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1 Introduction

The most of nonlinear equations can be represented in a form

Lx = N(x)(1.1)

where L is a linear operator on Banach spaces and N is a nonlinear map. We shall
study the existence of a solution for (1.1) and the lower bound for the number of
solutions (the last is referred as multiplicity results). Obviously, the linear part L
is not determined uniquely but the study of the equation is simpler if one uses an
appropriate linear part. For example, the nonlinear elliptic Dirichlet problem

∆u = f(u), u|∂Ω = 0(1.2)

usually has the linear part ∆ – the Laplace operator considered on appropriate
Sobolev or Hölder spaces – and the nonlinear part being the superposition operator
u→ f ◦ u, but if the function f is asymptotically linear:

lim
u→±∞

f(u)
u

= λ,(1.3)

one can use the linear part u→ ∆u−λu and the nonlinear one u→ f ◦u−λu =: f̃ ◦u
with f̃ being sublinear

lim
u→±∞

f̃(u)
u

= 0.

The second approach is much simpler if one uses topological methods, fixed point
theory and so on.

Thus, let us consider equation (1.1) with L : X ⊃ dom L → Z, N : X → Z,
where X, Z are Banach spaces, dom L is a linear subspace (usually dense) and N
is a continuous nonlinear operator. We do not assume that the linear operator L is
continuous. The main question is whether there exists a solution.

If L is invertible and its inverse is continuous (as it is in applications), then we
have the equivalent equation

x = L−1N(x)

and the existence of a solution follows from one of fixed point theorems. For example,
in the case of the above mentioned elliptic problem (1.2), if λ given by (1.3) is not an
eigenvalue, then ∆−λI is invertible on appropriate Sobolev spaces and its inverse is
compact. Hence the existence of a solution is a consequence of the Schauder Fixed
Point Theorem on a sufficiently large ball.

One finds the first difficulty when L is not invertible but only a Fredholm operator
of index zero, i.e. the kernel of L is nontrivial and finite dimensional, the image of
L has a finite codimension in Z and

dim kerL = codimZ im L.
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For our elliptic problem (1.2), this is the case if λ is an eigenvalue. The abstract
equation (1.1) can be reduced to the system{

x = KN(x) + v
N(x) ∈ im L,

(1.4)

where v is an arbitrary element of the kernel and K is a right inverse of L :

LK = IimL.

This case can be examined by using Mawhin’s coincidence degree [27, 53] or by the
perturbation method [63, 64, 65, 66, 67] if K is compact. If N is sublinear

lim
||x||→∞

N(x)
||x||

= 0(1.5)

then the existence of a solution depends on the behaviour of N | kerL.
To be more precise: let u1, . . . , um be linear bounded functionals on Z being

linearly independent such that

im L =
m⋂
j=1

keruj

– they always exist if codim im L = m – and let v1 . . . , vm constitute the basis of
the kernel of L.. Then, if for any j ∈ {1, . . . ,m}, d1, . . . , dj−1, dj+1, . . . , dm ∈ R

djuj(N(
m∑
i=1

divi)) ≤ 0

for sufficiently large dj, then equation (1.1) has a solution.
The above result is, in fact, the abstract version of the famous theorem from the

first paper on boundary value problems at resonance by Landesman and Lazer [46],
thus we call the assumption as Landesman-Lazer type condition (see [63, 65, 67]).
For the example (1.2) and λ being the first eigenvalue, we have m = 1, v1 is a positive
function on Ω, u1(z) =

∫
Ω v1 · z and the solvability follows from the assumption:

— two limits limu→±∞ f(u) have opposite signs.
The method can be applied to higher eigenvalues and the nonlinearities with a

linear growth,
|f(u)| ≤ a|u|+ b,

but assumptions are more complicated (comp. [64]). The nonlinearity f can also
depend on the independent variable x and then Landesman-Lazer condition has the
usual integral form. We shall see it below.

The method works for ODEs as well; typical problems are

x′ = f(t, x), x(0) = x(T ), −periodic problem,

x′′ + n2x = f(t, x, x′), x(0) = 0 = x(π), −Dirichlet problem

and by another kind of problems (functional-differential equations, impulsive differ-
ential equations, nonlocal equations).
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2 Coincidence degree

Let L : X ⊃ Y → Z be a linear operator and N : X → X a nonlinear one. We
suppose that L is Fredholm operator of index zero:

dim kerL = dimZ/im L <∞,

P – a linear continuous projector on kerL, Q – a projector along imL onto its
topological complement. Denote by KP the inverse operator to

L| kerP ∩ Y : kerP ∩ Y → im L.

We assume that N is L-completely continuous, i.e. QN and KP (I − Q)N are
completely continuous. In applications usually KP is completely continuous and N
is continuous and maps bounded sets on bounded ones.

Theorem 2.1. (Mawhin Continuation Principle) Let Ω be a bounded open set
in X, all equations Lx = λN(x) have no solutions x ∈ ∂Ω ∩ Y for λ ∈ (0, 1] and
the Brouwer degree

deg(JQN | kerL,Ω ∩ kerL, 0) 6= 0,

where J : im Q→ kerL is an arbitrary isomorphism, then equation Lx = N(x) has
a solution in Ω.

The Brouwer degree from this theorem is called the coincidence degree of the pair
(L,N) and is denoted by degM((L,N),Ω). Its properties are similar as properties
of the Leray-Schauder degree and can be found in [53]. This is a generalization of
this degree:

degLS(I −N,Ω, 0) = degM((L,N),Ω).

The coincidence degree has found a lot of applications in proving the existence of
a solution to BVPs. A crucial question is (as for invertible linear part and the
L-S. degree) to get a priori estimates for a homotopical family of problems, but
now, one needs some extra assumptions to guarantee the finite-dimensional degree
does not vanish. This assumptions are especially simple when the kernel kerL is
1-dimensional. Then Ω ∩ kerL is an interval and QN should takes opposite sign at
its both ends. This is again the Landesman-Lazer condition.

An interesting generalization of the theory can be found in the paper by L.
Nirenberg [59], where an index of L can be arbitrary positive number p. However,
in this case, one needs the homotopy invariant of mappings Sn+p → Sn: Nirenberg
applied its stable homotopy class. Since the stable homotopy groups are complicated
and there is no correspondance between them and the group Z, for instance, the
Nirenberg’s theory is difficult for application.

We can find similar approaches in the literature, we refer to [22].
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3 Perturbation method

Let as above X and Z be Banach spaces, Y a linear subspace of X and L strongly
continuous family of operators Y → Z depending on real parameter λ

Suppose that L(λ) are invertible for λ 6= λ0 and L(λ0) is Fredholm operator
with nontrivial kernel. Its index is then 0. Moreover, suppose the family of inverse
operators L(λ)−1 =: G(λ) can be represented in the form:

G(λ) = G0(λ) +
n∑
j=1

cj(λ)〈uj(λ), ·〉wj(λ),(3.1)

where G0(λ) ∈ L(Z,X) are completely continuous, uj(λ) ∈ Z∗ (space of all con-
tinuous linear functionals on Z), wj(λ) ∈ Y are continuous functions of λ having
continuous extensions for λ = λ0, and cj(λ) ∈ R provided that

lim
λ→λ0

|cj(λ)| =∞,

for all j = 1, . . . , n. Let moreover, wj(λ), j = 1, . . . , n, be linearly independent
vectors that span kerL(λ0) for λ = λ0,

im L(λ0) =
n⋂
j=1

keruj(λ0).

Then vectors wj(λ), j = 1, . . . , n and covectors uj(λ), j = 1, . . . , n, are linearly
independent for λ sufficiently close to λ0. At last assume operator G0(λ0) is a right
inverse to L(λ0), i.e.

L(λ0)G0(λ0)z = z, z ∈ im L(λ0).

Let N : X → Z be a nonlinear continuous operator mapping bounded sets into
bounded ones. The equation

L(λ0)y = N(x).(3.2)

is equivalent to the system

x = G0(λ0)N(x) +
∑n

j=1 djwj(λ0),
〈uj(λ0), N(x)〉 = 0, j = 1, . . . , n,

(3.3)

Real constants d1, . . . , dn are arbitrary.
There is natural question, when the family L(λ) admits representation 3.1. We

present a simple sufficient condition. Let w1, . . . , wn constitutes a basis of kerL(λ0).
Assume that there exist limits

lim
λ→λ0

||L(λ)wj||−1L(λ)wj =: hj, j = 1, . . . , n(3.4)
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and

imL(λ0)⊕ Lin{h1, . . . , hn} = Z.(3.5)

We construct 3.1. Let X0 be a topological complement of X1 = kerL(λ0). For
λ 6= λ0 define uj(λ) ∈ Z∗, j = 1, . . . , n, by the formula

〈uj(λ), L(λ)wi〉 = δijL(λ)wi,
uj(λ)|L(λ)X0 = 0.

These functionals depend continuously on λ and have limits as λ→ λ0 denoted by
uj(λ0) such that

〈uj(λ0), hi〉 = δij, uj(λ0)|imL(λ0) = 0.

Now, put P1(λ) and P0(λ) for complementary projectors of Z onto L(λ)X1 and
L(λ)X0 respectively. From 3.4 they have continuous extensions for λ = λ0 being
projectors onto Lin{h1, . . . , hn} and imL(λ0). Thus, we can set

G0(λ) =

{
G(λ)P0(λ) dla λ 6= λ0,

(L(λ0)|X0)−1P0(λ0) dla λ = λ0,

and the second summand of G(λ) = G0(λ) +G(λ)P1(λ) has the form

G(λ)P1(λ)z =
n∑
j=1

||L(λ)wj||−1〈uj(λ), z〉wj,

and we get the needed representation with cj(λ) = ||L(λ)wj||−1.
Condition 3.4 holds, for example, for L(λ) = L(0) + λI and one-sided limits

λ > 0 or λ < 0. Condition 3.5 means then

kerL(0) ∩ imL(0) = {0}.

After [65] we repeat the main continuation result for our perturbation method
which corresponds the Mawhin Continuation Principle. Under the above assump-
tions, we have a division of the space X into the topological sum

X = X̃λ ⊕Xλ

where Xλ = Lin{wj(λ) : j = 1, . . . , n}.

Theorem 3.1. Suppose there exists a bounded open set Ω ⊂ X × (λ0, λ1] such that,
for any solution of the system

x̃λ = (λ− λ1)(λ0 − λ1)−1G0(λ)N(x),
dj = cj(λ)〈uj(λ), N(x)〉, j = 1, . . . , n,(3.6)
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where x = x̃λ +
∑
djwj(λ), we have (x, λ) /∈ ∂Ω. If g = (g1, . . . , gn) : Rn → Rn

given by
gj(d1, . . . , dn) = dj − cj(λ1)〈uj(λ1), N(

∑
i

diwi(λ1))〉

satisfies
deg(g, U, 0) 6= 0 (Brouwer degree),

where U = {d ∈ Rn : (
∑
diwi(λ1), λ1) ∈ Ω}, then equation L(λ0)x = N(x) has a

solution x such that (x, λ0) ∈ Ω.

Proof. Define the homotopy H : X × (λ0, λ1]→ X by

H(x, λ) =
λ− λ1

λ0 − λ1
G0(λ)N(x) +

n∑
j=1

cj(λ)〈uj(λ), N(x)〉wj(λ).

From the assumptions, it has no fixed points in the boundary ∂Ω, which means that
the Leray-Schauder degree

degLS(I −H(·, λ),Ωλ, 0),

with Ωλ = {x ∈ X : (x, λ) ∈ Ω} does not depend on λ. But H(·, λ1) is a finite
dimensional mapping, thus choosing basis wj(λ1), j = 1, . . . , n, in the space Xλ1 we
obtain

degLS(I −H(·, λ1),Ωλ1 , 0) = deg(g, U, 0) 6= 0.

It follows that, for any λ, there exists a solution of the equation x = H(x, λ) w Ωλ.
Take a sequence λk → λ0 and denote by xk the last solution, k ∈ N. This se-

quence is bounded. Due to the complete continuity of G0, one can choose convergent
sequences (for simplicity, we do not use subindices)

G0(λk)N(xk)→ x0,
cj(λk)〈uj(λk), N(xk)〉 → dj, j = 1, . . . , n.

Thus xk → x0 +
∑
djwj(λ0) =: x. Since |cj(λk)| → ∞ for all j, we get

〈uj(λ0), N(x)〉 = 0,

and by the continuity of G0 i N we have

x0 = G0(λ0)N(x).

Hence, x satisfies system 3.3 and it is the needed solution.

Now, we shall prove some results, where a priori estimates are a consequence of
the bounded growth. Without loss of generality we can assume that cj(λ) > 0.
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Theorem 3.2. Suppose that the nonlinear term N is sublinear, i.e.

lim
||x||→∞

||N(x)||/||x|| = 0,

and for any sequence (xk) with the properties ||xk|| → ∞ and ||xk||−1xk →
∑
djwj(λ0),

where (d1, . . . , dn) ∈ Rn, there exists j ∈ {1, . . . , n} such that dj 6= 0 and

dj〈uj(λ0), N(xk)〉 ≤ 0(3.7)

for sufficiently large k ∈ N. Then our equation has a solution.

Proof. Take λk → λ0, λk 6= λ0, and consider the equation L(λk)yk = N(xk) or
equivalently

xk = G(λk)N(xk).

For any fixed k ∈ N there exists Rk > 0 such that

||N(x)||/||x|| ≤ ||G(λk)||−1

for ||x|| ≥ Rk, and the mapping G(λk)N maps the boundary of the ball centered at 0
with radius Rk into this ball and, due to Rothe Fixed Point Theorem, the perturbed
equation has a solution. If the sequence (xk) of these solutions is bounded, then as
in the proof of the previous theorem one can pass to a convergent subsequence and
its limit is a sought solution.

Suppose then, this sequence is unbounded, hence (passing to a subsequence)
||xk|| → ∞. Thus

||xk||−1xk = G0(λk)(||xk||−1N(xk))
+
∑

j ||xk||−1cj(λk)〈uj(λk), N(xk)〉wj(λk)

and by the sublinearity of N, the first summand tends to 0. Repeating arguments
from the proof of the previous theorem once more, we find convergent subsequences

||xk||−1cj(λk)〈uj(λk), N(xk)〉 → dj, j = 1, . . . , n.

Hence

||xk||−1xk →
n∑
j=1

djwj(λ0),

so if j is such that dj 6= 0 (all dj’s cannot be 0), then for sufficiently large k, the
sign of 〈uj(λ0), N(xk)〉 is the same as the sign of dj. This contradicts assumption
3.7 and therefore the unboundedness of the sequence (xk) is excluded..

This theorem is proved in [64], and in [65] one can find its another proof. In-
equalities 3.7 is called the Landesman-Lazer type condition and, as we shall see
below, it correspods to the assumption from [46]. The last theorem has a simple
corrolary.
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Theorem 3.3. Assume that for any sequence (xk) ⊂ X such that ||xk|| → ∞ and
||xk||−1xk →

∑
djwj(λ0), there exists the limit limk→∞N(xk) depending only on

(d1, . . . , dn) ∈ Rn \ {0} which will be denoted as Nd. Then the following condition
is sufficient for the solvability of our equation:

for any d ∈ Rn such that ||
∑
djwj(λ0)|| = 1, there exists j ∈ {1, . . . , n} with

the property
dj〈uj(λ0), Nd)〉 < 0.

If n = 1, then it suffices

〈u1(λ0), N1)〉 · 〈u1(λ0), N−1)〉 < 0.

We shall study the case when the nonlinear term has a linear growth:

γ := lim sup
||x||→∞

||N(x)||/||x|| ∈ (0,∞).

After [64] we state

Theorem 3.4. Suppose that γ||G0(λ0)|| < 1 and there exist constants R > 0 and

σ > γ||G0(λ0)||/(1− γ||G0(λ0)||)

such that, for any j and |dj| ≥ R, |di| ≤ |dj| for i 6= j, λ ∈ (λ0, λ1], x̃λ ∈ X̃λ with
the property ||x̃λ|| ≤ σ||

∑
diwi(λ)||, we have

dj〈uj(λ), N(x̃λ +
∑

diwi(λ))〉 ≤ 0.(3.8)

Then the equation has a solution.

Proof. Taking a less subinterval if it is necessary, we can find ε > 0, such that

σ ≥ (γ + ε)||G0(λ0)||/(1− (γ + ε)||G0(λ0)||)

for λ ∈ (λ0, λ1], next R1 > 0 so large that

||N(x)|| ≤ (γ + ε)||x||

for ||x|| ≥ R1. Then choose R2 > R and

R3 > σ sup{||
∑

djwj(λ)|| : d ∈ ∂(−R2, R2)n}

with the property: if d ∈ ∂(−R2, R2)n or ||x̃λ|| = R3, x̃λ ∈ X̃λ, then ||x̃λ +∑
djwj(λ)|| ≥ R1. Consider the set Ω ⊂ X × (λ0, λ1] being the set of pairs

(x̃λ +
∑
djwj(λ), λ) such that ||x̃λ|| < R3 and |dj| < R2 for j = 1, . . . , n. We can

apply Theorem 3.1, since ∂Ω includes points for which ||x̃λ|| = R3 or one of numbers
|dj| equals R2, and the remaining ones satisfy inequalities |di| ≤ |dj|. Moreover, then
||x|| ≥ R1 and we can use the assumed inequality. If such a point x has satisfied the
system from Theorem 3.1, then

||x̃λ|| ≤ (γ + ε)||G0(λ0)||(||x̃λ||+ ||
∑

diwi(λ)||),
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what implies
||x̃λ|| ≤ σ||

∑
diwi(λ)|| < R3.

Then we have |dj| = R2 ≥ |di|, i 6= j, and dj = cj(λ)〈uj(λ), N(x)〉, which contradicts
inequality 3.8.

It remains to calculate the degree of the mapping g from Theorem 3.1. We apply
the homotopy h = (h1, . . . , hn) : 〈−R2, R2〉n × 〈0, 1〉 → Rn given by the formula

hj(d1, . . . , dn; t) = dj − tcj(λ1)〈uj(λ1), N(
∑

diwi(λ1))〉,

that links g with the identity mapping I and does not take the value 0 on the
boundary 〈−R2, R2〉n. Hence deg(g, (−R2, R2)n, 0) = 1 and the assertion follows
from Theorem 3.1.

In [65] one can find an existence result for the case when the nonlinearity is
superlinear. The above theorems generalize results of Kannan, McKenna [39], Šeda
[80] and many others.

It is interesting that conditions 3.7 and 3.8 are close to necessary ones if the limits
from Theorem 3.3 exist. We shall formulate the result only for the case n = 1.

Theorem 3.5. Suppose that there exist limits

lim
d→±∞

N(dw1(λ0)) =: N±.

If, for any x ∈ X

〈u1(λ0), N(x)〉 ∈ (〈u1(λ0), N+〉, 〈u1(λ0), N−〉)

and our equation has a solution, then

d〈u1(λ0), N(x)〉 < 0

for sufficiently large ||x||.

4 Application to BVPs for ordinary differential
equations

The most typical resonant BVP for ordinary differential equations is:

x′′ +m2x = f(t, x, x′), x(0) = x(π) = 0,(4.1)

where f : [0, π] × R2 → R and m ∈ N. Assume that f is a Carathéodory function
and satisfies the growth condition:

|f(t, x, y)| ≤ aM(t), |x|, |y| ≤M, t ∈ [0, π],
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where aM ∈ L2(0, π). The problem is resonant, since for f = 0 we have a nontrivial
solution t 7→ sinmt and the multiplicity of the resonance is n = 1. Set w1(t) = sinmt.
Let us assume that there exist limits

f±(t) := lim
r→±∞

f(t, r sinmt,mr cosmt),

(it implies the sublinearity of the nonlinear term) and the numbers∫
sinmt>0 f+(t) sinmtdt+

∫
sinmt<0 f−(t) sinmtdt,∫

sinmt>0 f−(t) sinmtdt+
∫

sinmt<0 f+(t) sinmtdt(4.2)

have the opposite signs. Put X = H1(0, π), Y = H2 ∩ H1
0 , Z = L2(0, π), Lx =

x′′ +m2x, N(x) = f(·, x(·), x′(·)),

〈u1, z〉 =
∫ π

0
z(t) sinmtdt.

By Theorem 3.3 a solution to 4.1 exists. We perturb operator L by λI or −λI in
order to get the appropriate sign of c(λ). Limits f± can be finite or not but none of
the numbers 4.2 can be a form ∞−∞.

If f is sublinear, i.e.

lim
M→∞

||aM ||
M

= 0,

and does not depend on the derivative x′, one can put

f+(t) = lim inf
r→+∞

f(t, r sinmt), f−(t) = lim inf
r→−∞

f(t, r sinmt).(4.3)

The first number in 4.2 should be positive and the second (with f− instead of f−)
– negative, or reversely, if we exchange the upper and lower limits.

The problem is more difficult when f has a linear growth, i.e.

lim
M→∞

||aM ||
M

= γ ∈ (0,∞).

Assume that there exist positive constants ǎ < â, M and function b ∈ L2 such that

ǎ ≤ (f(x, u)− b(x))/u ≤ â(4.4)

for |u| ≥M . L is a self-adjoint operator in the Hilbert space X = Z = L2(0, π) and
from the Hilbert-Schmidt theory, we are able to get a simple formula for the inverse
operator

G0(λ)z =
∑

λs∈SpL

(λs − λ)−1(ws, z)ws,

where ws are eigenfunctions corresponding to eigenvalues λs. The formula for its
norm is

||G0(λ)|| = max
λs∈SpL

|λs − λ|−1.

This method can be applied to more general BVP but here we have:

λs = −s2, ws =

√
2
π

sin st, s ∈ N, ||G0(λ0)|| = 1
2m− 1

.

The formula for the norm is valid for m > 1; if m = 1 then this norm equals 1/3.
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Theorem 4.1. Under the above assumptions, if for m > 1

γ < (2m− 1)
ǎ√

ǎ2 + (â− ǎ)2
,

and the Landesman-Lazer type condition 4.2 is satisfied, then problem 4.1 has a
solution. For m = 1 in the last inequality one should replace 2m− 1 by 3.

The proof is obtained by applying Theorem 3.2. Unfortunately, in the L.-L.
condition for m > 1 we have the forbidden case∞−∞ and this theorem is valuable
for m = 1 only.

One can use the space of continuous functions with the sup-norm instead of L2.
It is possible, obviously, under assumption of the continuity of f. We cannot find
the exact formula for the norm of the inverse but the estimate only:

||G0(λ0)|| ≤ π

3m
(1 + 2

√
2) <

4.02
m

.

In order to get this estimate, we use as above the Hilbert-Schmidt theory

G0(λ0 = m2)z =
∑
j 6=m

(m2 − j2)−1(ej, z)ej,

where ej(t) =
√

2/π sin jt, j = 1, 2, . . . , and (·, ·) stand for the L2-scalar product.
Then, we find a bound for its supremum. We use notation 4.3 but with the as-
sumption that both limits are uniform w.r.t. t. Take a positive number σ < 1 such
that

4.02γ < m
σ

1 + σ
.

Let us divide the interval (0, π) into three pieces:

A0
σ := {t : | sinmt| ≤ σ}, A+

σ := {t : sinmt > σ}, A−σ := {t : sinmt < −σ}.

Denote
Mσ :=

∫
A0
σ

| sinmt| sup
x∈R
|f(t, x)| dt <∞.

The L.-L. condition has the following form∫
A+
σ

f+(t) sinmtdt+
∫
A−σ

f−(t) sinmtdt > Mσ,

∫
A+
σ

f−(t) sinmtdt+
∫
A−σ

f+(t) sinmtdt < −Mσ.

All the above results can be generalize to the vector equations

x′′i +m2
ixi = fi(t, x, x′), xi(0) = xi(π) = 0, i ≤ k

provided that at least one of mi is an integer to have a resonance.
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Another kind of BVP is the periodic problem for the first order ODE in Rn:

x′ = f(t, x), x(0) = x(T ),(4.5)

where f : [0, T ] × Rn → Rn satisfies f(0, ·) = f(T, ·) and the Carathéodory condi-
tions. Usually one does not look at it as a resonant BVP but it is such, since the
kernel of the linear part is the subspace of constant functions with values in Rn. Let
us assume that f satisfies the following growth condition

||f(t, x)|| ≤ a||x||ρ + b(t), t ∈ [0, T ], x ∈ Rn,(4.6)

where a > 0, ρ ∈ [0, 1], b ∈ L1(0, T ). Put X = Z = L1(0, T ;Rn), Y = {x : [0, T ]→
Rn, x is absolutely continuous,x(0) = x(T )}, L(λ)x = x′ − λx, λ0 = 0, N : X → Z
– the superposition operator. Then, after easy calculations,

G0(λ)z(t) = eλt
∫ t

0 e−λsz(s) ds
+(1− eλT )−1eλ(t+T )

∫ T
0 e−λsz(s) ds+ (Tλ)−1

∫ T
0 z(s) ds,

〈uj(λ), z〉 = T−1
∫ T

0
zj(s) ds, cj(λ) = −λ−1,

wj(λ)(t) = (δij)j≤n,

j = 1, . . . , n. If ρ < 1, then we have the sublinear case. Condition 3.7 has the form:
for any sequence (xk) ⊂ L1(0, T ;Rn), ||xk|| → ∞, ||xk||−1xk → d ∈ Rn, there exists
j such that dj 6= 0 and for large k ∈ N:

dj

∫ T

0
fj(t, xk(t)) dt ≥ 0.(4.7)

One can assume, instead of 4.7:∫ T

0
xk,j(t)fj(t, xk(t)) dt > 0.

One can also add the left-hand side and obtain the following L.-L. condition with
the scalar product: ∫ T

0
(xk(t), f(t, xk(t)))dt > 0

for large k. In [67] we have shown, that the Mawhin’s method leads to the condition:

(d, f(t, d)) > 0, for ||d|| = R, t ∈ [0, T ],

where R is a positive constant. Both conditions are incomparable.
Now, we consider the case of linear growth (ρ = 1 in 4.6). We need an estimate

for ||G0(0)||. Since all calculations are easier in the supremum norm, we pass to the
space of continuous functions, what is possible if f is continuous and

γ := lim sup
||x||→∞

sup
t

||f(t, x)||
||x||

∈ (0,∞).
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In Rn we use the norm ||x|| = max1≤i≤n |xi|. We have

G0(0)z(t) =
1
2

∫ t

0
z(s) ds− 1

2

∫ T

t

z(s) ds− 1
T

∫ T

0
(t− s)z(s) ds,

hence ||G0(0)|| ≤ T . In order to apply Theorem 3.4, we need the sign of∫ T

0
fj(t, x̃(t) + d) dt

for ||x̃(t)|| ≤ σ||d||, t ∈ [0, T ], when the greatest coordinate of d is dj, i.e. ||d|| = |dj|
and this number is sufficiently large. If σ > 1, then the sign of x̃j(t)+dj is determined
by the sign of dj. Moreover, then |x̃i(t) + di| ≤ 2|dj|, i 6= j. Therefore the following
condition is sufficient for the solvability of 4.5: for j ∈ {1, . . . , n},

lim infxj→+∞ inf |xi|≤2|xj |
∫ T

0 fj(t, x1, . . . , xn)dt > 0
> lim supxj→−∞ sup|xi|≤2|xj |

∫ T
0 fj(t, x1, . . . , xn)dt,

and (to get the estimate γ||G0(0)|| < σ/(1 + σ) < 1
2)

2γT < 1.

All inequalities in the L.-L. conditions can be reversed. In the very similar way one
can study the periodic problem for the second order ODE:

x′′ = f(t, x, x′), x(0) = x(T ), x′(0) = x′(T ).

One can observe more interesting phenomenon for

x′′ +m2x = f(t, x), x(0) = x(2π), x′(0) = x′(2π),(4.8)

where m ∈ N, even in 1-dimensional space. For the last problem, the kernel of the
linear part is 2-dimensional with the basis

w1(t) = sinmt, w2(t) = cosmt.

Both these functions ,,interferes” one with the other. One can apply Theorem 3.2
assuming

|f(t, x)| ≤ aM(t), |x| ≤M, t ∈ [0, 2π],

where aM ∈ L1(0, 2π) and limM→∞M
−1||aM ||L1 = 0. Problem 4.8 has a solution,

if there exist limits f±(t) = limx→±∞ f(t, x) and, for (d1, d2) ∈ R2, d2
1 + d2

2 = 1, we
have: the numbers ∫

A+

wf+ +
∫
A−

wf−,

∫
A+

wf− +
∫
A−

wf+

have the opposite signs, where w(t) = d1 sinmt+d2 cosmt, A± = {t : sgn(d1 sinmt+
d2 cosmt) = ±1}.
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Example 1. Set f(t, x) = p(t)g1(x+)+r(t)g2(x−), where p and r belong to L∞(0, 2π),
g1, g2 : [0,∞)→ R are continuous and

g1(0) = g2(0),

lim
x→∞

gj(x)/x = 0, lim
x→∞

gj(x) = γj ∈ (0,∞〉, j = 1, 2.

Then, if p(t) ≤ 0 ≤ r(t) almost everywhere and at least one of two inequalities
p(t) < 0, 0 < r(t) hold on the set of positive measure, then problem 4.8 has a
solution. Similarly, for p(t) = r(t) = 0, t ∈ (π, 2π], γ1 = γ2 =∞ and∫ π

0
p(t) sin t dt < 0.

If the nonlinear term f in 4.8 has a linear growth, we have no means to get L.-L.
condition. Here, one can better see an interference of w1 and w2.

5 Problems of another kind

One can apply the perturbation method to the general boundary value problem for
ODE. We follow [68]. Let E be a Banach space, A : [0, 1] → L(E) – a continuous
function taking values in the space of bounded linear operators of E, f : [0, 1]×E →
E – a continuous function, B1, B2 ∈ L(E), and let B3 : C([0, 1], E) → E be a
nonlinear continuous mapping defined on the Banach space of continuous functions
[0, 1]→ E. We look for a solution of the first order differential equation

x′ − A(t)x = f(t, x)(5.1)

satisfying the boundary condition

B1x(0) +B2x(1) = B3(x).(5.2)

System 5.1-5.2 is at resonance, which means that the linear homogeneous problem

x′ − A(t)x = 0, B1x(0) +B2x(1) = 0,

has a nonzero solution. We shall assume that there exists an operator A0 ∈ L(E)
commuting with the resolvent U : [0, 1]→ L(E) of the operator x′−A(t)x such that
B1 +B2 expλA0U(1) is an authomorphism of E for λ from a neighbourhood (nhbd)
of 0 ∈ R. Usually, A0 = I – the identity operator. Moreover, let B1 + B2U(1) be
a linear Fredholm operator (its index must be 0 by the above). Our assumptions
mean that the problems

x′ − A(t)x− λA0x = 0, B1x(0) +B2x(1) = 0,(5.3)

have only the zero-solution for λ 6= 0 belonging to the nhbd of 0, the subspace of
initial points of solutions to 5.3 with λ = 0 is finite dimensional, and that the range
of the operator B1 +B2U(1) has a finite codimension.
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Take any basis x1, . . . , xn in ker(B1 + B2U(1)) and suppose that the following
limits

lim
λ→0

B(λ)xj/||B(λ)xj|| =: hj, j = 1, . . . , n,(5.4)

where B(λ) = B1 + B2U(1) expλA0, exist and constitute a linearly independent
system such that

Lin{h1, . . . , hn} ⊕ imB(0) = E.

Then, of course, this condition is satisfied for each basis.
Let E1 = kerB(0) and let E0 be its topological complement:

E1 ⊕ E0 = E.

We have B(λ)E1 ⊕B(λ)E0 = E for λ 6= 0 sufficiently close to 0. Moreover,

Lin{h1, . . . , hn} ⊕B(0)E0 = E.

Define the system of linear bounded functionals on E : vj(λ), j = 1, . . . , n, for λ 6= 0
by the formulas

〈vj(λ), B(λ)xi〉 = δij||B(λ)xi||, i = 1, . . . , n,

vj(λ) |B(λ)E0 = 0.

Obviously, vj are continuous functions of λ and have continuous extensions to 0 such
that

〈vj(0), hi〉 = δij, vj(0) |B(0)E0 = 0.

If we denote by P1(λ) (resp. P0(λ)) the projectors on B(λ)E1 (resp. B(λ)E0) along
B(λ)E0 (resp. B(λ)E1) for λ 6= 0 and similarly for λ = 0 with natural changes, then
we can find the representation of B(λ)−1 :

B(λ)−1 = B(λ)−1P0(λ) +
n∑
j=1

||B(λ)xj||−1〈vj(λ), ·〉xj

where the first summand has a continuous extension to 0 : (B(0) | E0)−1P0(0). We
shall denote this summand by R(λ), and

cj(λ) := ||B(λ)xj||−1, j = 1, . . . , n,

are the only parts which make λ = 0 a singular point of B(λ)−1. We have

B(λ)−1 = R(λ) +
n∑
j=1

cj(λ)〈vj(λ), ·〉xj(5.5)

which is similar to the corresponding formula from the previous sections.
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It is easy to see that Vλ(t) = exp(λtA0)U(t) is the resolvent for the operator
x′ − A(t)x− λA0x. This implies that the unique solution to the BVP

x′ − A(t)x− λA0x = b(t), B1x(0) +B2x(1) = 0,

is the function

x(t) = Vλ(t)x0 + Vλ(t)
∫ t

0
V −1
λ (s)b(s) ds

with the initial vector x0 for which

B(λ)x0 = −B2 exp(λA0)U(1)
∫ 1

0
exp(−λsA0)U−1(s)b(s) ds.

We shall denote the right-hand side of the last equality by C(λ, b) where b ∈
C([0, 1], E). Applying 5.5, we get, for λ 6= 0,

x0 = R(λ)C(λ, b) +
n∑
j=1

cj(λ)〈vj(λ), C(λ, b)〉xj

and

x(t) = exp(λtA0)U(t)R(λ)C(λ, b)+
+ exp(λtA0)U(t)

∫ t
0 exp(−λsA0)U−1(s)b(s) ds+

+
∑n

j=1 cj(λ)〈vj(λ), C(λ, b)〉 exp(λtA0)U(t)xj.
(5.6)

Now, we are able to write down the system equivalent to the BVP

x′ − A(t)x− λA0x = f(t, x), B1x(0) +B2x(1) = B3x,

for λ 6= 0 :

x0 = R(λ)(C(λ,N(x)) +B3(x)) +

+
n∑
j=1

cj(λ)〈vj(λ), C(λ,N(x)) +B3(x)〉xj,(5.7)

x(t) = Vλ(t)R(λ)(C(λ,N(x)) +B3(x)) +

+ Vλ(t)
∫ t

0
V −1
λ (s)N(x)(s) ds+

+
n∑
j=1

cj(λ)〈vj(λ), C(λ,N(x)) +B3(x)〉Vλ(t)xj,(5.8)

where N(x)(t) = f(t, x(t)). We can show that the operator defined by the right-
hand sides of 5.7, 5.8 on E × C([0, 1], E) is completely continuous, if f(t, ·) is com-
pletely continuous, functions fx := f(·, x) are equicontinuous for x belonging to
each bounded set and B3 is completely continuous. Then, we can find solutions to
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5.7-5.8 for λ 6= 0 if f and B3 are sublinear, by the Rothe Fixed Point Theorem [19],
and prove that the existence of a bounded sequence of solutions for λm → 0 implies
the solvability of the studied resonant problem. Next, we should find conditions
excluding the existence of unbounded sequence of solutions (the Landesman-Lazer
type condition). Here it is:

for any (xm) ⊂ C([0, 1], E) with the properties ||xm||∞ → ∞ (the supremum
norm in C([0, 1], E)), ||xm||−1

∞ x
m →

∑
djU(·)xj for some (d1, . . . , dn) ∈ Rn, there

exists j ∈ {1, . . . , n} such that

lim sup
m→∞

dj〈vj(0), D(xm)〉 < 0

where

D(x) = −B2U(1)
∫ 1

0
U−1(s)f(s, x(s)) ds+B3(x).

The proof is similar to that of Theorem 3.2. The case of nonlinearities with a linear
growth is examined separately by homotopy arguments in the above mentioned [68].

BVPs of different kinds are considered with additional property of a solution:
the positivity. In our abstract framework, it means that one look for a solution
belonging to a prescribed cone, i.e. a closed set P ⊂ X (the space of functions) with
properties:

x1, x2 ∈ P =⇒ x1 + x2 ∈ P, x ∈ P, λ ≥ 0 =⇒ λx ∈ P, P ∩ (−P ) = {0}.

In applications, we usually think about P ⊂ C([a, b],Rn) or P ⊂ L2([a, b],Rn) with
all coordinates xj(t) ≥ 0. Our method work also for problems of this kind [66]. We
need some assumptions on the behaviour of the nonlinear term on the boundary of
the cone and define another nonlinearity which equals the given one on the cone.
A solution for the second equation exists by our method and, a possibility that it
sticks out the cone is excluded. Thus, it is a solution of the given problem.

Similar applications, as presented in the previous section, of Theorems 3.2 and
3.4 can be obtained for elliptic partial differential equations. One have to work in
appropriate Sobolev or Hölder spaces but all calculations and arguments are more
complicated.

6 Functional-differential equations

Equations of this kind are of the great interest recently, and the class of such equa-
tions is very large. It includes equations with delay, integro-differential equations
and many others. Relatively general formulation of boundary value problems for
functional-differential equations can be found in [53]. Our method can be applied
to this kind of problems.

Let C = C([−r, 0],Rk) and for t ∈ [0, 1] and x : [−r, 1]→ Rk put xt(s) = x(t+s),
s ∈ [−r, 0]. Let f : [0, 1]× C → Rk satisfies the following Carathéodory conditions:

• f(·, ϕ) is measurable for ϕ ∈ C,
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• f(t, ·) is continuous on C, and the following growth condition

• for any M > 0 there exists aM ∈ L1(0, 1) such that

||f(t, ϕ)|| ≤ aM(t), for t ∈ [0, 1], ||ϕ|| ≤M.(6.1)

Take A,B ∈ L(C) and Φ : C × C → C being nonlinear completely continuous
operator. We are interested in the solvability of the following BVP:

x′ = f(t, xt),(6.2)

Ax0 +Bx1 = Φ(x0, x1).(6.3)

By a solution we mean a function x : [−r, 1]→ Rk continuous and such that x|[0, 1]
is absolutely continuous, for almost all t, one has x′(t) = f(t, xt), and the boundary
condition 6.3 is satisfied (x0 = x|[−r, 0], x1(s) = x(s + 1) for s ∈ [−r, 0]). Now, we
shall perturb the boundary condition but not the f.-d. equation. Suppose we have a
continuous family of linear bounded operators A(λ), λ in a nhbd of 0, A(0) = A. Put
X = C([−r, 1],Rk), Y = {x ∈ X : x|[0, 1] ∈ W 1,1(0, 1;Rk)}, Z = L1(0, 1;Rk) × C,
L(λ)x = (x′|[0, 1], A(λ)x0 + Bx1), N(x) = (f(·, x.), Φ(x0, x1)). Introduce two
operators S ∈ L(C), T ∈ L(Z,C) by formulas

Sϕ(s) =

{
ϕ(s+ 1) for s ≤ −1,
0 for s ∈ (−1, 0],

T z(s) =

{
0 for s ≤ −1,∫ s+1

0 z(t)dt for s ∈ (−1, 0].

Since the following initial problem: x′ = z(t), x|[−r, 0] = ϕ ∈ C has a solution

x(s) =

{
ϕ(s), s ∈ [−r, 0],
ϕ(0) +

∫ s
0 z(t)dt, s ∈ (0, 1],

and the inverse operators to L(λ) can be computed if we find a solution to x′ =
z(t), A(λ)x0 + Bx1 = ψ, then the initial function ϕ should satisfy the equation
[A(λ) +BS]ϕ = ψ−BTz. Thus, if the operators A(λ) +BS are invertible for λ 6= 0
and A + BS is Fredholm operator (it has index 0), then also L(λ) hold the same
conditions. Take a basis of ker(A + BS) ⊂ C : ϕ1, . . . , ϕn. In order to obtain the
needed form of the inverse operators, assume there exist the limits

lim
λ→0
||[A(λ) +BS]ϕj||−1[A(λ) +BS]ϕj =: hj, j = 1, . . . , n,

and

Lin{h1, . . . , hn} ⊕ im (A+BS) = C.(6.4)
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Then

[A(λ) +BS]−1 = C0(λ) +
n∑
j=1

cj(λ)〈vj(λ), ·〉ϕj,

with C0(λ) ∈ L(C), vj(λ) ∈ C∗ for j = 1, . . . , n, having continuous extensions to
λ = 0, and cj(λ)→ +∞ as λ→ 0. We can put in our scheme:

G0(λ)(z, ψ)(s) =

{
C0(λ)(ψ −BTz)(s) for s ∈ [−r, 0],
C0(λ)(ψ −BTz)(0) +

∫ s
0 z(t)dt for s ∈ (0, 1],

〈uj(λ), (z, ψ)〉 = 〈vj(λ), ψ −BTz〉,

wj(s) =

{
ϕj(s) for s ∈ [−r, 0],
ϕj(0) for s ∈ (0, 1],

where j = 1, . . . , n. Since vj(0) are linear bounded functionals on the space of
continuous functions, there exist functions with bounded variation gj, j = 1, . . . , n,
with the property

〈vj(0), ϕ〉 =
∫ 0

−r
ϕdgj the Lebesgue-Stieltjes integral.

Denote the nonlinear functional

Ψ(ϕ)(s) =

{
0 for s ≤ −1,∫ s+1

0 f(t, ϕt)dt for s ∈ (−1, 0].

If the nonlinearity f is sublinear, i.e.

lim
M→∞

M−1||aM ||L1 = 0,

lim
ϕ,ψ∈C, ||ϕ||→∞, ||ψ||→∞

||Φ(ϕ, ψ)||
(||ϕ||+ ||ψ||)

= 0,

then the L.-L. condition guaranteeing the solvability of the problem 6.2-6.3 has the
form:

for any sequence (xν) ⊂ X with the properties ||xν || → ∞, ||xν ||−1xν →
∑
diwi,

there exists j ∈ {1, . . . , n} such that dj 6= 0 and

dj

∫ 0

−r
[Φ((xν)0, (xν)1)−BΨ((xν)0)]dgj ≤ 0

for sufficiently large ν ∈ N.
If there exist limits limν→∞Φ((xν)0, (xν)1) =: Φd and limν→∞ f(t, (xν)t) =: fd(t)

depending only on d ∈ Rn, ||d|| = 1, then our problem has a solution, if for any
d ∈ Rn, ||d|| = 1, there exists j such that

dj

∫ 0

−r
[Φd −BΨ(d)]dgj < 0,
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where Ψ(d) stands for a function in C that equals 0 for s ≤ −1 and

Ψ(d)(s) =
∫ s+1

0
fd(t)dt, s ∈ (−1, 0].

One can write down an appropriate corollary of Theorem 3.4 for the nonlinearities
with the linear growth.

Let us consider a particular case of the problem 6.2-6.3 – the periodic problem

x′ = f(t, xt), x0 = x1.(6.5)

If f is 1-periodic with respect to t, i.e. f(t, ϕ) = f(t + 1, ϕ) for ϕ ∈ C, then any
solution of 6.5 has a 1-periodic extension on R. The remaining assumptions on f
are withour changes.

Put A(λ)ϕ = (1 + λ)ϕ, Bϕ = −ϕ, Φ = 0. It is easy to check that A(λ) + BS is
invertible for λ 6= 0, A(0) + BS has the kernel built of constant functions and the
range with functions such that ψ(0) = 0. One can take

ϕj(t) = (δij)i≤k.

For λ→ 0+, we obtain hj = ϕj, j = 1, . . . , n, and condition 6.4 holds. Functionals
vj(0) are given by functions gj = (0, . . . , 0,Θ, 0, . . . , 0), where Θ is the Heaviside’s
function and the integral over [−r, 0] reduces to the value of the integrand at s = 0.
At last the L.-L. condition for the existence of a solution to 6.5 has a form:

for any sequence (xν) ⊂ C([0, 1],Rk) such that ||xν || → ∞, ||xν ||−1xν → d ∈ Rk
uniformly, there exists j ∈ {1, . . . , n} such that dj 6= 0 and

dj

∫ 1

0
fj(t, (xν)t)dt ≤ 0

for sufficiently large ν. Obviously, the weaker condition

lim sup
ν→∞

∫ 1

0
(xν(t), f(t, (xν)t))dt < 0

or, in the case of the existence of limits limν→∞ f(t, (xν)t) = fd(t) depending on
d = lim ||xν ||−1xν ∈ Rk only: ∫ t

0
(d, fd(t))dt < 0,

are suffiecient for the existence of a solution. If we take the left-hand side limits
λ→ 0− instead of the right-hand ones, then hj = −ϕj and instead of gj we get −gj.
As the result all inequalities in the L.-L. conditions should be reversed.

In the similar way, one can study the BVPs for differential equations with delay
or neutral such as

x′′ +m2x = f(t, x, xh), x(0) = x(π) = 0,

or
x′′h +m2xh = f(t, x, xh), x(0) = x(π) = 0,

and also impulsive differential equations.
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7 Multiple solutions of nonlinear equations with
parameter near bifurcation point

We shall deal with a continuous family of nonlinear equations

L(λ)x = N(x)(7.1)

where L(λ) : Y → Z are linear bounded operators, Y ⊂ X is a linear subspace and
N : X → Z is nonlinear and continuous, λ ∈ nhbdλ0. All assumptions about this
family of operators are almost the same as in section 3. Especially, it has an isolated
singularity in λ0, i.e. L(λ) are invertible for λ 6= λ0 and L(λ0) is a linear Fredholm
operator of index zero. Moreover, we assume a special form of the family

L(λ)−1 = G0(λ) +
n∑
j=1

cj(λ)〈uj, ·〉wj

where G0(λ) ∈ L(Z,X) has a continuous extension on λ0, cj(λ) ∈ R and

lim
λ→λ0

|cj(λ)| =∞,

the vectors w1, ..., wn forms a basis of the kernel kerL(λ0), u1, . . . , un are linearly in-
dependent covectors on Z anihilating the range imL(λ0). The above abstract scheme
can be applied to a great variety of boundary value problems such as, in particular,
those considered by Mawhin and Schmitt [56]:

x′′ + λx+ g(t, x) = h(t), x(0) = x(2π), x′(0) = x′(2π),

where λ0 = 0,

x′′ + λx+ g(t, x) = h(t), x(0) = x(π) = 0, where λ0 = 1.

It is well known that these problems have at least one solution for λ = λ0 if g
is integrally bounded and the Landesman-Lazer condition holds. In our abstract
framework, this means that N is bounded (or sublinear) and, for any (xk) ⊂ X such
that ||xk|| → ∞, ||xk||−1xk →

∑n
i=1 diwi, there exists j with the property

djsgnλ>λ0
cj(λ)〈uj, N(xk)〉 ≤ 0

for large k (comp. section 3). This solution is an element of a continuum (in X×R)
of solutions to 7.1 for λ ≥ λ0 and can be extended to λ less but close to λ0. Let us
assume that G0(λ) take values in topological complements of kerL(λ0) and that the
function

(−1)p det〈ui, L(λ)wj〉

changes the sign when λ passes through λ0, where p is the number of coefficients
cj(λ), j ≤ n, which has opposite signs on the left and on the right of λ0. Then there
exists a connected branch of solutions to 7.1 bifurcating from the infinity. It follows
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that there exists δ > 0 such that 7.1 has at least two solutions for λ ∈ (λ0 − δ, λ0).
All assumptions on L(λ) are satisfied if there exist the limits

lim
λ→λ±0

||L(λ)wj||−1L(λ)wj = ±hj

and h1, . . . , hn forms a basis of a topological complement of L(λ0) and n (the geo-
metric multiplicity of the eigenvalue λ0) is odd.

Mawhin and Schmitt [56] used conditions closed but different from the Landesman-
Lazer one for their specific equations. They got at least three solutions, since they
can distinguish positive and negative solutions with large norms. However they
needed n = 1 and that all eigenfunctions have constant signs.

8 Multiple solutions – general case

The question of the existence of more than one solution to a nonlinear equation is
usually more difficult than the existence problem of at least one solution. Starting
from the well-known paper by Ambrosetti and Prodi [4] (see also [3]), there appeared
a lot of works based on a similar picture: if a nonlinear map N : X → Z ”folds
the Banach space X in two and lays it on the Banach space Z”, then the equation
N(x) = z has one solution for the z’s corresponding the folding place, two solutions
for the z’s lying on one side of this place (being a 1-codimensional manifold) and
no solution for the z’s lying on the other side. Generalizations can be done in many
directions. Roughly speaking, two kinds of them are possible – the first if N ”folds”
many times, the second if N is homotopically equivalent to the above standard map.
Here, we study the second case.

Each abstract result needs some applications. Most of authors even omit abstract
theorems and give results on typical boundary value problems. Often, it is the
problem

∆u+ f(u) = g(x), u|∂Ω = 0,

as in [4], [7], or G depends on an additional parameter [42], [50], [82], or the Laplace
operator ∆ is replaced by a more general elliptic operator and the Dirichlet boundary
condition – by another one [5]. The operator acts as we need if f crosses the first
eigenvalue λ1 of the linear problem

∆u+ λu = 0, u|∂Ω = 0.

This last condition can be described by the asymptotic behaviour of f(ξ)/ξ as ξ
tends to ±∞, or by the behaviour of the derivative f ′. The study of the problem is
also possible if f crosses more than one eigenvalue (see [76], [51]).

Our approach is different and based on the abstract scheme introduced in [63],
[65]. It was very fruitful when we asked about the existence of at least one solution
(comp. [63]-[68]). We isolate a linear part L0 which is a Fredholm operator with
1-dimensional kernel and cokernel and use homotopy arguments to get at least two
solutions for z sufficiently far from the image of L0 in one direction and no solution
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for such z’s in the other one. The result is largely applicable and works for standard
boundary value problems under different assumptions. Another kind of this theorem
with applications can be found in [69]. However, the present result seems to be more
natural from the applicational point of view.

Let X and Z be real Banach spaces, L0 : X ⊃ Y → Z a linear Fredholm operator
such that

kerL0 = Lin{w}, imL0 = keru,

where w ∈ Y, u ∈ Z∗. Fix h0 ∈ Z such that 〈u, h0〉 = 1. Let N : X → Z be a
nonlinear continuous map which transforms bounded sets into bounded ones and
such that

γ := lim sup
||x||→∞

||N(x)||
||x||

(8.1)

satisfies

γ||(L0|X̃)−1P || < 1(8.2)

where X̃ is a topological complement of kerL0 and P : Z → Z denotes the linear
projection onto imL0 along Lin{h0}. Let

X = X̃ ⊕X

where X = Lin{Jw}. Suppose that N satisfies the following condition:
(C) there exists β > γ||(L0|X̃)−1P ||

1−γ||(L0|X̃)−1P || such that

lim
d→±∞

sup
||x̃||≤β||dw||

〈u,N(x̃+ dw)〉 = −∞

where x̃ ∈ X̃, d ∈ R.
We are interested in the equation

L0y = N(Jy) + h1 + th0(8.3)

where h1 ∈ imL0 (hence 〈u, h1〉 = 0) and t ∈ R.
Theorem 8.1. Under the above notations and assumptions, there exists t0 > 0
(depending on h1) such that equation 8.3 has no solution for t ≤ −t0 and at least
two solutions for t ≥ t0.

Proof. The first part of the assertion has an elementary proof. Consider the system

x̃ = (L0|X̃)−1P (N(x) + h1),
〈u,N(x)〉 = −t,(8.4)

where x = x̃+ dw, which is equivalent to 8.3. Take ε > 0 so small that

(γ + ε)||(L0|X̃)−1P ||/(1− (γ + ε)||(L0|X̃)−1P ||) < β
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and R > 0 so large that, for ||x|| ≥ R, we have ||N(x)|| ≤ (γ + ε)||x||. If x satisfies
system 8.4 and ||x|| ≥ R, then

||x̃|| ≤ (γ + ε)||(L0|X̃)−1P ||(||x̃||+ ||dw||) + ||(L0|X̃)−1Ph1||,

hence

||x̃|| ≤ (γ + ε)||(L0|X̃)−1P || ||dw||+ ||(L0|X̃)−1Ph1||
1− (γ + ε)||(L0|X̃)−1P ||

.

So, there exists d0 > 0 such that ||x̃|| ≤ β||dw|| for |d| ≥ d0. From the second
equation of 8.4, t < 0 and condition (C) we get that there exists d1 > 0 such that
|d| ≤ d1. Therefore, for x satisfying 8.4, ||x|| ≤ (β + 1)d1||w|| or ||x|| < R. Recalling
that N maps bounded sets onto bounded ones, we obtain that equation 8.3 has no
solution if

t < − sup{|〈u,N(x)〉| : ||x|| ≤ max(R, (β + 1)d1||w||)}.

For the proof of the second part of the assertion, we need some introductory
remarks. As in [65], consider the continuous family of linear operators L(λ) : Y → Z,
λ ∈ R, given by the formula

L(λ)(x̃+ dw) = L0x̃+ λdh0

where x̃ ∈ X̃. Obviously, L(λ) are linear homeomorphisms for λ 6= 0 and L(0) = L0.
Moreover,

L(λ)−1z = (L0|X̃)−1Pz + λ−1〈u, z〉w(8.5)

for λ 6= 0 and z ∈ Z. Instead of equation 8.3, we study the family of equations

L(λ)x = N(x) + h1 + th0, λ 6= 0.(8.6)

They are equivalent to the systems

x̃ = (L0|X̃)−1P (N(x) + h1),
d = λ−1(〈u,N(x)〉+ t),

(8.7)

which we slightly modify by putting

x̃ = λ±α
±α (L0|X̃)−1P (N(x) + h1),

d = λ−1(〈u,N(x)〉+ t),
(8.8)

where α is a small positive constant defined later.
First of all, notice that if 8.8 has a solution xk = x̃k + dkw for λ = λk, λk → 0,

and the sequence (xk) is bounded, then it has a subsequence converging to a solution
x = x̃+ dw of system 8.4, hence it is a solution to equation 8.3.

If we find two sequences of such xk’s, the first with dk ≥ η > 0 and the second
with dk ≤ −η, then the subsequent solutions x = x̃ + dw will have d ≥ η and
d ≤ −η, respectively, hence they will be different. In the sequel, we shall find two
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open bounded sets V+ and V− in X (with d ≥ η and d ≤ −η, respectively) such that
there are no solutions of 8.8 on the boundaries ∂V±. For λ = +α (or −α), we have a
1-dimensional map given by the right-hand side of the second equation of 8.8 which
has the Brouwer degree ±1. This implies the existence of two families x+

λ and x−λ of
solutions to 8.8 in V+ and V−, respectively. They lead to two different solutions of
our equation 8.3. This is an idea of the proof.

Suppose that x = x̃+dw satisfies system 8.8 and take ε > 0 and R > 0 as above.
Then ||x|| < R or ||x̃|| ≤ β||dw|| for |d| ≥ d0 found in the first part of the proof.
Enlarging d0 > 0, if necessary, we have that ||x|| ≥ R for |d| ≥ d0 and any x̃. Fix
t > 0 such that

|〈u,N(x)〉| < 1
2
t for ||x|| ≤ (β + 1)d0||w||,

and then choose d1 > d0 such that

〈u,N(x)〉 < −2t for |d| ≥ d1, ||x̃|| ≤ β||dw||.

Define open bounded sets

V+ = {x̃+ dw : d ∈ (d0, d1), ||x̃|| < βd1||w||+ 1},

V− = {x̃+ dw : d ∈ (−d1,−d0), ||x̃|| < βd1||w||+ 1}.

Then ∂V± = {x : d = ±d0 or d = ±d1 or ||x̃|| = βd1||w|| + 1}. If x satisfies
system 8.8 with lower signs (−α), then x 6∈ ∂V+. In fact, d = d1 is excluded by the
comparison of the signs in the second equation of the system, ||x̃|| = βd1||w|| + 1
– by the inequality ||x̃|| ≤ β||dw|| ≤ βd1||w||. The last possibility d = d0 will be
rejected if we take a sufficiently small α > 0 so that

d0 <
1
2
α−1t.

Therefore, the Leray-Schauder degree degLS(H(·, λ), V+, 0), where

H(x, λ) = x− λ− α
−α

(L0|X̃)−1P (N(x) + h1)− λ−1(〈u,N(x)〉+ t)w,

is independent of λ ∈ (0, α]. For λ = α, we have the 1-dimensional map and its
Leray-Schauder degree is equal to the Brouwer degree

deg(h+, (d0, d1), 0)

where h+(d) = d− α−1(〈u,N(dw)〉+ t). Since h+(d0) < 0 and h+(d1) > 0, this last
degree equals +1. Thus, for any λ ∈ (0, α], there exists xλ = x̃λ + dλw such that
H(xλ, λ) = 0. This produces a solution x = x̃+ dw to system 8.4 with d ≥ d0 > 0.

Similar arguments for V− and system 8.8 with upper signs give a solution to 8.4
with d ≤ −d0. We have obtained at least two solutions to our equation.
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Remark 1. If γ = 0 (N is sublinear), condition (C) can be replaced by:
(C∗) for any sequence xk = x̃k + dkw, k ∈ N, such that ||x̃k||/dk → 0 and

dk → ±∞,
lim
k→∞
〈u,N(xk)〉 = −∞.

If we replace the value of the limits −∞ by +∞ in conditions (C) and (C∗), then
we shall get two solutions for large negative t’s and no solution for large positive t’s.

Let us notice that conditions (C) and (C∗) are completely inconsistent with the
Landesman-Lazer type conditions from section 3, where 〈u,N(x̃+ dw)〉 changes the
sign when d passes from large negative values to large positive ones.

We shall show some applications of the above result. First, we shall study the
boundary value problem

x′′ +m2x = f(t, x) + h1(t) + s sinmt, x(0) = x(π) = 0,(8.9)

where m = 1, 2, . . . , f : [0, π]×R→ R and h1 : [0, π]→ R are continuous functions
with ∫ π

0
h1(t) sinmt dt = 0

and s ∈ R. Put X = Z = C[0, π], Y = {x ∈ C2[0, π] : x(0) = x(π) = 0},

L0x = x′′ +m2x, N(x)(t) = f(t, x(t)),

h0(t) = w(t) = sinmt,

〈u, z〉 =
∫ π

0
z(t) sinmt dt.

It is easy to find the Green operator by using the Hilbert-Schmidt theory:

(L0|X̃)−1Pz =
∞∑

j=1,j 6=m

(m2 − j2)−1(ej, z)ej

where ej(t) =
√

2/π sin jt, j = 1, 2, . . . , (·, ·) denotes the scalar product in L2(0, π),
P is an orthogonal projection onto e⊥m = X̃ (we restrict all these spaces to C[0, π]).
It follows that

||(L0|X̃)−1P || ≤ 2
∞∑

j=1,j 6=m

|m2 − j2|−1.

On the other hand,

γ = lim
|x|→∞

sup
t∈[0,π]

|f(t, x)|
|x|

.

Put

β =
2γ
∑

j 6=m |m2 − j2|−1

1− 2γ
∑

j 6=m |m2 − j2|−1 .
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For our purposes, we need β ∈ (0, 1), hence

4γ
∞∑
j 6=m

|m2 − j2|−1 < 1(8.10)

is necessary. The only problem is with condition (C). The following assumption
implies it:

(C1) the function f is upper bounded on {(t, x) : sinmt > 0} and lower
bounded on {(t, x) : sinmt < 0} and the sets

{t : sinmt > β, lim
x→±∞

f(t, x) = −∞} ∪ {t : sinmt < −β, lim
x→±∞

f(t, x) = +∞}

have positive measures (the first set is obtained if we take limits when x → +∞,
the second – when x→ −∞).

For γ = 0 (f sublinear), the same condition is sufficient with β = 0.

Theorem 8.2. Under the above assumptions, problem 8.9 has no solution for s ≤
−s0 and has at least two solutions for s ≥ s0, where s0 is some positive constant.

For example, the following functions are appropriate:

f(t, x) = −γxmax(sinmt− β, 0),

f(t, x) = − |x|
δ

x2 + 1
r(t), δ ∈ (0, 2),

where r : [0, π] → R is a continuous function positive on (0, π/m) and vanishing
outside this interval.

When m = 1 and f is sublinear, we only need

lim
x→±∞

∫ π

0
f(t, x) sin t dt = −∞

which is true for f(t, x) = g(x)r(t) provided that g and r are continuous,

lim
x→±∞

g(x) = −∞, lim
x→±∞

|g(x)|/|x| = 0,

∫ π

0
r(t) sin t dt > 0.

If g has a linear growth (β > 0), then r should vanish on the set {t : sin t ≤ β}.
Similar considerations remain true for the problem

∆u− λmu = f(x, u) + h1(x) + th0(x), u|∂Ω = 0,(8.11)

where λm is an eigenvalue with the 1-dimensional eigenspace spanned by h0. Bound-
ary value problems such as 8.9 and 8.11 were studied by many authors. They ex-
tensively used the fact that the eigenvalue is the first one which implies not only the
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dimension 1 of the eigenspace but also the positiveness of h0 which was important
for their arguments. We omit the last assumption.

The method can be applied to the periodic problem for the second-order scalar
equation

x′′ = f(t, x, x′) + h1(t) + s, x(0) = x(T ), x′(0) = x′(T ),(8.12)

where f : R3 → R is a continuous function T -periodic with respect to the first
variable, h1 is T -periodic and continuous with∫ T

0
h1(t) dt = 0,

and s is a real parameter. We can work in the spaces Z = CT (the space of
T -periodic continuous functions), X = C1

T , Y = C2
T , with operators Lx = x′′,

N(x)(t) = f(t, x(t), x′(t)). Here, w(t) = 1, 〈u, z〉 =
∫ T

0 z(t) dt, Pz = z − 〈u, z〉 and
the Green operator is obtained by the Fourier decomposition

(L|X̃)−1Pz(t) = − T

2π2

∫ T

0

∞∑
k=1

k−2 cos
2kπ(t− s)

T
z(s) ds.

We also need a growth condition for f :

|f(t, x, y)| ≤ a(|x|+ |y|) + b(8.13)

that implies γ ≤ a. The upper bound for the norm of the Green operator can be
found easily:

||(L|X̃)−1P || ≤ T

2π2

∞∑
j=1

k−2 =
T

12
.

We pass to condition (C). To have it as a property of f, the sign of x̃(t) + d should
depend on the sign of d only. Since ||x̃|| ≤ β|d|, it is necessary to have β < 1 or,
equivalently, γ < 1

2 . Hence one should suppose that

aT < 6(8.14)

and there exists β < 1− aT
6 such that

lim
|x|→∞

sup
|y|≤β(1−β)−1|x|

∫ T

0
f(t, x, y) dt = −∞.(8.15)

Theorem 8.3. The periodic problem 8.12 has no solution for sufficiently large neg-
ative s and has at least two solutions for large positive s provided that 8.13, 8.14
and 8.15 hold.

The same result can be obtained for the periodic problem

x′′ + cx′ = f(t, x, x′) + h1(t) + s, x(0) = x(T ), x′(0) = x′(T )
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(comp. [21]) with a slight change. One can compute the Green operator

(L|X̃)−1Pz = −
∞∑
k=1

T 2

T 2c2 + 4k2π2

(
((z, ek) +

Tc

2kπ
(z, êk))ek

+(− Tc

2kπ
(z, ek) + (z, êk))êk

)
where ek(t) =

√
2/T sin k 2π

T
t, êk(t) =

√
2/T cos k 2π

T
t and (·, ·) stands for the scalar

product in L2.
There are a lot of functions f satisfying our assumptions. For example, all

functions of the form

f(t, x, y) = α(t)g(x) + β(t, x, y),

where α, g, β are continuous, T -periodic with respect to t,∫ T

0
α(t) dt < 0,

|g(x)| ≤ a|x|+ b, lim|x|→∞ g(x) =∞ and β is bounded, are appropriate.
The method is applicable for the Neuman problem

x′′ = f(t, x, x′) + h1(t) + s, x′(0) = 0 = x′(T ),

giving very similar results.
Using the arguments from the proof of our main theorem, it is easy to see that

the infimum of the set of t’s such that equation 8.3 has a solution belongs to this
set. This set is, in fact, a closed half-line [t1,∞). In most papers, for any t > t1,
there exist exactly two solutions. Such a result cannot be obtained under asymptotic
assumptions only and by using topological methods. It is geometric in nature.

Analogous arguments when the kernel of the linear part L0 is n-dimensional lead
to the existence of at least 2n solutions. One can find it in [71].

9 The general perturbation method

We find the much difficult problem when L is not a Fredholm operator (equations
with Fredholm linear part of nonzero index were studied by Nirenberg [59] but they
are not so important from applicational point of view). This means that either kerL
is infinite dimensional, or im L has infinite codimension or im L is not even closed
subspace of Z. The third situation seems to be the most difficult but this is the case
for many boundary value problems on unbounded domains. It is surprising that the
perturbation method developped in the above mentioned paper [63] for Fredholm
linear part works here, as well.

The method is applicable if our abstract equation (1.1) can be embedded into
a continuos family L(λ) and, for λ > 0 and small (or λ < 0), the linear operator
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L(λ) is invertible. Usually, its inverse is not compact because L is non-Fredholm,
hence, in order to obtain the solution xn of L(λn)x = N(x) for λn → 0, we need
assumptions guaranteeing L(λn)−1N to be compact and has a fixed point xn. This is
the first group of assumptions. The second one is necessary to get that the sequence
(xn) cannot be unbounded. They rely on conditions of the asymptotic behaviour
of N | kerL and are of Landesman-Lazer type. The third question is if the sequence
(xn) which is bounded, is relatively compact. Usually, it does not need additional
assumptions and any cluster point x of this sequence is a solution of 1.1. We shall
show three examples of the above procedure.

In the paper [40], W. Karpińska studied the existence of solutions to an ordinary
differential equation of the first order which are bounded on the whole line. This
question can be considered as the boundary value problem:

x′ = Ax+ f(t, x), x bounded on R,(9.1)

where A is a linear selfadjoint operator on Rk with eigenvalue 0, f : R × Rk → Rk
is continuous. The space Rk can be represented as a direct sum of linear invariant
subspaces: X+ where A has positive eigenvalues, X− where it has negative eigen-
values, and X0 – its kernel. Let f+, f− and f0 stand for respective superpositions of
f with projectors onto these subspaces.

Theorem 9.1. If f is bounded,
(a) limt→±∞ ||f(t, x)|| = 0 uniformly on any ball,
(b) the scalar product (x, f0(t, x)) ≤ 0 for vectors x with large projections

on X0,
then the problem (9.1) has a solution.

Theorem 9.2. If f satisfies (a), (b) and (instead of the boundedness)
(c) (x, f+(t, x)) ≥ 0 for x with large projections on X+,
(d) (x, f−(t, x)) ≤ 0 for x with large projections on X−,

then the problem (9.1) has a solution.

The problem is examined in the space of bounded and continuous functions
x : R → Rk denoted by BC(R,Rk) with the supremum norm; the linear part
L : x 7→ x′ − Ax with the domain domL = {x ∈ BC(R,Rk : x ∈ C1}. The
role of the Landesman-Lazer type condition plays assumption (b). The existence
of solutions to perturbed equations is obtain by using the Schauder Fixed Point
Theorem in the case of Theorem 9.1 and the Leray-Schauder degree in the case of
Theorem 9.2. The results of [40] are formulated for general Hilbert space instead of
Rk but we restrict ourselves for simplicity here.

Karpińska studied separately [41] the case of second order systems and its bounded
solutions. This problem is not a special case of 9.1 – it is the existence of bounded
with the first derivative solutions.

In [73] we look for a solution of the nonlinear parabolic system

vt = ∆v − f(v, a · x− ct)(9.2)
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where x, a ∈ Rl, |a| = 1, c > 0, v = (v1, . . . , vk), ∆v = (
∑l

j=1 v
i
xjxj

)ki=1, f : Rk×R→
Rk. This solution is supposed to be of a special form

v(x, t) = w(a · x− ct)

with w : R→ Rk having finite limits

lim
s→±∞

w(s) = ±w±

and is called a travelling wave (of the front wave type). Usually, f depends on v
only, and the speed c of the wave and its direction a is not determined by the system
(comp. [88]).

If one substitutes w = u + ψ where ψ(s) = ω(s)w− + (1 − ω(s))w+ with ω – a
smooth real function that equals 1 for s ≤ −1 and 0 for s ≥ 1, then the function u
should satisfy the second order ordinary differential system in Rk

u′′ + cu′ = f(u+ ψ(s), s)− ψ′′(s)− cψ′(s)

and vanish at ±∞. This is equivalent to an integral Hammerstein equation on the
real line

u(t) = −1
c

∫ t

−∞
e−c(t−s)f(u(s) + ψ(s), s) ds− 1

c

∫ ∞
t

f(u(s) + ψ(s), s) ds+ w+ − w−

with the additional condition∫ ∞
−∞

f(u(s) + ψ(s), s) ds = c(w+ − w−).

This system of equations can be considered as a kind of equations (1.4). The per-
turbation of the above ODE by λu causes that the linear operator begins invertible
and the condition on integral over the whole line is omitted. This is similar as in
our abstract scheme from section 2.

Theorem 9.3. ([73]). Under the following assumptions on f :
1) continuity;
2) |f(x, s)| ≤ α(s)|x|ρ + β(s) with ρ < 1, α and β vanishing at ±∞,

sups |α(s)| ≤ α0 with the constant α0 sufficiently small;
3) there exists a function γ0 vanishing at infinity such that for every coordinate fi
of f , i = 1, . . . , k, every s, |ui| ≥ γ0(s), and every |uj| ≤ |ui| (j 6= i)

uifi(u+ ψ(s), s) ≥ 0,

the parabolic system 9.2 has a solution being of the above form.

In the proof, we perturb the above ODE by λnu with positive λn → 0. The
related question is reduced to the fixed point problem for some compact operator
in the space C0(R,Rk) of functions u : R → Rk vanishing at both infinities. The
sequence uλn of fixed points is then relatively compact in the above space and any
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cluster point is a solution of the main problem. Assumption 3) is the Landesman-
Lazer type condition and excludes the unboundedness of the sequence.

R. Stańczy [83] considers the question of the existence of bounded solutions for
semilinear elliptic problem:

∆u = f(x, u) for |x| > 1, x ∈ Rk, k ≥ 3
u(x) = 0 for |x| = 1.(9.3)

The problem is resonant, since the homogeneous BVP:

∆u = 0 for |x| > 1,

u(x) = 0 for |x| = 1,

has a nontrivial bounded solution u(x) = 1 − |x|2−n. The Laplace operator is a
natural candidate for linear part L, but there is no natural choice of Banach spaces
X and Z – the space of bonded and continuous functions is too large and Hölder
spaces on unbounded domains are not uniquely defined. If nonlinear part f has the
radial symmetry, i.e. f(x, u) = g(|x|, u) where g : [1,∞)×R→ R, then the problem
9.3 leads to

v′′ +
k − 1
r

v′ = g(r, v), v(1) = 0.

When v is a solution of the last problem, then u(x) = v(|x|) is a solution of 9.3
called a radial solution. The complete answer to the question of the existence of
radial solutions gives the following

Theorem 9.4. ([83]). Suppose that the function g is continuous,
(i) for each R > 0,

lim
r→∞

sup
|v|≤R

|g(r, v)| = 0,

(ii) there exists M > 0 such that, for all |v| ≥M and all r,

vg(r, v) ≥ 0.

Then the boundary value problem (9.3) has a bounded radial solution.

The proof is based on the perturbation scheme; assumption (ii) plays the role of
Landesman-Lazer type condition (notice that it is not asymptotic). When nonlinear
term f is not radially symmetric, the question is much more complicated. The
perturbed linear operator ∆− λI is invertible in appropriate Hölder spaces but the
boundedness of a sequence of solutions (un) for λn → 0 is not obvious. However, it
seems almost sure that the existence of a bounded solution to 9.3 can be obtained
under very similar conditions as in Theorem 9.4. The question of the existence of
decaying at infinity solutions is simpler (comp. [84] and its references).

Recently, K. Szymańska [85] studied the asymptotic BVP on the half-line at
resonance:

x′′ = f(t, x, x′), x′(0) = 0 = lim
t→∞

x′(t).
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The perturbation of the linear part x′′ by ±λx or ±λx′ does not lead to satisfactory
results. One can perturb, however, the boundary condition

x′(0) = λx(0), lim
t→∞

x′(t) = 0.

The perturbed problems are studied in the space U of functions belonging to
C1([0,∞),Rk) which has the limit 0 at infinity with the norm

||x|| := max{|x(0)|, sup
t∈[0,∞)

|x′(t)|}.

The nonlinearity f : R× Rk × Rk → Rk has a linear growth

|f(t, x, y)| ≤ a(t)|x|+ b(t)|y|+ c(t)

with b, c, t 7→ (t + 1)a(t) ∈ L1(0,∞). For any λ > 0, the perturbed problem has a
solution provided that

there exists M > 0 such that (y, f(t, x, y)) > for t ≥ 0, x ∈ Rk and |y| ≥M.
We can apply our method and take xλn – a sequence of solutions for λn → 0

which has a convergent subsequence, if one of two conditions holds:
(1) there exists L > 0 such that (x, f(t, x, y)) ≥ βtε for t ≥ 0, y ∈ Rk and

|x| ≥ L;
(2) there exists L > 0 such that (x, f(t, x, y)) ≥ 0 for t ≥ 0, y ∈ Rk, |x| ≥ L, and

for some T > 0 and α > 0, this scalar product is not less than α.
Under the above assumptions, the limit of this subsequence is a solution of the

resonant problem.

There is no abstract condition of Landesman-Lazer type for the case of non-
Fredholm linear part L similar to the condition given in section 3 on asymptotic
behaviour of N restricted to the kernel. However the method works well as we have
seen in the above three applications.

If one can find two (or more) separated sequences (xn), then its cluster points
be two disjoint solutions of equation 1.1 (see [70]). Similarly, if one knows that all
elements of the sequence (xn) belongs to a certain closed set, then its cluster points
have the same property.
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[85] K. Szymańska: On an asymptotic boundary value problem for second order
differential equations, (submitted).

[86] Tung Ren-Ding: Unbounded perturbations of forced harmonic oscillations at
resonance, Proc. Amer. Math. Soc. 88 (1983), 59-74.

[87] G. Vidossich: A general existence theorem for boundary value problems for
ordinary differential equations, Nonlinear Analysis, TMA 15 (1990), 897-914.

[88] A. Volpert, V. Volpert: Travelling wave solutions of parabolic systems, Amer.
Math. Soc., Providence Rhode Island, 1994.

[89] S.A. Williams: A sharp sufficient condition for solution of a nonlinear elliptic
boundary value problem, J. Diff. Equations 8 (1970), 580-586.

Address: Faculty of Mathematics , University of  Lódź,
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