ) the coordinate functions on the manifold

R
k × T 1

k R
n.

Definition 1. The map L : R
k × T 1

k R
n → R is a Lagrangian if

k
∑

A=1

d

dtA

(

∂L

∂vi
A

)

−
∂L

∂qi
= 0,

where vi
A = ∂qi/∂tA, for any 1 ≤ A ≤ k, 1 ≤ i ≤ n.

Define the Legendre transformation LT : R
k × T 1

k R
n → R

k × (T 1
k )∗Rn associated to

the Lagrangian L : R
k × T 1

k R
n → R, by

(LT (t1, . . . , tk, v1q, . . . , vkq))
A(wq) :=

d

ds
|s=0 L(t1, . . . , tk, v1q, . . . , vAq + swq, . . . , vkq),

for any 1 ≤ A ≤ k.

The Lagrangian L : R
k × T 1

k R
n → R is said to be regular if the Jacobian matrix

(∂2L/∂vi
A∂vj

B)1≤A,B≤k,1≤i,j≤n of L is nonsingular.

Using the k-cosymplectic structure (ηA, ωA, V )1≤A≤k on the standard k-cosymplectic

manifold R
k × (T 1

k )∗Rn [4], we can define a k-cosymplectic structure ((ηL)A, (ωL)A,

VL)1≤A≤k on R
k × T 1

k R
n, by means of the Legendre transformation LT associated to

a regular Lagrangian L, as follows:

1. (ηL)A = (LT )∗ηA;

2. (ωL)A = (LT )∗ωA;

3. VL = ker(πL)∗,

where πL : R
k × (T 1

k )∗Rn → R
k × R

n, πL(t1, . . . , tk, v1q, . . . , vkq) = (t1, . . . , tk, q), for any

1 ≤ A ≤ k.

Notice that the projection πL that defines the distribution VL is the pull-back by

the Legendre transformation LT of the projection π that defines the distribution V [4].

Therefore, the two distributions V and VL are related by the relation V = (LT )∗VL.

Proposition 1 ([3]). Using the notations above, the following assertions are equivalent:

1. L is regular;

2. LT is a local diffeomorphism;

3. (Rk × T 1
k R

n, (ηL)A, (ωL)A, VL)1≤A≤k is a k-cosymplectic manifold.

Note that, locally, by pushing-forward the Reeb vector fields on R
k × T 1

k R
n associ-

ated to ((ηL)A, (ωL)A), 1 ≤ A ≤ k through the Legendre transformation LT , one ob-

tains the Reeb vector fields on R
k × (T 1

k )∗Rn associated to (ηA, ωA), 1 ≤ A ≤ k, i.e.

RA = (LT )∗(RL)A, 1 ≤ A ≤ k. Indeed, one can easily check that the vector fields

(LT )∗(RL)A, 1 ≤ A ≤ k satisfy the two conditions that uniquely characterize the Reeb

vector fields associated to (ηA, ωA), 1 ≤ A ≤ k.

Consider the bundle morphism

Ω♯
L : T 1

k (Rk × T 1
k R

n) → T ∗(Rk × T 1
k R

n),

Ω♯
L(X1, . . . , Xk) :=

k
∑

A=1

(iXA
(ωL)A + (iXA

(ηL)A)(ηL)A).
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Note that the two bundle morphisms Ω♯ [4] and Ω♯
L defined on R

k × (T 1
k )∗Rn and

respectively, on R
k×(T 1

k )∗Rn, are related by the relation Ω♯
L = (LT )∗◦Ω♯◦(LT )∗. There-

fore, the Hamiltonian systems of k-vector fields on R
k × T 1

k R
n can be obtained from the

Hamiltonian systems of k-vector fields on R
k × (T 1

k )∗Rn, using the Legendre transfor-

mation LT associated to the regular Lagrangian L. Notice that, locally, (X1, . . . , Xk)

is an H-Hamiltonian system of k-vector fields on R
k × (T 1

k )∗Rn (i.e. a solution of the

equation Ω♯(X1, . . . , Xk) = dH) if and only if ((LT )−1
∗ X1, . . . , (LT )−1

∗ Xk) is an H ◦ LT -

Hamiltonian system of k-vector fields on R
k×T 1

k R
n. In particular, the fundamental vector

fields on R
k ×T 1

k R
n are related to the fundamental vector fields on R

k × (T 1
k )∗Rn by the

relation (ξA)Rk×(T 1

k
)∗Rn = (LT )∗(ξA)Rk×T 1

k
Rn , 1 ≤ A ≤ k.

Using the Liouville 1-forms θA, 1 ≤ A ≤ k on the standard k-cosymplectic manifold

R
k × (T 1

k )∗Rn [4], we can define the Liouville 1-forms (θL)A, 1 ≤ A ≤ k on R
k × T 1

k R
n,

by means of the Legendre transformation LT :

(θL)A = (LT )∗θA,

for any 1 ≤ A ≤ k. Indeed, d(θL)A =d((LT )∗θA)=(LT )∗(dθA)(LT )∗(−ωA)=−(LT )∗ωA

= −(ωL)A.

Let Φ : G × R
n → R

n be an action of a Lie group G (with its Lie algebra G) on R
n.

Define the canonical lifted actions to R
k × (T 1

k )∗Rn and respectively, to R
k × T 1

k R
n by

ΦT∗

k : G × (Rk × (T 1
k )∗Rn) → R

k × (T 1
k )∗Rn,

ΦT∗

k (g, t1, . . . , tk, α1q, . . . , αkq) := (t1, . . . , tk, α1q ◦ (Φg−1)
∗Φg(q)

, . . . , αkq ◦ (Φg−1)
∗Φg(q)

)

and

ΦTk : G × (Rk × T 1
k R

n) → R
k × T 1

k R
n,

ΦTk(g, t1, . . . , tk, v1q, . . . , v1q) := (t1, . . . , tk, (Φg)∗qv1q, . . . , (Φg)∗qv1q).

If L is a regular Lagrangian, invariant with respect to Φ (i.e. (Φg
Tk)∗L = L, for

any g ∈ G), then one can check that the two lifted actions of G to R
k × (T 1

k )∗Rn and

respectively, to R
k × T 1

k R
n are related by the relation Φ

T∗

k
g ◦ LT = LT ◦ ΦTk

g , for any

g ∈ G.

We obtain that the Liouville 1-forms (θL)A, 1 ≤ A ≤ k are invariant with respect to

ΦTk , i.e. (ΦTk
g )∗(θL)A = (θL)A, for any g ∈ G, 1 ≤ A ≤ k. Indeed, as the Liouville 1-forms

θA, 1 ≤ A ≤ k are invariant with respect to ΦT∗

k , we get (ΦTk
g )∗(θL)A =(ΦTk

g )∗((LT )∗θA)=

(LT ◦ ΦTk
g )∗θA =(Φ

T∗

k
g ◦ LT )∗θA =(LT )∗((Φ

T∗

k
g )∗θA)=(LT )∗(θA)(θL)A.

Using this fact, one can easily check that ΦTk is a k-cosymplectic action (i.e. it pre-

serves the k-cosymplectic structure), taking into account that ΦT∗

k is a k-cosymplectic

action.

3. Marsden-Weinstein reduction of the standard k-cosymplectic manifold asso-

ciated to a regular Lagrangian. Consider µ ∈ Gk∗ a regular value of JL. This implies

that JL
−1(µ) is a manifold. Denote by Gµ : {g ∈ G : Adg−1

k∗(µ) = µ} the isotropy group

of µ with respect to Φ. Note that it acts on JL
−1(µ). Indeed, let g ∈ G and x ∈ JL

−1(µ),

i.e. Adg−1

k∗(µ) = µ and JL(x)µ. Then JL(Φ(g, x)) = JL(Φg(x))Adg−1

k∗(µ) = µ, which
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implies that Φ(g, x) ∈ JL
−1(µ). Suppose that Gµ acts freely and properly on JL

−1(µ).

This implies that (Rk × T 1
k R

n)µ = JL
−1(µ)/Gµ is a manifold.

If we denote by Gx the orbit of x with respect to Φ, we have that

Tx(Gx) = {ξRk×T 1

k
Rn(x), ξ ∈ G}

and

Tx(JL
−1(µ)) = ker(JL)∗x,

for any x ∈ JL
−1(µ).

Like in the k-symplectic case [2], one gets an orthogonal decomposition theorem:

Lemma 1. Under the hypotheses above, for any x ∈ JL
−1(µ) we have:

1. Tx(Gµx) = Tx(Gx) ∩ Tx(JL
−1(µ));

2. Tx(JL
−1(µ)) = {Xx ∈ Tx(Rk × T 1

k R
n) :

∑k
A=1(ωL)Ax((ξA)Rk×T 1

k
Rn(x), Xx) = 0,

for any ξA ∈ G, 1 ≤ A ≤ k}.

Using the orthogonal decomposition theorem we can show that the Reeb vector fields

(RL)1, . . . , (RL)k are tangent to JL
−1(µ).

Denote by (iL)µ : JL
−1(µ) → R

k×T 1
k R

n the inclusion map and by (πL)µ : JL
−1(µ) →

(Rk × T 1
k R

n)
µ

the projection, the last one being a surjective submersion.

Theorem 1. Under the hypotheses above, there exists a unique k-cosymplectic struc-

ture (((ηL)µ)
A
, ((ωL)µ)

A
, (VL)µ)

1≤A≤k
on (Rk × T 1

k R
n)

µ
such that

1. (iL)µ
∗(ηL)A = (πL)µ

∗((ηL)µ)
A
;

2. (iL)µ
∗(ωL)A = (πL)µ

∗((ωL)µ)
A
,

for any 1 ≤ A ≤ k.

Moreover, the Reeb vector fields (RL)1, . . . , (RL)k on R
k×T 1

k R
n associated to ((ηL)A,

(ωL)A), 1≤A≤k project to the Reeb vector fields ((RL)µ)
1
, . . . , ((RL)µ)

k
on (Rk×T 1

k R
n)

µ

associated to (((ηL)µ)
A
, ((ωL)µ)

A
), 1 ≤ A ≤ k.

Proof. Define

((ηL)µ)
A[x]

([v]) = (ηL)Ax(v),

((ωL)µ)
A[x]

([v], [w]) = (ωL)Ax(v, w),

where [v] = ((πL)µ)∗x(v), [w] = ((πL)µ)∗x(w), [x] = (πL)µ(x), for any v, w ∈ TxJL
−1(µ),

x ∈ JL
−1(µ).

Let (VL)µ :=
⊕k

A=1(∩
k
B=1ker((ηL)µ)B)∩ (∩k

B=1,B 6=Aker((ωL)µ)B). Indeed, the struc-

ture defined above is the unique k-cosymplectic structure on (Rk × T 1
k R

n)
µ

with the

properties required in the theorem (because of the surjectivity of (πL)µ and ((πL)µ)∗x,

for any x ∈ JL
−1(µ)). �
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