Mathematical model of influenza

B. Kempińska-Mirosławska, B. Przeradzki

Medical University of Lodz, Institute of Mathematics LUT
Goals

- To construct a model of epidemic of influenza fitting to Poland,
To construct a model of epidemic of influenza fitting to Poland, including preceding seasons and some new features
To construct a model of epidemic of influenza fitting to Poland, including preceding seasons and some new features an occurrence of remarkable morbidity between seasons, slow development of epidemic.
Goals

- To construct a model of epidemic of influenza fitting to Poland, including preceding seasons and some new features an occurrence of remarkable morbidity between seasons, slow development of epidemic.
- Proposal of an appropriate strategy of vaccinations.
SIR model

S – number of susceptibles, I – number of infectives, R – number of recovered.
SIR model

S – number of susceptibles, I – number of infectives, R – number of recovered.

\[
\begin{align*}
S' &= -\beta S \cdot I \\
I' &= \beta S \cdot I - \alpha \cdot I \\
R' &= \alpha \cdot I
\end{align*}
\]
SIR model

S – number of susceptibles, I – number of infectives, R – number of recovered.

\[
\begin{aligned}
S' &= -\beta S \cdot I \\
I' &= \beta S \cdot I - \alpha \cdot I \\
R' &= \alpha \cdot I
\end{aligned}
\]

Here $N = S + I + R$ is constant in time; R can be removed.
SIR model

S – number of susceptibles, I – number of infectives, R – number of recovered.

\[
\begin{align*}
S' &= -\beta S \cdot I \\
I' &= \beta S \cdot I - \alpha \cdot I \\
R' &= \alpha \cdot I
\end{align*}
\]

Here $N = S + I + R$ is constant in time; R can be removed. β – transmission rate, α – the inverse of infection time.
SIR model

S – number of susceptibles, I – number of infectives, R – number of recovered.

\[
\begin{aligned}
S' &= -\beta S \cdot I \\
I' &= \beta S \cdot I - \alpha \cdot I \\
R' &= \alpha \cdot I
\end{aligned}
\]

Here $N = S + I + R$ is constant in time; R can be removed. β – transmission rate, α – the inverse of infection time.

tu: $\beta = 5 \cdot 10^{-4}$, $\alpha = 0.7$, $S(0) = 2000$, $I(0) = 10$, $R(0) = 0$.
SLIAR model

\[S \] – susceptibles, \(L \) – latent, noninvasion stage, \(I \) – infectives symptomatic, \(A \) – infectives asymptomatic, \(R \) – recovered.
SLIAR model

\[
\begin{align*}
S' &= -\beta S(I + \delta A) \\
L' &= \beta S(I + \delta A) - \alpha_L L \\
l' &= p \cdot \alpha_L L - \alpha_I I \\
A' &= (1 - p) \cdot \alpha_L L - \alpha_A A \\
R' &= \alpha_I I + \alpha_A A
\end{align*}
\]
SLIAR model

\[
\begin{align*}
S' &= -\beta S(I + \delta A) \\
L' &= \beta S(I + \delta A) - \alpha_L \cdot L \\
I' &= p \cdot \alpha_L \cdot L - \alpha_I \cdot I \\
A' &= (1 - p) \cdot \alpha_L \cdot L - \alpha_A \cdot A \\
R' &= \alpha_I \cdot I + \alpha_A \cdot A
\end{align*}
\]

Coefficients α_L, α_I and α_A are inverses of periods of different stages of infection: 1.25 day, 2.85 day and 4.1, day respectively,
SLIAR model

\[
\begin{align*}
S' &= -\beta S (I + \delta A) \\
L' &= \beta S (I + \delta A) - \alpha_L \cdot L \\
I' &= p \cdot \alpha_L \cdot L - \alpha_I \cdot I \\
A' &= (1 - p) \cdot \alpha_L \cdot L - \alpha_A \cdot A \\
R' &= \alpha_I \cdot I + \alpha_A \cdot A
\end{align*}
\]

Coefficients α_L, α_I and α_A are inverses of periods of different stages of infection: 1.25 day, 2.85 day and 4.1, day respectively, $\delta = 0.071$ – reduction of infectiveness for asymptomatic infections, $p = 0.3 - 0.6$ – probability of developing symptoms.
R_0 expresses the expected number of secondary infections generated by a single invective in the unit time; or:
Basic reproduction number

R_0 expresses the expected number of secondary infections generated by a single infective in the unit time; or:

$R_0 = \text{(number of contacts in the unit time)} \times \text{(probability of infection in one contact)} \times \text{(infection period)}.$
Basic reproduction number

R_0 expresses the expected number of secondary infections generated by a single infective in the unit time; or:

$$R_0 = (\text{number of contacts in the unit time}) \times (\text{probability of infection in one contact}) \times (\text{infection period}).$$

If $R_0 > 1$, there is an epidemic, if it is < 1 – continuous decreasing of number of infectives.
Basic reproduction number

\(R_0 \) expresses the expected number of secondary infections generated by a single infective in the unit time; or:
\[
R_0 = (\text{number of contacts in the unit time}) \times (\text{probability of infection in one contact}) \times (\text{infection period}).
\]
If \(R_0 > 1 \), there is an epidemic, if it is \(< 1 \) – continuous decreasing of number of infectives.
For SLIAR: \(R_0 = \beta S(0) \left(\frac{p}{\alpha_I} + \frac{\delta(1-p)}{\alpha_A} \right) \)
Transmission rate

The unique parameter that cannot be estimated indirectly is β.
Transmission rate

The unique parameter that cannot be estimated indirectly is β. We have the epidemiological data: numbers of registered infections in successive weeks of season.
Transmission rate

The unique parameter that cannot be estimated indirectly is β. We have the epidemiological data: numbers of registered infections in successive weeks of season.

We can fit β to these numbers by discretization of differential equations.
Transmission rate

The unique parameter that cannot be estimated indirectly is β. We have the epidemiological data: numbers of registered infections in successive weeks of season.

We can fit β to these numbers by discretization of differential equations. For Poland in the season 2012/13: $\beta = 1.93 \times 10^{-7}$ under assumption – 14% of infectives was registered.
The unique parameter that cannot be estimated indirectly is β. We have the epidemiological data: numbers of registered infections in successive weeks of season.

We can fit β to these numbers by discretization of differential equations. For Poland in the season 2012/13: $\beta = 1.93 \times 10^{-7}$ under assumption – 14% of infectives was registered.
Age structure

Epidemiological data are grouped for age intervals: 0 – 4, 5 – 14, 15 – 64 i 65 +. Improved model:
Epidemiological data are grouped for age intervals: $0 − 4$, $5 − 14$, $15 − 64$ and $65 +$. Improved model:

$$
\begin{align*}
S_j' &= -\beta_j \frac{S_j}{N} \left((I_1 + \delta_1 A_1) N_1 + \ldots + (I_4 + \delta_4 A_4) N_4 \right) \\
L_j' &= \beta_j \frac{S_j}{N} \left((I_1 + \delta_1 A_1) N_1 + \ldots + (I_4 + \delta_4 A_4) N_4 \right) - \mu L_j L_j \\
l_j' &= p_j \mu L_j L_j - \mu l_j l_j \\
A_j' &= (1 - p_j) \mu L_j L_j - \mu A_j A_j \\
R_j' &= \mu A_j A_j + \mu l_j l_j,
\end{align*}
$$

$j = 1, 2, 3, 4.$
Age structure

Epidemiological data are grouped for age intervals: 0 – 4, 5 – 14, 15 – 64 i 65 + . Improved model:

\[
\begin{align*}
S_j' &= -\beta_j \frac{S_j}{N} ((I_1 + \delta_1 A_1)N_1 + \ldots + (I_4 + \delta_4 A_4)N_4) \\
L_j' &= \beta_j \frac{S_j}{N} ((I_1 + \delta_1 A_1)N_1 + \ldots + (I_4 + \delta_4 A_4)N_4) - \mu L_j L_j \\
l_j' &= p_j \mu L_j L_j - \mu l_j l_j \\
A_j' &= (1 - p_j) \mu L_j L_j - \mu A_j A_j \\
R_j' &= \mu A_j A_j + \mu l_j l_j,
\end{align*}
\]

\(j = 1, 2, 3, 4.\)
Immunological memory

Suppose, that people who passed influenza j seasons before are susceptible in the present one but with different βs:
Immunological memory

Suppose, that people who passed influenza j seasons before are susceptible in the present one but with different βs: greater j greater β. The model:
Suppose, that people who passed influenza j seasons before are susceptible in the present one but with different βs: greater j greater β. The model:

\[
\begin{align*}
S'_j &= -\beta_j S_j (I + \delta A) \\
L' &= \sum_{j=0}^{5} \beta_j S_j ((I + \delta A) - \mu_L L) \\
I' &= p\mu_L L - \mu_I I \\
A' &= (1 - p)\mu_L L - \mu_A A \\
R' &= \mu_A A + \mu_I I, \\
\end{align*}
\]
Immunological memory

Suppose, that people who passed influenza j seasons before are susceptible in the present one but with different βs: greater j greater β. The model:

\[
\begin{align*}
S'_j &= -\beta_j S_j (I + \delta A) & j = 0, 1, \ldots, 5 \\
L' &= \sum_{j=0}^{5} \beta_j S_j ((I + \delta A) - \mu_L L) \\
I' &= p\mu_L L - \mu_I I \\
A' &= (1 - p)\mu_L L - \mu_A A \\
R' &= \mu_A A + \mu_I I,
\end{align*}
\]
Thanks for your attention!