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NAGY, Péter T., The classification of compact smooth Bol loops . . . . . 52
NGUIFFO BOYOM, Michel, Quadratization of Lie algebroids . . . . . . 53



OLSZAK, Zbigniew, On almost complex structures with Norden metrics on
tangent bundles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

PLACHTA Leonid, Essential tori in link complements in standard posi-
tions: geometric and combinatorial aspects . . . . . . . . . . . . . . . 55

PONCIN, Norbert, GRABOWSKI, Janusz, Lie algebras of differential
operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

PRADINES, Jean, Lie groupoids viewed as generalized atlases . . . . . . . 60
RYBICKI, Tomasz, Some general remarks on foliated structures . . . . . 62
SAVIN, A. Yu., Elliptic operators on singular manifolds and K-homology . 64
SAWICZ, Katarzyna, On some class of hypersurfaces with pseudosymme-

tric Weyl tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
SINAISKII, E. E., Translation Continuous Functionals on CB(R) and The-

ir Supports . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
SKOPENKOV, Arkadiy., The Whitehead torus, the Hudson-Habegger in-

variant and classification of embeddings S1 × S3 → R
7 . . . . . . . . 71

STERNIN, B. Yu., Elliptic operators on manifolds with nonisolated singu-
larities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

SZENTHE, János, On spherically symmetric space-time . . . . . . . . . . 75
TOSUN, Murat, DEMIR, Zafer, Generalized Space–Like Ruled Surfaces

of the Minkowski Space Rn1 . . . . . . . . . . . . . . . . . . . . . . . . 76
WALISZEWSKI, Włodzimierz, Quasi-polyhedrons . . . . . . . . . . . . . 79

4



Organizers and Scientific Committee

V International Conference GEOMETRY AND TOPOLOGY
OF MANIFOLDS is organized by

� Institute of Mathematics of the Technical University of Łódź

Jan Kubarski [Chairman], (Łódź, Poland)

� Institute of Mathematics of the Jagiellonian University, Cracow

Robert Wolak (Cracow, Poland)

� Faculty of Applied Mathematics, AGH University of Science and Technology, Cracow

Tomasz Rybicki (Cracow, Poland)

Scientific Committee

Dmitri ALEKSEEVSKY (Hull, UK) Ivan BELKO (Minsk, Belarus)
Ronald BROWN (Bangor, UK) Stanisław BRZYCHCZY (Cracow, Poland)
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41. Nguiffo Boyom, Michel, Université Montpellier 2, Montpellier, France, e-mail:
boyom@math.univ-montp2.fr

42. Ni, Jinsong, Suzhou University, Suzhou, China, e-mail: nijings@pub.sz.jsinfo.net

43. Nikitin, Anatoly, Department of Applied Research, Institute of Mathematics of
Nat. Acad. Sci. of Ukraine, Kiev, Ukraine, e-mail: nikitin@imath.kiev.ua,
http://www.imath.kiev.ua/˜nikitin

44. Olszak, Zbigniew, Institute of Mathematics, Wrocław University of Technology,
Wrocław, Poland, e-mail: olszak@im.pwr.wroc.pl

45. Piątkowski, Andrzej, Institute of Mathematics, Technical University of Łódź,
Łódź, Poland, e-mail: andpiat@ck-sg.p.lodz.pl

46. Plachta, Leonid, Institute of Applied Problems of Mechanics and Mathematics of
NASU, Lviv, Ukraine, e-mail: dept25@iapmm.lviv.ua, leopl@europe.com

47. Poncin, Norbert, Centre Universitaire de Luxembourg, Luxembourg, Luxembourg,
e-mail: poncin@cu.lu, http://www.cu.lu/
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Programme

MONDAY, 28 April 2003

9.00 Opening conference

9.10 – 10.10 Opening lecture: J. Pradines,
Lie Groupoids as generalized atlasses for spaces of leaves

10.25 – 11.10 Plenary lecture: I. Belko,
The fundamental form on a Lie groupoid of diffeomorphisms

11.10 – 11.40 Coffee break

11.40 – 12.20 M. Nguiffo Boyom,
Quadratization of Lie algebroids

12.30 – 13.00 T. Rybicki,
Some general remarks on foliated structures

13.00 – 15.00 LUNCH

15.00 – 15.30 A. Savin,
Elliptic operators on singular manifolds and K–homology

15.40 – 16.20 B. Sternin,
Elliptic operators on manifolds with nonisolated singularities

16.20 – 16.40 Coffee break

16.40 – 17.10 S. Honsul,
Geometric interpretation of cohomology classes and
application to the case of smooth manifolds

17.20 – 17.50 A. Skopenkov,
The Whitehead torus, the Hudson-Habegger invariant and
classification of embeddings S1 × S3 → R
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18.30 – SESSION OF POSTERS, SESSION OF POSTERS OF VIRTUAL
to Saturday PARTICIPANTS
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TUESDAY, 29 April 2003

9.00 – 10.00 Plenary lecture: A.S. Mishchenko (coauthor J. Kubarski)
Transitive Lie algebroids: spectral sequences and signature

10.10 – 10.55 Plenary lecture: L. Plachta,
Essential tori in link complements in standard positions:
geometric and combinatorial aspects

10.55 – 11.25 Coffee break

11.25 – 12.10 Plenary lecture: N. Poncin (coauthor J.Grabowski),
Lie algebras of differential operators

12.20 – 13.00 I. Kolá̌r,
Flow prolongation of projectable tangent valued forms

13.00 – 15.00 LUNCH

15.00 – 15.30 A. Ermolitski,
Deformations of distributions on Riemannian manifolds

15.40 – 16.10 P. Urbański,
AV-geometry and classical mechanics

16.10 – 16.40 Coffee break

16.40 – 17.10 S. Homolya,
Submersions on nilmanifolds and their geodesics

17.20 – 17.50 Z. Kucharski,
The Nielsen Number respect to submanifold

18.00 – 18.30 E.Sinaiskii,
Translation continuous functionals on CB(G) and their support

20.00 CONCERT OF LOCAL BAND OF MUSICIANS

WEDNESDAY, 30 April 2003

THE DAY OF TOURISM

19.30 SUPPER BY BONFIRE
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THURSDAY, 1 May 2003

9.00 – 10.00 Plenary lecture: D. Alekseevsky
Geometry of quaternionic and para-quaternionic CR manifolds

10.10 – 10.55 Plenary lecture: P. Lecomte,
Bordemann’s proof of the existence of
projectively equivariant quantizations

10.55 – 11.25 Coffee break

11.25 – 12.05 Plenary lecture: J. Kurek (coauthor W. Mikulski),
Symplectic structures of the tangent bundles of symplectic and
cosymplectic manifolds

12.15 – 12.55 S.Haller,
Harmonic cohomology of symplectic manifolds

13.00 – 15.00 LUNCH

15.00 – 15.30 Z. Olszak,
On almost complex structures with Norden metrics
on tangent bundles

15.40 – 16.10 S. Bogdanovich,
Hypercomplex structure on tangent bundles

16.10 – 16.40 Coffee break

16.40 – 17.10 D. Łuczyszyn,
On the Bochner curvature of para–Käehlerian manifolds

17.20 – 17.50 I. Mykytyuk,
Invariant Hyper-Kähler Structures on the Cotangent Bundles of
Hermitian Symmetric Spaces

18.00 – 18.30 P. Mormul,
Geometric singularity classes for special k-flags (k ­ 2) of
arbitrary length

19.30 GALA PARTY
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FRIDAY, 2 May 2003

9.00 – 10.00 Plenary lecture: A.Kock
Second neighbourhood of the diagonal, and the foundation for
conformal geometry

10.10 – 10.40 Plenary lecture: P. Nagy,
The classification of compact smooth Bol loops

10.40 – 11.10 Coffee break

11.10 – 11.40 W. Waliszewski,
Quasi–polyhedrons

11.50 – 12.20 W. Bajguz (coauthor A.Sliżewska),
On hybrid sets – new mathematics?

12.30 – 13.00 T. Mishchenko
Goals, content and framework of the educational standard of
Russia in the school mathematics

13.00 – 15.00 LUNCH

15.00 – 15.30 E. Borak (coauthor A. K. Kwaśniewski),
Extended finite operator calculus - an example of
algebraization of analysis

15.40 – 16.10 E.Krot,
Remarks on Fibonomial Calculus

16.10 – 16.40 Coffee break

16.40 – 17.10 R. Deszcz,
On Roter type manifolds

17.20 – 17.50 M. Głogowska,
On quasi-Einstein Cartan type hypersurfaces

18.00 – 18.30 M. Hotloś,
On certain Ricci-pseudosymmetric hypersurfaces in space forms

19.30 PROBLEMS SESSION
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SATURDAY, 3 May 2003

9.00 – 9.30 B. Balcerzak (coauthor J. Kubarski),
Unification of Crainic and Kubarski secondary characteristic
classes for Lie algebroids

9.30 – 10.00 THE LAST COFFEE BREAK

10.00 – 11.00 Plenary lecture: W. Tulczyjew,
Analytical Mechanics with Discontinuities and Disipation

11.00 CLOSING CEREMONY
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ABSTRACTS

Geometry of quaternionic and para-quaternionic
CR manifolds

Dmitri Alekseevsky

Department of Mathematics, Hull University, UK

Notions of quaternionic and para-quaternionic CR structures on a (4n + 3) -
dimension manifold M are defined as a triple of 1-forms ω = (ω1, ω2, ω3) which satisfy
some conditions. We associate with such a structure a pseudo-Riemannian Einstein
metric g on M and a Lie algebra a of its Killing fieleds , isomorphic to sp(1) in
quaternionic case and sp(1,R) in para-quaternionic case. If the metric g is positively
defined, then a quaternionic CR structure is equivalent to a Sasakian 3-structure.
We give examples of homogeneous manifolds with invariant quaternionic and para-
quaternionic CR structure and describe a reduction method, which allows to construct
non-homogeneous quaternionic and para-quaternionic CR structures starting from a
manifold with such a structure which has a symmetry Lie group. It is shown also that
a cone over a manifold M with (para)-quaternionic CR structure carries a (para)-
hyperKaehler structure and the quotient M/A of M by the Lie group A of isometries
, generated by a, carries a (para)-quaternionic Kaehler structure (under assumption
that the group A is defined and acts properly on M .)

This is a joint work with Y. Kamishima.
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The fundamental form on a Lie groupoid of
diffeomorphisms

Ivan Belko

Belarusian State Economic University
kpm@bseu.minsk.by

The Ehresmann method is an effective method of study of geometrical structures
on differentiable manifolds. It is based on the theory of jets and Lie groupoids and it
is the development of E. Cartan ideas. The Lie groupoid Πk(B) of k-jets of local diffe-
omorphisms of differentiable manifold B is essential in the Ehresmann method. This
Lie groupoid admits itself many special structures. We mark the following structures
among the last ones:

(i) the canonical morphisms of Lie groupoids

πkk−1 : Πk(B) −→ Πk−1(B);

(ii) the representation of Lie algebroid AΠk(B) as a Lie algebroid JkTB of k-jets
of vector fields on B;

(iii) the truncated bracket AΠk(B)ΛAΠk(B) −→ AΠk−1(B), which is a vector
bundle morphism;

(iv) the representation of Lie groupoid Πk(B) as a Lie groupoid of a vector bundle
isomorphisms preserving the truncated bracket;

(v) the fundamental form on Πk(B) with values in the Lie algebroid AΠk−1(B).
The called structures are generalizations of the similar structures on the frame

bundles of higher order, which has been studying by V.Guillemin and S. Sternberg,
P. Liebermann, P. Molino, Ngo van Que, D. Alekseevsky and P.Michor and others.

Our goal is an exposition of the basic theory of G-structures with an emphasis on
Ehresmann method. The Lie groupoid Πk(B) consists of k-jets of local diffeomorphism
of B. The Lie groupoid Π1(B) is a Lie groupoid of linear isomorphisms of the tangent
bundle TB. The maps α and β are the source and the target maps. For any x ∈ B α-
leaf α−1(x) is the principal bundle Πk(B)x(B, β,Gx

x) of higher order frames. The right
translation of Πk(B) is an isomorphism of principale bundles. For any diffeomorphism
ϕ of B the map jkϕ defines an admissible section for α-projection. This section defines
itself a left translation ϕk of Lie groupoid Πk(B). Let AΠk(B) be a Lie algebroid of
Πk(B). This Lie algebroid is isomorphic to Lie algebroid JkTB of k-jets of vector
fields. The section jkX,X ∈ ΓTB defines a vector field X(k) ∈ ΓAΠk(B) with a
current

exptX
(k)(jkxψ) = jkx(exptX ◦ ψ).

The truncated bracket on JkTB is defined in such a manner. The Lie bracket of
Lie algebroid

ΓJk−1TBΛΓJk−1TB −→ ΓJk−1TB
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is on operator differential when any of its arguments is fixed. That’s why it defines a
vector bundles morphism

JkTBΛJkTB −→ Jk−1TB.

This morphism becomes the truncated bracket of Lie algebroid AΠk(B). The
truncated bracket is very important for the next theorem.

Theorem 1. The Lie groupoid Πk(B) is isomorphed to Lie groupoid of vector bundle
isomorphisms of AΠk−1(B), which conserve the truncated bracket.

There fore any element u ∈ Πk(B)yx can be considered as linear isomorphism

u : AΠ(k−1)(B)x −→ AΠ(k−1)(B)y.

The fundamental form ϑ on Πk(B) is an α-vertical form with values in the Lie
algebroid AΠ(k−1)(B). Let p ∈ Tαu Πk(B) is an α-vertical tangent vector. Then

ϑu(p) = u−1 ◦ (πkk−1)∗(p).

The form ϑ characterizes the continuations of basic diffeomorphisms.

Theorem 2. Let ψ be a local diffeomorphism of Πk(B), which conserves the α-leaves
and the fundamental form. Then ψ coincides with a local left translation of Πk(B).
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Hypercomplex structures on tangent bundles

Sergey A. Bogdanovich, Alexander A. Ermolitski
(Minsk, Belarus)

With help of any metric connection ∇̃ on an almost Hermitian manifold M we
can construct by the defined way an almost Hermitian hypercomplex structure on
the tangent bundle TM . This structure includes two basic anticommutative almost
Hermitian structures for which introduced by the second author the fundamental
tensor fields h1 and h2 are computed. It allows to consider various classes of almost
Hermitian hypercomplex structures on TM .

1. Introduction.
Let (M,J, g) be an almost Hermitian manifold i.e. J2 = −I and g(JX, JY ) =

g(X, Y ) for X,Y ∈ χ(M), where g is a fixed Riemannian metric on M .
For the Riemannian connection ∇ the canonical connection ∇ of the pair (J, g)

[1] is defined by the formula
(1) ∇XY = 1

2(∇XY − J∇XJY ) = ∇XY + 1
2∇X(J)JY, X, Y ∈ χ(M).

The tensor field h = ∇ − ∇ is called the second fundamental tensor field of the
pair (J, g) [1], in particular, we have ∇g = 0, ∇J = 0 and

(2) hXY = −1
2∇X(J)JY = 1

2(∇XY + J∇XJY ),
(3) hXY Z = g(hXY, Z) = −hXZY , X, Y ∈ χ(M).
The classification given in [3] has been rewritten in terms of the tensor field h in

[1].
Further, an almost Hermitian hypercomplex structure (aHhs) consists of (J1, J2, J3, g),

where J2
i = −I, J1J2 = −J2J1 = J3, g(JiX, JiY ) = g(X, Y ), i = 1, 2, 3. For any Rie-

mannian metric g̃ such a metric g can be defined by the formula

g(X, Y ) = 1
4 (g̃(X, Y ) + g̃(J1X, J1Y ) + g̃(J2X, J2Y ) + g̃(J3X, J3Y )).

If ∇ is the Riemannian connection of the metric g then the canonical connection
∇ of the aHhs has the following form

(4) ∇XY = 1
4 (∇XY − J1∇XJ1Y − J2∇XJ2Y − J3∇XJ3Y )

and ∇g = 0, ∇Ji = 0 for i = 1, 2, 3.
Proposition. Let (M,J1, g) be a Kaehlerian structure i.e. ∇J1 = 0 on M then

the connection given by (4) coincides with those defined by (1) for (M,J2, g) and
(M,J3, g). In particular, the second fundamental tensor fields of (M,J2, g) and (M,J3, g)
are the same.

Proof follow from (4) and (1) with help of condition ∇J1 = 0.
Theorem. A vector field X is an infinitesimal isometry and an affine transfor-

mation with respect to ∇ defined by (4) if and only if LXg = 0 and LXh = 0, where
h = ∇−∇, L is the Lie differentiation with respect to X.

2. Hypercomplex structures on tangent bundles.
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Let (M,J, g) be an almost Hermitian manifold and TM be its tangent bundle.
For a metric connection ∇̃

(
∇̃g = 0

)
we consider the connection map K̃ of ∇̃ [2],

defined by the formula

∇̃XZ = K̃Z∗X,

where Z is considered as a map from M into TM and we means by the right
side the vector field on M assigning to p ∈ M the vector K̃Z∗Xp ∈ Mp. If U ∈ TM ,
we denote by HU the kernel of K̃|TMU

and this 2n-dimensional subspace of TMU is
called the horizontal subspace of TMU . Let π denote the natural projection of TM
onto M then π∗ is a C∞-map of TTM onto TM . If U ∈ TM , we denote by VU
the kernel of π∗|TMU

and this 2n-dimensional subspace of TMU is called the vertical
subspace of TMU (dimTMU = 2 dimM = 4n). The following maps are isomorphisms
of corresponding vector spaces (p = π(U)).

π∗|TMU
: HU →Mp, K̃|TMU

: VU →Mp

and we have TMU = HU ⊕ VU .
If X ∈ χ(M) then there exists exactly one vector field on TM called the ”hori-

zontal lift” (resp. ”vertical lift”) of X and denoted by Xh (resp. Xv) such that for
all U ∈ TM :

π∗X
h
U = Xπ(U), π∗X

v
U = Oπ(U); K̃Xh

U = Oπ(U), K̃Xv
U = Xπ(U).

Let R̃ be the curvature tensor field of ∇̃ then following [2] we have

[Xv, Y v] = 0,
[
Xh, Y v

]
= (∇̃XY )v, π∗([Xh, Y h]U) = [X, Y ],

K̃([Xh, Y h]U) = R̃(X, Y )U .

For vector fields X = Xh⊕Xv and Y = Y h⊕Y v on TM the natural Riemannian
metric <,> is defined on TM by the formula

< X, Y >= g(π∗X, π∗Y ) + g(K̃X, K̃Y ).

It is clear that the subspaces HU and VU are orthogonal with respect to <,>.
I). We define a tensor field J1 on TM by the equalities

J1X
h = Xv, J1X

v = −Xh, X ∈ χ(M).

It is easy to verify that (TM, J1, <,>) is an almost Hermitian manifold.
Remark. This construction uses only the Riemannian metric g and does not

depend on the almost complex structure J .
Let h1 be the second fundamental tensor field of the pair (J1, <,>), see (2), (3).

We have obtained the following cases for the tensor field h1 assuming all the vector
fields to be orthonormal

1.10) h1
XhY hZh = 1

2

(
g(∇XY, Z)− g(∇̃XY, Z)

)
;

2.10) h1
XhY hZv = −1

4

(
g(R̃(X, Y )Z,U) + g(R̃(Z,X)Y, U)

)
;
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3.10) h1
XhY vZh = −1

4

(
g(R̃(Z,X)Y, U) + g(R̃(X, Y )Z,U)

)
;

4.10) h1
XvY hZh = −1

4g(R̃(Z, Y )X,U);
5.10) h1

XvY vZv = 1
4g(R̃(Z, Y )X,U);

6.10) h1
XvY vZh = 0;

7.10) h1
XvY hZv = 0;

8.10) h1
XhY vZv = 1

2

(
g(∇̃XY, Z)− g(∇XY, Z)

)
.

Thus, the tensor field h1 (class of the structure (J1, <,>)) strongly depends on
the connection ∇̃.

II). We define a tensor field J2 on TM assuming

J2X
h = (JX)h, J2X

v = −(JX)v, X ∈ χ(M).

One can verify that (TM, J1, J2, J3 = J1J2, <,>) is an almost Hermitian hyper-
complex manifold.

Let h2 be the second fundamental tensor field of the pair (J2, <,>), see (2), (3).
Assuming all the vector fields to be orthonormal we have got

1.20) h2
XhY hZh = hXY Z ;

2.20) h2
XhY hZv = −1

4

(
g(R̃(X, Y )Z,U) + g(R̃(X, JY )JZ, U)

)
;

3.20) h2
XhY vZh = 1

4

(
g(R̃(X,Z)Y, U) + g(R̃(X, JZ)JY, U)

)
;

4.20) h2
XvY hZh = −1

4

(
g(R̃(Z, Y )X,U)− g(R̃(JZ, JY )X,U)

)
;

5.20) h2
XvY vZv = 0;

6.20) h2
XvY vZh = 0;

7.20) h2
XvY hZv = 0;

8.20) h2
XhY vZv = 1

2

(
g(∇̃XY, Z)− g(∇̃XJY, JZ)

)
.

It is clear that the construction of the aHhs on TM strongly depends on the
connection ∇̃ and we can obtain in this vay an infinite dimensional set of aHhs.

Using the remark in I) and the arguments above we have got the following
Theorem. Let (M, g) be a Riemannian manifold. Then there exists an infinite

dimensional set of aHhs on TTM . This structures can be constructed by the method
above.

References

[1] A. A. Ermolitski, Riemannian manifolds with geometric structures (mono-
graph), Minsk: BSPU, 1998, 195 pp. (in Russian).

[2] P. Dombrowski, On the Geometry of the Tangent Bundle, J. Reine und Angew.
Math., 210 (1962) pp. 73-88.

[3] A. Gray, L. M. Hervella, The sixteen classes of almost Hermitian manifolds
and their linear invariants, Ann. Mat. pura appl., 123 (1980) pp. 35-58.

24



On Roter type manifolds

Ryszard Deszcz

Department of Mathematics
Agricultural University of Wrocław

Grunwaldzka 53
50-357 Wrocław, Poland

Abstract. We introduce the notion of Roter type manifolds. We present curvatu-
re properties of such manifolds. The main results are related to the case when, in
addition, these manifolds are warped products. Suitable examples will be given.

25



Deformations of distributions on Riemannian
manifolds

Alexander A. Ermolitski
(Minsk, Belarus)

10. Let M be a connected C∞-manifold, X be a nonsingular vector field on M ,
L(M) be the set of all linear frames at all points of M with the structure group
GL(n,R). We can take a Riemannian metric g on the manifold M and for a point
p ∈ M we consider open geodesic balls B

(
p; R2

)
⊂ B (p;R) ⊂ U , where U is a

coordinate neighborhood on M . There exists such a coordinate system (x1, x2, ..., xn)
on U , where n = dimM , that X = ∂

∂x1
on U .

Further, let we have a vector field Y (Yp = Xp) and such a coordinate system
(y1, y2, ..., yn) on U that Y = ∂

∂y1
on U and ∂

∂yi |p
= ∂

∂xi |p
, i = 1, n. For any point

x ∈M we get (
∂
∂y1
, ∂
∂y2
, ..., ∂

∂yn

)
x

= ν(x)
(

∂
∂x1
, ∂
∂x2
, ..., ∂

∂xn

)
x
,

where ν(x) ∈ GL(n,R).
Thus, we have obtained the mapping

ν : U → GL(n,R) : x→ ν(x); ν(p) = e ∈ GL(n,R).

If expp is the exponential mapping of the Riemannian connection ∇ then exp−1
p is

defined on the closed ball B(p;R) and we can define the following nonsingular vector
field Z on M

(1) Z =


Xx, x ∈M \ B(p;R);(

ν
[
expp

(
2t−R
t

exp−1
p (x)

)])−1
Yx,

Yx, x ∈ B(p; R2 ),
x ∈ B(p;R) \ B(p; R2 );

where exp−1
p (x) = tξ, ‖ξ‖ = 1.

Definition. The vector field Z is called a deformation of the vector field X to
the vector field Y in a neighborhood of p ∈M by the formula (1).

In particular, if M = En we can take such a vector field Y that its integral curves
are simply intervals of straight lines.

20. Let x→ V (x) be a differentiable distribution on the manifold M and for any
x ∈ M dimV (x) = k. For each point p ∈ M there exist a coordinate neighborhood
U 3 p and such a local cross-section s1 over U

s1 : U → L(M) : x→ (X1x , ..., Xkx , Xk+1x , ..., Xnx),

that for any x ∈ U X1x , ..., Xkx ∈ V (x). Let x → V ′(x) be another distribution
on U and V ′(p) = V (p). We can choose such a local cross-section s2 over U
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s2 : U → L(M) : x→ (Y1x , ..., Ykx , Yk+1x , ..., Ynx)

that for any x ∈M Y1x , ..., Xkx ∈ V ′(x) and Yip = Xip , i = 1, n.
For a point x ∈ U we define ν(x) ∈ GL(n,R) by the formula
(2) (Y1, ..., Xn)x = ν(x) (X1, ..., Xn)x.
So, we have got the mapping

ν : U → GL(n,R) : x→ ν(x); ν(p) = e ∈ GL(n,R).

For the geodesic balls B(p; R2 ) ⊂ B(p;R) ⊂ U the distribution V of the dimension
k is defined by the formula

(3) V =


V (x), x ∈M \ B(p;R);

L
[(
ν
[
expp

(
2t−R
t

exp−1
p (x)

)])−1
(Y1x , ..., Ykx)

]
,

V ′(x), x ∈ B(p; R2 ),

x ∈ B(p;R) \B(p; R2 );

where exp−1
p (x) = tξ, ‖ξ‖ = 1, L[...] is the linear span of the corresponding vectors.

Let (x1, ..., xn) be such a coordinate system on U that ∂
∂xi |p

= Xip , i = 1, n. Taking

Yix = ∂
∂xi |x

on U we obtain the distribution V ′(x) = L[Y1x , ..., Ykx ]. It is obvious that

V ′(x) is integrable on U .
Thus, we have obtained the following
Theorem. Let V (x) be a differentiable distribution on M and p ∈M . Then, there

exists such a deformation V (x) defined by the formula (2) that V (x) is integrable on
some neighborhood of the point p.

We can consider the Riemannian metric g′ on U assuming g′
(

∂
∂xi
, ∂
∂xj

)
= δij. There

exists the Riemannian metric g on M defined by the formula

(4) gx =


gx, x ∈M \ B(p;R);
2t−R
R
gx +

(
1− 2t−R

R

)
g′x,

g′x, x ∈ B(p; R2 ),
x ∈ B(p;R) \ B(p; R2 );

where exp−1
p (x) = tξ, ‖ξ‖ = 1.

We can consider the orthogonal complement V ⊥(x) to V (x) on M with respect
to g i.e. Mx = V (x)⊕V ⊥ (x) for any x ∈M . It is evident that V ⊥(x) the linear span
of the vectors ∂

∂xk+1 |x
, ..., ∂

∂xn |x
for each x ∈ B(p; R2 ). For Riemannian connection ∇

of the Riemannian metric g we have ∇ ∂
∂xi

∂
∂xj

= 0 and curvature tensor field R of ∇
vanishes.

Using for example [1] we have got the following
Theorem. Let V (x) be a differentiable distribution on (M, g) and p ∈M . Then,

there exist such deformations V (x) defined by (2) and gx defined by (4) that the
almost Riemannian product structure Mx = V (x)⊕ V ⊥(x) with respect to g on M is
the local Riemannian product structure on some neighborhood of the point p.

30. Let M be a (2n+1)-dimensional manifold and (F, ξ, η, g) be an almost contact
metric structure (acms) on M , where ξ (‖ξ‖ = 1) is a vector field on M , Fξ = 0, L =
L[ξ], V = L⊥, F 2 = −I on V , η(X) = g(X, ξ), X ∈ χ(M), g(FX,FY ) = g(X, Y )
for X, Y ∈ V . An acms defines H-structure P (H) on M where H = U(n)× 1.
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Let s1 : U → P (H) : x → (X1x , ..., Xnx , Xn+1x , ..., X2nx , X2n+1x) be a local cross-
section of P (H) over U 3 p i.e. FXi = Xn+1, i = 1, n; FXj = −Xj−n, j = n+ 1, 2n;
X2n+1 = ξ on U .

Further, we consider such a coordinate system (y1, y2, ..., y2n+1) on U that ∂
∂y2n+1

=
ξ on U and ∂

∂yi |p
= Xi|p , i = 1, 2n.

For any point x ∈ U we suppose(
∂
∂y1
, ∂
∂y2
, ..., ∂

∂y2n+1

)
x

= ν(x) (X1, ..., X2n+1)x, ν(p) = e ∈ GL(n,R).

We have obtained the local cross-section s2 : U → GL(n,R) : x→ (Z1, ..., Z2n+1)x
by the formula

(5) Zi =


Xi, x ∈ U \ B(p;R);(

ν
[
expp

(
2t−R
t

exp−1
p (x)

)])−1
∂
∂yi |x

,
∂
∂yi
, x ∈ B(p; R2 ).

x ∈ B(p;R) \ B(p; R2 );

We can define an acms on U , ξ = ξ, FZi = Zn+i, i = 1, n; FZj = −Zj−n,
j = n+ 1, 2n, g(Zi, Zj) = δij, Fξ = 0, η(X) = g(X, ξ). It is clear that the ”new”
acms coincides with the ”old” acms on U \ B(p;R). So, we have got the following

Theorem. Let (F, ξ, η, g) be an acms on M and p ∈M . Then, there exists such
an acms

(
F , ξ, η, g

)
on M defined with help of formula (5) that in some neighborhood

of the point p M is a local Riemannian product U1 × U , dimU1 = 1 and U is a
Kaehlerian manifold.

Reference

[1] A. A. Ermolitski, Riemannian manifolds with geometric structures (mono-
graph), Minsk: BSPU, 1998, 195 pp. (in Russian).
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On quasi-Einstein Cartan type hypersurfaces

Małgorzata Głogowska

Department of Mathematics
Agricultural University of Wrocław

Grunwaldzka 53
50-357 Wrocław, Poland

Abstract. We introduce the notion of Cartan type hypersurfaces. We present curvatu-
re properties of such hypersurfaces in semi-Riemannian space forms. The main results
are related to the case when, in addition, these hypersurfaces are quasi-Einstein. Su-
itable examples will be given.
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Harmonic cohomology of symplectic manifolds

Stefan Haller

Department of Mathematics, University of Vienna, Austria

Abstract. On symplectic manifolds one can speak of (symplectically) harmonic dif-
ferential forms and thus of harmonic cohomology classes. These were introduced by
Brylinski who also asked whether every cohomology class had a harmonic represen-
tative (‘symplectic Hodge theory’). This turned out to be false in general. According
to a theorem of Mathieu this is the case iff the manifold satisfies the ‘Hard Lefschetz
Theorem’. We will see that one can explicitly compute the harmonic cohomology of
a symplectic manifold in terms of its cohomology ring and the cohomology class of
the symplectic form. Similar methods can be used to show that a class of symplectic
manifolds (satisfying a weakened Lefschetz condition) has the c–splitting property.
That is every Hamiltonian fiber bundle with such a manifold as typical fiber c–splits,
i.e. the cohomology of the total space is additively the same as the cohomology of
the product (trivial fiber bundle).
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Submersions on nilmanifolds and their geodesics

Szilvia Homolya

University of Miskolc, Hungary

Abstract. We describe the geodesics of two-step nilpotent Lie groups N with respect
to left invariant Riemannian metrics 〈., .〉 using the Riemannian submersion structure
of the fiber bundle π : N → N/Z, where Z denotes the center of N . We characte-
rize two-step nilmanifolds (N, 〈., .〉) which have the property that the projections of
geodesics of N onto the Euclidean factor space N/Z are planar curves.
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On certain Ricci-pseudosymmetric hypersurfaces in
space forms

Marian Hotloś

Institute of Mathematics, Wrocław University of Technology, Poland

Curvature properties of hypersurfaces in semi-Riemannian space forms are pre-
sented.
First we discuss quasi-Einstein hypersurfaces satisfying certain weak curvature con-
dition of pseudosymmetry type. We prove that such hypersurface must be Ricci-
pseudosymmetric and we obtain some relation between scalar curvatures of hyper-
surface and ambient space.

Next we consider pseudosymmetric hypersurfaces and we find the necessary and
sufficient conditions for a such hypersurface to be quasi-Einsteinian. We also give an
example of a nonpseudosymmetric Ricci-pseudosymmetric quasi-Einstein hypersur-
face.

Finally, we consider curvature properties of hypersurfaces satisfying some genera-
lized Einstein metric condition. Our main result states that such hypersurfaces must
be Ricci-pseudosymmetric.
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Second neighbourhood of the diagonal,
and a foundation for conformal geometry

Anders Kock

Department Mathematical Sciences, University of Aarhus, Aarhus, Denmark

Abstract

A pseudo-riemannian metric g on a manifold M may be described as a function
g : M(2) → R, vanishing on M(1), and with a certain non-degeneracy property, cf. [2].
Here, M(k) denotes the “k’th neighbourhood of the diagonal”, the scheme represented
by the ring of functions M ×M → R modulo the ideal of those that vanish to the
k + 1st order on the diagonal M ⊆M ×M .

A pseudo-riemannian metric gives rise to some combinatorial structure on the ma-
nifold, the Levi-Civita connection (parallelism), the associated geodesic spray, and the
associated partial exponential map. This is classical; in the synthetic way of speaking,
these data get a formulation which is at the same time very economical and very
geometric (notably the parallelism).

Thus, the partial exponential map may be construed as a bijection between M(2)

and the (fibrewise) “second neighbourhood D(2)(TM) of the zero section in T (M)”
where T (M) is the tangent bundle of M . Thus

exp : D(2)(TM)
∼=→M(2);

the inverse of this map we of course denote log : M(2) → D(2)(TM). The data of such
exp is equivalent to a spray or (torsion free) connection, cf. [1].

(The restriction of log and exp to the first order neigbourhood of the diagonal,
respectively, the first order neigbourhood of the zero section, however, contains no
data, since they are uniquely determined on any smooth manifold M by virtue of
the fact that affine combinations of 1-neighbours is well defined on any manifold, and
preserved by any smooth map cf. [4] §2.)

The metric g gives rise to an inner product < −,− > on each vector space Tx(M)
(x ∈ M); the recipe for this does not depend on exp and log; but using exp, we can
define a further structure on M , which has not been considered classically, namely
what we call the Laplacian neigbourhood of the diagonal, ML (cf. [3]); it is contained
in the second neighbourhood of the diagonal, in fact

M(1) ⊆ML ⊆M(2).

It suffices to describe a subset DL(TM) ⊆ D(2)(TM), and then “transport it back
to M using exp. The description of DL(TM) is made fibrewise, so we describe
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DL(TxM) ⊆ D(2)(TxM). This only depends on TxM being a finite dimensional vector
space with an inner product

< −,− >: TxM × TxM → R.

Definition Let V be an n-dimensional vector space with an inner product
< −,− >. A vector a ∈ V is called L-small if for all u, v ∈ V

< a, u > < a, v >=
1
n
< a, a > < u, v > (1)

The set of L-small vectors is denoted DL(V ). For Rn with standard inner product,
we describe DL(Rn) in coordinates: a vector t = (t1, . . . , tn) ∈ Rn is L-small precisely
when

t21 = . . . = t2n; and titj = 0 for i 6= j.

This DL(Rn) is the geometric object described by a certain Weil algebra of linear
dimension n+2, a quotient of the Weil algebra describing D2(Rn) (the “2-jet classifier
in dimension n”) and which is of linear dimension 1 + n+ n(n+ 1)/2).

Henceforth, we assume that the metric g is positive definite, in the sense that
< −,− > is positive definite. In this case, we think of g(x, y) as the square distance
between x and y, where (x, y) ∈M(2); (g is automatically symmetric in its arguments).

Two metrics g1 and g2 are conformally equivalent if there exists a function f with
positive values so that

g2(x, y) = f(x)g1(x, y),

for all (x, y) ∈ M(2). Conformally equivalent metrics give rise to the same paral-
lelism/spray/partial exponential map, and to proportional inner products on the
tangent spaces. Clearly, if two inner products on a vector space are proportional,
< −,− >2= k < −,− >1, they define the same L-small vectors. We conclude:
conformally equivalent metrics on M define the same ML ⊆M(2).

In [3], we proved that a diffeomorphism h : N → M between Riemannian mani-
folds is conformal if and only if it preserves L-neighborhoods,

(x, y) ∈ NL implies (h(x), h(y)) ∈ML.

But this latter property of course makes sense independently of whether h is a diffe-
omorphism, and independently of whether or not M and N have the same dimension.
However, the condition implies, under mild assumptions, that h is a submersion. In
fact, we shall characterize maps preserving the L-neigbourhoods in terms of linear-
algebra properties of their differential.

Isometries h have the further property that g(x, y) = g(h(x), h(y)), whenever
(x, y) ∈ NL. This also generalizes: if the dimensions of N and M are n and m,
respectively, we may consider maps h : N →M which preserve the L-neigbourhoods
and which furthermore satisfy

1
n
g(x, y) =

1
m
g(h(x), h(y)),
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for all (x, y) ∈ NL. We also characterize such maps in linear-algebra terms.

As an aspect of the parallelism/partial-exponential map structure on a Rieman-
nian manifold, we have a structure allowing us to form affine combinations of any pair
(x, y) ∈ M(2), e.g. their midpoint, or the mirror image of y in x. The set ML ⊆ M(2)

is stable under such constructs. So for a map preserving L-neighbourhoods, we may
furthermore ask that it preserves such affine combinations. This turns out to be a
notion of harmonic map.
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Prolongation of projectable tangent valued forms
Ivan Kolář

Department of Algebra and Geometry,
Masaryk University, Brno, Czech Republic

We study the prolongation of projectable tangent valued k-forms on fibered ma-
nifolds with respect to a bundle functor of rather general type that is based on the
flow prolongation of vector fields and uses an auxiliary linear r-order connection on
the tangent bundle of the base manifold.
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As every one knows Fibonacci numbers(1202) [7, 8] form a sequence of integrals
satysfying the reccurence formula:

Fn+2 = Fn+1 + Fn, F1 = F2 = 1.

This sequence even today is the subject of continuing research, especially by the
Fibonacci Association which publishes ”The Fibonacci Quaterly”. Fibonacci sequence
has a lot of interesting properties [5, 8], for example: some divisibility properties and
completeness with respect to N.
This is an indicatory presentation of some definitions and theorems of Fibonomial
Calculus which is a special case of ψ-extented Rotaś finite operator calculus [1].
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Symplectic structures of the tangent bundles of
symplectic and cosymplectic manifolds

(short version)

Jan Kurek, Włodzimierz M. Mikulski

Abstract: We describe all symplectic structures on the tangent bundles of sym-
plectic and cosymplectic manifolds.

0. Introduction

In [4], the authors classified all Hamiltonian type natural operators on the cotan-
gent bundle T ∗M . In [1], the author described all Hamiltonian type natural operators
transforming a function f on a symplectic manifold (M,ω) into a vector field V (ω, f)
on M . The present note deals with canonical constructions on symplectic structu-
res, too. We describe all symplectic structures on the tangent bundles of symplectic
and cosymplectic manifolds. This problem arises in the context of respective natural
operators in the sense of [5], which are defined on symplectic (resp. cosymplectic)
structures. Since homotheties are not symplectomorphisms (resp. cosymplectomor-
phisms), it is difficult to apply the homogeneous function theorem and the problem
of classifications of the operators in question is more difficult than the one of natural
operators defined on all 2–forms, [2], [3], [6], e.t.c.

Symplectic structures are involved in the equation of motion. That is why, the
results of the paper are interesting with respect to the theoretical mechanics. They
are also interesting with respect to the theory of natural operators.

We start with the problem how to construct canonically a symplectic manifold
(TM,Λ(ω)) for a given symplectic 2m–manifold (M,ω), where ω is a closed 2–form
with ωm 6= 0 for any point in M . This problem arises in the context of respective
Mf2m– natural operators Λ. The first main result of the present note is the following
classification theorem.

Theorem 1. Let Λ be a Mf2m – natural operator in question. Then there exist
real numbers α and β 6= 0 such that

Λ(ω) = απ∗ω + βω̃∗Ω (1)

for any symplectic structure ω on M , where π∗ω is the vertical lifting of ω to
the tangent bundle TM , π : TM → M is the tangent bundle projection, ( )∗ is the
pull–back, Ω is the well–known canonical symplectic structure on the cotangent bundle

Key words: natural operators, symplectic structures, cosymplectic structures
AMS Classification: 58 A 20
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T ∗M and ω̃ : TM → T ∗M is the standard isomorphism induced by ω, ω̃(v) = ωx(., v),
v ∈ TxM , x ∈M .

On the other hand for any real numbers α and β 6= 0 the operator Λ(ω) defined
as in (1) is a symplectic structure on TM .

Theorem 1 is a consequence of the following more general fact.
Theorem 2. Let Λ be a Mf2m-natural operator transforming a symplectic struc-

ture ω on a 2m-manifold M into 2-form Λ(ω) on TM . Then there exist real numbers
α and β such that

Λ(ω) = απ∗ω + βω̃∗Ω (2)

for any symplectic structure ω on M , where Ω and ω̃ are as in Theorem 1.
Using the isomorphism ω̃ : TM → T ∗M induced by ω we can obtain respective

versions of Theorems 1 and 2 for T ∗M instead of TM .
Next, we study the problem how to construct canonically a symplectic manifold

(TM,Λ(ω, θ)) for a given cosymplectic 2m+1-manifold (M,ω, θ), where ω is a closed
2-form and θ is a closed 1-form with ωm ∧ θ 6= 0 for any point in M . This problem
arises in the context of respective Mf2m+1– natural operators Λ. The second main
result of the present note is the following classification theorem.

Theorem 3. Let Λ be a Mf2m+1-natural operator in question. Then there exist an
uniqely determined real number a and uniquely determined smooth maps b, c : R→ R
with b(x) 6= 0 and b(x) + c(x) 6= 0 for all x ∈M such that

Λ(ω, θ) = aπ∗ω + (b ◦ θ)ϕ∗ω,θΩ + (b′ ◦ θ)ϕ∗ω,θλ ∧ dθ + (c ◦ θ)π∗θ ∧ dθ (3)

for any cosymplectic structure (ω, θ) on M , where λ is the standard Liouville 1-
form on the cotangent bundle T ∗M , Ω = −dλ is the well-known canonical symplectic
structure on T ∗M , π : TM →M is the tangent bundle projection, ϕω,θ : TM → T ∗M
is the standard isomorphism induced by (ω, θ), ϕω,θ(v) = ωx(., v) + θ(v)θx, v ∈ TxM ,
x ∈M , ( )∗ is the pull-back and dθ is the differential of θ : TM → R.

On the other hand for any real number a and smooth maps b, c : R → R with
b(x) + c(x) 6= 0 and b(x) 6= 0 for all x ∈ M the operator Λ(ω, θ) defined as in (3) is
a symplectic structure on TM .

Theorem 2 is a consequence of the following more general Theorem 4.
Theorem 4. Let Λ be a Mf2m+1-natural operator transforming a cosymplectic

structure (ω, θ) on a 2m + 1-manifold M into 2-form Λ(ω, θ) on TM . Then there
exist uniquely determined smooth maps α, β, γ, δ, ε : R→ R such that

Λ(ω, θ) = (α ◦ θ)ϕ∗ω,θΩ + (β ◦ θ)π∗ω + (γ ◦ θ)ϕ∗ω,θλ ∧ π∗θ+
(δ ◦ θ)ϕ∗ω,θλ ∧ dθ + (ε ◦ θ)π∗θ ∧ dθ (4)

for any cosymplectic structure (ω, θ) on M , where λ, Ω = −dλ, ϕω,θ, π and ( )∗ are
as in Theorem 3.

Using the isomorphism ϕω,θ : TM → T ∗M induced by (ω, θ) we can obtain
respective versions of Theorems 3 and 4 for T ∗M instead of TM .
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Extended finite operator calculus - an example of
algebraization of analysis

Andrzej Krzysztof Kwaśniewski, Ewa Borak
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Abstract

“A Calculus of Sequences” started in 1936 by Ward constitutes the general
scheme for extensions of classical operator calculus of Rota - Mullin considered
by many afterwards and after Ward. Because of the notation we shall call the
Ward‘s calculus of sequences in its afterwards elaborated form - a ψ-calculus.

The ψ-calculus in parts appears to be almost automatic, natural extension of
classical operator calculus of Rota - Mullin or equivalently - of umbral calculus
of Roman and Rota.

At the same time this calculus is an example of the algebraization of the
analysis - here restricted to the algebra of polynomials. Many of the results of
ψ-calculus may be extended to Markowsky Q-umbral calculus where Q stands
for a generalized difference operator, i.e. the one lowering the degree of any
polynomial by one.

This is a review article based on the recent author‘s relevant contributions.
The article is supplemented by the short indicatory glossaries of terms and
notation used by Ward, Viskov, Markowsky, Roman on one side and the Rota-
oriented notation on the other side.
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On the Bochner curvature of
para–Käehlerian manifolds

Dorota Łuczyszyn

Institute of Mathematics, Wrocław University of Technology, Poland

An n(= 2m)-dimensional differentiable manifold M is said to be a para-Kählerian
manifold if it admits a (1, 1)-tensor field J and pseudo-Riemannian metric g on M
such that

J2 = I, g(JX, JY ) = −g(X, Y ), ∇J = 0,

where ∇ is the Levi-Civita connection of g and I is the identity tensor field. The
pair (J, g) is called a para-Kählerian manifold structure on M . Let B be the Boch-
ner curvature tensor of a para-Kählerian manifold (M,J, g). We show that if the
manifold is Bochner parallel (∇B = 0), then it is Bochner flat (B = 0) or locally
symmetric (∇R = 0). We also consider the para-Kählerian manifolds whose Ricci
curvature is paraholomorphically pseudosymmetric. We find necessary and sufficient
conditions for a Bochner flat para-Kählerian manifold to be paraholomorphic Ricci-
pseudosymmetric.
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Transitive Lie algebroids: spectral sequences and
signature

Alexandr Mishchenko1, Jan Kubarski2

1Moscow State University, Moscow, Russia
2Institute of Mathematics, Technical University of Łódź, Poland

We prove that for any transitive unimodular invariantly oriented Lie algebroid L
on a compact, oriented and connected manifold with isotropy Lie algebra g and trivial
monodromy the cohomology algebra is the Poincaré algebra with trivial signature. In
particular, the examples of such algebroids are when M is simply connected or when
AutG = IntG, for simply connected Lie group G with the Lie algebra g, or when the
adjoint Lie algebra bundle ggg induces trivial homology bundle H∗(ggg) in the category
of flat bundles.
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Geometric singularity classes for special k-flags
(k ­ 2)

Piotr Mormul
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1 Definition of special k-flags and the aim

Special k-flags (k ­ 2) of all lengths r ­ 1 have been defined in [M] by conditions
formally stronger than the conditions defining in [PR] ’generalized contact systems
for curves’, or else than those of [KRub] putting in evidence ’k-flags satisfying certain
normality conditions’. The reason was that precisely such conditions were prompted
by one structural theorem in [BH]1 that, in [M], was generalized by means of multi-
dimensional Cartan prolongations.

Under closer inspection, using two early Bryant’s results quoted in [PR] as well as
one original lemma of the authors of [PR], the two definitions (or three, taking into
account also that of [KRub]) boil down to the same.

Namely, the tower of consecutive Lie squares of D

TM = D0 ⊃ D1 ⊃ D2 ⊃ · · · ⊃ Dr−1 ⊃ Dr = D

(that is, Dj−1 = [Dj, Dj] for j = r, r− 1, . . . , 2, 1) should consist of distributions of
ranks, starting from the smallest object Dr: k+ 1, 2k+ 1, . . . , rk+ 1, (r+ 1)k+ 1 =
dimM such that
? for j = 1, . . . , r − 1 the Cauchy-characteristic module L(Dj) of Dj sits already in
the smaller object Dj+1: L(Dj) ⊂ Dj+1 and is regular of corank 1 in Dj+1, while
L(Dr) = 0 ;
?? the covariant subdistribution F of D1 (see [KRub], p. 4 for the definition extending
the classical Cartan approach of 1910, cf. also [MPel]) is involutive and of corank 1
in D1 (hence also regular)2.

Local polynomial pseudo-normal forms, so-called EKR’s (Extended Kumpera Ruiz)
for such D were started in [KRub] and [PR], then fully constructed only in [M], after

1attributed by Bryant & Hsu to E. Cartan
2this additional requirement ’corank 1 for F in D1’ is superfluous once that covariant object is

assumed to be involutive, cf. Lem. 1 in [KRub]
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which a question had appeared about the geometrical meaning and significance of
different families of those pseudo-normal forms.

Just like a similar question for Goursat flags [that is – outside the scope
of the present abstract – when k = 1; the definition of 1-flags is more
compact and simpler] pending several years after [KRui], started to be
settled only in [BH], leading eventually, for any fixed length r, to 2r−2

Kumpera-Ruiz singularity classes in [MonZ], encoded by the words
over {∗, S} and exactly corresponding to the original pseudo-normal
forms of [KRui].

2 Different words associated to germs of special
k-flags, including the word ’singularity class’

We intend to present at Krynica’03 a line of very recent research aimed at finding
invariant singularity classes of special k-flags that put on a solid geometrical basis
the cornucopia of pseudo-normal forms found by us a year ago and reported in [M].

Within this chapter, we keep the germ of a rank-(k+ 1) distribution D at p ∈M ,
generating on M a special k-flag of length r, fixed. For any fixed 1 ¬ m ¬ k, a word
j1.j2 . . . jr over the alphabet {1, 2, . . . , m − 1, m} (with the last letter underlined !)
is admissible when it starts with j1 = 1 and satisfies the rule of the least upward
jumps introduced in Thm. 3, [M]: for l = 1, 2, . . . , r − 1, if jl+1 > max(j1, . . . , jl)
then jl+1 = 1 + max(j1, . . . , jl).
So that, for example for m = 1, admissible are all the words 1.1 . . . 1. For m = 3 ¬ k
and r = 4 admissible are: 1.1.1.1, 1.1.1.2; 1.1.2.1, 1.1.2.2, 1.1.2.3; 1.2.1.1, 1.2.1.2,
1.2.1.3, 1.2.2.1, 1.2.2.2, 1.2.2.3, 1.2.3.1, 1.2.3.2, 1.2.3.3.

Suppose that in an admissible word C there appears somewhere, for the first time
when going from the left, the letter m = jl and that there are in C other letters
m = js, l < s, as well. (In the example above only C = 1.2.3.3 is of this type.)
Suppose also that with any such m = js there is associated a module V of local
smooth vector fields on (M, p). In such an abstract situation we will specify that
letter m to one of the two: to m or else to m+ 1. The specification will clearly
depend on that module V but, needless to say, also on the germ of D at p (and,
in applications in the subsequent section 2. 2, V itself will always be some object
derived, sometimes remotely, from D).
The definition will be inductive on m ∈ {1, 2, . . . , k}, for admissible words of lengths
¬ r, with the beginning being fairly simple. The step, however, will be involved.

2.1 The key definition.

The beginning of induction for m = 1. 1 = js; 2 ¬ s ¬ r (the word has length
¬ r, not necessarily equal to r). When s = 2, js becomes 1 when F (p) 6⊃ V (p), and
becomes 2 when F (p) ⊃ V (p).
When 3 ¬ s ¬ r, then js becomes 1 when L(Ds−2)(p) 6⊃ V (p), and becomes 2 when
L(Ds−2)(p) ⊃ V (p).
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The step of induction m ⇒ m + 1 for 1 ¬ m ¬ k − 1. We assume that for any
admissible word C of length ¬ r over {1, 2, . . . , m−1, m}, and then for any module
V attached to a non-first letter m in C, that module V knows how to specify ’its’
letter m to either m or m+ 1.
Now we take any admissible word C = j1.j2.j3 . . . of length¬ r over {1, 2, . . . , m, m+ 1}
with more than one letter m+ 1, and a module V of vector fields on (M, p) attached
to a non-first letter m+ 1 = jt in C. We precise also, and this is very important, that
the nearest to jt – always to the left in C – is the letter m+ 1 = js, s < t. These two
’neighbouring’ letters m+ 1 may possibly be separated in C by an ocean of letters
smaller than m+ 1.

Our aim now is to transport backwards, or rather transform V , being attached
to the t-th place, into another module W attached to the s-th place. In other words,
we want to sail with V through that ocean of smaller letters to the nearest to the left
harbour m+ 1.
Going backwards from jt towards js, one meets firstly l ­ 0 letters 1, then a letter
from {2, 3, . . . , m}, then again n ­ 0 letters 1, then a letter from {2, 3, . . . , m}, and
so on until arriving to the harbour js. Possibilities are really various: there can be
just one l and nothing more (when there occur only letters 1 between js and jt) and
that l can even vanish, as it happens in the example 1.2.3.3 with j3 = 3 = j4, or else
there can be several l = n = · · · = 0 (think about 1.2.3.2.3), or else . . .
The gist of the construction consists in taking the small flag of V , built out of
modules of vector fields on M ,

V = V1 ⊂ V2 ⊂ V3 ⊂ V4 ⊂ V5 ⊂ · · · ,

Vi+1 = Vi + [V1, Vi], then starting another small flag, departing precisely from the
member V3+2l of the previous one,

V3+2l = U1 ⊂ U2 ⊂ U3 ⊂ U4 ⊂ · · · ,

Ui+1 = Ui+[U1, Ui], then possibly starting yet another small flag departing that time
from the member U3+2n, and so on possibly many times. The number of small flags
involved is equal to the number of letters bigger than 1 (and, naturally, smaller than
m+ 1) in between js and jt. If there occurs only one such letter, and hence only the
intermediate values l and n are defined, then the sailing terminates by U3+2n = W .
If there are, say, ten letters exceeding 1 in between jt and js, and the number of 1’s
in row directly before arriving at js is N ­ 0, then eleven small flags are used in the
transport – or transfert – and precisely the (3+2N)-th member of the eleventh small
flag is, by our definition, the module W .

If there is a sea of letters bigger than 1 in that ocean of letters separating jt from
js, then it takes ages to transform the input module V into the output module W .

Now the truncated word C ′ = j1.j2 . . . js (also admissible because truncation pre-
serves admissibility) will be transformed into an admissible word E = i1.i2 . . . is
over{1, 2, . . . , m−1, m}. Namely, E is being obtained from C ′ by replacing all letters
m+ 1 (there is at least one such letter in C ′: js) and all letters m (there is at least
one such letter before js: C ′ is admissible) by m.
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Thus is = m and this m is not the first such letter in E . At that, remembering
that W has been attached to js in C ′, we can now treat the module W as attached
to is in E . In this situation, by the induction hypothesis, W knows how to specify
further its letter m.

• If W specifies its is in E to m then we simply declare that, in the word C, the
module V specifies its jt = m+ 1 to m+ 1.

•• If W specifies its is in E to m+ 1 then we say that, in C, V specifies its m+ 1
to m+ 2.

Endly, it is needed to pose for a while on the last round of this long induction proce-
dure. One passes then from the specification(s) of m = k − 1 to the specification(s)
of m+ 1 = k (to either k or k + 1). Now the entire definition is being concluded by
erasing the underlines in all obtained letters k + 1 (if any). It is because of our dealing
precisely with k-flags, when k+ 1 is the last letter in the target alphabet (that letter
has not to be specified any further).

SUMMARIZING this section, modules of vector fields on the underlying manifold,
attached to letters being underlined in admissible words, know how to refine those
letters to more sophisticated ones.

2.2 Definition of the singularity class of a [germ of] special
k-flag.

As announced earlier in this abstract, for the germ of D at p ∈ M , D generating on
M a special k-flag of length r, we will define its singularity class, thus generalizing
Kumpera-Ruiz singularity classes of [germs of] 1-flags. This cardinal geometric object
will be given under the form of a certain admissible word W(D) of length r over
{1, 2, . . . , k, k+1}. The construction ofW(D) will be stepwise, and in the meantime
we will pass by all intermediate alphabets {1, 2, . . . , m− 1, m} for m = 1, 2, . . . , k.

To begin with, we take the most primitive word C1 = 1.1 . . . 1 of length r and
specify, independently, to either 1 or 2 all its letters except the first 1, by applying
our key definition of Sec. 2.1 for m = 1.
Yet, to this end, one has to have modules of vector fields attached to these letters!
And so (no wonder perhaps) to the j-th letter, j = 2, 3, . . . , r, we just attach the
member Dj [i. e., a regular module of vector fields on M ] of the flag of D = Dr.
Then we replace the first letter 1 in C1 by 1. The outcome is an admissible word C2

of length r over {1, 2}. When it contains no letters 2 then the construction ends and
W(D) = C2. When it does contain any letter 2, we pass to the next step.

At the next step of our computing the wordW(D), we work with C2. If it contains
more than one letter 2 then we apply, this time for m = 2, the machinery of Sec. 2.1
to all non-first letters 2 (independently to any one such letter) in C2. And with what
modules of vector fields attached to those letters? As previously, nothing but the
respective members Dj of the flag under consideration. And then we replace the first
2 in C2 by 2.
If C2 contains just one letter 2 then we replace it by 2.

All in all, we arrive at the word C3, of inchanged length r, that by construction

47



is admissible over {1, 2, 3}. When there is no 3 in C3 then W(D) = C3 and . . . the
geometry of D in the vicinity of p does not ’trouble’ us any more. In the opposite
case we pass to the next step, producing the word C4.

And so on, this line of computation may either end at some step, or else it may
last until the very last phase. For instance (but not only then) it ends ’prematurely’
when the length r is not big enough in comparison to k (when r ¬ k). When it lasts
till the end, how does the last phase look like?

That last phase is necessary when the geometry of D around p has appeared
so rich (including, clearly, the length being sufficiently big) as to have forced us to
produce the admissible word Ck over {1, 2, . . . , k − 1, k} that does feature letter(s)
k.
When there is just one such letter, in the final phase it is automatically replaced by
k. When there are several letters k in Ck then to all non-first-from-the-left such letters
we apply the mechanism of Sec. 2.1 for m = k, always with the respective module
Dj attached to the letter k [under consideration] that appears as the j-th letter in
Ck. The geometry of the flag, in disguise of the proposed involved algorithm, decides
then whether such k is to be specified to k or else to the biggest letter k + 1 (with
no line underneath!, cf. the end of Sec. 2.1).

3 Main result

To no surprise, the singularity classes surge to surface in those mentioned local poly-
nomial pseudo-normal forms EKR for special flags, obtained in [M]. Or else, watching
the same phenomenon from another angle when only an EKR is available, its singula-
rity class is clearly visible in its very construction. Saying still otherwise, the EKR’s
are faithful to the underlying local flag’s geometries. That is to say, there holds

Theorem [2003]. For every germD of a rank-(k+1) distribution generating a special
k-flag of length r ­ 1, and for every its pseudo-normal form j1. j2 . . . jr issuing from
[M], the word j1. j2 . . . jr is but W(D).
Also conversely, each germ E already being in a pseudo-normal form j1. j2 . . . jr [that
form subject to the least upward jumps rule of [M], and with constants – wherever allo-
wed by that shell form – arbitrarily fixed] has its singularity classW(E) = j1. j2 . . . jr.

A proof of this theorem will be given in a subsequent paper.

3.1 How many singularity classes exist and of what codimen-
sions they are.

These two auxiliary questions clearly impose by themselves.

On each manifold M of dimension (r+1)k+1 bearing a special k-flag of length r, the
shadows of singularity classes (one says also about materializations of singularities)
form always – and not only for ’generic’ flags! – a very neat stratification by embedded
submanifolds whose codimensions are directly computable.
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Namely, the codimension of the materialization of any fixed singularity class C is
equal, if only the materialization is not empty, to

the number of letters 2 in C + twice the number of letters 3 in C
+ thrice the number of letters 4 in C + · · ·
+ k times the number of letters k + 1 in C .

Once Theorem shown, one proves this statement locally, using any fixed EKR depic-
ting locally the flag in question.

As to the numbers of different singularity classes, one computes them recursively
with respect to k, keeping r fixed. These computations are not so straightforward as
the preceding ones for codimensions, although can still be kept under control (and
an algorithm for them can be written). The starting point is, naturally, the situation
k = 2, r ­ 3: the number of such singularity classes equals 2 + 3 + 32 + · · ·+ 3r−2.
For instance, for r = 7 there are 365 such classes. To offer a glimpse of the growth,
this can be compared with the number 715 for the same r = 7 but with this time
k = 3 instead of 2.
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Invariant Hyper-Kähler Structures on the
Cotangent Bundles of Hermitian Symmetric Spaces
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Let M = G/K be an irreducible Hermitian symmetric space of compact type
with a homogeneous metric gM. Since M is a homogeneous complex manifold, its
cotangent bundle T ∗M has a natural complex structure. Using gM we can identify
the cotangent and tangent bundles and thus obtain a complex structure on TM , with
respect to which the zero section M ⊂ TM is complex. This structure J− is different
from the standard complex structure J+ on TM induced by that on M .

On the other hand, the cotangent bundle T ∗M ' TM is a symplectic manifold
with the canonical symplectic form Ω. We make an explicit description of all G-
invariant Kähler structures (J,Ω) (with the Kähler form Ω) on homogeneous domains
D ⊂ TM anticommuting with J−. In fact, each resulting hypercomplex structure,
together with the suitable metric g, defines a hyper-Kählerian structure.

If the domainD contains the zero sectionM , the restriction of the hyper-Kählerian
metric g to M is the given homogeneous metric gM up to a constant multiplier (one
makes this multiplier = 1 using for the identification of T ∗M and TM a homogeneous
metric on M proportional to gM). Such hyper-Kählerian metrics have been construc-
ted in [Bu] using twistor methods and case by case the classification of symmetric
spaces, in [Bi] using Nahmś equations and in [DSz] (for spaces of classical groups)
using deformation of the so-called adapted complex structure on TM . In [BG1] Bi-
quard and Gauduchon found explicit formulas for these hyper-Kählerian metrics in
terms of some operator-functions P : m → End(m) on the space m ' To(G/K),
where o = {K}. These hyper-Kählerian structures are global ones. Our additional
structures are not defined on the zero section M . So we cannot talk about a restric-
tion of the corresponding hyper-Kählerian metric to M as in [BG1]. Nevertheless,
our expressions for P and potential functions generalize the corresponding formulas
of [BG1, BG2].

For proofs in [DSz, BG1, BG2] they used the decomposition of T (TM) between
horizontal and vertical directions, induced by the Levi-Civita connection of M . Our
approch is based on the fact that T (G/K) is a reduced manifold for the (right)
Hamiltonian action of K on TG. We can substantially simplify matters by working as
in [My] in the trivial vector bundle G×m which is a level surface for the corresponding
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moment map. So we use the natural homogeneous decomposition of T (G× m) usual
for the Lie algebras theory. As an application we obtain a new simple proof of the
well-known Harish-Chandra and Moore theorem about restricted root systems of
Hermitian symmetric spaces.
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The classification of compact smooth Bol loops
Péter T. Nagy

Insitute of Mathematics
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Let be given a connected Lie group G equipped with its natural invariant affine
symmetric space structure. We say that G has a totally geodesic decomposition if
there exists a proper subgroup H ⊂ G and a totally geodesic submanifold M ⊂ G
through the unit element e ∈ G such that the submanifold M ⊂ G is not a subgroup
of G and the set M is a full representative system of the cosets gH ∈ G/H, g ∈ G.
Then a differentiable section σ : G/H → G can be defined by σ(gH) = gH∩M . If the
subgroup H contains no nontrivial normal subgroup of G and M generates G then
the totally geodesic decomposition of the Lie group G gives a necessary ad sufficient
condition for the exintence of a smooth Bol loop such that the group generated by the
left translation would be isomorphic to the given group G. We give a classification of
totally geodesic decompositions for compact Lie groups.

The apply the results to the classification of compact connected differentiable Bol
loops.
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Quadratization of Lie algebroids
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Abstract. Let Π be a smooth Poisson tensor on Rn such that Π (0) = 0. Then, the
linear part of the Taylor expansion at 0 of Π defnes a Lie algebra structure on the
vector space of linear functions on Rn. According to Alan WEINSTEIN, a Lie algebra
L is formally (resp. smoothly or analytically) nondegenerate if every Poisson tensor
on Rn, say Π, which vanishes at 0 and whose linear part at 0 is isomorphic to L
is formally (resp. smoothly or analytically) linearizable at 0. By a brute force, Jean-
Paul DUFOUR and Nguen Tien ZUNG recently prove that the algebra aff(n) of affine
endomorphisms of Rn is non analytically denegenerate. The aim if this talk is to sketch
the proof of the formal nondegenerancy aff(n) and to extend that nondegenerancy
property the class of ”AffineLike Lie algebrAs”.
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On almost complex structures with
Norden metrics on tangent bundles

Zbigniew Olszak

Institute of Mathematics, Wrocław University of Technology, Poland

Abstract. Using the notions of horizontal and vertical lifts, a class of almost complex
structures with Norden metrics (J̃ , g̃) is defined on the tangent bundle TM of an
almost complex manifold with Norden metric M(J, g). Certain sufficient conditions
for such a structure to be integrable (complex) are found. Under this conditions, the
structure is checked to be a Kähler manifold with Norden metric.
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Essential tori in link complements in standard
positions: geometric and combinatorial aspects

Leonid Plachta

Institute of Applied Problems of Mechanics and Mathematics of NAS of Ukraine, Lviv

Let L be a non-split link represented as a closed braid in S3 with the braid axis

A and let T be an essential(i.e. incompressible and boundary non-parallel) torus in

S3 \ L arising in Jaco-Shalen-Johanson decomposition of S3 \ L [3, 4]. Consider the

fibration of S3 \A, with the fibers being open discs {Hθ : θ ∈ [0, 2π]}. Then a torus T

in the closed braid complement S3 \ L is foliated by its intersections with the fibers

Hθ and admits a cell decomposition induced by this foliation. Birman and Menasco

showed [2] that any essential torus T in the complement of non-split link may be

performed (via isotopies relatively the axis, and the so-called exchange moves) to the

one in the three standard types of embeddings. The notion of standard embedding

of a torus with respect to the axis is defined in the terms of the natural foliation on

T or the cell-decomposition of T induced by this foliation.

In the first case (type 0 embedding), T is transverse to every fiberHθ and intersects

each fiber in a meridian of solid torus V bounded by T . The complete geometric

description of type 0 tori can be easily understood from their definition. In the second

case (type 1 embedding), the torus T admits the canonical mixed decomposition

(foliation). The complete geometric description of type 1 embedded tori has been

given by Birman and Menasco [2].

In the third case, the embedded torus T admits a standard tiling [2] . In the present

talk, we propose a geometric description of essential tori in closed braid complements

which admit standard tiling. For this, we use the combinatorial patterns of standard

tilings of these essential tori. In opposite to the tori of types 0 and 1, the class of

embedded tori admitting standard tiling have much more complicated geometrical

description. In [2], Birman and Menasco gave for each k ­ 2 a geometric description

of the tori of type k ­ 2, a class of embedded tori which admit standard tiling. The

fundamental domain of a type k ­ 2 torus T is a rectangle of width 2 and height k.

Each torus T of type k ­ 2 has the following geometric description. T is made of k

cylinders which are glued together in a cycle. The core of the ith cylinder is an arc

αi which lies entirely in a fiber H and has its endpoints on A. The core of the solid
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torus V bounded by T , in general, is knotted. Moreover each cylinder intersects A

twice so that |T ∩A| = 2k. However the class of tori of types ­ 2 does not exhaust all

embedded tori which admit standard tiling. In [6], Ng described all possible standard

tilings of essential tori in link complements via the so-called staircase tiling patterns

and showed that every embedded torus T which admits a standard tiling possesses

a staircase tiling pattern of even width 2n and height k ­ 2. Any such a torus T

can be obtained from a staircase pattern by identifying two opposite zig-zag sides

with a possible shift l. Therefore any staircase pattern is actually characterized by a

triple of parameters (2n, k, l). Note that each essential torus in a standard position

possesses two different staircase tiling patterns, dual of each other. In the present

talk, we discuss the problem of geometric realization of (2n, k, l)-staircase patterns

and the relationship between the parameters of staircase patterns, dual of each other.

Ng [6] described a series of examples of staircase tiling patterns of width 2n and

height k which admit geometric realization as embedded essential tori in some link

complements. All such tori and their patterns are obtained from the standard tori of

type k ­ 2 in the sense of Birman and Menasco, having the 2 by k staircase patterns,

by using the operation of “making tracks̈. She posed the following

Problem 1. Find a complete set of well-defined moves on the embedded tori of

type k ­ 2 such that any embedding of torus which admits a standard tiling can be

obtained from one of type n ­ 2 by a sequence of these moves.

In the present talk, we describe a complete set of well-defined moves on tori such

that any embedded torus which admits a standard tiling can be obtained from the

one of type k ­ 2 by applying these moves to it.

As an application of our treatment of embedded essential tori in link comple-

ments and their combinatorial patterns, we revisit the methods and techniques, used

by J.Los in his dynamical classification of knots. Recall that in [5], Los has suggested

a new classification of knots via the dynamical type of their minimal braid represen-

tatives. For a given oriented knot K in S3, let Bi(K) denote the set of braids with

the minimal number of strands (called the braid set of K). Any braid β ∈ Bn defines

a unique class of homeomorphisms [fβ] on the n-punctured disc [2]. By the Nielsen-

Thurston theorem [7], isotopy classes of surface homomorphisms are classified into

three dynamical types: periodic, pseudo-Anosov and reducible. Los showed [5] that

the Nielsen-Thurston theorem allows to classify the knots by the dynamical type of

their minimal braid representatives. The geometric description of essential tori in link

complements in standard position plays here important role.
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Lie algebras of differential operators

Norbert Poncin1, Janusz Grabowski2

1Centre Universitaire de Luxembourg, Luxembourg
2Mathematical Institute, Polish Academy of Sciences, Warsaw, Poland

The classical result of Pursell and Shanks [PS], which states that the Lie algebra of

smooth vector fields of a smooth manifold characterizes the smooth structure of the

variety, is the starting point of a multitude of works.

There are similar results in particular geometric situations—for instance for ha-

miltonian, contact or group invariant vector fields—for which specific tools have each

time been constructed, [O, 1, AG, HM], in the case of Lie algebras of vector fields

that are modules over the corresponding rings of functions, [Am, G1, S], as well as

for the Lie algebra of (not leaf but) foliation preserving vector fields, [G2].

First objective of the lecture is to prove that the Lie algebra D(M) of all linear

differential operators D : C∞(M)→ C∞(M) of a smooth manifold M determines the

smooth structure of M . Beyond this conclusion, it will be presented a description of

all automorphisms of the Lie algebra D(M) (and even of the Lie subalgebra D1(M) of

all linear first-order differential operators of M) and of the Poisson algebra S(M) =

Pol(T ∗M) of polynomial functions on the cotangent bundle T ∗M (the symbols of

the operators in D(M)), the automorphisms of the two last algebras being of course

canonically related with those of D(M). In each situation one obtains an explicit

formula. For instance—in the case of D(M)—in terms of the automorphism of D(M)

implemented by a diffeomorphism of M , the conjugation-automorphism of D(M),

and the automorphism of D(M) generated by the derivation of D(M) associated to

a closed 1-form of M .

The presented results have been obtained in joint work with Janusz Grabowski.
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Lie groupoids viewed as generalized atlases for
spaces of leaves

Jean Pradines

Universite Paul Sabatier, Toulouse III, France

A smooth manifold structure on a set Q may classically be defined in a twofold

way, either considering the (commutative) algebra of smooth functions (from Q to R

or C), or defining an atlas, more precisely the class of its equivalent atlases.

Using a simplified (and perhaps simplistic) language, the first approach will be

referred to as the algebraic one, while the secund one will be called geometric.

Now, as is well known, the space of leaves Q of a non–simple (regular) foliation

on a smooth manifold is no longer a manifold, though it should seemingly keep some

track of smoothness inherited from the ambient manifold, in spite of its very intricate

or very poor (possibly coarse) topology.

In that context a generalization of the algebraic approach has been extensively

developed by A. Connes, who associated to Q a certain (non–commutative) algebra,

or more precisely its Morita equivalence class, and considered Q as one of the basic

examples of an object in the so–called Non–Commutative Geometry.

In the present lecture we want to emphasize a (probably less well known and less

familiar) generalization of the alternative geometric approach, in which the classical

atlases for a manifold Q are described by means of (a very special kind of) smo-

oth groupoids, and the equivalence between various atlases of Q as a (very special

occurrence of) Morita equivalence.

More precisely such an atlas may be described by means of an étale surjective map

with range Q whose domain is the trivial manifold sum of the codomains of the charts

; the associated (étale) groupoid is then just the graph of the equivalence relation

defined by this surjective map, and may be also identified with the pseudogroup

of changes of charts. A refinement of an atlas is then described by means of some

surjective étale map, along which the associated groupoid has to be pulled back,

which gives rise to an equivalent one.

It is then natural to view a general smooth (or Lie) groupoid as a (generalized

non–étale) atlas for its orbit space Q, and its Morita equivalence class as defining a
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(generalized) smooth “structure“ on Q. It should be noted that this is not a classical

structure on the set Q in the sense of Bourbaki. In such a “structure“ any point of

Q bares a “structure“ given by the isomorphic class of the isotropy group.

This Morita equivalence, which is generally considered in the context of topo-

logical groupoids (or sometimes in the more general context of topos theory), will

be here defined within the category Dif of smooth manifolds and smooth maps in

a very simple way, using diagrams in Dif . Our general policy will be to describe

various set–theoretic constructions by means of suitable diagrams of arrows in Set,

emphasizing surjections and injections, and then to replace these arrows respectively

by surmersions and embeddings in order to transfer these constructions into Dif .

This procedure allows a very simple description of a calculus of fractions for the

category of Lie groupoids and smooth morphisms (alias smooth functors), which

transforms Morita equivalences into actual isomorphisms and isomorphic functors

into the same arrow (which generalizes an outer morphism between groups). The

arrows of this category of fractions may be identified (in the topological context) with

the morphisms considered by Haefliger and Skandalis–Hilsum. This category seems

a very natural framework for Differential Geometry. For example, in that category

of fractions, the fundamental group may be characterized by a very simple universal

property.
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Some general remarks on foliated structures

Tomasz Rybicki

Faculty of Applied Mathematics
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Abstract. J. Pradines in [5] introduced and R. Brown and O. Mucuk in [1] developed

the notion of a local smooth structure of the groupoid of an equivalence relation. On

the other hand, J. Kubarski in [2] proposed the notion of a nice structure of such

a groupoid, and proved that, under mild assumption, the existence of this structure

characterizes the foliation relations among equivalence relations. In [3] it has been

shown that the above notions are notonly equivalent but even identical. The axioms

of a nice structure are considerably simpler. We observe that the existence of such

structures cannot be extended, in general, to the case of singular foliations. This

causes a great difference between regular and singular nontransitive geometries as

the existence of ”local-nice” structures enables us in the former case to construct a

Lie group structure on the automorphism groups of some geometric structures [6].

Another remarks concern categories of foliated manifolds. By using an apparatus

from P. Michor [4] we introduce a category of abstract foliated manifolds and foliated

mappings (which is a more general concept than foliated structures on Fréchet or

convenient manifolds), and try to establish some of its properties. It is proved that

in finite dimensions the objects of the category coincide with the usual foliated ma-

nifolds. Our definition could be also viewed as a definition of foliations on infinite

dimensional manifolds.
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Elliptic operators on singular manifolds and
K-homology

A. Yu. Savin1

Independent University of Moscow, Russia

In 1970s Atiyah showed that elliptic operators on a smooth closed manifold define

cycles in K-theory. The relationship between elliptic theory and K-theory is even

more precise: the group Ell(M) of stable homotopy classes of elliptic pseudodifferen-

tial operators on a manifold M is isomorphic to the even K-homology group of the

manifold:

Ell(M) ' K0(M). (1)

It turns out that a similar isomorphism holds in many situations, when the manifold

is no longer smooth.

1. Manifolds with isolated singularities. Let M be a compact manifold with a finite

number of isolated conical points. Denote by Ell(M) the group of stable homotopy

classes of elliptic operators of order zero on M (see, e.g. [1]).

Theorem 1. On a manifold with isolated conical singularities isomorphism (1) holds.

2. Manifolds with edges of codimension one. Let M̃ be a compact manifold with bo-

undary and the boundary is represented as the total space of a covering π : ∂M̃ → X

over some base X. The quotient space of the equivalence relation identifying the po-

ints in the fibers of the covering is called a manifold with edge X. Denote the quotient

by M . Corresponding to the covering on the boundary there is a class of nonlocal

operators on M̃ generated by the usual pseudodifferential operators of order zero

on M and operators induced by transpositions of leaves of the covering in a neigh-

borhood of the boundary. We assume that the operators have symbols independent

of covariables near the boundary. Denote by Ell(M) the group of stable homotopy

classes of elliptic operators from the class just described.

Theorem 2. On a manifold with codimension one edges the isomorphism (1) holds.
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The proof of these results is based on Atiyahś functional-analytic description of

K-homology as the group of stable homotopy classes of abstract elliptic operators

and a generalization of the Atiyah–Singer difference construction to noncommutative

algebras of symbols. We describe the former result for the case of conical points.

3. Difference construction on manifolds with conical points. Suppose that the

manifold with conical points is obtained from a compact manifold M with boundary

by identification of points on the boundary components of M . Then one can define

the C∗-algebra

AT ∗M =
{

u ∈ C0(B∗M \ S∗M),
v ∈ C0([0, 1),Ψp(∂M))

∣∣∣∣∣ u|St = smbl(v(t)),
u|S0 = v(0)

}
,

where B∗M and S∗M are respectively bundles of unit balls and spheres in T ∗M ,

Ψp(∂M) is the closure of the algebra of parameter-dependent pseudodifferential ope-

rators on ∂M , while St ⊂ B∗M |∂M is the bundle of spheres of radius t ∈ [0, 1].

Denote by M the manifold with conical points corresponding to M .

Theorem 3. Ell(M) ' K0(AT ∗M).
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On some class of hypersurfaces with
pseudosymmetric Weyl tensor
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Armii Krajowej 19
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Abstract. We present results on hypersurfaces with pseudosymmetric Weyl tensor

immersed isometrically in semi-Riemannian spaces of constant curvature. The main

results are related to the case when such hypersurfaces have at every point at most

three distinct principal curvatures.
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Translation Continuous Functionals on CB(R) and
Their Supports

E. E. Sinaiskii
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There are well-known complications in harmonic analysis of bounded continuous

functions on a noncompact locally compact group G (even if this group is amena-

ble [1,2]) related to the fact that the operation of translation on the Banach space

formed by these functions is discontinuous [3,4]. In this connection, the study of the

space of functionals on CB(G) that are translation continuous is of special interest.

Some preliminary results in this direction were obtained in [5]. Here we present two

constructions of translation continuous functionals and study properties of these func-

tionals related to their supports. For the simplicity of our exposition, here we restrict

ourselves to the most important model case of the additive group R. For the detailed

presentation, see [9].

4 Main notions

Let CB(R) be the Banach space of real continuous bounded functions on R (with

the usual sup-norm) and ordinary lattice operators. Let UB(R) be the space of uni-

formly continuous bounded functions on R with the sup-norm of the space CB(R),

let C0(R) = {f ∈ CB(R) | limx→∞ f(x) = 0}, and let L1(R) be the group algebra

with respect to the convolution. Let CB(R)′ be the dual space of CB(R); set F ¬ G

(F,G ∈ CB(R)′) if F (f) ¬ G(f) for any nonnegative function f ∈ CB(R). Thus, a

functional F ∈ CB(R)′ is said to be nonnegative if F ­ 0. A functional F is called a

mean if F ­ 0 and F (1) = 1.

Let hn ∈ CB(R), n ∈ N, be the function that is equal to 1 on [−n;n] and to 0

outside (−n−1;n+1) and let hn be linear on [−n−1;−n] and [n;n+1]. A functional

F ∈ CB(R)′ is said to be of compact type if limn→∞ F (fhn) = F (f) for any function

f ∈ CB(R) and of infinite type if F (f) = 0 for f ∈ C0(R), and hence the set of

functionals of infinite type is the polar of the set C0(R) with respect to the duality

〈CB(R),CB(R)′〉.
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Theorem 1. Every functional F ∈ CB(R)′ can uniquely be represented in the form

F = F1 +F2, where F1, F2 ∈ CB(R)′, F1 is of compact type, and F2 is of infinite type.

Moreover, F1(f) = limn→∞ F (hnf) for any f ∈ CB(R).

For a chosen x ∈ R, we define the shift of a function f ∈ CB(R) by the element

x by the formula xf(t) def= f(x + t), and the shift of a functional F ∈ CB(R)′ by

the element x ∈ R by the formula xF (f) def= F (xf) for any function f ∈ CB(R).

For any set U ⊂ R, write LU(f) = co{xf, x ∈ U} and LU(F ) = co{xF, x ∈ U},
where f ∈ CB(R), F ∈ CB(R)′, and co{·} stands for the convex hull. Let L(R)

be the set of invariant means. A functional F ∈ CB(R)′ is said to be translation

continuous on CB(R) if limt→0 F (tf) = F (f) for any f ∈ CB(R) (or, equivalently,

limt→0 tF = F in the weak* topology). Denote by CF(R) the space of translation

continuous functionals; it is norm closed. Recall [6] that every functional F ∈ CB(R)′

has a unique decomposition F = F+ − F−, where F+, F− ­ 0 and inf(F+, F−) = 0.

Theorem 2. If F ∈ CB(R)′ is a functional of compact type, then F ∈ CF(R). If

F ∈ CF(R), then F+, F− ∈ CF(R).

5 Existence theorems

Let us present assertions that permit one to construct functionals in CF(R). A part

of the next theorem related to invariant functionals is an immediate consequence of

the Markov–Kakutani fixed-point theorem (see [8], Chap. V, §10, Theorem 6).

Theorem 3. Let F ∈ CB(R)′. The weak* closure of the set LR(F ) contains a (trans-

lation) invariant functional m such that ‖m‖ ¬ ‖F‖ and, if F is a mean, then

m ∈ L(R). Moreover, for any δ > 0, the weak* closure of the set L[−δ;δ](F ) contains

a functional Φ ∈ CF(R) such that ‖Φ‖ ¬ ‖F‖ and ‖Φ − xΦ‖ ¬ (5|x|/δ)‖F‖ for any

x, |x| ¬ δ, and, if F is of infinite type or is a mean, then so is Φ.

This theorem enables one to construct an invariant mean for an arbitrary nonzero

nonnegative functional. Now let A ⊂ R be a closed set and let MA be the vector space

generated by the point functionals corresponding to the elements of A; we refer to the

weak* closure of this space as the space of functionals F supported by A (and write

suppF ⊂ A). Under the natural isometric isomorphism between the space CB(R)′

and the space M(βR) of measures on the Stone–Čech compactification βR of R,

corresponding to the functionals support by A are those and only those measures on

βR whose supports are contained in the closure AβR of the set A in βR. In particular,

Theorem 3 implies the existence theorems (presented below) claiming that, for any
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“well-shifted” set, there is an invariant mean (and all the more an element of CF(R))

supported by this set.

Theorem 4. If a set A ⊂ R closed and if
⋂n
i=1(A + xi) 6= ∅ for any x1, . . . , xn ∈ R,

then there is an invariant mean m supported by A.

One can readily derive from the condition of the theorem that there is a functional

F ∈ CB(R)′ such that supp xF ⊂ A for any x ∈ R. Applying Theorem 3 to this

functional, we obtain an invariant mean with the desired properties. The following

theorem is proved by using similar tools.

Theorem 5. Let a set A ⊂ R closed, let δ > 0, and let the set
⋂n
i=1(A + xi) be

nonempty and unbounded for any x1, . . . , xn ∈ [−δ; δ]. Then there is a translation

invariant mean Φ ∈ CB(R)′ of infinite type such that Φ is supported by A and satisfies

the inequality ‖xΦ− Φ‖ ¬ 5|x|/δ for any |x| ¬ δ.

6 Description of the set of values of the means of
infinite type on a given function f ∈ CB(R)

Set

MU(f) = inf
g∈LU (f)

lim
x→∞

g(x), U ⊂ R, mU(f) = sup
g∈LU (f)

lim
x→∞

g(x), U ⊂ R.

One can readily see that the following limits exist:

m0(f) = lim
n→∞

m[−1/n;1/n](f), M0(f) = lim
n→∞

M[−1/n;1/n](f).

For any neighborhood U of the origin in R we have −‖f‖ ¬ limx→∞ f(x) ¬ m0(f) ¬
mU(f) ¬ mR(f) ¬ MR(f) ¬ MU(f) ¬ M0(f) ¬ limx→∞ f(x) ¬ ‖f‖. Recall that the

set of values of the invariant means on a function f ∈ CB(R) is [mR(f);MR(f)] (see,

e.g., [7], Theorem 1). The set of values of the translation continuous functionals is

not described in such an exhaustive way. However, the following result holds.

Theorem 6. The set of values of the translation continuous means of infinite type on

a function f ∈ CB(R) is contained in [m0(f);M0(f)] and contains (m0(f);M0(f)).

Using Theorem 6, we can describe the set of functions in CB(R) on which all

translation invariant means of infinite type vanish.

Theorem 7. Let f ­ 0 belong to CB(R). The following conditions are equivalent:

1) F (f) = 0 for any mean F ∈ CF(R) of infinite type;
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2) for any δ > 0 and ε > 0, one can find numbers λi ­ 0 such that
∑n
i=1 λi = 1

and numbers xi such that |xi| < δ and ‖∑n
i=1 λi(xif)‖ ¬ ε, where the symbol ‖ · ‖

stands for the norm in the quotient space CB(R)/C0(R);

3) there is an A > 0 such that M[−A;A](f) = 0.
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The Whitehead torus,
the Hudson-Habegger invariant and

classification of embeddings S1 × S3 → R
7
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Abstract. We introduce a new invariant for embeddings of higher-dimensional mani-

folds into Euclidean spaces. Using this invariant and the Haefliger-Wu (the deleted

product) invariant we obtain classification results in the dimension range where the

Haefliger-Wu invariant was not known to be complete. In particular, we exhibit a

new sharp incompleteness example of the Haefliger-Wu invariant.

Our first concrete result states that the group of piecewise-linear embeddings

S1×S4k−1 → R6k+1 up to piecewise-linear isotopy is isomorphic to πS2k−2⊕πS2k−1⊕Z.

Generally, we classify piecewise-linear embeddings Sp × S2l−1 → R3l+p. We also pre-

sent smooth analogues of these results. In particular, we prove that the group of smo-

oth embeddings S1×S3 → R7 up to smooth isotopy is isomorphic to Z⊕Z⊕Z2⊕Z12.

A classification of embeddings of 4-manifolds into Rm was earlier known only either

for m ­ 8 or for m = 7, simply-connected 4-manifolds and the piecewise-linear case

(Wu, Haefliger-Hirsch, Hudson, Boechat-Haefliger). A nice feature of our classifica-

tion results is that representatives of most isotopy classes are explicitly constructed

(using, in particular, higher-dimensional Borromean rings and Whitehead link).
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Elliptic operators on manifolds with
nonisolated singularities

B. Yu. Sternin1
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We consider elliptic operators on manifolds with edges. A manifold with edges is

defined as the quotient space of a smooth manifold M , whose boundary is the total

space of a smooth fibration π : ∂M → X (with smooth closed base and fibers) by

identifying the points in the fibers. The quotient is a singular space consisting of

two strata: the top dimensional stratum of smooth points and a lower dimensional

stratum X called the edge. Near a point on the edge the space is isomorphic to a

neighborhood of the point (0, 0) in the product Rn ×KΩ, where KΩ is the cone with

base Ω — the fiber of π. Typical differential operators of order m on manifolds with

edges have the form (in a neighborhood of the singular set):

D =
1
rm

∑
|α|+l¬m

aαl(x, r)
(
ir
∂

∂r

)l (
−ir ∂

∂x

)α
, (1)

where x are coordinates on the edge, ω — coordinates on Ω, r — radial coordinate

on the cone, while aαl(x, r) are smooth families of differential operators on Ω.

The ellipticity condition (e.g. see [1]) for operators of this type consists of the in-

vertibility of the principal symbol σ(D) defined on the compressed cotangent bundle

T ∗0M on the smooth stratum and the invertibility of the edge symbol σΛ(D), which is

an operator family on T ∗0X acting in special weighted Sobolev spaces on the infinite

cone KΩ (for the operator D as in (1) the edge symbol is obtained by freezing the co-

efficients aαl(x, r) at r = 0 and formally replacing −i∂/∂x 7→ ξ). An elliptic operator

is Fredholm in the weighted wedge Sobolev spaces.

For elliptic operators on manifolds with edges, we consider the problem of de-

termining the contributions of the strata to the index formula. For several classes

of elliptic operators we obtain the contributions of the strata as homotopy invariant

functionals of the corresponding symbols. Let us state one of the index formulas.
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Consider some splitting ∂T ∗M ' π∗T ∗X ⊕ T ∗Ω ⊕ R. Let α : T ∗X → T ∗X be

a linear involution and α̃ be an extension of this involution to ∂T ∗M by adding the

identity in the complementary bundle. One can glue two copies of the Atiyah–Bott-

Patodi spaces D∗M = S(T ∗M⊕R) along their boundaries twisting by the involution

α̃. The resulting closed manifold is denoted by Nα.

Theorem 1. If α is orientation reversing (det α = −1) and the principal symbol of

an elliptic operator D is equivariant under α̃ then the index has a decomposition:

indD =
1
2

(
ind(H⊗ γ−1

1/2(T ∗2M)⊗ [σ(D)]) + ind[(α∗σΛ(D))−1 σΛ(D)]
)
,

as a sum of the index of an elliptic operator on a closed manifold Nα and an index

of an operator on the edge X with operator-valued symbol (α∗σΛ(D))−1 σΛ(D). Here

H is the Hirzebruch (signature) operator on the oriented manifold Nα, γt are the

Grothendieck operations in K-theory, while [σ(D)] ∈ Vect(Nα) is the vector bundle

defined by σ(D). The index of the first operator can be computed by the Atiyah–Singer

index formula:

ind(H⊗ γ−1
1/2(T ∗2M)⊗ [σ(D)]) = 〈ch[σ(D)]Td(T ∗(2M)⊗C), [Nα]〉 ,

while the index of the second term can be expressed by the Lukeś theorem [2].

Remark 1. 1. For orientation preserving involutions a similar result is valid for anti-

equivariant symbols: α̃∗σ(D)|∂M = σ(D)−1|∂M ;

2. The above stated result remains valid for general edge-elliptic problems with

boundary and coboundary conditions along the edge.

There is a topological obstruction to the existence of elliptic edge problems for a

given elliptic operator D. We give an explicit formula for this obstruction.

Theorem 2. Let D be a differential operator with elliptic principal symbol. Then this

operator has an elliptic edge problem if and only if its principal symbol satisfies the

equality:

π∗[σ(D)|∂T ∗M ] = 0 ∈ K1(T ∗X),

where [σ(D)|∂T ∗M ] ∈ K1(T ∗∂M) is the difference element of the restriction of the

principal symbol to the boundary of the compressed cotangent bundle, while π∗ is the

direct image map induced by the projection π : ∂M → X.

The results are a joint work with V.E. Nazaikinskii, A. Savin and B.-W. Schulze

[3].
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On spherically symmetric space-times
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A 4-dimensional time-oriented Lorentz manifold M is called a spherically sym-

metric space-time if there is an isometric time-orientation preserving group action

Φ : SO(3) × M → M such that the highest dimension of its orbits is 2. Seve-

ral important examples of spherically symetric space-times are known including the

Schwarzschild space-time and also a local theory exists ( [H-E], pp 369-720 ). Results

concerning a global theory seems to be scarce ( [S-W], p 261 ). Some basic facts per-

tainig to a general global theory of spherically symmetric space-times are presented

in the lecture.
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We shall assume that all manifolds, maps, vector fields, etc... are differentiable

of class C∞. Let Rn be the n-dimensional vector space. The following symmetric,

bilinear and non-degenerate metric tensor is called Lorentz metric on Rn ;

〈X, Y 〉 =
n−1∑
i=1

xiyi − xnyn , X = (x1, x2, ..., xn) , Y = (y1, y2, ..., yn) (1)

R
n together with the Lorentz metric is called the n-dimensional Minkowski space,

detoned by Rn1 .

Let M be a surface on the n-dimensional Minkowski space Rn1 . If the induced

metric on M is Euclidean metric, then M is called the space-like surface. A curve α

in Rn1 is space-like curve, if 〈 .α, .α〉 > 0, where
.
α is velocity vector of α.

Let Rn1 be a Minkowski space with Levi-Civita connection D. The function,

R : χ (Rn1 )× χ (Rn1 )× χ (Rn1 ) −→ χ (Rn1 ) (2)

given by

R (X, Y )Z = D[X,Y ]Z −DXDYZ +DYDXZ (3)
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is a (3) tensor field on χ (Rn1 ) that called the curvature tensor field of Rn1 .

Let M be a m-dimensional semi-Riemannian manifold. The function,

R : TM (p)× TM (p)× TM (p)× TM (p) −→ R (4)

given by

R (X1, X2, X3, X4) = 〈X1, R (X3, X4)X2〉 (5)

is an order 4 covariant tensor field on χ(M) that is called the Riemannian curvature

tensor field of M . The Ricci curvature tensor S of M is symmetric and is given relative

to a frame field by

S (X, Y ) =
m∑
i=1

εi 〈R (ei, X)Y, ei〉 , εi = 〈ei, ei〉 = ±1 (6)

Let {e1 (s) , e2 (s) , ..., ek (s)} be a system of orthonormal vector fields which are de-

fined for each point of a space-like curve α in the n-dimensional Minkowski space Rn1 .

With this system we span a k-dimensional subspace of the tangent space TRn1 (α (s))

in each point. This subspace that is denoted Ek(s) is

Ek(s) = Sp {e1 (s) , e2 (s) , ..., ek (s)} (7)

We get a (k + 1)-dimensional Lorentz submanifold in Rn1 if the subspace Ek(s)

moves along the curve α. We call this lorentz submanifold an (k + 1)-dimensional

generalized space-like ruled surface in the n-dimensional Minkowski space Rn1 . A

parametrization of this ruled surface is as follows

φ (s, u1, ..., uk) = α (s) +
k∑
i=1

uiei (s) (8)

Where, Ek(s) = Sp {e1 (s) , e2 (s) , ..., ek (s)} denotes a space-like subspace, α is a

space-like curve and α is an orthogonal trajectory of the k-dimensional generating

space Ek(s) (k ­ 1). We denote this ruled surface by M .

If we take the partial derivative of φ then we get

φs = α̇ (s) +
k∑
i=1

uiėi (s) (9)

φui = ei (s) , 1 ¬ i ¬ k. (10)
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Throughout our paper, we assume that the set{
α̇ (s) +

k∑
i=1

uiėi (s) , e1, e2, ..., ek

}
(11)

is linear independent.

Let M be a (k + 1)-dimensional space-like ruled surface in Rn1 . The Ricci

curvature of M in the direction of vector fields er (1 ¬ r ¬ k) is given by

S (er, er) =
n−k−1∑
j=1

εj
(
aj0r
)
, εj =

〈
ξj, ξj

〉
= ±1. (12)

The Ricci curvature of M in the direction of vector field e0 is given by

S (e0, e0) =
k∑
i=1

S (ei, ei) (13)
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Quasi-polyhedrons
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Abstract. The intersection of a finite set of half-spaces of an arbitrary affine space is

said to be a quasi-cell in this space. The union K of a finite set of quasi-cells in the

affine subspace genetated by K in the affine space is said to be a quasi-polyhedron.

Theorem on decomposition of any quasi-polyhedron on a quasi-cell complex will be

presented in the paper.
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