Contact and equivalence of submanifolds of homogeneous spaces

Alexandre A. M. Rodrigues

All manifolds and maps are assumed to be of class C^{∞} unless otherwise stated. Let G be a Lie group acting on the manifold N. Two submanifolds S, \overline{S} of N, $S, \overline{S} \subset N$, are G-equivalent if there exists $g \in G$ such that $g.S = \overline{S}$. S and \overline{S} have G-contact of order $k \ge 0$ at points $a \in S$ and $\overline{a} \in \overline{S}$ if there exists $g \in G$ such that $g.a = \overline{a}$ and g.S and \overline{S} have contact of order k at the point \overline{a} . S and \overline{S} are locally G-equivalent at points a and \overline{a} if there are open neighborhoods of a and \overline{a} which are G-equivalent.

We shall consider the following problems:

- (1) Let $\varphi : S \to \overline{S}$ be a diffeomorphism such that S and \overline{S} have G-contact of order k at corresponding points $a \in S$ and $\varphi(x) \in \overline{S}$. Can we always choose k sufficiently high to ensure that S and \overline{S} are G-equivalent?
- (2) Under which conditions there exists $g \in G$ such that φ is the restriction to S of the map $L_g : x \in M \to g.x \in M$?
- (3) Assume that G sets transitively on M. Give conditions on the contact elements of S for S to be a homogeneous space of a Lie subgroup of G.

Assuming regularity conditions on S and \overline{S} , the integer asked for in problem 1) always exists.

Let p be the dimension of S. G acts in a natural way in the manifold $C^{k,p}M$ of contact elements of order k and dimension p of M []. For a point $a \in S$, let $C_a^k S$, G_a^k and d_{ra}^k be respectively the contact element of order k of S at the point a, the isotropy subgroup of G at the point $C_a^k S \in G^{k,p}M$ and the dimension of G^k . Let $X = C_a^k S$ and denote by O_x^k and $h^k(x)$ respectively the orbit of $C_x^k S$ in $G^{k,p}M$ and the dimension of the vector space $T_X O_x^k \cap T_X C^k S$, where $C^k S$ is the submanifold of $G^{k,p}M$ of all contact elements of order k of S and $T_X O_x^k$ and $T_X C^k S$ are the tangent spaces of O_x^k and $C^k S$ at the point x.

For $k' \leq k$, $d^k(a) \leq d^{k'}(a)$ and $h^k(a) \leq h^{k'}(a)$. Hence, there exists an integer $k \geq 1$, such that $d^k(a) = d^{k-1}(a)$ and $h^k(a) = h^{k-1}(a)$. We say that a is a G-regular point of S if there exists $k \geq 1$ such that 1) $d^k(a) = d^{k-1}(a)$ and $h^k(a) = h^{k-1}(a)$, 2) $d^k(x)$ and $h^a(x)$ are constant for x in a neighborhood of a in S. If these conditions are satisfied we say that a is a k-regular point of S under the action of G. If a is a k-regular point of S thus g.a is a k-regular point of g.S. The order of a is the least integer k satisfying the two conditions above.

Theorem 1 Let $S, \overline{S} \subset M$ be two submanifolds of M of same dimension p. Let $a \in S$ and $\overline{a} \in \overline{S}$ be two points. Assume that \overline{a} is a k-regular point of \overline{S} and that there exists a continuous map $\varphi : V \to G$, defined in a neighborhood V of a in S such that $\varphi(a).a = \overline{a}, \varphi(x).x \in \overline{S}$ and $\varphi(x).C_x^k S = C_{\varphi(x)}^k \overline{S}_a$ for all $x \in V$. Then, there exist open neighborhoods W and \overline{W} of a and \overline{a} in S and \overline{S} which are G-equivalent.

The proof of theorem 1 rests on the theorem of uniqueness of solutions of partial differential systems of finite type [11], [2].

In theorems 2 and 3 we assume that G is a compact Lie group and H is a closed

subgroup of G. Let L be the union of all G-orbits of $C^{k,p}M$ of type H that is, orbits whose isotropy subgroups are conjugate to H. Denote by N the quotient space of L by the orbits and by $\pi : L \to N$ the natural projection. It is known [3] that $(L, N, \pi, G/H, G)$ is a differentiable fiber bundle with structural group G.

Let $f: S \to \overline{S}$ be a diffeomorphism and such that S and \overline{S} have G-contact of order $k \ge 1$ at corresponding points $x \in S$ and $\overline{x} = f(x) \in \overline{S}$ and let $a \in S$ and $\overline{a} \in f(a) \in \overline{S}$ be two points. Considering suitable cross sections of the fiber bundle $(L, N, \pi, G/H, G)$ one can prove the existence of a neighborhood V of a in S and of a differentiable map $\varphi: V \to G$ such that $\varphi(x).x = f(x)$ and $\varphi(x).C_x^k S = C_x^k \overline{S}$. Hence, theorem 1 can be restated as follows:

Theorem 2 Assume that there exists $k \ge 1$ and that

Theorem 3 Assume that S and \overline{S} are connected and that there exists an integer $k \ge 1$ such that:

Consider again the fiber bundle $(L, N, \pi, G/H, G)$. There exists a finite number of real valued differentiable functions $\tilde{\rho}_i$, $1 \leq i \leq r$, defined in L, such that two contact elements $X, \overline{X} \in L$ are in the same orbit of G if and only if $\tilde{\rho}_i(X) = \tilde{\rho}_i(\overline{X})$. Given a submanifold $S \subset M$ of dimension p, if the orbits of $C_x^k S$ are of type H for all $x \in S$ one can pull back the functions $\tilde{\rho}_i$ by the map $\sigma^k : x \in S \to C_x^k S \in L$. The functions $\rho_i = \tilde{\rho}_i \circ \sigma^k$ are called a complete set of G-invariants of order k of the submanifold S of M. Often the invariants can be defined in a natural way and have deep geometrical meaning as for instance, the curvature and torsion of curves in \mathbb{R}^3 .

Assuming that the isotropy subgroups of $C_x^k S$ and $C_{\overline{x}}^k \overline{S}$ are of type H for all

 $x \in S$ and $\overline{x} \in \overline{S}$, the invariants of order k, ρ_i and $\overline{\rho}_i$ are defined in S and \overline{S} . One can then restate theorems 2 and 3 replacing condition (3) by the following condition:

The condition $h^k(x) = 0$ in theorem 3 is equivalent to the statement that the rank of the differentials $d\overline{\rho}_i$, $1 \le i \le r$, is p at every point $\overline{x} \in \overline{S}$.

Assume now that G acts transitively on M and let S be the orbit of a Lie subgroup K of G. Then, $h^k(x) = p$ and C_x^k , $C_{x'}^k$ are conjugate subgroups for all $x, x' \in S$ and every $k \ge 0$. Hence, there exists $k \ge 1$ such that every $x \in S$ is a k-regular point of S.

Theorem 4 A necessary and sufficient condition for a submanifold $S \subset M$ to be an open set of an orbit of a connected Lie subgroup K of G is that there exists $k \ge 1$ such that x is a k-regular point of S and $h^k(x) = p$ for all $x \in S$.

If we assume moreover that G is compact, then a complete set ρ_i of invariants of order k is defined on S. Clearly $h^k(x) = p$ for every $p \in S$ if and only if the functions ρ_i are constant on S. Hence, the following corollary to theorem 4 holds:

Theorem 5 Let $S \subset M$ be a connected submanifold and assume G compact. Assume also that there exists $k \geq 1$ such that every point of S is k-regular and that the isotropy groups G_x^k are conjugate in G. Then, S is an open set of an orbit of a connected Lie subgroup of G if and only if the invariants of order k are constant on S.

Bibliographie

 M. Kuranishi, Lectures on involutive systems of partial differential equations, Publicacoes da Sociedade de Matematica de Sao Paulo, 1967.

- [2] J. A. Verderesi, Contact et conguence de sous varietes, Duke Math. J., 49, 1982, 513–515.
- [3] Bredon, G. E., Introduction to compact transformation groups, Academic Press, New York, 1972.

Instituto de Matemática e Estatística Universidade de São Paulo E-mail: aamrod@terra.com.br