2.2 Rudiments

Corollary 2.12. A linear operator \(A \) is the generator of a \(C_0 \) semigroup \((G(t))_{t \geq 0} \) satisfying \(\|G(t)\| \leq e^{\omega t} \) if and only if

1. \(A \) is closed and \(\text{dom}(A) = X \);
2. \(\rho(A) \supset (\omega, \infty) \) and for such \(\lambda \)

\[
\|R(\lambda, A)\| \leq \frac{1}{\lambda - \omega}.
\]

Proof. Follows from the contractive semigroup \(S(t) = e^{\omega t}G(t) \) being generated by \(A - \omega I \).

The full version of the Hille-Yosida theorem reads

Theorem 2.13. \(A \in \mathcal{G}(M, \omega) \) if and only if

1. \(A \) is closed and densely defined,
2. there exist \(M > 0, \omega \in \mathbb{R} \) such that \((\omega, \infty) \subset \rho(A) \) and for all \(n \geq 1, \lambda > \omega \)

\[
\| (\lambda A)^{-n} \| \leq \frac{M}{(\lambda - \omega)^n}.
\]

2.2.3 Dissipative operators and the Lumer-Phillips theorem

Let \(X \) be a Banach space (real or complex) and \(X^* \) be its dual. From the Hahn–Banach theorem, Theorem 1.7 for every \(x \in X \) there exists \(x^* \in X^* \) satisfying

\[
\langle x^*, x \rangle = \|x\|^2 = \|x^*\|^2.
\]

Therefore the duality set

\[
\mathcal{J}(x) = \{ x^* \in X^*; \langle x^*, x \rangle = \|x\|^2 = \|x^*\|^2 \}
\]

is nonempty for every \(x \in X \).

Definition 2.14. We say that an operator \((A, \text{dom}(A)) \) is dissipative if for every \(x \in \text{dom}(A) \) there is \(x^* \in \mathcal{J}(x) \) such that

\[
\Re \langle x^*, Ax \rangle \leq 0.
\]

If \(X \) is a real space, then the real part in the above definition can be dropped.

Theorem 2.15. A linear operator \(A \) is dissipative if and only if for all \(\lambda > 0 \) and \(x \in \text{dom}(A) \),

\[
\| (\lambda I - A)x \| \geq \lambda \|x\|.
\]
Proof. Let A be dissipative, $\lambda > 0$ and $x \in D(A)$. If $x^* \in \mathcal{L}$ and $\mathcal{R} < Ax, x^* \geq 0$, then
\[\|Ax - Ax_0\| \geq |\langle Ax - Ax, x^* \rangle | \geq \mathcal{R} < Ax, x^* \geq \lambda \|x\|^2 \]
so that we get (2.65).

Conversely, let $x \in D(A)$ and $\lambda \|x\| \leq \|Ax - Ax_0\|$ for $\lambda > 0$. Consider $y^*_\lambda \in \mathcal{L}(Ax - Ax)$ and $x^*_\lambda = y^*_\lambda / \|y^*_\lambda\|$. Then
\[\mathcal{R} < Ax, z^*_\lambda > = \mathcal{R} (\langle x, x^*_\lambda \rangle - \langle Ax, x^*_\lambda \rangle) \]
for every $\lambda > 0$. From this estimate we obtain that $\mathcal{R} < Ax, z^*_\lambda > \leq 0$ and, by $|\lambda| \geq \mathcal{R} \alpha$,
\[\mathcal{R} < x, z^*_\lambda > \geq |\lambda| \|x\| - |\mathcal{R} < Ax, z^*_\lambda > | \geq \lambda \|x\| - \|Ax\| \]
or $\mathcal{R} < x, z^*_\lambda > \leq \|x\| - \lambda^{-1} \|Ax\|$. Now, the unit ball in X^* is weakly-* compact and thus there is a sequence $(z^*_\lambda)_{\lambda \in \mathcal{R}}$ converging to z^* with $\|z^*\| = 1$. From the above estimates, we get
\[\|x\| |\langle x, x^* \rangle | \geq 0 \]
and $\mathcal{R} < x, z^* > \leq \|x\|$. Hence, also, $|\langle x, x^* \rangle | \geq \|x\|$ On the other hand, $\mathcal{R} < x, z^* > \leq |\langle x, x^* \rangle | \leq \|x\|$ and hence $\langle x, x^* \rangle = \|x\|$. Taking $x^* = z^*\|x\|$ we see that $x^* \in \mathcal{L}(x)$ and $\mathcal{R} < Ax, x^* \geq 0$ and thus A is dissipative.

Theorem 2.16. Let A be a linear operator with dense domain $D(A)$ in X.

(a) If A is dissipative and there is $\lambda_0 > 0$ such that the range $\mathcal{R} \{\lambda_0 I - A\} = X$, then A is the generator of a C_0-semigroup of contractions in X.

(b) If A is the generator of a C_0 semigroup of contractions on X, then $\mathcal{R} \{\lambda I - A\} = X$ for all $\lambda > 0$ and A is dissipative. Moreover, for every $x \in D(A)$ and every $x^* \in \mathcal{L}(x)$ we have $\mathcal{R} < Ax, x^* \geq 0$.

Proof. Let $\lambda > 0$, then dissipativeness of A implies $\|Ax - Ax_0\| \geq \lambda \|x\|$ for $x \in D(A), \lambda > 0$. This gives injectivity and, since by assumption, the $\mathcal{R} \{\lambda I - A\} D(A) = X$, $\lambda_0 I - A$ is a bounded everywhere defined operator and thus closed. But then $\lambda_0 I - A$, and hence A, are closed. We have to prove that $\mathcal{R} \{\lambda I - A\} D(A) = X$ for all $\lambda > 0$. Consider the set $\mathcal{A} = \{\lambda > 0; \mathcal{R} \{\lambda I - A\} D(A) = X\}$. Let $\lambda \in \mathcal{A}$. This means that $\lambda \in \rho(A)$ and, since $\rho(A)$ is open, A is open in the induced topology. We have to prove that A is closed in the induced topology. Assume $\lambda_n \to \lambda, \lambda > 0$. For every $y \in X$ there is $x_n \in D(A)$ such that
\[\lambda_n x_n - Ax_n = y. \]
2.2 Rudiments

From (2.2), \(\|x_n\| \leq \frac{1}{\lambda_n} \|y\| \leq C \) for some \(C > 0 \). Now

\[
\begin{align*}
\lambda_n \|x_n - x_m\| &\leq \|\lambda_n(x_n - x_m) - A(x_n - x_m)\| \\
&= \|\lambda_n x_n - \lambda_m x_n - (\lambda_n - \lambda_m)x_n - A(x_n - x_m)\| \\
&\leq \|\lambda_n - \lambda_m\| \|x_n\| \leq C|\lambda_n - \lambda_m|
\end{align*}
\]

Thus, \((x_n)_{n\in\mathbb{N}}\) is a Cauchy sequence. Let \(x_n \to x\), then \(Ax_n \to \lambda x - y\). Since \(A\) is closed, \(x \in D(A)\) and \(\lambda x - Ax = y\). Thus, for this \(\lambda\), \(\text{Im}(\lambda I - A)D(A) = X\) for all \(\lambda > 0\). Furthermore, if \(x \in D(A)\), \(x^* \in \mathcal{J}(x)\), then

\[
\langle G(t)x, x^* \rangle \leq \|G(t)x\| \|x^*\| \leq \|x\|^2
\]

and therefore

\[
\Re \langle G(t)x - x, x^* \rangle = \Re \langle G(t)x, x^* \rangle - \|x\|^2 \leq 0
\]

and, dividing the left hand side by \(t\) and passing with \(t \to \infty\), we obtain

\[
\Re \langle Ax, x^* \rangle \leq 0.
\]

Since this holds for every \(x^* \in \mathcal{J}(x)\), the proof is complete.

Adjoint operators

Before we move to an important corollary, let us recall the concept of the adjoint operator. If \(A \in \mathcal{L}(X, Y)\), then the adjoint operator \(A^*\) is defined as

\[
\langle y^*, Ax \rangle = \langle A^*y^*, x \rangle
\]

and it can be proved that it belongs to \(\mathcal{L}(Y^*, X^*)\) with \(\|A^*\| = \|A\|\). If \(A\) is an unbounded operator, then the situation is more complicated. In general, \(A^*\) may not exist as a single-valued operator. In other words, there may be many operators \(B\) satisfying

\[
\langle y^*, Ax \rangle = \langle By^*, x \rangle, \quad x \in D(A), \ y^* \in D(B). \tag{2.39}
\]

Operators \(A\) and \(B\) satisfying (2.39) are called **adjoint to each other**.

However, if \(D(A)\) is dense in \(X\), then there is a unique maximal operator \(A^*\) adjoint to \(A\); that is, any other \(B\) such that \(A\) and \(B\) are adjoint to each other, must satisfy \(B \subseteq A^*\). This \(A^*\) is called the **adjoint operator** to \(A\). It can be constructed in the following way. The domain \(D(A^*)\) consists of all elements \(y^*\) of \(Y^*\) for which there exists \(f^* \in X^*\) with the property

\[
\begin{align*}
\Delta u = \Delta u &\quad \omega_1^2(\mathcal{A}) \cap \omega_2^2(\mathcal{A}) \\
\sum_{\omega_1^2(\mathcal{A}) \cap \omega_2^2(\mathcal{A})} \Delta u = \sum_{\Delta \Delta u \in \mathcal{L}_1} \Delta u \in \mathcal{L}_1 \quad \left\{ \begin{array}{l}
\omega_1^2(\mathcal{A}) \ni u \in \mathcal{L}_1 \\
\Delta u \in \mathcal{L}_1
\end{array} \right.
\end{align*}
\]
for any \(x \in D(A) \). Because \(D(A) \) is dense, such element \(f^* \) can be proved to be unique and therefore we can define \(A^* y^* = f^* \). Moreover, the assumption \(D(A) = X \) ensures that \(A^* \) is a closed operator though not necessarily densely defined. In reflexive spaces the situation is better: if both \(X \) and \(Y \) are reflexive, then \(A^* \) is closed and densely defined with \(A = (A^*)^* \). (2.41) see [105, Theorems III.5.28, III.5.29].

Corollary 2.17. Let \(A \) be a densely defined closed linear operator. If both \(A \) and \(A^* \) are dissipative, then \(A \) is the generator of a \(C_0 \)-semigroup of contractions on \(X \).

Proof. It suffices to prove that, e.g., \(Im(I - A) = X \). Since \(A \) is dissipative and closed, \(Im(I - A) \) is a closed subspace of \(X \). Indeed, if \(y_n \to y \), \(y_n \in \overline{Im(I - A)} \), then, by dissipativity, \(\|x_n - x_m\| \leq \|(x_n - x_m) - (Ax_n - Ax_m)\| = \|y_n - y_m\| \) and \((x_n)_{n \in \mathbb{N}} \) converges. But then \((Ax_n)_{n \in \mathbb{N}} \) converges and, by closedness, \(x \in D(A) \) and \(x - Ax = y \in Im(I - A) \). Assume \(Im(I - A) \neq X \), then by H-B theorem, there is \(0 \neq x^* \in X^* \) such that \(\langle x^*, x - Ax \rangle = 0 \) for all \(x \in D(A) \). But then \(x^* \in D(A^*) \) and, by density of \(D(A) \), \(x^* - A^* x^* = 0 \) but dissipativeness of \(A^* \) gives \(x^* = 0 \).

The Cauchy problem for the heat equation

Let \(C = \Omega \times (0, \infty) \), \(\Sigma = \partial \Omega \times (0, \infty) \) where \(\Omega \) is an open set in \(\mathbb{R}^n \). We consider the problem

\[
\begin{align*}
\partial_t u &= \Delta u, \quad \text{in} \Omega \times [0, \infty], \\
u &= 0, \quad \text{on} \Sigma, \\
u &= u_0, \quad \text{on} \Omega.
\end{align*}
\] (2.42) (2.43) (2.44)

Theorem 2.18. Assume that \(u_0 \in L_2(\Omega) \) where \(\Omega \) is bounded and has a \(C^2 \) boundary. Then there exists a unique function \(u \) satisfying (2.44), (1.26) such that \(u \in C([0, \infty); L_2(\Omega)) \cap C([0, \infty); W_2^2(\Omega) \cap W_2^1(\Omega)) \).

Proof. The strategy is to consider (2.44–1.26) as the abstract Cauchy problem

\[
\begin{align*}
u' &= Au, \quad u(0) = u_0 \quad \text{in} \ X = L_2(\Omega) \quad \text{where} \ A \text{ is the unbounded operator defined by }
\end{align*}
\]

\[
Au = \Delta u
\] for
2.2 Rudiments

First we observe that \(A \) is densely defined as \(C_0^\infty(\Omega) \subset W_0^1(\Omega) \) and \(\Delta C_0^\infty(\Omega) \subset L_2(\Omega) \). Next, \(A \) is dissipative. For \(u \in L_2(\Omega) \), \(J u = u \) and

\[
(A u, u) = -\int_\Omega |\nabla u|^2 \, dx \leq 0 \quad \implies \quad u - \Delta u \in L^1(\Omega) \quad \forall u \in \mathbb{D}(A)
\]

Further, we consider the variational problem associated with \(I - A \), that is, to find \(u \in W_0^1(\Omega) \)

\[
a(u, v) = \int_\Omega \nabla u \nabla v \, dx + \int_\Omega uv \, dx = \int_\Omega fv \, dx, \quad v \in W_0^1(\Omega) \quad \lambda > 0
\]

where \(f \in L_2(\Omega) \) is given. Clearly, \(a(u, u) = \| u \|_{1,\Omega}^2 \) and thus is coercive. Hence there is a unique solution \(u \in W_0^1(\Omega) \) which, by writing

\[
\int_\Omega \nabla u \nabla v \, dx = \int_\Omega fv \, dx - \int_\Omega uv \, dx, \quad v \in W_0^1(\Omega)
\]

can be shown to be in \(W_2^2(\Omega) \). This ends the proof of generation.

If we wanted to use the Hille-Yosida theorem instead, then to find the resolvent, we would have to solve

\[
a(u, v) = \int_\Omega \nabla u \nabla v \, dx + \lambda \int_\Omega uv \, dx = \int_\Omega fv \, dx, \quad v \in W_0^1(\Omega) \quad \lambda > 0
\]

for \(\lambda > 0 \). The procedure is the same and we get in particular for the solution

\[
|\nabla u_\lambda|^2_{0,\Omega} + \lambda \| u_\lambda \|^2_{0,\Omega} \leq \| f \|_{0,\Omega} \| u_\lambda \|_{0,\Omega}.
\]

Since \(u_\lambda = R(\lambda, A)f \) we obtain

\[
\| R(\lambda, A)f \|^2_{0,\Omega} \leq \lambda^{-1} \| f \|_{0,\Omega}.
\]

Closedness follows from continuous invertibility.